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Abstract

We consider directed random polymers in (d+1) dimensions with nearly gamma i.i.d.
disorder. We study the partition function ZN,ω and establish exponential concentra-
tion of logZN,ω about its mean on the subgaussian scale

√
N/ logN . This is used

to show that E[logZN,ω] differs from N times the free energy by an amount which is

also subgaussian (i.e. o(
√
N)), specifically O(

√
N

logN
log logN).
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1 Introduction.

We consider a symmetric simple random walk on Zd, d ≥ 1. We denote the paths of
the walk by (xn)n≥1 and its distribution (started from 0) by P . Let (ωn,x)n∈N,x∈Zd be a
collection of i.i.d. mean-zero random variables with distribution ν and denote their joint
distribution by P. We think of (ωn,x)n∈N,x∈Zd as a random potential with the random
walk moving inside this potential. This interaction gives rise to the directed polymer in
a random environment and can be formalised by the introduction of the following Gibbs
measure on paths of length N :

dµN,ω =
1

ZN,ω
eβ

∑N
n=1 ωn,xndP,

where β > 0 is the inverse temperature. The normalisation

ZN,ω = E

[
exp

(
β

N∑
n=1

ωn,xn

)]
(1.1)

is the partition function.
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Subgaussian concentration and rates of convergence

A central question for such polymers is how the fluctuations of the path are influ-
enced by the presence of the disorder. Loosely speaking, consider the two exponents ξ
and χ given by

EN,ω[|xN |2] ∼ N2ξ, Var (logZN,ω) ∼ N2χ.

It is believed that χ < 1/2 for all β > 0 and all d (see [18].) It is expected and partially
confirmed for some related models ([20], [9]) that the two exponents χ, ξ are related via

χ = 2ξ − 1. (1.2)

So there is reason for interest in the fluctuations of logZN,ω, and in particular in es-
tablishing that these fluctuations are subgaussian, that is, o(N1/2), as compared to the
gaussian scale N1/2. It is the o(·) aspect that has not previously been proved: in [22]
it is proved that in the point-to-point case (that is, with paths (xn)n≥1 restricted to end
at a specific site at distance N from the origin) one has variance which is O(N) when
the disorder has finite variance, and an exponential bound for | logZN,ω −E logZN,ω| on
scale N1/2 when the disorder has an exponential moment.

The zero-temperature case of the polymer model is effectively last passage percola-
tion. More complete results exist in this case in dimension 1+1, for specific distributions
[15]. There, based on exact computations related to combinatorics and random matrix
theory, not only the scaling exponent χ (= 1/3) for the directed last passage time was
obtained, but also its limiting distribution after centering and scaling. The first step
towards an extension of this type of result in the case of directed polymers in dimen-
sion 1 + 1 for particular disorder (the so called log-gamma disorder) was achieved in
[21], where n1/3 variance bounds were established. A closed formula for the Laplace
transform of the partition function of the log-gamma polymer was obtained in [13].
Based on this, the Tracy-Widom GUE scaling limit of the centered and rescaled log-
partition function was obtained in [6]. The best known result for undirected point-
to-point last passage percolation is in [8], stating that for v ∈ Zd, d ≥ 2, one has
Var(maxγ:0→v

∑
x∈γ ωx) ≤ C|v|/ log |v|, when the disorder ω is Bernoulli. Some results

on sublinear variance estimates for directed last passage percolation in 1 + 1 dimen-
sions with gaussian disorder were obtained in [10], but the type of estimates there
does not extend to higher dimensions, or to directed polymers at positive temperature.
The assumption of gaussian disorder is also strongly used there. In [14] estimates of
the variance of directed last passage percolation are obtained via a coupling method,
which appears difficult to extend to the case of polymers. In [7] exponential concentra-
tion estimates on the scale (|v|/ log |v|)1/2 were obtained for first passage percolation,
for a large class of disorders.

The extension of these results to directed polymers is not straightforward. This can
be seen, for example, from the fact that subgaussian fluctuations for a point-to-point
directed polymer can naturally fail. Such failure occurs, for example, if one restricts
the end point of a (1+1)-dimensional directed polymer to be (N,N). Then (1.1) reduces
to a sum of i.i.d. variables whose fluctuations are therefore gaussian.

The first result of the present paper is to obtain exponential concentration estimates
on the scale (N/ logN)1/2. Specifically, for nearly gamma disorder distributions (see
Definition 2.1, a modification of the definition in [7]) we prove the following; here and
throughout the paper we use Ki to denote constants which depend only on β and ν.

Theorem 1.1. Suppose the disorder distribution ν is nearly gamma with
∫
e4β|ω|ν(dω) <

∞. Then there exist K0,K1 such that

P

(
|logZN,ω − E logZN,ω| > t

√
N

logN

)
≤ K0e

−K1t,
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Subgaussian concentration and rates of convergence

for all N ≥ 2 and t > 0.

The nearly gamma condition ensures that ν has some exponential moment (see
Lemma 2.2), so for small β the exponential moment hypothesis in Theorem 1.1 is re-
dundant. The proof follows the rough outline of [7], and uses some results from there,
which we summarize in Section 2.

