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MONOTONICITY OF THE VALUE FUNCTION FOR A
TWO-DIMENSIONAL OPTIMAL STOPPING PROBLEM

BY SIGURD ASSING, SAUL JACKA AND ADRIANA OCEJO1

University of Warwick

We consider a pair (X,Y ) of stochastic processes satisfying the equation
dX = a(X)Y dB driven by a Brownian motion and study the monotonicity
and continuity in y of the value function v(x, y) = supτ Ex,y [e−qτ g(Xτ )],
where the supremum is taken over stopping times with respect to the filtration
generated by (X,Y ). Our results can successfully be applied to pricing Amer-
ican options where X is the discounted price of an asset while Y is given by
a stochastic volatility model such as those proposed by Heston or Hull and
White. The main method of proof is based on time-change and coupling.

1. Introduction. Consider a two-dimensional strong Markov process (X,

Y ) = (Xt , Yt , t ≥ 0) with state space R × S,S ⊆ (0,∞), given on a family of
probability spaces (�,F,Px,y, (x, y) ∈ R× S) which satisfies the stochastic dif-
ferential equation

dX = a(X)Y dB,(1.1)

where B = (Bt )t≥0 is a standard Brownian motion, and a :R→R is a measurable
function.

Processes of this type are common in mathematical finance, and in this context,
X would be the discounted price of an asset while Y is a process giving the so-
called stochastic volatility.

We shall refer to this application in the examples, as it was our motivation in the
beginning. However, the methods used are of a broader nature and can be applied
in a wider context.

This paper mainly deals with the regularity of the value function

v(x, y) = sup
0≤τ≤T

Ex,y

[
e−qτ g(Xτ )

]
, (x, y) ∈ R× S,(1.2)

with respect to the optimal stopping problem given by (X,Y ), a discount rate
q > 0, a time horizon T ∈ [0,∞] and a measurable gain function g :R → R. But
for financial applications (see Section 5), a slightly modified value function of type

v(x, y) = sup
0≤τ≤T

Ex,y

[
e−rτ g

(
erτXτ

)]
(1.2′)
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is also considered where r stands for the instantaneous interest rate.
The supremum in (1.2) and (1.2′) is taken over all finite stopping times with

respect to the filtration generated by the pair of processes (X,Y ).
To ensure the well-posedness of this problem, we assume the integrability con-

dition (recall that T may be infinite)

Ex,y

[
sup

0≤t≤T

e−qt
∣∣g(Xt)

∣∣I (t < ∞)
]
< ∞ for all (x, y) ∈ R× S,(1.3)

which is a common assumption in the context of optimal stopping problems.
Note that this condition is satisfied if g is bounded. For more general functions,

verifying this condition can be fairly difficult, and its validity may depend on the
particular choice of the dynamics for (X,Y ).

Our main focus is on proving the monotonicity of v(x, y) with respect to y ∈ S ,
and we are able to verify this property in the case of the following two classes of
strong Markov processes under not too restrictive conditions (see Theorems 2.5
and 3.5):

• Regime-switching: Y is a skip-free continuous-time Markov chain (see page
1561) which is independent of the Brownian motion B driving equation (1.1).

• Diffusion: Y solves a stochastic differential equation of the type

dY = η(Y )dBY + θ(Y ) dt,(1.4)

where BY = (BY
t )t≥0 is a standard Brownian motion such that the quadratic

covariation satisfies 〈B,BY 〉t = δt, t ≥ 0, for some real parameter δ ∈ [−1,1]
and η, θ :R→R are measurable functions.

Note that, in the second class, the joint distribution of X and Y is uniquely deter-
mined if the system of equations (1.1), (1.4) admits a weakly unique solution, and
the process Y does not have to be independent of the driving Brownian motion B ,
whereas, in the case of the first class, the process Y is not given by an equation,
and the assumed independence of Y and B is a natural way of linking X and Y if
there is too little information about the structure of the pair (X,Y ).

Our technique is based on time-change and coupling. Equation (1.1) goes back
to a volatility model used by Hobson in [6] who also applies time-change and
coupling but for comparing prices of European options. As far as we know, our
paper is the first paper dealing with the extra difficulty of applying this technique
in the context of optimal stopping. It should be mentioned that Ekström [3], The-
orem 4.2, can compare prices of American options if Y ≡ 1 in equation (1.1) and
a also depends on time. Nevertheless, it seems to be that his method cannot be
applied in the case of nontrivial processes Y .

We provide some examples to illustrate the results. In the case of regime-
switching, we look at the pricing of perpetual American put options which, for
a(x) = x, was studied by Guo and Zhang [4] for a two-state Markov chain and
by Jobert and Rogers [9] for a finite-state Markov chain. While the former, since
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the situation is much easier, gave a closed-form expression for the price, the lat-
ter could only provide a numerical algorithm to approximate the value function
which gives the price of the contract. It turns out that the algorithm in the case of a
chain with many states can be very time-intensive if the unknown thresholds which
characterize the optimal stopping rule are not known to be in a specific order when
labeled by the different volatility states before the algorithm starts. However, based
on our result that the value function v(x, y) is monotone in y, we are now able to
give conditions under which these thresholds must be in a monotone order.

Ultimately, in the case where Y is a diffusion, we verify the continuity and
monotonicity of the value function v(x, y) with respect to y ∈ S = (0,∞) for two
important volatility models, the Heston [5] and the Hull and White [7] model.
Note that, using entirely different methods, differentiability and monotonicity in
the volatility parameter of European option prices under the Hull and White model
were studied in [1, 12]. The authors of [12] also showed a connection between the
monotonicity in the volatility parameter and the ability of an option to complete
the market. Another motivation to study the monotonicity of the value function in
the volatility parameter y is that the numerical solution of the corresponding free-
boundary problem becomes a lot easier if we know that the continuation region is
monotonic in y and if we know that the corresponding free-boundary is continu-
ous. Moreover, we will show, in a sequel, under the assumption of continuity, how
to solve a game-theoretic version of the American put problem corresponding to
model uncertainty for the stochastic volatility.

The structure of this paper is as follows. In Section 2 the monotonicity of the
value function v(x, y) with respect to y ∈ S = {yi : i = 1,2, . . . ,m} ⊆ (0,∞) is
shown in the case of regime-switching, and the main method is established. In
Section 3 the main method is adapted to the case of a system of stochastic differ-
ential equations (1.1), (1.4) which is the diffusion case, while in Section 4 we use
monotonicity to show the continuity of the value function v(x, y) with respect to
y ∈ S = (0,∞) in the diffusion case. In Section 5 we reformulate our results in the
context of option pricing. Then all our examples are discussed in detail in Section 6
and, in the Appendix, we prove auxiliary results and some of the corollaries.

Finally, it should be mentioned that all our results and proofs would not change
in principle if the state space of (X,Y ) is R × S with S ⊆ (−∞,0) instead of
S ⊆ (0,∞). The only change in this case [see Corollary 2.7(ii)] would be to order:
increasing becomes decreasing. However, as pointed out in the proof of Corol-
lary 2.7(ii), our method cannot be applied to show the monotonicity of v(x, y)

in y ∈ S if S contains a neighborhood of zero. We do not know either how to
generalize our method to the nonmartingale case.

2. The regime-switching case. Suppose (X,Y ) = (Xt , Yt , t ≥ 0) is a strong
Markov process given on a family of probability spaces (�,F , Px,y, (x, y) ∈ R×
S) which satisfies the following conditions:
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(C1) The process (X,Y ) is adapted with respect to a filtration Ft , t ≥ 0, of sub-
σ -algebras of F and, for every (x, y) ∈ R× S , there is an Ft Brownian motion B

on (�,F,Px,y) independent of Y such that

Xt = X0 +
∫ t

0
a(Xs)Ys dBs, t ≥ 0,Px,y-a.s.;

(C2) The process Y is a continuous-time Markov chain on the finite state space
S = {yi : i = 1,2, . . . ,m} ⊂ (0,∞) with Q-matrix (q[yi, yj ]).

REMARK 2.1. (i) Because of the condition min{y1, . . . , ym} > 0 we have that
Px,y(limt↑∞

∫ t
0 Y 2

s ds = ∞) = 1 for all (x, y) ∈ R× S .

(ii) From the above assumptions it immediately follows that, for every initial
condition x ∈ R, there exists a weak solution to the stochastic differential equation
dG = a(G)dW driven by a Brownian motion W . To see this fix (x, y) ∈ R × S ,
and write

Xt = x +
∫ t

0
a(Xs) dMs, t ≥ 0,Px,y-a.s.,

where Ms = ∫ s
0 Yu dBu is well defined since

∫ s
0 Y 2

u du < ∞,Px,y-a.s., for all s ≥ 0.
But time-changing X by the inverse of 〈M〉, which exists by (i) above, yields

Gt = x +
∫ t

0
a(Gs) dWs, t ≥ 0,Px,y-a.s.,

where G = X◦〈M〉−1 is F〈M〉−1
t

-adapted, and W = M ◦〈M〉−1 is an F〈M〉−1
t

Brow-
nian motion by the Dambis–Dubins–Schwarz theorem; see [11], Theorem V.1.6.
The equation does indeed hold for all t ≥ 0 since Px,y(limt↑∞

∫ t
0 Y 2

s ds = ∞) = 1.
(iii) Because 〈M〉−1 = ∫ ·

0 Y−2
〈M〉−1

s
ds, an easy calculation shows that the pro-

cess Y ◦ 〈M〉−1 is a continuous-time Markov chain with Q-matrix (y−2
i q[yi, yj ]),

yi, yj ∈ S .

We can now formulate the condition on the coefficient a needed for our
method.

(C3) Let a :R→R be measurable functions such that the stochastic differential
equation dG = a(G)dW driven by a Brownian motion W has a weakly unique
strong Markov solution with state space R.

