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Abstract
Parametric active contours have been widely used for image segmentation. However,
high noise levels and weak edges are the most acute issues that hinder their performance,
particularly in medical images. In order to overcome these issues, we propose an exter-
nal force that weights the gradient vector flow (GVF) field and balloon forces accord-
ing to local image features. We also propose a mechanism to automatically terminate
the contour’s deformation. Evaluation results on real MRI and CT slices show that the
proposed approach attains higher segmentation accuracy than snakes using traditional
external forces, while allowing initialization using a limited number of selected points.

1 Introduction
Parametric active contours, or snakes, model the movement of a dynamic curve towards

an object’s boundary under the influence of internal and external forces [5, 9]. Parametric
snakes produce closed and smooth object boundaries while allowing the separation of objects
in contact by prohibiting contour fusions. The latter is an important advantage over non-
parametric approaches, such as the level-set approach [16].

Despite the outstanding results of parametric snakes for image segmentation, their accu-
racy is relatively low when the amount of image clutter and noise is high [15]. In such cases,
the use of various external forces that help the snake to conform to the desired boundary is
an appropriate solution. For example, Cohen [2] propose balloon forces to guide the snake
to the object’s boundary in a similar way a balloon inflates or deflates. Xu et al. [12] pro-
pose the gradient vector flow (GVF) field as an external force to help the snake to conform
to concave boundaries. Other proposals include using vector field convolution (VFC) as an
external force, which is calculated by convolving the image edge map with a user-defined
vector field kernel [7]; integrating the GVF field with prior directional information manually
provided [15]; convolving the image with a sigmoid function before computing the GVF
field [13]; adaptively computing the GVF field according to the characteristics of an im-
age region [11];and computing a mean shift based GVF (MSGVF) to balance internal and
external forces and drive the curve towards the desired boundary [14].

Although balloon forces may help guide the snake to the desired boundary over noise ar-
eas, the strength of the force must be appropriately set in order for the snake to detect weak
edges and avoid snake leakages. GVF-based methods, and many of its variants, are proposed
in order to address shortcomings of the balloon force; these external forces, however, may
still require that the initial snake be initialized close to the desired boundary to obtain accu-
rate segmentation results, particularly in noise images [1]. This inevitably involves manually
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selecting several initial points or snake elements. Moreover, regardless of the external force
used, the appropriate number of iterations to accurately conform the desired boundary must
be carefully selected in an empirical manner.

In this work, we use an external force that combines the advantages of GVF and balloon
forces, especially for cases when the snake is initialized far from the desired boundary in
a noisy area and with a very limited number of snake elements [6]. Specifically, balloon
forces are used to guide the snake to the object’s boundary even in the presence of image
clutter and noise; while GVF forces are used to improve segmentation accuracy even around
weak edges. We control the effect of these two forces by a weighting function based on local
image features. Also in this work, we propose a mechanism to terminate the snake’s defor-
mation process without having to manually indicate the number of iterations. The proposed
approach minimizes snake leakages and considerably reduces the number of initial snake
elements, making it suitable for medical image segmentation with little manual intervention.

2 Proposed External Force
A snake is a curve C(s) = [x(s),y(s)], with s ∈ [0,1] at position (x,y), that evolves to

an object’s boundary by minimizing the energy functional ES =
1∫
0
[Eint(C(s))+Eext(C(s))]ds,

where Eint(C(s)) = 1
2 (α|C

′(s)|2 +β |C′′(s)|2) is the internal energy with α and β controlling
the smoothness of C, and Eext(C(s)) is the external energy, which attracts C towards the
object’s boundary. ES can be minimized by evolving the snake dynamically as a function of
parameter s and artificial time t; namely, C(s, t) =

[
αC

′′
(s, t)−βC

′′′′
(s, t)

]
−∇Eext , where

the first term and the second term are called the internal force, Finternal, and the external force,
Fexternal , respectively.

Our external force is a weighted combination of balloon and GVF forces and aims at
exploiting the advantages of each of these two forces. Balloon forces are represented as
Fballoon = n(s), where n(s) is a unit vector normal to the snake at snake element Cn. GVF
forces are derived from the diffusion of the gradient vectors of the image edge map f (x,y),
and are given as FGV F = v(x,y), where v(x,y) = [u(x,y),ν(x,y)] denotes the GVF field [12].
The proposed external force is then defined as Fexternal = (FBalloon ∗ (1−Ω))+ (FGV F ∗Ω),
where Ω ∈ [0,1] is a weighting factor given by:

Ω = h̄(1−(ĀD−ε)) (1)

where h̄ ∈ [0,1] denotes the average intensity value of f (x,y) over a semi-circular region S
of radius r centered at each snake element, and ĀD ∈ [0,1] is the average angular difference
between the direction of FBalloon and the direction of the GVF field over a cone-shaped region
T centered at each snake element. ĀD = 0 represents 0 rad, while ĀD = 1 represents π rad.
Constant ε = 0.001 prevents power by zero when ĀD= 1. For each snake element at position
(x,y), h̄ and ĀD are calculated as follows:

h̄(x,y) =
1
N ∑

(i, j)∈S
h(i, j); ĀD(x,y) =

1
M ∗π

∑
(i, j)∈T

θ(i, j) (2)

where N is the number of pixels located in region S, h is the edge intensity at position (i, j),
M is the number of GVF field vectors in region T , and θ is the minimum angle between
the GVF field vector at position (i, j) and FBalloon for snake element Cn at position (x,y), as
illustrated in Fig. 1. Note that T (x,y,sl,ϕ) is a cone-shaped region with its vertex in (x,y),
which allows analyzing the region located far from snake element Cn and thus provides a
better insight of the direction of the GVF field than the region close to Cn.
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(a) (b)
Figure 1: (a) Region S and (b) T for snake element Cn. The snake, the direction of FBalloon, and the
GVF field vectors are represented in green, red and blue, respectively.

The weighting function in Eq. (1) assigns different priorities to Fballoon and FGV F ac-
cording to two local image features: the average edge intensity (h̄) and the average GVF
field direction (ĀD). This weighting process helps to achieve the following:

1. Guide the snake to the boundary in smooth areas even if its normal direction of growth
is opposite to FGV F . This allows initialization far from the boundary with a limited
number of snake elements. Fig. 2(a-b) illustrate this, where Ω approaches 0.

2. Minimize snake leakages around weak edges by averaging the edge intensity and the
GVF field direction. Fig. 2(c) illustrates this, where Ω slowly approaches 1.

3. Conform to the desired boundary by assigning a higher weight to FGV F when edges
are encountered. This is illustrated in Fig. 2(d), where Ω approaches 1.

(a) (b) (c) (d)
Figure 2: GVF field direction in region T (a) towards and (b) against the snake’s growth (Ω→ 0); and
around (c) weak and (d) strong edges (non-white pixels represent strong edges).

In classical snakes, the deformation process is usually performed over a fixed number of
iterations, over which it is expected to achieve convergence, i.e., external forces become
zero. For images with strong edges, this number of iterations may be easily determined
empirically. However, for images with weak edges, this number should be carefully selected
to prevent leakages [8]. Here, we propose a mechanism to terminate the deformation process
based on the percentage of snake elements labeled as off. A snake element is said to be off
if no external force is acting on it. This usually occurs when the element encounters a strong
edge, i.e., FGV F is the main acting external force (Ω > 0.5) and the overall strength of the
GVF field around the element is close to zero. To this end, if Ω > 0.5, we compute Ωb in the
same manner as Ω in Eq. (1), but using regions Sb and Tb, as illustrated in Fig. 3. We then
label a snake element as off and set its forces to zero if (Ωb)

2 > Ω > 0.5. This condition
allows determining if the overall strength of the GVF field around the element is close to
zero, i.e., the GVF field has opposite average directions in regions T and Tb. We use the
squared value of Ωb to prevent the element from moving past the edge. If the percentage of
off snake elements is equal to or greater than Q, the whole deformation process is terminated.

3 Experimental Results
The performance of the proposed approach over several regions of real MRI and CT

slices is compared to that of snakes using three different external forces: a) FGV F exclusively
[12], b) Fballoon and image gradient (BGrad) forces [2], and c) FGV F or Fballoon (BGVFT)
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(a) (b) (c)
Figure 3: (a) Regions T and S (in red) used to compute Ω, and regions Tb and Sb (in black) used to
compute Ωb. (b) Dimension of regions S and Sb and of (c) regions T and Tb.

Table 1: Detection accuracy of snakes using various external forces.