We use Theorem 1.1, in combination with coarse graining techniques motivated by
[5], to provide subgaussian estimates of the rate of convergence of N−1E logZN,ω to the
free energy. Here the free energy of the polymer (also called the pressure) is defined
as

p(β) = lim
N→∞

1

N
logZN,ω P− a.s. (1.3)

The existence of the free energy is obtained by standard subadditivity arguments and
concentration results [11], which furthermore guarantee that

p(β) = lim
N→∞

1

N
E logZN,ω (1.4)

= sup
N

1

N
E logZN,ω. (1.5)

Specifically, our second main result is as follows.

Theorem 1.2. Under the same assumptions as in Theorem 1.1, there exists K2 such
that for all N ≥ 3,

Np(β) ≥ E logZN,ω ≥ Np(β)−K2N
1/2 log logN

(logN)1/2
. (1.6)

Controlling the speed of convergence of the mean is useful when one considers
deviations of N−1 logZN,ω from its limit p(β) instead of from its mean, analogously to
[9].

Regarding the organization of the paper, in Section 2 we review certain concen-
tration inequalities and related results, mostly from [7], and give an extension of the
definition from [7] of a nearly gamma distribution so as to allow non-positive variables.
In Section 3 we provide the proof of Theorem 1.1. In Section 4 we provide the proof of
Theorem 1.2. Finally, in Section 5 we provide the proof of a technical lemma used in
Section 4.

2 Preliminary Results on Concentration and Nearly Gamma Dis-
tributions.

Let us first define the class of nearly gamma distributions. This class, introduced in
[7] is quite wide and in particular it includes the cases of Gamma and normal variables.
The definition given in [7] required that the support does not include negative values.
Here we will extend this definition in order to accommodate such values as well.

Definition 2.1. Let ν be a probability measure onR, absolutely continuous with respect
to the Lebesque measure, with density h and cumulative distribution function H. Let
also Φ be the cumulative distribution function of the standard normal. ν is said to be
nearly gamma (with parameters A,B) if

(i) The support I of ν is an interval.

(ii) h(·) is continuous on I.
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Subgaussian concentration and rates of convergence

(iii) For every y ∈ I we have

ψ(y) :=
Φ′ ◦ Φ−1(H(y))

h(y)
≤
√
B +A|y|, (2.1)

where A,B are nonnegative constants.

The motivation for this definition (see [7]) is that H−1◦Φ maps a gaussian variable to
one with distribution ν, and ψ(y) is the derivative of this map, evaluated at the inverse
image of y. With the bound on ψ in (iii), the log Sobolev inequality satisfied by a gaus-
sian distribution with respect to the differentiation operator translates into a useful log
Sobolev inequality satisfied by the distribution ν with respect to the operator ψ(y)d/dy.

It was established in [7] that a distribution is nearly gamma if (i), (ii) of Definition
2.1 are valid, and (iii) is replaced by

(iv) if I = [ν−, ν+] with |ν±| <∞, then

h(x)

|x− ν±|α±
,

remains bounded away from zero and infinity for x ∼ ν±, for some α± > −1.

(v) If ν+ = +∞ then ∫∞
x
h(t)dt

h(x)

remains bounded away from zero and infinity, as x → +∞. The analogous state-
ment is valid if ν− = −∞.

The nearly gamma property ensures the existence of an exponential moment, as
follows.

Lemma 2.2. Suppose the distribution ν is nearly gamma with parameters A,B. Then∫
etx ν(dx) <∞ for all t < 2/A.

Proof. Let T = H−1 ◦Φ, so that T (ξ) has distribution ν for standard normal ξ; then (2.1)
is equivalent to

T ′(x) ≤
√
B +A|T (x)| for all x ∈ R.

Considering T (x) ≥ 0 and T (x) < 0 separately, it follows readily from this that∣∣∣∣ ddx√(B +A|T (x)|)
∣∣∣∣ ≤ A

2
for all x with T (x) 6= 0,

so for some constant C we have
√

(B +A|T (x)|) ≤ C +A|x|/2, or

|T (x)| ≤ C2 −B
A

+ C|x|+ A

4
x2,

and the lemma follows.

For ω ∈ RZd+1

and (m, y) ∈ Zd+1 we define ω̂(m,y) ∈ RZd+1\{(m,y)} by the relation
ω = (ω̂(m,y), ωm,y). In other words, ω̂(m,y) is ω with the coordinate ω(m,y) removed. Given

a function F on RZ
d+1

and a configuration ω, the average sensitivity of F to changes in
the (m, y) coordinate is given by

Y (m,y)(ω) :=

∫ ∣∣∣F (ω̂(m,y), ω̃m,y)− F (ω)
∣∣∣ dP(ω̃m,y).
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Subgaussian concentration and rates of convergence

We define

YN (ω) :=
∑

(m,y)∈{1,...,N}×Zd
Y (m,y)(ω),

ρN := sup
(m,y)∈{1,...,N}×Zd

√
E
[
(Y (m,y))2

]
,

σN :=
√
E (Y 2

N ).

We use the same notation (a mild abuse) when F depends on only a subset of the
coordinates.

We are now ready to state the theorem of Benaim and Rossignol [7], specialized to
the operator ψ(s)d/ds applied to functions e

θ
2F (ω̂m,y,·).

Theorem 2.3. Let F ∈ L2(ν{1,...,N}×Z
d

) and let ρN , σN be as above. Suppose that there
exists K > eρNσN such that

∑
(m,y)∈{1,...,N}×Zd

E

[(
ψ(ωm,y)

∂

∂ωm,y
e
θ
2F

)2
]
≤ Kθ2E

[
eθF
]

(2.2)

for all |θ| < 1

2
√
l(K)

where

l(K) =
K

log K
ρNσN log K

ρNσN

.