The law of the strong Markov process given by (C3) is entirely determined by
its semigroup of transition kernels. Multiplying these transition kernels and the
transition kernels of a continuous-time Markov chain on S × S both marginals
of which are determined by the Q-matrix (y−2

i q[yi, yj ]), yi, yj ∈ S , results in a
semigroup of transition kernels of a strong Markov process (G,Z,Z′) with G

being independent of (Z,Z′). Now choose a complete probability space (�̃, F̃, P̃ )
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such that (G,Z,Z′) starts from fixed (x, y, y′) ∈ R× S × S . Let FG,Z,Z′
t denote

the augmentation of the filtration σ({Gs,Zs,Z
′
s : s ≤ t}), t ≥ 0, and assume that

(G,Z), (G,Z′) are strong Markov processes with respect to FG,Z,Z′
t —an example

will be given in the proof of Theorem 2.5.
Moreover, by the martingale problem associated with the strong Markov pro-

cess G, Gt − x is a continuous local FG,Z,Z′
t -martingale with quadratic variation∫ t

0 a(Gs)
2 ds, t ≥ 0. Thus, by a well-known result going back to Doob (see [8],

Theorem II 7.1′, e.g.), there is a Brownian motion W such that

Gt − x =
∫ t

0
a(Gs) dWs, t ≥ 0, P̃ -a.s.(2.1)

The construction of W on (�̃, F̃, P̃ ) (or on a canonical enlargement of it2) as
given in the proof of Theorem II 7.1′ in [8] shows that the pair (G,W) is also
independent of (Z,Z′). But note that W might only be a Brownian motion with
respect to a filtration F̃t larger than FG,Z,Z′

t , t ≥ 0, so that the stochastic integral
in (2.1) can only be understood with respect to the larger filtration.

COROLLARY 2.2. For given (x, y, y′) ∈ R×S×S , there is a complete proba-
bility space (�̃, F̃, P̃ ) equipped with two filtrations FG,Z,Z′

t ⊆ F̃t , t ≥ 0, which is
big enough to carry four basic processes G,W,Z,Z′ such that: (G,W) is a weak
F̃t -adapted solution of dG = a(G)dW starting from x independent of (Z,Z′), the
processes Z and Z′ are Markov chains with Q-matrices (y−2

i q[yi, yj ]), yi, yj ∈ S ,
starting from y and y′, respectively, and (G,Z), (G,Z′) are strong Markov pro-
cesses with respect to FG,Z,Z′

t , t ≥ 0.

The goal of this section is to show that, under some not too restrictive condi-
tions, for fixed x ∈ R and y, y′ ∈ S ,

if y ≤ y′ then v(x, y) ≤ v
(
x, y′),(2.2)

where the value function v is given by (1.2).
Choosing x and y ≤ y′, we will construct two processes (X̃, Ỹ ) and (X̃′, Ỹ ′) on

(�̃, F̃, P̃ ) such that (X̃, Ỹ ) has the same law as (X,Y ) under Px,y , and (X̃′, Ỹ ′)
has the same law as (X,Y ) under Px,y′ . As a consequence we obtain that

v(x, y) = sup
0≤τ̃≤T

Ẽ
[
e−qτ̃ g(X̃τ̃ )

]
,

(2.3)
v
(
x, y′) = sup

0≤τ̃ ′≤T

Ẽ
[
e−qτ̃ ′

g
(
X̃′

τ̃ ′
)]

,

where τ̃ and τ̃ ′ are finite stopping times with respect to the filtrations generated by
(X̃, Ỹ ) and (X̃′, Ỹ ′), respectively.

2Our convention is to use (�̃, F̃ , P̃ ) for the enlarged space, too.
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To see this note that each stopping time τ with respect to the filtration gener-
ated by (X,Y ) can easily be associated with a stopping time τ̃ with respect to the
filtration generated by (X̃, Ỹ ) such that

Ex,y

[
e−qτ g(Xτ )

] = Ẽ
[
e−qτ̃ g(X̃τ̃ )

]
and vice versa proving the first equality in (2.3). The second equality follows of
course by the same argument.

Hence, we can now work on only ONE probability space. This is an important
part of our method for proving (2.2) which is based on time-change and coupling
and which is demonstrated below.

Let G,W,Z,Z′ be given on (�̃, F̃, P̃ ) as described in Corollary 2.2, and define

�t =
∫ t

0
Z−2

s ds, t ≥ 0.

This process � = (�t )t≥0 is of course continuous but also strictly increasing since
Z only takes nonzero values. Moreover, condition (C2) on page 1556 implies that

�t < ∞, t ≥ 0, a.s. and lim
t↑∞�t = ∞ a.s.,(2.4)

since, by Remark 2.1(iii), Z has the same law as Y ◦ 〈M〉−1 under Px,y with∫ ·
0 Y−2

〈M〉−1
s

ds being the inverse of
∫ ·

0 Y 2
s ds. Thus A = �−1 is also a continuous

and strictly increasing process satisfying

At < ∞, t ≥ 0, a.s. and lim
t↑∞At = ∞ a.s.(2.5)

As a consequence, the two technical properties:

(P1) �At = A�t = t for all t ≥ 0 a.s. and
(P2) s < �t if and only if As < t for all 0 ≤ s, t < ∞ a.s.

must hold.
Of course, � is adapted to both filtrations FG,Z,Z′

t and F̃t , t ≥ 0. However, A =
�−1 is considered an FG,Z,Z′

t time change in the following lemma. We denote by
M and T the families of stopping times with respect to the filtrations (FG,Z,Z′

t )t≥0

and (FG,Z,Z′
At

)t≥0, respectively.

LEMMA 2.3. If ρ ∈ M then �ρ ∈ T , and if τ ∈ T then Aτ ∈ M.

A similar lemma can be found in [13]. Since the above lemma is going to be
used to reformulate the original optimal stopping problem (1.2) in both the case
where Y is a Markov chain and the case where Y is a diffusion, its proof is given
in the Appendix for completeness.

The reformulation of (1.2) is based on the existence of a suitable solution
to (1.1) which is constructed next.



1560 S. ASSING, S. JACKA AND A. OCEJO

Since Z is F̃t -adapted, one can rewrite (2.1) to get

Gt = x +
∫ t

0
a(Gs)Zs dM̃s, t ≥ 0, a.s. where M̃s =

∫ s

0

dWu

Zu

, s ≥ 0.

Observe that the stochastic integral defining M̃ exists by (2.4). Time changing the
above equation by A yields

X̃t = x +
∫ t

0
a(X̃s)Ỹs dB̃s, t ≥ 0, a.s.

for X̃ = G ◦ A, Ỹ = Z ◦ A, B̃ = M̃ ◦ A. Of course, (X̃, Ỹ ) is F̃At -adapted, and
B̃ is an F̃At Brownian motion by Dambis–Dubins–Schwarz’ theorem [11], Theo-
rem V.1.6. Thus (X̃, Ỹ ) gives a weak solution to (1.1) starting from (x, y). More-
over, B̃ and Ỹ are independent since W and Z are independent. The proof of this
is contained in the Appendix; see Lemma A.1 on page 1581.

PROPOSITION 2.4. Let G,X̃, Ỹ be the processes on (�̃, F̃, P̃ ) introduced
above and starting from G0 = X̃0 = x and Ỹ0 = y. If the stochastic differential
equation

dX = a(X)Y dB, (X,Y ) unknown,

driven by a Brownian motion B , where Y is required to be a continuous-time
Markov chain independent of B with Q-matrix (q[yi, yj ]), yi, yj ∈ S , admits a
weakly unique solution then, for any T ∈ [0,∞],

v(x, y) = sup
τ∈TT

Ẽ
[
e−qτ g(X̃τ )

] = sup
ρ∈MT

Ẽ
[
e−q�ρg(Gρ)

]
,

where

TT = {τ ∈ T : 0 ≤ τ ≤ T } and MT = {ρ ∈ M : 0 ≤ ρ ≤ AT }.
Here, T and M denote the families of finite stopping times with respect to the
filtrations (FG,Z,Z′

At
)t≥0 and (FG,Z,Z′

t )t≥0, respectively.

PROOF. First note that � is a continuous, strictly increasing, perfect ad-
ditive functional of (G,Z) which satisfies (2.4) and recall that (G,Z) is a
strong Markov process with respect to FG,Z,Z′

t , t ≥ 0, by Corollary 2.2. So
(G ◦ A,Z ◦ A) = (X̃, Ỹ ) must possess the strong Markov property with respect to
FG,Z,Z′

At
, t ≥ 0, by [13], Theorem 65.9. But A = �−1 = ∫ ·

0 Ỹ 2
s ds by time-changing

the integral defining �. So Ỹ is a continuous-time Markov chain with Q-matrix
(q[yi, yj ]), yi, yj ∈ S . Combining these statements, (X̃, Ỹ ) has the same law as
(X,Y ) under Px,y , since both pairs satisfy the equation dX = a(X)Y dB in the
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sense explained in the proposition and this equation admits a weakly unique solu-
tion. As a consequence it follows from (2.3) that

v(x, y) = sup
0≤τ≤T

Ẽ
[
e−qτ g(X̃τ )

]
,(2.6)

where the finite stopping times τ are with respect to the filtration FG,Z,Z′
At

, t ≥ 0.
Here one should mention that the stopping times used in (2.3) are with respect
to the filtration generated by (X̃, Ỹ ) which might be smaller than FG,Z,Z′

At
, t ≥ 0.

However, it is well known that the corresponding suprema are the same if the
underlying process, in this case (X̃, Ỹ ), is also strong Markov with respect to the
bigger filtration. For completeness we sketch the proof of (2.6) in the Appendix on
page 1579.

It remains to show that

sup
τ∈TT

Ẽ
[
e−qτ g(X̃τ )

] = sup
ρ∈MT

Ẽ
[
e−q�ρg(Gρ)

]
.(2.7)

Fix τ ∈ TT , and observe that

Ẽ
[
e−qτ g(X̃τ )

] = Ẽ
[
e−q�Aτ g(GAτ )

]

by property (P1) and the construction of X̃. Also Aτ is an FG,Z,Z′
t stopping time

by Lemma 2.3. The right-hand side above does not change if a finite version of Aτ

is chosen which still is an FG,Z,Z′
t stopping time, since the filtration satisfies the

usual conditions. Thus Aτ ∈ MT , and it follows that

Ẽ
[
e−qτ g(X̃τ )

] ≤ sup
ρ∈MT

Ẽ
[
e−q�ρg(Gρ)

]
.

Similarly, for fixed ρ ∈ MT , the equality Ẽ[e−q�ρg(Gρ)] = Ẽ[e−q�ρg(X̃�ρ )]
leads to

Ẽ
[
e−q�ρg(Gρ)

] ≤ sup
τ∈TT

Ẽ
[
e−qτ g(X̃τ )

]

finally proving (2.7). �

Of course, the conclusion of Proposition 2.4 remains valid for v(x, y′), X̃′, Ỹ ′,
T ′

T ,M′
T , A′ and �′ if these objects are constructed by using Z′ instead of Z.