Exp. GVF BGrad BGVFT Proposed
approach No.

iterationsDSC JC DSC JC DSC JC DSC JC
1 0.8716 0.7724 0.8795 0.7848 0.9341 0.8763 0.9413 0.8902 43
2 0.9329 0.8742 0.8969 0.8130 0.9368 0.8812 0.9517 0.9079 45
3 0.9041 0.8249 0.8840 0.7921 0.9374 0.8822 0.9537 0.9115 44
4 0.9311 0.8710 0.8676 0.7662 0.9365 0.8806 0.9559 0.9154 38
5 0.9345 0.8770 0.8493 0.7380 0.9612 0.952 0.9631 0.9288 43
6 0.1445 0.0779 0.8017 0.6691 0.9517 0.9078 0.9643 0.9311 96
7 0.0044 0.0022 0.6877 0.5240 0.8996 0.8174 0.9709 0.9453 171
8 0.9381 0.8834 0.9045 0.8256 0.9568 0.9171 0.9433 0.8926 45
9 0.9043 0.8253 0.8263 0.7040 0.9393 0.8855 0.9310 0.8709 26

10 0.9258 0.8619 0.6844 0.5202 0.9231 0.8541 0.9426 0.8915 60

according to a threshold i.e., if h̄ > 0.05 the acting external force is then set to FGV F . All im-
ages are preprocessed using histogram equalization to enhance edges. The edge map f (x,y)
is computed using the wavelet coefficients obtained after applying the stationary wavelet
transform (SWT) using the Haar filter with L = 3 levels of decomposition, as explained in
[10]. We use all parameter values suggested in [12] to compute the GVF field and to control
the snake’s smoothness. We use a radius r = 1 pixels for regions S and Sb, an angle ϕ = 45o

and sl = 5 pixels for regions T and Tb. These values provide the best trade-off between cap-
turing enough local image features and computational complexity. All snakes are initialized
inside the desired region by manually selecting a single position that is used as the center of
an initial circular curve of p pixels in radius. The whole deformation process is terminated
if more than Q =90% of the snake elements are labeled as off.

The detection accuracy of the evaluated methods is measured by the Dice similarity
(DSC) [3] and Jaccard coefficients (JC) [4] using manually annotated ground truth. DSC
and JC values are within the range [0,1], where 1 indicates identical overlap and 0 indicates
no overlap between the regions inside the detected boundaries. Table 1 tabulates the DSC
and JC values for different regions of MRI and CT slices. Experiments 1-3 represent three
different regions of an MRI slice of a spinal cord, 4 and 5 represent two regions of an MRI
slice of a pelvis, 6 and 7 represent two regions of an MRI slice of a knee, 8 represents one
region of a CT slice of a skull, and 9 and 10 represent two regions of a CT slice of a spinal
cord. In all experiments, the number of iterations is equal for all evaluated methods and is
set to the number of iterations required by our termination mechanism. Results in Table 1
show that our approach achieves the highest accuracy for the majority of experiments. Note
that for experiments 8-9, the BGVFT snake achieves higher DCS and JC values than our
approach for the same number of iterations. In these cases, the BGVFT snake effectively
switches between GVF and balloon forces based on the selected threshold. However, the
BGVFT snake, similarly to the GVF and BGrad snakes, requires manual selection of the
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BGrad

GVF

BGVFT

Proposed
Approach

(a) 5 iterations (b) 20 iterations (c) 60 iterations (d) Final Results
Figure 4: Snake deformation process (green curves) for experiment 2. The white dot represents the
manually selected initial position, the red curve represents the initial snake.

(a) 5 iterations (b) 20 iterations (c) 60 iterations (d) Final result
Figure 5: A GVF snake that fails if initialized by a small curve far from the desired boundary.

number of iterations. More iterations may cause snake leakage, unlike our approach which
terminates the deformation process when the majority of snake elements encounter strong
edges. Visual results for experiment 2 are shown in Fig. 4. The BGrad snake conforms to
the desired boundary with high accuracy (DSC=0.8969 ; JC=8130 ). However, for the same
number of iterations required by our proposed approach, this snake does not reach the actual
edge. More iterations may cause snake leakage around weak edges if the balloon force is
greater than the gradient force. The GVF and BGVFT snakes result in leakages around weak
edges. Our approach successfully conforms to the desired boundary with high accuracy.

Note that although the capture range of FGV F is in general large, methods using this
external force exclusively may fail if the snake is initialized far from the desired boundary
using a relatively small initial curve (see Fig. 5). The GVF field around such small initial
snakes may not point towards the desired boundary due to the high levels of noise and clutter.
An initial snake closer to the boundary may increase segmentation accuracy in this case.

4 Conclusion
This paper proposed an approach that combines balloon and GVF forces for parametric

snakes, and a mechanism to automatically terminate the snake’s deformation process. The
approach uses a weighting factor to leverage the advantages of these two forces according to
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local image features. In smooth areas, balloon forces guide the snake to the object’s bound-
ary, while in the presence of strong edge information GVF forces make the snake conform to
the boundary. Experimental results on real medical images show that the proposed approach
outperforms methods based on traditional external forces, while offering the advantage of
initializing the snake with a single manually selected point inside the desired region and
terminating the deformation process automatically.
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