Then for every t > 0 we have that

µ
(
|F − E[F ]| ≥ t

√
l(K)

)
≤ 8e−t.

Observe that if K is of order N , then a bound on ρNσN of order Nα with α < 1 is
sufficient to ensure that l(K) is of order N/ logN . In particular it is sufficient to have
σN of order N and ρN of order N−τ with τ > 0, which is what we will use below.

3 Concentration for the Directed Polymer.

In this section we will establish the first main result of the paper, which is Theorem
1.1. We assume throughout that the distribution ν of the disorder is nearly gamma
with parameters A,B. We finally denote P = νZ

d+1

. We write µ(f) for the integral of a
function f with respect to a measure µ.

Let (n, x) ∈ N × Zd. We denote the partition function of the directed polymer of
length N in the shifted environment ωn+·,x+· by

Z
(n,x)
N,ω := E

[
eβ

∑N
i=1 ωn+i,x+xi

]
, (3.1)

and let µ(n,x)
N,ω be the corresponding Gibbs measure. For I ⊂ N×Zd we define

F
I

N,ω :=
1

|I|
∑

(n,x)∈I

logZ
(n,x)
N,ω .

Define the set of paths from the origin

ΓN = {{(i, xi)}i≤N : x0 = 0, |xi − xi−1|1 = 1 for all i};

EJP 18 (2013), paper 5.
Page 5/28

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2005
http://ejp.ejpecp.org/


Subgaussian concentration and rates of convergence

we write γN = {(i, xi) : i = 0, . . . , N} for a generic or random polymer path in ΓN . Let

MN,ω = max
γN

∑
(m,y)∈γN

|ωm,y|, (3.2)

and letM(n,x)
N,ω denote the same quantity for the shifted disorder, analogously to (3.1).

Proposition 3.1. There exists θ0(β, ν) such that for all |θ| < θ0 and |I| ≤ (2d)N , the

function F
I

N,ω satisfies the following Poincaré type inequality:

∑
(m,y)∈N×Zd

E

[(
ψ(ωm,y)

∂

∂ωm,y
e
θ
2F

I
N,ω

)2
]
≤ CABθ2β2N E

[
eθF

I
N,ω

]
,

where CAB is a constant depending on the nearly gamma parameters A,B.

Proof. By the definition of nearly gamma we have that

E

[(
ψ(ωm,y)

∂

∂ωm,y
e
θ
2F

I
N,ω

)2
]

≤BE

[(
∂

∂ωm,y
e
θ
2F

I
N,ω

)2
]

+AE

[
|ωm,y|

(
∂

∂ωm,y
e
θ
2F

I
N,ω

)2
]
. (3.3)

Regarding the first term on the right side of (3.3), we have

∂F
I

N,ω

∂ωm,y
=

β

|I|
∑

(n,x)∈I

µn,xN,ω(1(m−n,y−x)∈γN )

and

∑
(m,y)∈N×Zd

E

[(
∂

∂ωm,y
e
θ
2F

I
N,ω

)2
]

=
1

4
θ2

∑
(m,y)∈N×Zd

E

(∂F IN,ω
∂ωm,y

)2

eθF
I
N,ω


=

1

4
θ2β2

∑
(m,y)∈N×Zd

E


 1

|I|
∑

(n,x)∈I

µn,xN,ω(1(m−n,y−x)∈γN )

2

eθF
I
N,ω


≤ 1

4
θ2β2

∑
(m,y)∈N×Zd

E

 1

|I|
∑

(n,x)∈I

µn,xN,ω(1(m−n,y−x)∈γN ) eθF
I
N,ω

 (3.4)

=
1

4
θ2β2N E

[
eθF

I
N,ω

]
,

where the last equality is achieved by performing first the summation over (m, y) and
using that the range of the path consists of N sites after the starting site. Regarding
the second term on the right side of (3.3), we defineMI

N,ω = max(n,x)∈IM
(n,x)
N,ω for a set

I ⊂ N × Zd. We then have −βMI
N,ω ≤ F

I

N,ω ≤ βMI
N,ω so following similar steps as in
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Subgaussian concentration and rates of convergence

(3.4) we have

∑
(m,y)∈N×Zd

E

[
|ωm,y|

(
∂

∂ωm,y
e
θ
2F

I
N,ω

)2
]

≤ 1

4
θ2β2

∑
(m,y)∈N×Zd

E

 1

|I|
∑

(n,x)∈I

µn,xN,ω(|ωm,y|1(m−n,y−x)∈γN ) eθF
I
N,ω


≤ 1

4
θ2β2E

[
MI

N,ωe
θF

I
N,ω

]
≤ 1

4
θ2β2

(
bNE

[
eθF

I
N,ω

]
+ E

[
MI

N,ωe
|θ|βMI

N,ω ;MI
N,ω > bN

] )
, (3.5)

where b a constant to be specified. We would like to show that the second term on the
right side of (3.5) is smaller that the first one. First, in the case that θ > 0, since the
disorder has mean zero, bounding Z

(n,x)
N,ω below by the contribution from any one path

and then applying Jensen’s inequality to the expectation E[·] we obtain

E
[
eθF

I
N,ω

]
≥ e−θN log(2d), (3.6)

while in the case that θ < 0, applying Jensen’s inequality to the average over I gives