Notice that the solution G is the same.
We are now in the position to formulate and prove the main result of this sec-

tion about the validity of (2.2). The following notion of a skip-free Markov chain
is needed: a continuous-time Markov chain with Q-matrix (q[yi, yj ]) taking the
states y1 < · · · < ym is called skip-free if the matrix Q is tridiagonal.
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THEOREM 2.5. Let (X,Y ) be a strong Markov process given on a family of
probability spaces (�,F,Px,y, (x, y) ∈R×S) and let g :R→R be a measurable
gain function such that {g ≥ 0} �= ∅. Assume (1.3), that (X,Y ) satisfies conditions
(C1), (C2) on page 1556 and condition (C3) on page 1557 and that all pairs of
processes satisfying conditions (C1), (C2) have the same law. Further suppose
that Y is skip-free. Define Kg+

T to be the collection of all finite stopping times
τ ≤ T with respect to the filtration generated by (X,Y ) such that g(Xτ ) ≥ 0. Fix
(x, y) ∈R× S and assume that v(x, y) = sup

τ∈Kg+
T

Ex,y[e−qτ g(Xτ )]. Then

v(x, y) ≤ v
(
x, y′) for all y′ ∈ S such that y ≤ y′,

so that v(x, y) is a lower bound for v(x, ·) on [y,∞) ∩ S .

REMARK 2.6. (i) The condition v(x, y) = sup
τ∈Kg+

T
Ex,y[e−qτ g(Xτ )] is a

technical condition which states that the optimum v(x, y) as defined by (1.2) can
be achieved by stopping at nonnegative values of g only. It is of course trivially
satisfied for all (x, y) ∈ R× S if the gain function is nonnegative and in this case
the theorem means that v(x, ·) is increasing.

(ii) In the case of an infinite time horizon T = ∞, it easily follows from the
section theorem [11], Theorem IV.5.5, that

Px,y

(
inf

{
t ≥ 0 :g(Xt) ≥ 0

}
< ∞) = 1 for all (x, y) ∈ R× S

is sufficient for v(x, y) = sup
τ∈Kg+

T
Ex,y[e−qτ g(Xτ )] to be true for all (x, y) ∈

R × S since (X,Y ) is strong Markov. Indeed, if a process always hits the set
{g ≥ 0} with probability one, then it is quite natural that maximal gain is obtained
while avoiding stopping at negative values of g. One can easily construct processes
satisfying this sufficient condition where the gain function g takes both positive
and negative values.

(iii) In the case where T < ∞, the only reasonable sufficient condition the au-
thors can find is the trivial condition g(x) ≥ 0 for all x ∈ R. This is because, in
general a process is not almost surely guaranteed to hit a subset of the state space
in finite time.

(iv) The monotonicity result of this theorem supports the intuition that the
larger the diffusion coefficient (volatility) of a diffusion without drift, the faster
this diffusion moves and hence the sooner it reaches the points where the gain
function g is large. As the killing term of the cost functional defining v(x, y) pun-
ishes the elapsed time, v(x, y ′) should indeed be larger than v(x, y), for y′ > y,
if the volatility process starting from y′ stays above the volatility process starting
from y, and this is ensured by the skip-free property of the Markov chain.

PROOF OF THEOREM 2.5. Fix x ∈ R and y, y′ ∈ S such that y ≤ y′, and let
G,W,Z,Z′ be given on a complete probability space (�̃, F̃, P̃ ) as described in
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Corollary 2.2. While in Corollary 2.2 the coupling of the two chains Z and Z′ was
not specified any further we now choose a particular coupling associated with a Q-
matrix Q which allows us to compare Z and Z′ directly. Denoting the Q-matrix
corresponding to the independence coupling by Q⊥, we set

Q

[
yi yj

yk yl

]
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Q⊥
[
yi yj

yk yl

]
, i �= k,

y−2
i q[yi, yj ], i = k, j = l,

0, i = k, j �= k

for yi, yj , yk, yl ∈ S ; that is, Z and Z′ move independently until they hit each
other for the first time and then they move together. It follows from the skip-free-
assumption that Z cannot overtake Z′ before they hit each other for the first time.
Hence

Z0 = y ≤ y′ = Z′
0 implies Zt ≤ Z′

t , t ≥ 0, a.s.,

which results in the inequality

�t =
∫ t

0
Z−2

s ds ≥
∫ t

0

(
Z′

s

)−2
ds = �′

t , t ≥ 0, a.s.(2.8)

Note that then the inverse increasing processes A = �−1 and A′ = (�′)−1 must
satisfy the relation At ≤ A′

t , t ≥ 0, a.s.
Now recall the definition of MT in Proposition 2.4, and note that the above

comparison allows us to conclude that

Ẽ
[
e−q�ρg(Gρ)

] ≤ Ẽ
[
e−q�′

ρ g(Gρ)
]

for every ρ ∈ M+
T ,(2.9)

where M+
T = {ρ ∈ MT :g(Gρ) ≥ 0 a.s.}. Thus

Ẽ
[
e−q�ρg(Gρ)

] ≤ sup
ρ′∈M′

T

Ẽ
[
e
−q�′

ρ′ g(Gρ′)
]

for every ρ ∈ M+
T

since AT ≤ A′
T a.s. implies that every stopping time in M+

T has a version which
is in M′

T . Putting these results together, we obtain

sup
ρ∈M+

T

Ẽ
[
e−q�ρg(Gρ)

] ≤ sup
ρ′∈M′

T

Ẽ
[
e
−q�′

ρ′ g(Gρ′)
]
.

But, if T +
T denotes {τ ∈ TT :g(X̃τ ) ≥ 0 a.s.}, then the equality

sup
τ∈T +

T

Ẽ
[
e−qτ g(X̃τ )

] = sup
ρ∈M+

T

Ẽ
[
e−q�ρg(Gρ)

]

can be shown in the same way that (2.7) was shown in the proof of Proposition 2.4
(note that in this proof we may choose versions of certain stopping times and this
is the reason the qualification “a.s.” appears in the definitions of M+

T and T +
T ).
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Furthermore,

if v(x, y) = sup
τ∈Kg+

T

Ex,y

[
e−qτ g(Xτ )

]
then v(x, y) ≤ sup

τ∈T +
T

Ẽ
[
e−qτ g(X̃τ )

]

since the law of (X̃, Ỹ ) is equal to the law of (X,Y ) under Px,y and the filtration

FG,Z,Z′
At

, t ≥ 0, is at least as big as the filtration generated by (X̃, Ỹ ). So, under the
condition v(x, y) = sup

τ∈Kg+
T

Ex,y[e−qτ g(Xτ )], we can finally deduce that

v(x, y) ≤ sup
τ∈T +

T

Ẽ
[
e−qτ g(X̃τ )

]

= sup
ρ∈M+

T

Ẽ
[
e−q�ρg(Gρ)

] ≤ sup
ρ′∈M′

T

Ẽ
[
e
−q�′

ρ′ g(Gρ′)
] = v

(
x, y′),

where the last equality is due to Proposition 2.4 applied to (X̃′, Ỹ ′). �

COROLLARY 2.7. (i) If {g ≥ 0} = ∅, but all other assumptions of Theo-
rem 2.5 are satisfied, then in the infinite time horizon case where T = ∞,

v(x, y) ≥ v
(
x, y′) for all x ∈ R and y, y′ ∈ S such that y ≤ y′,

so that v(x, ·) is decreasing.

(ii) Let the assumptions of Theorem 2.5 be based on S ⊆ (−∞,0), fix (x, y) ∈
R× S and assume that v(x, y) = sup

τ∈Kg+
T

Ex,y[e−qτ g(Xτ )]. Then

v(x, y) ≥ v
(
x, y′) for all y′ ∈ S such that y ≤ y′,

so that v(x, y) is an upper bound for v(x, ·) on [y,∞) ∩ S .

PROOF. If {g ≥ 0} = ∅ then, instead of (2.9), we obtain

Ẽ
[
e−q�ρg(Gρ)

] ≥ Ẽ
[
e−q�′

ρ g(Gρ)
]

for every ρ ∈ MT

and MT is (up to versions) equal to M′
T since T = ∞. Hence (i) can be deduced

directly from Proposition 2.4. Note that the above inequality cannot be used in the
case where T < ∞ since there can be stopping times in M′

T which are not in MT .
If S ⊆ (−∞,0) then Zt ≤ Z′

t , t ≥ 0, a.s., does not imply (2.8) but instead

�t =
∫ t

0
Z−2

s ds ≤
∫ t

0

(
Z′

s

)−2
ds = �′

t , t ≥ 0, a.s.,

hence, interchanging the roles of y and y ′, (ii) can be proved like Theorem 2.5.
Note that Zt ≤ Z′

t , t ≥ 0, a.s., would not lead to any comparison between � and �′
if y < 0 < y′. Hence our method cannot be applied to show the monotonicity of
v(x, y) in y ∈ S if S contains a neighbourhood of zero. �



MONOTONICITY VALUE FUNCTION 1565

3. The diffusion case. Fix δ ∈ [−1,1], and suppose that (X,Y ) is a strong
Markov process given on a family of probability spaces (�,F,Px,y , (x, y) ∈ R×
S) which satisfies the following conditions:

(C1′) the process (X,Y ) is adapted with respect to a filtration Ft , t ≥ 0, of
sub-σ -algebras of F and, for every (x, y) ∈ R × S , there is a pair (B,BY ) of Ft

Brownian motions on (�,F,Px,y) with covariation 〈B,BY 〉t = δt, t ≥ 0, such
that

Xt = X0 +
∫ t

0
a(Xs)Ys dBs and Yt = Y0 +

∫ t

0
η(Ys) dBY

s +
∫ t

0
θ(Ys) ds

for all t ≥ 0,Px,y -a.s.;
(C2′) the process Y takes values in S ⊆ (0,∞) and

Px,y

(
lim
t↑∞

∫ t

0
Y 2

s ds = ∞
)

= 1 for all (x, y) ∈ R× S.