E
[
eF

I
N,ω

]
≤ E [ZN,ω] = eλ(β)N ,

with λ(β) the log-moment generating function of ω, and hence, taking the θ < 0 power
and then applying Jensen’s inequality to E[·],

E
[
eθF

I
N,ω

]
≥ eθNλ(β). (3.7)

Moreover, for b > 0 we have

E
[
MI

N,ωe
|θ|βMI

N,ω ;MI
N,ω > bN

]
= bNe|θ|βbNP(MI

N,ω > bN) +N

∫ ∞
b

(1 + |θ|βuN)e|θ|βuNP(MI
N,ω > uN)du. (3.8)

Denoting by J (·) the large deviation rate function related to |ω| we have that (3.8) is
bounded by

bN(2d)N |I|e(|θ|βb−J (b))N +N(2d)N |I|
∫ ∞
b

(1 + |θ|βuN)e(|θ|βu−J (u))Ndu. (3.9)

Let 0 < L < limx→∞ J (x)/x (which exists since J (x)/x is nondecreasing for x > E|ω|)
and choose b large enough so J (b)/b > L. Then provided |θ| is small enough (depending
on β, ν) and b is large enough (depending on ν), (3.9)is bounded above by

bN(2d)2Ne(|θ|β−L)bN +N(2d)2N
∫ ∞
b

(1 + |θ|βuN)e(|θ|β−L)uNdu

≤ bN(2d)2Ne−
L
2 bN +N(2d)2N

∫ ∞
b

(1 + |θ|βuN)e−
L
2 uNdu

≤ e−LbN/4

≤ E
[
eθF

I
N,ω

]
,

where the last inequality uses (3.6) and (3.7). This combined with (3.5) and (3.4) com-
pletes the proof.
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The averaging over sets I used in the preceding proof is related to the auxiliary
randomness used in the main proof in [8].

Define the point-to-point partition function

ZN,ω(z) = E

[
exp

(
β

N∑
n=1

ωn,xn

)
1xN=z

]
and let µN,ω,z be the corresponding Gibbs measure. With I fixed, we define

W
(m,y)
N,ω :=

∫ ∣∣∣F IN,(ω̂(m,y),ω̃m,y) − F
I

N,ω

∣∣∣ dP(ω̃m,y),

L
(m,y)
N,ω (z) :=

∫ ∣∣∣logZN,(ω̂(m,y),ω̃m,y)(z)− logZN,ω(z)
∣∣∣ dP(ω̃m,y),

WN,ω :=
∑

(m,y)∈N×Zd
W

(m,y)
N,ω , LN,ω(z) :=

∑
(m,y)∈N×Zd

L
(m,y)
N,ω (z),

W
(m,y)
N,ω,± :=

∫ (
F
I

N,(ω̂(m,y),ω̃m,y) − F
I

N,ω

)
±
dP(ω̃m,y),

L
(m,y)
N,ω,±(z) :=

∫ (
logZN,(ω̂(m,y),ω̃m,y)(z)− logZN,ω(z)

)
±
dP(ω̃m,y),

and

WN,ω,± :=
∑

(m,y)∈N×Zd
W

(m,y)
N,ω,±, LN,ω,±(z) :=

∑
(m,y)∈N×Zd

L
(m,y)
N,ω,±(z).

We finally define

rN := sup
(m,y)∈N×Zd

√
E
[(
W

(m,y)
N,ω

)2]
, r̂N (z) := sup

(m,y)∈N×Zd

√
E
[(
L
(m,y)
N,ω (z)

)2]
,

sN :=

√
E
[(
WN,ω

)2]
, ŝN (z) :=

√
E
[(
LN,ω(z)

)2]
,

r±N := sup
(m,y)∈N×Zd

√
E
[(
W

(m,y)
N,ω,±

)2]
, r̂±N (z) := sup

(m,y)∈N×Zd

√
E
[(
L
(m,y)
N,ω,±(z)

)2]
and

s±N :=

√
E
[(
WN,ω,±

)2]
, ŝ±N (z) :=

√
E
[(
LN,ω,±(z)

)2]
.

It is clear that rn ≤ r+N + r−N and sn ≤ s+N + s−N .
We make use of two choices of the set I of sites: let 0 < α < 1/2 and

Iα± := {(n, x) ∈ N×Zd : n = ±Nα, |x|∞ < Nα}.

Proposition 3.2. For α < 1/2 and I = Iα±, there exists K3 such that the following
estimates hold true:

r±N ≤
1

|Iα+|1/4
K3, r̂±N (z) ≤ K3,

s±N ≤ K3N, ŝ±N (z) ≤ K3N.
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Proof. We first consider r±N and s±N . Observe that

(
F
Iα+
N,(ω̂(m,y),ω̃m,y)

− F I
α
+

N,ω

)
±

=

 1

|Iα+|
∑

(n,x)∈Iα+

(
logZ

(n,x)

N,(ω̂(m,y),ω̃m,y)
− logZ

(n,x)
N,ω

)
±

≤ 1

|Iα+|
∑

(n,x)∈Iα+

(
logZ

(n,x)

N,(ω̂(m,y),ω̃m,y)
− logZ

(n,x)
N,ω

)
±. (3.10)

The difference on the right side can be written as

logZ
(n,x)