REMARK 3.1. Under the assumptions above, for every (x, y) ∈ R× S , there
exists a weak solution to the system of stochastic differential equations⎧⎪⎨

⎪⎩
dG = a(G)dW,

dξ = η(ξ)ξ−1 dWξ + θ(ξ)ξ−2 dt,

ξt ∈ S, t ≥ 0,

(3.1)

driven by a pair of Brownian motions with covariation 〈W,Wξ 〉t = δt, t ≥ 0.
Such a solution can be given by (X ◦ 〈M〉−1, Y ◦ 〈M〉−1) where M denotes the
continuous local martingale Ms = ∫ s

0 Yu dBu, s ≥ 0, as in Remark 2.1(ii). Here

W = M ◦ 〈M〉−1 and Wξ = ∫ 〈M〉−1·
0 Ys dBY

s are F〈M〉−1
t

Brownian motions by

Dambis–Dubins–Schwarz’ theorem (see [11], Theorem V.1.6) with covariation

〈
W,Wξ 〉

t =
〈∫ ·

0
Ys dBs,

∫ ·
0

Ys dBY
s

〉
〈M〉−1

t

= δ

∫ 〈M〉−1
t

0
Y 2

s ds = δ〈M〉〈M〉−1
t

= δt, t ≥ 0,Px,y-a.s.,

where the last equality is ensured by condition (C2′).

We want to show (2.2) using a method similar to the method applied in Sec-
tion 2. The main difference to the case discussed in Section 2 is that the pair (X,Y )

is now determined by a system of stochastic differential equations. So, instead of
constructing X̃ by time-changing a solution of the single equation dG = a(G)dW

as in Section 2, we now construct X̃ by time-changing a solution of a system
of stochastic differential equations. Furthermore, in Section 2 we constructed the
coupling of Z and Z′ in the proof of Theorem 2.5 from a given generator. In
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this section we will couple ξ and ξ ′—both satisfying the second equation in (3.1)
but starting from y ≤ y′, respectively—we will do so directly from the stochastic
differential equation. As a consequence, the next condition appears to be slightly
stronger than the corresponding condition (C3) of the last section. However, in
Theorem 2.5 we needed (C3), a skip-free Markov chain and weak uniqueness
of (1.1) while below, in the corresponding Theorem 3.5, we will only need:

(C3′) Let a, η, θ be measurable functions such that the system of stochastic
differential equations (3.1) has, for all initial conditions (G0, ξ0) ∈ R×S , a unique
nonexploding strong solution taking values in R× S .

Now choose a complete probability space (�̃, F̃, P̃ ) big enough to carry a pair
of Brownian motions (W,Wξ) with covariation 〈W,Wξ 〉t = δt, t ≥ 0, and denote
by F̃t , t ≥ 0, the usual augmentation of the filtration generated by (W,Wξ). Let
(G, ξ) be the unique solution of the system (3.1) starting from G0 = x ∈ R and
ξ0 = y ∈ S given on (�̃, F̃, P̃ ) by (W,Wξ).

Define � = (�t )t≥0 by

�t =
∫ t

0
ξ−2
u du, t ≥ 0,

and remark that � satisfies (2.4). Indeed, by Remark 3.1, Y ◦ 〈M〉−1 solves the
second equation of (3.1), and hence condition (C3′) implies that ξ has the same
law as Y ◦ 〈M〉−1 under Px,y . Property (2.4) therefore follows from (C2′) since∫ ·

0 Y−2
〈M〉−1

s
ds is the inverse of

∫ ·
0 Y 2

s ds.

Of course, we may deduce from (2.4) together with the fact that ξ never van-
ishes, that � is a continuous and strictly increasing process. Thus, A = �−1 is also
a continuous and strictly increasing process satisfying (2.5). As a consequence, the
two technical properties (P1) and (P2) on page 1559 must again be valid.

As ξ is F̃t -adapted, we see that

Gt = x +
∫ t

0
a(Gs)ξs dM̃s, t ≥ 0, a.s.,(3.2)

ξt = y +
∫ t

0
η(ξs) dM̃ξ

s +
∫ t

0
θ(ξs) d�s > 0, t ≥ 0, a.s.,(3.3)

where (2.4) implies that the continuous local martingales M̃ and M̃ξ given by the
stochastic integrals

M̃s =
∫ s

0
ξ−1
u dWu and M̃ξ

s =
∫ s

0
ξ−1
u dWξ

u

exist for each s ≥ 0. Now it immediately follows from (3.2), (3.3) that the F̃At -
adapted processes X̃ = G ◦A and Ỹ = ξ ◦A on (�̃, F̃, P̃ ) constitute a nonexplod-
ing weak solution of the system (1.1), (1.4) with Ỹt ∈ S, t ≥ 0, since B̃ = M̃ ◦ A
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and B̃Y = M̃ξ ◦ A are F̃At Brownian motions by Dambis–Dubins–Schwarz’ theo-
rem [11], Theorem V.1.6 and

〈
B̃, B̃Y 〉

t = 〈
M̃, M̃ξ 〉

At
= δ

∫ At

0
ξ−2
u du = δ�At = δt, t ≥ 0, a.s.,

by property (P1).

REMARK 3.2. (i) Combining Remark 3.1 and condition (C3′), it follows from
the construction above that (X̃, Ỹ ) must have the same distribution as (X,Y ) under
Px,y .

(ii) The filtration F̃At , t ≥ 0, might be bigger than the filtration generated by
(X̃, Ỹ ). However, it is straightforward to show the strong Markov property of
(X̃, Ỹ ) with respect to F̃At , t ≥ 0, since (X̃, Ỹ ) was obtained by time-changing
a unique strong solution of a system of stochastic differential equation driven by
Brownian motions.

This remark makes clear that the following proposition can be proved by ap-
plying the ideas used in the proof of Proposition 2.4 in Section 2 (so we omit its
proof).

PROPOSITION 3.3. Let G,X̃, Ỹ be the processes on the filtered probability
space (�̃, F̃, F̃t , t ≥ 0, P̃ ) introduced above and starting from G0 = X̃0 = x ∈ R

and Ỹ0 = y ∈ S . Then, for any T ∈ [0,∞], it follows that

v(x, y) = sup
τ∈TT

Ẽ
[
e−qτ g(X̃τ )

] = sup
ρ∈MT

Ẽ
[
e−q�ρg(Gρ)

]
,

where

TT = {τ ∈ T : 0 ≤ τ ≤ T } and MT = {ρ ∈M : 0 ≤ ρ ≤ AT }.
Here, T and M denote the families of finite stopping times with respect to the
filtrations (F̃At )t≥0 and (F̃t )t≥0, respectively.

REMARK 3.4. The above representation of v(x, y), (x, y) ∈ R× S , could be
extended to cases where S is bigger than (0,∞). However, in such cases, the equa-
tion for ξ in (3.1) must admit solutions starting from ξ0 = 0 which is an additional
constraint, since ξ is in the denominator on the right-hand side of this equation.
Furthermore, in addition to the assumption that Px,y(limt↑∞

∫ t
0 Y 2

s ds = ∞) = 1
one would need to assume that

∫ ·
0 Y 2

s ds is strictly increasing Px,y -a.s. as, in prin-
ciple, the process Y could now spend time at zero.

Recall that, in contrast to the case of regime-switching, the process Ỹ above was
constructed by time-change from a solution of a stochastic differential equation
and this results in some small variations from the proof of Theorem 2.5. Note that
the conclusion of Proposition 3.3 remains valid for v(x, y ′), X̃′,T ′

T ,M′
T ,A′ and

�′ if these objects are constructed using a different starting point y′ ∈ S .
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THEOREM 3.5. Let (X,Y ) be a strong Markov process given on a family of
probability spaces (�,F,Px,y, (x, y) ∈ R × S), and let g :R → R be a measur-
able gain function such that {g ≥ 0} �= ∅. Assume (1.3), that (X,Y ) satisfies con-
ditions (C1′) and (C2′) on page 1565 and that condition (C3′) on page 1566 holds
true for system (3.1). Define Kg+

T to be the collection of all finite stopping times
τ ≤ T with respect to the filtration generated by (X,Y ) such that g(Xτ ) ≥ 0. Fix
(x, y) ∈R× S and assume that v(x, y) = sup

τ∈Kg+
T

Ex,y[e−qτ g(Xτ )]. Then

v(x, y) ≤ v
(
x, y′) for all y′ ∈ S such that y ≤ y′,

so that v(x, y) is a lower bound for v(x, ·) on [y,∞) ∩ S .

PROOF. Fix x ∈ R and y, y′ ∈ S with y ≤ y′ and choose a complete proba-
bility space (�̃, F̃, P̃ ) large enough to carry a pair of Brownian motions (W,Wξ)

with covariation 〈W,Wξ 〉t = δt, t ≥ 0. Let (G, ξ) and (G, ξ ′) be the solutions
of (3.1) starting from (x, y) and from (x, y′), respectively, which are both given by
(W,Wξ) on (�̃, F̃, P̃ ). Remark that G is indeed the same for both pairs since (3.1)
is a system of decoupled equations.

Define C = inf{t ≥ 0 : ξt > ξ ′
t } and set ξ̄t = ξt I (t < C) + ξ ′

t I (t ≥ C) so that
ξ̄t ≤ ξ ′

t for all t ≥ 0. Obviously, (G, ξ̄ ) solves system (3.1) starting from G0 = x

and ξ̄0 = y hence ξt = ξ̄t ≤ ξ ′
t , t ≥ 0, a.s., by strong uniqueness.

Construct X̃ = G ◦ A and X̃′ = G ◦ A′ using the above (G, ξ) and (G, ξ ′), and
observe that �t ≥ �′

t follows immediately from 0 < ξt ≤ ξ ′
t for all t ≥ 0 a.s. Thus,

simply using Proposition 3.3 instead of Proposition 2.4, the rest of the proof can
be copied from the corresponding part of the proof of Theorem 2.5. �

REMARK 3.6. For a discussion of the technical condition v(x, y) =
sup

τ∈Kg+
T

Ex,y[e−qτ g(Xτ )] we refer the reader to Remark 2.6. Corollary 2.7 re-

mains true if it is reformulated in the terms of the theorem above instead of Theo-
rem 2.5.

4. Continuity in the diffusion-case. Let S be an open subset of (0,∞), fix
x ∈ R and suppose that all the assumptions of Theorem 3.5 are satisfied. Further-
more, suppose that

v(x, y) = sup
τ∈Kg+

T

Ex,y

[
e−qτ g(Xτ )

]
for all y ∈ S .(4.1)

For a sequence (yn)
∞
n=1 ⊆ S converging to y0 ∈ S as n → ∞, denote by (G, ξn)

the solution of (3.1), starting from G0 = x and ξn
0 = yn,n = 0,1,2, . . . , given by

a pair (W,Wξ) of Brownian motions with covariation 〈W,Wξ 〉t = δt, t ≥ 0, on
a probability space (�̃, F̃, P̃ ). Using (G, ξn) construct �n,An,n = 0,1,2, . . . ,

like �,A in Section 3.
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LEMMA 4.1. Suppose that the ξ -component corresponding to the unique
strong solution to (3.1) on page 1565 is a Feller process with state space S . If
the sequence (yn)

∞
n=1 is monotone, that is, either yn ↓ y0 or yn ↑ y0 when n → ∞,

then

�n
t → �0

t and An
t → A0

t as n → ∞ for all t ≥ 0 a.s.(4.2)

PROOF. Here, we will use without further comment the elementary fact that if
U and V are two random variables with the same law and U ≥ V a.s. then, in fact,
U = V a.s.

Suppose that yn ↓ y0 as n → ∞. By the coupling argument in the proof of
Theorem 3.5, without loss of generality one may chose ξn such that

ξ1
t ≥ ξ2

t ≥ · · · ≥ ξn
t ≥ · · · ≥ ξ0

t > 0, t ≥ 0, n = 0,1,2, . . . ;(4.3)

hence the pathwise limit limn ξn
t , t ≥ 0, exists. It follows from the Feller prop-

erty that the two processes ξ0 and (limn ξn
t )t≥0 must have the same law by com-

paring their finite-dimensional distributions. As (4.3) also yields the inequalities
limn ξn

t ≥ ξ0
t > 0, t ≥ 0, we see that

�0
t ≥

∫ t

0

(
lim
n

ξn
u

)−2
du = lim

n
�n

t , t ≥ 0,

by monotone convergence. But, if ξ0 and (limn ξn
t )t≥0 have the same law,

then the same must hold true for �0 and
∫ t

0 (limn ξn
u )−2 du, t ≥ 0. Thus �0

t ≥∫ t
0 (limn ξn

u )−2 du implies �0
t = ∫ t

0 (limn ξn
u )−2 du a.s. for each t ≥ 0. The desired

result, �0
t = ∫ t

0 (limn ξn
u )−2 du, t ≥ 0, a.s., now follows since both processes have

continuous paths.
Thus �n

t ↑ �0
t , t ≥ 0, a.s. Since An, A0 are the right-inverses of the continu-

ous increasing processes �n and �0, respectively, we have An
t ↓ A0

t , t ≥ 0, a.s.,
completing the proof in the case where the (yn) are decreasing.

In the case where yn ↑ y0 as n → ∞, we see that

0 < ξ1
t ≤ ξ2

t ≤ · · · ≤ ξn
t ≤ · · · ≤ ξ0

t

and

�0
t ≤

∫ t

0

(
lim
n

ξn
u

)−2
du = lim

n
�n

t , t ≥ 0,

by Lebesgue’s dominated convergence theorem. This ensures that �n
t ↓ �0

t , t ≥ 0,
a.s., and An

t ↑ A0
t , t ≥ 0, a.s. �

In what follows, in addition to the assumptions of Theorem 3.5, we impose the
assumption of Lemma 4.1 and the following condition (C4′) is used to summarize
these conditions, that is:

(C4′) – the gain function g satisfies {g ≥ 0} �=∅;
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– the process (X,Y ) satisfies conditions (1.3), (C1′), (C2′) and the value
function v satisfies (4.1) for the chosen value of x;

– condition (C3′) holds true for the system (3.1) and the second equation
in (3.1) has a Feller solution.

Note that, in many cases, the conditions one imposes on the coefficients η and θ

to ensure condition (C3′) also imply that the whole solution of (3.1) is a Feller
process.

We now discuss the continuity of the value function v(x, ·) which we subdivide
into left-continuity and right-continuity.

PROPOSITION 4.2. Assume condition (C4′). Then, when T = ∞, v(x, ·) is
left-continuous.

PROOF. First observe that Theorem 3.5 implies that

lim sup
n→∞

v(x, yn) ≤ v(x, y0),

whenever yn ↑ y0 in S , so it remains to show that

v(x, y0) ≤ lim inf
n→∞ v(x, yn).

Recall the definition of M from Proposition 3.3, and choose ρ ∈ M. Then

e−q�n
ρg(Gρ) ≥ −e−q�0

ρ
∣∣g(Gρ)

∣∣ = −e−q�0
ρ
∣∣g(

X̃0
�0

ρ

)∣∣(4.4)

for all n = 1,2, . . . , since �n
ρ ≥ �0

ρ . But the right-hand side of (4.4) is integrable
by (1.3). Thus the inequality

Ẽe−q�0
ρ g(Gρ) ≤ lim inf

n→∞ Ẽe−q�n
ρg(Gρ)(4.5)

follows from Fatou’s lemma and Lemma 4.1.
Now Ẽe−q�n

ρg(Gρ) ≤ supρ′∈M Ẽe
−q�n

ρ′ g(Gρ′), and so Proposition 3.3 gives

Ẽe−q�0
ρ g(Gρ) ≤ lim inf

n→∞ v(x, yn)(4.6)

since MT can be replaced by M in the case where T = ∞. So, taking the supre-
mum over ρ ∈ M in the left-hand side of (4.6) completes the proof. �

REMARK 4.3. (i) The fact that v(x, y0) ≤ lim infn→∞ v(x, yn) when yn ↓ y0

in S is an immediate consequence of Theorem 3.5. As v(x, y0) ≤ lim infn→∞ v(x,

yn), yn ↑ y0, was shown in the proof above, v(x, ·) is, under condition (C4′), lower
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semicontinuous on S when T = ∞ without any continuity-assumption on the gain
function g.

(ii) From (i) above it follows that, to establish right-continuity in the case
where T = ∞, it remains to show that lim supn→∞ v(x, yn) ≤ v(x, y0) when
yn ↓ y0 in S . We are only able to prove this using the extra integrability condition
of Proposition 4.4 below. Note that the combination of Propositions 4.2 and 4.4
gives continuity of v(x, ·) for fixed x in the case where T = ∞ without the re-
quirement that the gain function g is continuous.

(iii) If T < ∞, then the proof of Proposition 4.2 fails. Indeed, in this case,
ρ cannot be chosen from M as it belongs to a different class Mn

T for each n =
0,1,2, . . . We are able to show left- and right-continuity in the case where T <

∞ under the additional assumption that the gain function g is continuous; see
Proposition 4.5.

PROPOSITION 4.4. Assume, in addition to condition (C4′), that for each y ∈ S
there exists ȳ > y such that (y, ȳ) ⊆ S and

sup
y≤y′<ȳ

Ex,y′
[
sup
t≥N

e−qt
∣∣g(Xt)

∣∣] → 0 as N ↑ ∞.

Then, when T = ∞, v(x, ·) is right-continuous.

PROOF. Choose y ∈ S and y′ ∈ (y, ȳ). Applying Proposition 3.3 with respect
to x and y′ yields v(x, y′) = supρ∈M Ẽ[e−q�′

ρ g(Gρ)] since T = ∞. Fix an arbi-
trary ε > 0, and choose an ε-optimal stopping time ρ′

ε ∈ M for v(x, y′) so that

0 ≤ v
(
x, y′) − v(x, y) ≤ ε + Ẽ

[
e
−q�′

ρ′
ε g(Gρ′

ε
) − e

−q�ρ′
ε g(Gρ′

ε
)
]
.(4.7)

Because �ρ′
ε
≥ �′

ρ′
ε
, the right-hand side of (4.7) can be dominated by

ε + Ẽ
(
1 − e

−q(�ρ′
ε
−�′

ρ′
ε
))

e
−q�′

ρ′
ε
∣∣g(Gρ′

ε
)
∣∣I (

ρ′
ε ≤ A′

N

)

+ Ẽe
−q�′

ρ′
ε
∣∣g(Gρ′

ε
)
∣∣I (

ρ′
ε > A′

N

)

≤ ε + Ẽ
(
1 − e

−q(�ρ′
ε
−�′

ρ′
ε
))

e
−q�′

ρ′
ε
∣∣g(Gρ′

ε
)
∣∣I (

ρ′
ε ≤ A′

N

)

+ Ẽ
[
sup
t≥N

e−qt
∣∣g(

X̃′
t

)∣∣],

where

Ẽ
[
sup
t≥N

e−qt
∣∣g(

X̃′
t

)∣∣] = Ex,y′
[
sup
t≥N

e−qt
∣∣g(Xt)

∣∣]
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and both

e
−q�′

ρ′
ε
∣∣g(Gρ′

ε
)
∣∣ ≤ sup

t≤A′
N

e−q�′
t
∣∣g(Gt)

∣∣

≤ sup
t≤A

ȳ
N

e−q�
ȳ
t
∣∣g(Gt)

∣∣(4.8)

= sup
t≤A

ȳ
N

e−q�
ȳ
t
∣∣g(

X̃
ȳ

�
ȳ
t

)∣∣ ≤ sup
t≤N

e−qt
∣∣g(

X̃
ȳ
t

)∣∣

and

�ρ′
ε
− �′

ρ′
ε
=

∫ ρ′
ε

0

(
ξ−2
u − (

ξ ′
u

)−2)
du ≤

∫ A′
N

0

(
ξ−2
u − (

ξ ′
u

)−2)
du

(4.9)
= �A′

N
− N

on {ρ′
ε ≤ A′

N }. Hence choosing N large enough that

sup
y≤y′<ȳ

Ex,y′
[
sup
t≥N

e−qt
∣∣g(Xt)

∣∣] ≤ ε,

we obtain from (4.7)
∣∣v(

x, y′) − v(x, y)
∣∣ ≤ 2ε + Ẽ

(
1 − e

−q(�A′
N

−N))
sup
t≤N

e−qt
∣∣g(

X̃
ȳ
t

)∣∣(4.10)

for some N depending on y but NOT on y′.
Now, in inequality (4.10), replace y and y′ by y0 and yn, respectively, with

the (yn) bounded above by ȳ and decreasing to y0. Since supt≤N e−qt |g(X̃
ȳ0
t )| is

integrable, it follows by dominated convergence that

lim
n→∞

∣∣v(x, yn) − v(x, y0)
∣∣ ≤ 2ε + Ẽ

(
1 − e

−q(limn �0
An

N
−N))

sup
t≤N

e−qt
∣∣g(

X̃
ȳ0
t

)∣∣,
and so

lim
n→∞

∣∣v(x, yn) − v(x, y0)
∣∣ ≤ 2ε

by Lemma 4.1. Since ε is arbitrary we conclude with the desired result. �

PROPOSITION 4.5. Assume, in addition to condition (C4′), that the gain func-
tion g is continuous. Then, when T < ∞, v(x, ·) is continuous.