N,(ω̂(m,y),ω̃m,y)
− logZ

(n,x)
N,ω = log

1

Z
(n,x)
N,ω

E

[
eβ

∑N
i=1 ωn+i,x+xi eβ

(
ω̃m,y−ωm,y

)
1x+xm−n=y

]
= logµ

(n,x)
N,ω

(
eβ
(
ω̃m,y−ωm,y

)
1x+xm−n=y

)
= log

(
1 + µ

(n,x)
N,ω

(
eβ
(
ω̃m,y−ωm,y

)
1x+xm−n=y − 1

))
(3.11)

≤ log

(
1 + eβ

(
ω̃m,y−ωm,y

)
µ
(n,x)
N,ω

(
1x+xm−n=y

))
≤ eβ

(
ω̃m,y−ωm,y

)
µ
(n,x)
N,ω

(
1x+xm−n=y

)
,

so

W
(m,y)
N,ω,+ =

∫ (
F
Iα+
N,(ω̂(m,y),ω̃m,y)

− F I
α
+

N,ω

)
+
dP(ω̃m,y)

≤ 1

|Iα+|
∑

(n,x)∈Iα+

µ
(n,x)
N,ω

(
1x+xm−n=y

) ∫
ω̃m,y≥ωm,y

eβ
(
ω̃m,y−ωm,y

)
dP(ω̃m,y). (3.12)

To bound r+N , we use (3.12) to get:

E
[(
W

(m,y)
N,ω,+

)2] ≤ E

 1

|Iα+|
∑

(n,x)∈Iα+

µ
(n,x)
N,ω

(
1x+xm−n=y

) ∫
ω̃m,y≥ωm,y

eβ
(
ω̃m,y−ωm,y

)
dP(ω̃m,y)

2


≤ E


 1

|Iα+|
∑

(n,x)∈Iα+

µ
(n,x)
N,ω

(
1x+xm−n=y

)4

1/2

× E

(∫
ω̃m,y≥ωm,y

eβ
(
ω̃m,y−ωm,y

)
dP(ω̃m,y)

)4
1/2

≤ E

 1

|Iα+|
∑

(n,x)∈Iα+

µ
(n,x)
N,ω

(
1x+xm−n=y

)1/2

e
1
2 (λ(−4β)+4λ(β))

= E

 1

|Iα+|
∑

(n,x)∈Iα+

µN,ω
(
1x+xm−n=y

)1/2

e
1
2 (λ(−4β)+4λ(β)) (3.13)

≤ 1

|Iα+|1/2
e

1
2 (λ(−4β)+4λ(β)),

where in the equality we used the homogeneity of the environment and in the last
inequality we used the fact that the directed path has at most one contact point with
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the set Iα+ and, therefore,
∑

(n,x)∈Iα+
1x+xm−n=y ≤ 1. Hence

r+N ≤
1

|Iα+|1/4
e

1
4 (λ(−4β)+4λ(β)).

The estimate on s+N follows along the same lines. Specifically, using (3.12), we have that

E
[
(WN,ω,+)

2
]

= E


 ∑

(m,y)∈N×Zd
W

(m,y)
N,ω,+

2


≤ E


 ∑

(m,y)∈N×Zd

1

|Iα+|
∑

(n,x)∈Iα+

µ
(n,x)
N,ω

(
1x+xm−n=y

) ∫
ω̃m,y≥ωm,y

eβ
(
ω̃m,y−ωm,y

)
dP(ω̃m,y)

2


≤ e2λ(β)E


 ∑

(m,y)∈N×Zd

1

|Iα+|
∑

(n,x)∈Iα+

µ
(n,x)
N,ω

(
1x+xm−n=y

)
e−βωm,y

2


≤ e2λ(β)E

 1

|Iα+|
∑

(n,x)∈Iα+

 ∑
(m,y)∈N×Zd

µ
(n,x)
N,ω

(
1x+xm−n=y

)
e−βωm,y

2


≤ e2λ(β)E

 1

|Iα+|
∑

(n,x)∈Iα+

 ∑
(m,y)∈N×Zd

µ
(n,x)
N,ω

(
1x+xm−n=y

) ∑
(m,y)∈N×Zd

µ
(n,x)
N,ω

(
1x+xm−n=y

)
e−2βωm,y


= N e2λ(β)

1

|Iα+|
∑

(n,x)∈Iα+

∑
(m,y)∈N×Zd

E
[
µ
(n,x)
N,ω

(
1x+xm−n=y

)
e−2βωm,y

]
≤ N e2λ(β)

1

|Iα+|
∑

(n,x)∈Iα+

∑
(m,y)∈N×Zd

E
[
µ
(n,x)
N,ω

(
1x+xm−n=y

)]
E
[
e−2βωm,y

]
(3.14)

= N2 eλ(−2β)+2λ(β)

where in the equalities we used the fact that∑
(m,y)∈N×Zd

µ
(n,x)
N,ω

(
1x+xm−n=y

)
= N, (3.15)

and in the last inequality we used the easily verified fact that µ(n,x)
N,ω

(
1x+xm−n=y

)
and

e−βωm,y are negatively correlated. It follows from (3.14) that

s+N ≤ Ne
1
2 (λ(−2β)+2λ(β)).

We now need to show how these estimates extend to r−N , s
−
N . Using (3.10) and the

second equality in (3.11),(
F
Iα+
N,(ω̂(m,y),ω̃m,y)

− F I
α
+

N,ω

)
−

≤ − 1

|Iα+|
∑

(n,x)∈Iα+

logµ
(n,x)
N,ω

(
eβ(ω̃m,y−ωm,y)1x+xm−n=y

)
1ω̃m,y<ωm,y . (3.16)

By Jensen’s inequality this is bounded by

1

|Iα+|
∑

(n,x)∈Iα+

µ
(n,x)
N,ω

(
1x+xm−n=y

)
β(ωm,y − ω̃m,y)1ω̃m,y<ωm,y . (3.17)
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It follows that

E
[(
W

(m,y)
N,ω,−

)2] ≤ E

 1

|Iα+|
∑

(n,x)∈Iα+

µ
(n,x)
N,ω

(
1x+xm−n=y

) ∫
ω̃m,y<ωm,y

β
(
ωm,y − ω̃m,y

)
dP(ω̃m,y)

2


From this we can proceed analogously to (3.13) and obtain

r−N ≤
β

|Iα+|1/4
(
E[ω4

m,y] + E[|ωm,y|]4
)1/4

.

To bound s−N we first observe that∫
ω̃m,y≤ωm,y

(
ωm,y − ω̃m,y

)
dP(ω̃m,y) ≤ (ωm,y)+ + E[(ω0,0)−]. (3.18)

Using (3.10), (3.15), (3.18) and the three equalities in (3.11), it follows that

E[(WN,ω,−)2] = E


 ∑

(m,y)∈N×Zd
W

(m,y)
N,ω,−

2


≤ E


 ∑

(m,y)∈N×Zd

1

|Iα+|
∑

(n,x)∈Iα+

µ
(n,x)
N,ω

(
1x+xm−n=y

)
β((ωm,y)+ + E[(ω0,0)−])

2


≤ 2β2N2(E[(ω0,0)−])2 + 2β2E


 1

|Iα+|
∑

(n,x)∈Iα+

M(n,x)
N,ω

2


≤ 2β2N2(E[(ω0,0)−])2 + 2β2E
[
(MN,ω)2

]
, (3.19)

whereMN,ω is from (3.2). A similar computation to the one following (3.5) shows that
for L, b as chosen after (3.9), with b sufficiently large (depending on ν),

E[(MN,ω)2] ≤ (bN)2 +

∫ ∞
(bN)2

P
(
(MN,ω)2 > t

)
dt

≤ (bN)2 +N2

∫ ∞
b2
P (MN,ω > N

√
y) dy

≤ (bN)2 +N2(2d)N
∫ ∞
b2

e−NJ (
√
y) dy

≤ (bN)2 +N2(2d)N
∫ ∞
b2

e−NL
√
y dy

≤ (bN)2 +N2e−LbN/2

≤ (b2 + 1)N2. (3.20)

With (3.19) this shows that

s−N ≤ K3N.

Turning to r̂±N (z) and ŝ±N (z), as in (3.11) we have

logZN,(ω̂(m,y),ω̃m,y)(z)− logZN,ω(z) ≤ µN,ω,z (1xm=y) eβ
(
ω̃m,y−ωm,y

)
(3.21)
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and then as in (3.13),

E
[(
L
(m,y)
N,ω,+(z)

)2] ≤ E
(∫

ω̃m,y≥ωm,y
eβ
(
ω̃m,y−ωm,y

)
dP(ω̃m,y)

)2


≤ eλ(−2β)+2λ(β), (3.22)

so also
r̂+N (z) ≤ eλ(−2β)+2λ(β). (3.23)

Further, analogously to (3.14) but with Iα+ replaced by a single point, we obtain

ŝ+N (z)2 = E
[(
LN,ω,+(z)

)2]
≤ N e2λ(β)

∑
(m,y)∈N×Zd

E [µN,ω,z (1xm=y)]E
[
e−2βωm,y

]
= N2 eλ(−2β)+2λ(β). (3.24)

Next, analogously to (3.16) and (3.17),(
logZN,(ω̂(m,y),ω̃m,y)(z)− logZN,ω(z)

)
−
≤ βµN,ω,z (1xm=y) (ωm,y − ω̃m,y)1ω̃m,y<ωm,y

(3.25)

so
E
[(
L
(m,y)
N,ω,−(z)

)2] ≤ 2β2E(ω2
m,y) (3.26)

and hence
r̂−N (z) ≤ 2βE(ω2

0,0)1/2.

To deal with ŝ−N (z), observe that by (3.18) and (3.25), similarly to (3.19),

LN,ω,−(z) ≤
∑

(m,y)∈N×Zd
βµN,ω,z (1xm=y) ((ωm,y)+ + E[(ω0,0)−])

≤ βMN,ω + βNE[(ω0,0)−]. (3.27)

Therefore ŝ−N (z)2 is bounded by the right side of (3.19), which with (3.20) shows ŝ−N (z) ≤
K3N .

Proposition 3.2 shows that log[N/(rNsN log(N/rNsN ))] is of order logN . We can

apply Proposition 3.1 and Theorem 2.3, the latter with ρN = rN , σN = sN , F = F
Iα+
N,ω

and K a multiple of N , to yield part (i) of the next proposition. Part (ii) follows similarly,
using r̂N (z) and ŝN (z) in place of rN and sN , and F (ω) = logZN,ω(z).