PROOF. Following the proof of the previous proposition choose y, y′ ∈ S with
y < y′, fix an arbitrary ε > 0 and choose an ε-optimal stopping time ρ′

ε ∈ M′
T so

that

0 ≤ v
(
x, y′) − v(x, y)

(4.11)
≤ ε + Ẽ

[
e
−q�′

ρ′
ε g(Gρ′

ε
) − e

−q�ρ′
ε∧AT g(Gρ′

ε∧AT
)
]
.
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Note that ρ′
ε ≤ A′

T and that ρ′
ε ∧ AT is used since one cannot conclude that

v(x, y) ≥ Ẽe−q�ρg(Gρ) for stopping times ρ which may exceed AT with posi-
tive probability. Therefore, in contrast to the case where T = ∞, dominating the
right-hand side of (4.11) leads to an upper bound of

ε + Ẽ
(
1 − e

−q(�ρ′
ε
−�′

ρ′
ε
))

e
−q�′

ρ′
ε
∣∣g(Gρ′

ε
)
∣∣(4.12)

+ Ẽ
(
1 − e

−q(T −�′
ρ′
ε
))

e
−q�′

ρ′
ε
∣∣g(Gρ′

ε
)
∣∣I (

AT < ρ′
ε ≤ A′

T

)
(4.13)

+ Ẽe−qT
∣∣g(Gρ′

ε
) − g(GAT

)
∣∣I (

AT < ρ′
ε ≤ A′

T

)
(4.14)

by adding −e−qT g(Gρ′
ε
) + e−qT g(Gρ′

ε
) in the case where AT < ρ′

ε ≤ A′
T .

Now replace y and y′ by yn and y0, respectively, with yn ↑ y0 in S . Suppose
for now that Lebesgue’s dominated convergence theorem can be applied to inter-
change limit and expectation in (4.12), (4.13), (4.14). Then it can be shown that

lim
n→∞

∣∣v(x, yn) − v(x, y0)
∣∣ ≤ ε

proving left-continuity since ε was arbitrary. To see this first dominate

�n
ρ0

ε
− �0

ρ0
ε

by �n

A0
T

− T

performing a calculation similar to (4.9), but using T instead of N . Then (4.12)
tends to ε as n → ∞ by Lemma 4.1. Second, since {An

T < ρ0
ε ≤ A0

T } = {�0
An

T
<

�0
ρ0

ε
≤ T }, both (4.13) and (4.14) converge to zero as n → ∞ by Lemma 4.1 and

the continuity of g.
Finally it remains to justify the application of the dominated convergence theo-

rem. Observe that

e−qT
∣∣g(Gρ0

ε
)
∣∣ ≤ e

−q�0
ρ0
ε
∣∣g(Gρ0

ε
)
∣∣ = e

−q�0
ρ0
ε
∣∣g(

X̃0
�0

ρ0
ε

)∣∣ ≤ sup
0≤t≤T

e−qt
∣∣g(

X̃0
t

)∣∣

since ρ0
ε ≤ A0

T and

e−qT
∣∣g(GAn

T
)
∣∣ = e

−q�n
An

T

∣∣g(GAn
T
)
∣∣ ≤ sup

t≤A0
T

e−q�0
t
∣∣g(Gt)

∣∣ ≤ sup
0≤t≤T

e−qt
∣∣g(

X̃0
t

)∣∣

since An
T ≤ A0

T for all n ≥ 1 which, by (1.3), gives an integrable bound with re-
spect to all three terms (4.12), (4.13), (4.14).

For the right-continuity, replace y and y′ by y0 and yn, respectively, assuming
yn ↓ y0 in S . Note that

e−qT
∣∣g(Gρn

ε
)
∣∣ ≤ e

−q�n
ρn
ε
∣∣g(Gρn

ε
)
∣∣ ≤ sup

t≤T

e−qt
∣∣g(

X̃1
t

)∣∣,
where the second inequality is obtained following the line of inequalities in (4.8)
but using T and y1 instead of N and ȳ, respectively. As e−qT |g(GA0

T
)| ≤
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sup0≤t≤T e−qt |g(X̃0
t )| too, dominated convergence can be applied again by (1.3)

with respect to all three terms (4.12), (4.13), (4.14). Then (4.12) tends to ε as
n → ∞ by Lemma 4.1 since �0

ρn
ε

− �n
ρn

ε
can be estimated by �0

An
T

− T . Further-
more, (4.13) and (4.14) converge to zero as n → ∞ by Lemma 4.1 and the conti-
nuity of g since T −�n

ρn
ε

≤ T −�n

A0
T

on {A0
T < ρn

ε ≤ An
T }. So, making ε arbitrarily

small completes the proof. �

5. Application to option pricing. Assume that the dynamics of X are given
by

dX = XY dB,(1.1′)

which is the special case a(x) = x of equation (1.1). In mathematical finance (1.1′)
describes a simple model for the discounted price of an asset with stochastic
volatility Y .

If exercised at a stopping time τ , the American options we have in mind would
pay off g(erτXτ ) where r > 0 stands for the instantaneous interest rate which
is assumed to be constant. So, for notational convenience, the discount rate q is
replaced by r throughout this section.

In this setup, assuming the measure Px,y is used for pricing when X0 = x and
Y0 = y, the price of such an option with maturity T ∈ [0,∞] is

v(x, y) = sup
0≤τ≤T

Ex,y

[
e−rτ g

(
erτXτ

)]
,(1.2′)

where the supremum is taken over all finite stopping times with respect to the
filtration generated by (X,Y ). This value function differs from the value function
given by (1.2) since g is not applied to Xτ but to erτXτ and, as a consequence,
some of the conditions for our results have to be adjusted slightly.

First, the condition

Ex,y

[
sup

0≤t≤T

e−rt
∣∣g(

ertXt

)∣∣I (t < ∞)
]
< ∞ for all (x, y) ∈ R× S(1.3′)

is now assumed throughout. Then

v(x, y) = sup
τ∈TT

Ẽ
[
e−rτ g

(
erτ X̃τ

)] = sup
ρ∈MT

Ẽ
[
e−r�ρg

(
er�ρGρ

)]

is the analogue to what was obtained in Propositions 2.4 and 3.3 for the value
function given by (1.2). However, in order to conclude the results of Theorems 2.5
and 3.5 for the new value function, a new condition has to be imposed on g.

COROLLARY 5.1. Let v be the value function given by (1.2′). In addition to
the assumptions made in either Theorem 2.5 or 3.5 assume that g is a decreasing
function. Define Kg+

T to be the collection of all finite stopping times τ ≤ T with
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respect to the filtration generated by (X,Y ) such that g(erτXτ ) ≥ 0. Fix (x, y) ∈
R× S and assume that v(x, y) = sup

τ∈Kg+
T

Ex,y[e−rτ g(erτXτ )]. Then

v(x, y) ≤ v
(
x, y′) for all y′ ∈ S such that y ≤ y′,

so that v(x, y) is a lower bound for v(x, ·) on [y,∞) ∩ S .

REMARK 5.2. (i) The proofs of this and the next corollary are contained in
the Appendix.

(ii) If g is a monotone function, then it has a left and a right-continuous ver-
sion. Note that the proof of Corollary 5.1 does not depend on choosing a specific
version for g. But, when applying the corollary to show continuity properties of
the value function, we will choose the right-continuous version in what follows.

(iii) Of course, Corollary 5.1 does not depend on the specific choice of the
diffusion coefficient a in this section as long as (1.3′) and all other assumptions of
Theorems 2.5 or 3.5 are satisfied.

(iv) If a(x) = x, then conditions (C2) or (C2′) assumed in Corollary 5.1 ensures
that the discounted price X is a positive exponential local martingale of the form

Xt = x exp
{∫ t

0
Ys dBs − 1

2

∫ t

0
Y 2

s ds

}
, t ≥ 0,Px,y-a.s.,

since the stochastic integrals
∫ t

0 Ys dBs, t ≥ 0, are all well defined. Furthermore,
because limt↑∞

∫ t
0 Y 2

s ds = ∞ Px,y -a.s., Xt tends to zero for large t as in the
Black–Scholes model.

(v) From (iv) above it follows immediately that, in the case a(x) = x, all pro-
cesses satisfying conditions (C1) and (C2) on page 1556 have the same law.

(vi) Note that, in this section, the equation for G in (3.1) on page 1565 co-
incides with the linear equation dG = GdW which has a unique nonexploding
strong solution for all G0 ∈ R. Hence condition (C3′) on page 1566 becomes a
condition only on the coefficients η, θ of the equation for ξ in (3.1).

We now consider the diffusion case and discuss the results of Section 4 for the
value function given by (1.2′). So, let S be an open subset of (0,∞), fix x ∈ R and
replace condition (C4′) on page 1569 by:

(C4′′): – the gain function g is decreasing and satisfies {g ≥ 0} �= ∅;
– the process (X,Y ) satisfies conditions (1.3′), (C1′), (C2′), and the value

function v satisfies

v(x, y) = sup
τ∈Kg+

T

Ex,y

[
e−rτ g

(
erτXτ

)]
for all y ∈ S(4.1′)

for the chosen x (using the definition of Kg+
T given in Corollary 5.1);
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– condition (C3′) holds true for system (3.1), and the second equation
in (3.1) has a Feller solution.

COROLLARY 5.3. Let v be the value function given by (1.2′). Assume condi-
tion (C4′′).

(i) If g is bounded from below then, when T = ∞, v(x, ·) is left-continuous
and lower semicontinuous.