Proposition 3.3. (i) There exist K4 and N0 = N0(β, ν) such that

P
(∣∣∣F Iα+N,ω − EF Iα+N,ω∣∣∣ > t

√
`(N)

)
≤ 8e−K4t,

for t > 0 and N ≥ N0, where `(N) = N/ logN .
(ii) There exists K5 and N1 = N1(β, ν) such that

P
(
|logZN,ω(z)− E logZN,ω(z)| > t

√
N
)
≤ 8e−K5t, (3.28)

for all N ≥ N1, t > 1 and all z ∈ Zd with |z|1 ≤ N .

We can now prove the first main theorem.
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Proof of Theorem 1.1. We start by obtaining an a.s. upper and lower bound on logZN,ω.
Loosely, for the lower bound we consider a point (bNαc, x) ∈ Iα+ and we force the poly-
mer started at (0, 0) to pass through that point; the energy accumulated by the first part

of the polymer, i.e.
∑bNαc
i=1 ωi,xi , is then bounded below by the minimum energy that the

polymer could accumulate during its first bNαc steps. More precisely, we define

Mn1,n2

N,ω := max{|ωn,x| : n1 ≤ n ≤ n2, |x|∞ ≤ N},

and then bound below by the minimum possible energy:

bNαc∑
i=1

ωi,xi ≥ −NαM0,Nα

Nα,ω.

Letting

M+
N,ω := Nα log(2d) + βNα

(
M0,Nα

Nα,ω + MN,N+Nα

N+Nα,ω

)
we then get that

logZN,ω ≥ logE
[
eβ

∑N
i=bNαc+1 ωi,xi

∣∣ XbNαc = x
]

+ logP (XbNαc = x)− βNα M0,Nα

Nα,ω

≥ logZ
(bNαc,x)
N,ω −M+

N,ω. (3.29)

Averaging (3.29) over x ∈ Iα+ yields

logZN,ω ≥ F
Iα+
N,ω −M+

N,ω. (3.30)

In a related fashion we can obtain an upper bound on logZN,ω. In this case we start the
polymer from a location (−bNαc, x) ∈ Iα− and we force it to pass through (0, 0). Letting

M−N,ω := Nα log(2d) + βNα
(

M−N
α,0

Nα,ω + MN−Nα,N
N,ω

)
, (3.31)

we then have analogously to (3.29) that

logZ
(−bNαc,x)
N,ω ≥ logZN,ω −M−N,ω, (3.32)

so that, averaging over Iα−,

logZN,ω ≤ F
Iα−
N,ω + M−N,ω. (3.33)

Using the fact that F
Iα+
N,ω and F

Iα−
N,ω have the same distribution, and E logZN,ω = EF

Iα+
N,ω =

EF
Iα−
N,ω we obtain from (3.30) and (3.33) that

P
(
|logZN,ω − E logZN,ω| > t

√
`(N)

)
(3.34)

≤ P
(
F
Iα−
N,ω − EF

Iα−
N,ω +M−N,ω > t

√
`(N)

)
+ P

(
F
Iα+
N,ω − EF

Iα+
N,ω −M

+
N,ω < −t

√
`(N)

)
≤ P

(
F
Iα−
N,ω − EF

Iα−
N,ω >

1

2
t
√
`(N)

)
+ P

(
F
Iα+
N,ω − EF

Iα+
N,ω < −

1

2
t
√
`(N)

)
+ P

(
M+
N,ω >

1

2
t
√
`(N)

)
+ P

(
M−N,ω >

1

2
t
√
`(N)

)
= P

(
|F I

α
+

N,ω − EF
Iα+
N,ω| >

1

2
t
√
`(N)

)
+ P

(
M+
N,ω >

1

2
t
√
`(N)

)
+ P

(
M−N,ω >

1

2
t
√
`(N)

)
.
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For N ≥ N0(β, ν), Proposition 3.3(i) guarantees that the first term on the right side
in (3.34) is bounded by 8e−K4t/2. The second and the third terms are similar so we
consider only the second one. If t > 1, then for some K6, for large N ,

P

(
M+
N,ω >

1

2
t
√
`(N)

)
≤ K6N

1+αP

(
|ω0,0| >

t

8β
N−α

√
N

logN

)

≤ K6N
1+α exp

(
− t

8

N
1
2−α

√
logN

)
E
[
eβ|ω|

]
≤ exp

(
− t

16

N
1
2−α

√
logN

)
.

Putting the estimates together we get from (3.34) that for some K7,

P
(
|logZN,ω − E logZN,ω| > t

√
`(N)

)
≤ 10e−K7t (3.35)

for all N large (say N ≥ N2(β, ν) ≥ N0(β, ν)) and t > 1. For t ≤ 1, (3.35) is trivially true
if we take K7 small enough. This completes the proof for N ≥ N2.

For 2 ≤ N < N2 an essentially trivial proof suffices. Fix any (nonrandom) path
(yn)n≤N and let TN =

∑N
n=1 ωn,yn , so that ZN,ω ≥ (2d)−NeβTN . Let K8 = N2 log 2d +

maxN<N2
E logZN,ω, K9 = minN<N2

E logZN,ω and K10 = maxN<N2
EZN,ω. Then for

some K11,K12,

P

(
logZN,ω − E logZN,ω < −t

√
N

logN

)
≤ P(βTN < K8 − t) ≤ K11e

−K12t

and by Markov’s inequality,

P

(
logZN,ω − E logZN,ω > t

√
N

logN

)
≤ P(ZN,ω > eK9+t) ≤ K10e

−K9−t.