(ii) If g is continuous and if for each y ∈ S there exists ȳ > y such that (y, ȳ) ⊆
S and

sup
y≤y′<ȳ

Ex,y′
[
sup
t≥N

e−rt
∣∣g(

ertXt

)∣∣] → 0 as N ↑ ∞,

then, when T = ∞, v(x, ·) is right-continuous.
(iii) If g is bounded from below and continuous then, when T < ∞, v(x, ·) is

continuous.

6. Examples. We now discuss three models used in option pricing and explain
the impact of our results.

Pricing of American Puts via Jobert and Rogers [9] using the Markov modu-
lated model

dX = XY dB, Y finite state Markov chain.

Notice that the value function in [9] is more general than ours as the authors allow
for an interest rate which depends on Y . So in what follows we always mean a
constant interest rate when applying our results to the value function3 in [9].

Obviously, the gain function g(x) = max{0,K − x} where K is the strike price
is decreasing and satisfies both condition (1.3′) and

v(x, y) = sup
τ∈Kg+

T

Ex,y

[
e−rτ g

(
erτXτ

)]
, (x, y) ∈ R× S.

So, recalling Remark 5.2(iv) + (v), Corollary 5.1 implies that, for fixed x ∈ R, the
value function v(x, y) in [9] is monotonously increasing in y ∈ S = {y1, . . . , ym},
provided Y is skip-free.

Knowing this monotonicity property of the value function massively reduces
the computational complexity of PROBLEM 1 on page 2066 in [9]. The authors
verified that the value function is uniquely attained at a stopping time of the form4

τ � = inf
{
t ≥ 0 :Xt < b[Yt ]},

3Note that the notation of the value function in [9] is different because our Markov chain Y is, in
their terms, a function σ applied to the Markov chain playing the role of their volatility process.

4We again adapted the author’s notation to ours in the definition of τ�.
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where the vector b[yi], i = 1, . . . ,m, is indexed by the states of the Markov chain
Y and their PROBLEM 1 consists in finding the so-called thresholds b[yi] which
are assumed to be in the order b[y1] ≥ · · · ≥ b[ym]. It is then stated in a foot-
note on the same page, 2066, that “When it comes in practice to identifying the
thresholds, no assumption is made on the ordering, and all possible orderings are
considered.” Of course, this approach has exponential complexity. Our result on
the monotonicity of the value function would reduce this complexity to choos-
ing one ordering b[y1] > · · · > b[ym] if y1 < · · · < ym and Y is skip-free. Indeed,
since τ � is the unique optimal stopping time for this problem, by general theory,
it must coincide with the first time the process (X,Y ) enters the stopping region
{(x, y) :v(x, y) = g(x)}. Thus, as it is not optimal to stop when g is zero, we obtain
that

v(x, yi) = g(x) for x ≤ b[yi] while v(x, yi) > g(x) for x > b[yi]
for each i = 1, . . . ,m which gives the unique ordering of the thresholds since g is
strictly decreasing on {g > 0}.

The Hull and White model [7]:

dX = X
√

V dB and dV = 2ηV dBY + κV dt,

where η, κ > 0 and B,BY are independent Brownian motions.5 Setting Y = √
V

transforms the above system into

dX = XY dB and dY = ηY dBY + θY dt,

where θ = (κ − η2)/2. Assuming a positive initial condition, this equation has a
pathwise unique positive solution for every η, θ ∈ R. Calculating the equation for
ξ in (3.1) on page 1565 gives a constant diffusion coefficient η, and if Z denotes
ξ/η, then

dZ = dWξ + θ

η2 Z−1 dt,

which formally is an equation for a Bessel process of dimension φ = 1 + 2θ/η2.
This equation, and so the equation for ξ , only has a unique nonexploding strong
solution if φ ≥ 2, and this solution stays positive when started from a positive ini-
tial condition. As made clear in Section 3, the fact that Y satisfies condition (C2′)
on page 1565 can be derived from condition (2.4) with respect to

�t =
∫ t

0

1

ξ2
u

du = η2
∫ t

0

1

Z2
u

du, t ≥ 0.

Now, by applying Proposition A.1(ii)–(iii) in [6] with respect to the second time
integral above, we see that � satisfies condition (2.4) if φ ≥ 2. So, assuming φ ≥ 2,

5Remark that 〈B,BY 〉 �= 0 is possible but we follow Hull and White’s original setup.
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Remark 5.2(iv) + (vi) ensures that there is a unique strong Markov process (X,Y )

which satisfies conditions (C1′) and (C2′) on page 1565 and that the system (3.1)
satisfies condition (C3′) on page 1566 in this example. Since Bessel processes are
Feller processes (see [11], page 446), the second equation of (3.1) has a Feller
solution.

Therefore if φ ≥ 2 (i.e., κ ≥ 2η2), then the conclusions of Corollaries 5.1
and 5.3 apply to perpetual American options whenever the corresponding pay-off
function g satisfies the conditions stated.

The Heston model [5]:

dX = X
√

V dB and dV = 2η
√

V dBY + κ(λ − V )dt,

where η, κ,λ > 0 are constants, and B,BY are Brownian motions, this time with
covariation δ ∈ [−1,1]. The equation for V describes the so-called Cox–Ingersoll–
Ross process, and it is well known (see [2], page 391) that, with a positive initial
condition, this equation has a pathwise unique positive solution if κλ ≥ 2η2. Set-
ting Y = √

V transforms the system into

dX = XY dB and dY = η dBY +
(

θ1

Y
− θ2Y

)
dt

with θ1 = (κλ − η2)/2 and θ2 = κ/2. It is clear that the pathwise uniqueness of
the equation for V ensures the pathwise uniqueness of positive solutions of the
equation for Y . Calculating the equation for ξ in (3.1) on page 1565 yields

dξ = η

ξ
dWξ +

(
θ1

ξ3 − θ2

ξ

)
dt,

and hence Z = ξ2/(2η) satisfies

dZ = dWξ +
(

φ − 1

2Z
− θ2

η

)
dt

with φ = θ1/η
2 + 3/2. By changing to an equivalent probability measure, this

equation for Z is transformed into an equation for a Bessel process of dimension
φ which only has a unique nonexploding strong solution if φ ≥ 2, and this unique
strong solution stays positive when started from a positive initial condition. All
these properties and the Feller property of Bessel processes carry over to the solu-
tions of the equation for ξ . Finally, the process

�t =
∫ t

0

1

ξ2
u

du = 1

2η

∫ t

0

1

Zu

du, t ≥ 0,

satisfies (2.4) if φ ≥ 2 (apply Proposition A.1(ii)–(iii) in [6] to the second integral)
which implies condition (C2′) on page 1565 following the arguments given in
Section 3. So, as in the previous example, all conditions imposed on X,Y, ξ in the
Corollaries 5.1 and 5.3 are satisfied if φ ≥ 2 or equivalently κλ ≥ 2η2.
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APPENDIX

PROOF OF LEMMA 2.3. Fix ρ ∈ M and r ≥ 0, and set

�0 = {
ω ∈ � : s < �t(ω) if and only if As(ω) < t for all 0 ≤ s, t < ∞}

.

Then

{�ρ ≤ r} ∩ �0 ∩ {Ar < ∞} = {ρ ≤ Ar} ∩ �0 ∩ {Ar < ∞}
implies

{�ρ ≤ r} ∈ FG,Z,Z′
Ar

since both P(�0 ∩{Ar < ∞}) = 1 by property (P2), (2.5) and {ρ ≤ Ar} ∈ FG,Z,Z′
Ar

.

Note that �0 ∩ {Ar < ∞} ∈FG,Z,Z′
Ar

as FG,Z,Z′
0 already contains all P̃ -null sets.

Similarly, if τ ∈ T , then {Aτ ≤ r} ∈ FG,Z,Z′
A�r

where A�r = r a.s. by prop-

erty (P1). Thus the inclusion FG,Z,Z′
A�r

⊆FG,Z,Z′
r must be true. �

PROOF OF (2.6). By (2.3), we only have to show that

sup
0≤τ̃≤T

Ẽ
[
e−qτ̃ g(X̃τ̃ )

] = sup
0≤τ≤T

Ẽ
[
e−qτ g(X̃τ )

]
,(A.1)

where τ̃ on the above left-hand side corresponds to finite stopping times with

respect to the filtration F X̃,Ỹ
t , t ≥ 0, generated by the pair of processes (X̃, Ỹ )

while τ on the above right-hand side corresponds to finite stopping times with re-
spect to the possibly bigger filtration FG,Z,Z′

At
, t ≥ 0. In what follows we assume

that F X̃,Ỹ
t , t ≥ 0, was augmented. Without loss of generality, we also assume that

there exist a family {θt , t ≥ 0} of shift operators on our chosen probability space
(�̃, F̃, P̃ ).

We are going to show that

sup
τ̃∈OT

0

Ẽ
[
e−qτ̃ g(X̃τ̃ )

] = sup
0≤τ≤T

Ẽ
[
e−qτ g(X̃τ )

]
,

where OT
s stands for the family of all finite F X̃,Ỹ

t -stopping times τ̃ satisfying

s ≤ τ̃ ≤ T and τ̃ − s
a.s.= γ ◦ θs for some F X̃,Ỹ∞ -measurable random variable γ .

This obviously proves (A.1) because the above left-hand side is less than or equal
to the left-hand side of (A.1).

First observe that

F X̃,Ỹ
0 = FG,Z,Z′

0 = FG,Z,Z′
A0

= σ (P̃ -null sets)
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hence

sup
τ̃∈OT

0

Ẽ
[
e−qτ̃ g(X̃τ̃ )

] a.s.= Ṽ0

where Ṽt = ess sup
τ̃∈OT

t

Ẽ
[
e−qτ̃ g(X̃τ̃ )|F X̃,Ỹ

t

]

and

sup
0≤τ≤T

Ẽ
[
e−qτ g(X̃τ )

] a.s.= V0

where Vt = ess sup
t≤τ≤T

Ẽ
[
e−qτ g(X̃τ )|FG,Z,Z′

At

]
.

Note that t ∈ OT
t gives Ṽt ≥ e−qtg(X̃t ) almost surely for each t ≥ 0.

Second, since (X̃, Ỹ ) has the same law as (X,Y ) under Px,y , the process (X̃, Ỹ )

is strong Markov with respect to F X̃,Ỹ
t , t ≥ 0. Therefore

Ẽ
[
e−qτ̃ g(X̃τ̃ )|F X̃,Ỹ

t

] a.s.= Ẽ
[
e−qτ̃ g(X̃τ̃ )|σ(X̃t , Ỹt )

]
(A.2)

a.s.= Ẽ
[
e−qτ̃ g(X̃τ̃ )|FG,Z,Z′

At

]

for all τ̃ ∈ OT
t because (X̃, Ỹ ) is strong Markov with respect to FG,Z,Z′

At
, t ≥ 0,

too. Note that we have only used the Markov property to get (A.2).
Third, (A.2) implies that Ṽt , t ≥ 0, is an FG,Z,Z′

At
-supermartingale. Using as-

sumption (1.3), the proof of this fact is almost identical to part 1o of the proof
of Theorem 2.2 in [10]. The only difference is concerned with FG,Z,Z′

At
-stopping

times of type

τ = τ̃1I� + τ̃2I�̃\�
given by

� = {
Ẽ

[
e−qτ̃1g(X̃τ̃1)|FG,Z,Z′

At

] ≥ Ẽ
[
e−qτ̃2g(X̃τ̃2)|FG,Z,Z′

At

]}
and τ̃1, τ̃2 ∈ OT

t where t ≥ 0 is fixed. We need to show that τ ∈ OT
t . But, if τ̃1 −

t
a.s.= γ1 ◦ θt and τ̃2 − t

a.s.= γ2 ◦ θt , then, by (A.2),

τ(ω) − t = γ1(θtω)I�0(θtω) + γ1(θtω)I�̃\�0
(θtω)(A.3)

for almost every ω ∈ �̃. Here �0 stands for a set of type {φ1(X̃0, Ỹ0) ≥ φ2(X̃0, Ỹ0)}
where φ1, φ2 :R2 →R are Borel-measurable functions satisfying

φ1(X̃t , Ỹt )
a.s.= Ẽ

[
e−qτ̃1g(X̃τ̃1)|σ(X̃t , Ỹt )

]
and

φ2(X̃t , Ỹt )
a.s.= Ẽ

[
e−qτ̃2g(X̃τ̃2)|σ(X̃t , Ỹt )

]
,
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and hence (A.3) justifies τ ∈ OT
t .

Now, by Theorem 2.2 in [10], the Snell envelope Vt , t ≥ 0, is the smallest
FG,Z,Z′

At
-supermartingale dominating the gain process and hence Ṽt ≥ Vt almost

surely for each t ≥ 0 proving

sup
τ̃∈OT

0

Ẽ
[
e−qτ̃ g(X̃τ̃ )

] ≥ sup
0≤τ≤T

Ẽ
[
e−qτ g(X̃τ )

]
.

The reverse inequality is obvious. �

LEMMA A.1. Let W,Z,A, M̃ be given on the filtered probability space
(�̃, F̃, F̃t , t ≥ 0, P̃ ) as introduced in Section 2. Then the time-changed processes
B̃ = M̃ ◦ A and Ỹ = Z ◦ A are independent.

PROOF. Let FW
t , t ≥ 0, denote the augmentation of the filtration generated by

W and define the so-called big filtration by

Fbig
t = FW

t ∨ σ
({Zs : s ≥ 0}), t ≥ 0.

Note that W is an Fbig
t Brownian motion since W and Z are independent, and

hence the stochastic integral M̃ is a continuous Fbig
t local martingale. Since A is a

functional of Z, it must be an Fbig
t time-change by the definition of the big filtra-

tion. As A satisfies (2.5), it follows from Dambis–Dubins–Schwarz’ theorem [11],
Theorem V.1.6, that B̃ = M̃ ◦ A is an Fbig

At
Brownian motion. But Ỹ = Z ◦ A is

a functional of Z, so it must be independent of B̃ since σ({Zs : s ≥ 0}) ⊆ Fbig
0 =

F̃big
A0

, and B̃ is independent of Fbig
A0

. �

PROOF OF COROLLARY 5.1. The only part of the proof where the additional
condition on g is needed is the verification of (2.9). But, for (1.2′), the modification
of (2.9) reads

Ẽ[e−r�ρg
(
er�ρGρ

) ≤ Ẽ
[
e−r�′

ρ g
(
er�′

ρGρ

)]
for every ρ ∈ M+

T ,

and the above inequality is indeed true because �t ≥ �′
t , t ≥ 0, a.s., and g is

decreasing. Note that the above set of stopping times M+
T now denotes the set

{ρ ∈ MT :g(er�ρGρ) ≥ 0 a.s.}. �

PROOF OF COROLLARY 5.3. First observe that Lemma 4.1 follows by simply
applying Corollary 5.1 instead of Theorem 3.5 and can therefore be used in the
proof below.

Now, as the left-hand side of the estimate (4.4) is trivially bounded from below
since g is bounded from below, we obtain

Ẽe−r�0
ρ g

(
er�0

ρGρ

) ≤ lim inf
n→∞ Ẽe−r�n

ρg
(
er�n

ρGρ

)
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using Fatou’s lemma, Lemma 4.1 and Remark 5.2(ii). The remaining arguments
below (4.5) used to show Proposition 4.2 also apply in the case where (1.2′) holds
proving the left-continuity claimed in part (i). And finally, the lower semicontinuity
follows by the argument for lower semicontinuity given in Remark 4.3(i).

The proof of part (ii) is along the lines of the proof of Proposition 4.4 with some
small changes emphasized below.

First, using the value function defined in (1.2′), the right-hand side of (4.7) is
dominated by

ε + Ẽ
(
1 − e

−r(�ρ′
ε
−�′

ρ′
ε
))

e
−r�′

ρ′
ε
∣∣g(

e
r�′

ρ′
ε Gρ′

ε

)∣∣I (
ρ′

ε ≤ A′
N

)

+ Ẽe
−r�ρ′

ε
∣∣g(

e
r�′

ρ′
ε Gρ′

ε

) − g
(
e
r�ρ′

ε Gρ′
ε

)∣∣I (
ρ′

ε ≤ A′
N

)

+ Ẽ
[
sup
t≥N

e−rt
∣∣g(

X̃′
t

)∣∣] + Ẽ
[
sup
t≥N

e−rt
∣∣g(X̃t )

∣∣],
where the middle term

Ẽe
−r�ρ′

ε
∣∣g(

e
r�′

ρ′
ε Gρ′

ε

) − g
(
e
r�ρ′

ε Gρ′
ε

)∣∣I (
ρ′

ε ≤ A′
N

)
(A.4)

is new. Note that the ε-optimal stopping time ρ ′
ε can be chosen from the set

(M′)+ = {ρ ∈ M :g(er�′
ρGρ) ≥ 0} and so

e
−r�′

ρ′
ε
∣∣g(

e
r�′

ρ′
ε Gρ′

ε

)∣∣ = e
−r�′

ρ′
ε g

(
e
r�′

ρ′
ε Gρ′

ε

)

≤ e
−r�

ȳ

ρ′
ε g

(
e
r�

ȳ

ρ′
ε Gρ′

ε

)

≤ sup
t≥0

e−r�
ȳ
t
∣∣g(

er�
ȳ
t Gt

)∣∣ ≤ sup
t≥0

e−rt
∣∣g(

ert X̃
ȳ
t

)∣∣.
Using this in place of the upper bound on the right-hand side of (4.8), we obtain
that∣∣v(

x, y′) − v(x, y)
∣∣ ≤ 3ε + Ẽ

(
1 − e

−r(�A′
N

−N))
sup
t≥0

e−rt
∣∣g(

ert X̃
ȳ
t

)∣∣

+ Ẽe
−r�ρ′

ε
∣∣g(

e
r�′

ρ′
ε Gρ′

ε

) − g
(
e
r�ρ′

ε Gρ′
ε

)∣∣I (
ρ′

ε ≤ A′
N

)
.

So, after y and y′ were replaced by y0 and yn respectively, it only remains to show
that

lim
n→∞ Ẽe

−r�0
ρn
ε
∣∣g(

e
r�n

ρn
ε Gρn

ε

) − g
(
e
r�0

ρn
ε Gρn

ε

)∣∣I (
ρn

ε ≤ An
N

) = 0.(A.4′)

This limit refers to the new term in (A.4) which was not considered in the proof of
Proposition 4.4. But, by dominated convergence, (A.4′) would follow if, for almost
every ω ∈ �, the equality

lim
n→∞

∣∣g(
e
r�n

ρn
ε (ω)

(ω)
Gρn

ε (ω)(ω)
) − g

(
e
r�0

ρn
ε (ω)

(ω)
Gρn

ε (ω)(ω)
)∣∣

(A.5)
× I

(
ρn

ε (ω) ≤ An
N(ω)

) = 0
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holds, and this is true. Indeed, choose ω ∈ � such that both �0
An

N(ω)
(ω) → N as

n → ∞ and t �→ Gt(ω) is continuous. Define

c1 = sup
t≤A

ȳ0
N (ω)

∣∣Gt(ω)
∣∣, c2 = �0

A
ȳ0
N (ω)

(ω),

and observe that

0 ≤ ρn
ε (ω)I

(
ρn

ε (ω) ≤ An
N(ω)

) ≤ A
ȳ0
N (ω)I

(
ρn

ε (ω) ≤ An
N(ω)

)
, n = 1,2, . . . ,

since yn ↓ y0 and y1 < ȳ0 by assumption. The functions g and t �→ ert are uni-
formly continuous on [−erc2c1, e

rc2c1] and [0, c2], respectively. Hence, for the
chosen ω, equality (A.5) follows from

0 ≤ (
�0

ρn
ε (ω)(ω) − �n

ρn
ε (ω)(ω)

)
I
(
ρn

ε (ω) ≤ An
N(ω)

) ≤ (
�0

An
N(ω)(ω) − N

) → 0

as n → ∞ and almost all ω are indeed of this type since the map t �→ Gt is almost
surely continuous and limn→∞ �0

An
N

is almost surely equal to N by Lemma 4.1.
Part (iii) can be shown by combining the ideas of the proof of part (ii) and the

proof of Proposition 4.5. In addition to (4.12), (4.13), (4.14) there will be an extra
term like (A.4). We only need to justify why Lebesgue’s dominated convergence
theorem can be applied with respect to this extra term after substituting the se-
quence yn,n = 1,2, . . . , and here, but only in the case of yn ↑ y0, one needs g to
be bounded from below. �
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