The theorem now follows for these N ≥ 2.

4 Subgaussian rates of convergence

In this section we prove Theorem 1.2. We start with the simple observation that
E logZN,ω is superadditive:

E logZN+M,ω ≥ E logZN,ω + E logZM,ω, (4.1)

which by standard superadditivity results implies that the limit in (1.4) exists, with

lim
N→∞

1

N
E logZN,ω = sup

N

1

N
E logZN,ω. (4.2)

Let Ld+1 be the even sublattice of Zd+1:

Ld+1 = {(n, x) ∈ Zd+1 : n+ x1 + · · ·+ xd is even}.

Let HN = {(N, x) : x ∈ Zd} ∩ Ld+1 and for l < m and (l, x), (m, y) ∈ Ld+1 define

Zm−l,ω((l, x)(m, y)) = El,x

[
eβ

∑m
n=l+1 ωn,xn ;xm = y

]
.

Recall the notation (3.1) for a polymer in a shifted disorder.
The following lemma will be used throughout. Its proof follows the same lines as

([5], Lemma 2.2(i)) and analogously to that one it is a consequence of Theorem 1.1 for
part (i), and Proposition 3.3(ii) for part (ii).
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Lemma 4.1. Let ν be nearly gamma. There exists K13 as follows. Let nmax ≥ 1 and let
0 ≤ s1 < t1 ≤ s2 < t2 < · · · ≤ sr < tr with tj − sj ≤ nmax for all j ≤ r. For each j ≤ r let
(sj , yj) ∈ Hsj and (tj , zj) ∈ Htj , and let

ζj = logZtj−sj ,ω((sj , xj)(tj , yj)), χj = logZ
(sj ,xj)
tj−sj ,ω.

Then for a > 0, we have the following.
(i)

P

 r∑
j=1

|χj − Eχj | > 2a

 ≤ 2r+1 exp

(
−K13a

(
log nmax

nmax

)1/2
)
, (4.3)

(ii)

P

 r∑
j=1

|ζj − Eζj | > 2a

 ≤ 2r+1 exp

(
−K13a

n
1/2
max

)
, (4.4)

(iii)

P

 r∑
j=1

(ζj − Eχj)+ > 2a

 ≤ 2r+1 exp

(
−K13a

(
log nmax

nmax

)1/2
)
, (4.5)

Note (iii) follows from (i), since ζj ≤ χj . We do not have a bound like (4.5), with
factor (log nmax)1/2, for the lower tail of the ζj ’s, but for our purposes such a bound is
only needed for the upper tail, as (4.4) suffices for lower tails.

We continue with a result which is like Theorem 1.2 but weaker (not subgaussian)
and much simpler. Define the set of paths from the origin

ΓN = {{(i, xi)}i≤N : x0 = 0, |xi − xi−1|1 = 1 for all i}.

For a specified block length n, and for N = kn, the simple skeleton of a path in ΓN is
{(jn, xjn) : 0 ≤ j ≤ k}. Let Cs denote the class of all possible simple skeletons of paths
from (0, 0) to (kn, 0) and note that

|Cs| ≤ (2n)dk. (4.6)

For a skeleton S (of any type, including simple and types to be introduced below), we
write ΓN (S) for the set of all paths in ΓN which pass through all points of S. For a set
A of paths of length N we set

ZN,ω(A) = E
(
eβ

∑N
i=1 ωi,xi1A

)
,

and we write ZN,ω(S) for ZN,ω(ΓN (S)).

Lemma 4.2. Suppose ν is nearly gamma. Then there exists K14 such that

E logZn,ω ≥ p(β)n−K14n
1/2 log n for all n ≥ 2. (4.7)

Proof. It is sufficient to prove the inequality in (4.7) for sufficiently large n. Fix n and
consider paths of length N = kn. For each S = {(jn, xjn) : 0 ≤ j ≤ k} ∈ Cs we have

E logZN,ω(S) =

k∑
j=1

E logZn,ω

(
((j − 1)n, x(j−1)n), (jn, xjn)

)
≤ kE logZn,ω. (4.8)

By Lemma 4.1(ii) (note K13 is defined there),

P

(
logZN,ω(S)− E logZN,ω(S) ≥ 16dK−113 kn

1/2 log n

)
≤ 2k+1e−8dk logn, (4.9)
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so by (4.6),

P

(
logZN,ω(S)− E logZN,ω(S) ≥ 16dK−113 kn

1/2 log n for some S ∈ Cs
)
≤ e−4dk logn.

(4.10)

Combining (4.6),(4.8) and (4.10) we see that with probability at least 1 − e−4dk logn we
have

logZkn,ω = log

(∑
S∈Cs

ZN,ω(S)

)
≤ dk log(2n) + kE logZn,ω + 16dK−113 kn

1/2 log n. (4.11)

But by (1.3), also with probability approaching 1 as k →∞ (with n fixed), we have

logZkn,ω ≥ knp(β)− k (4.12)

which with (4.11) shows that

E logZn,ω ≥ np(β)− 1− d log(2n)− 16dK−113 n
1/2 log n.

The proof of Theorem 1.2 follows the general outline of the preceding proof. But to
obtain that (stronger) theorem, we need to sometimes use Lemma 4.1(i),(iii) in place of
(ii), and use a coarse-graining approximation effectively to reduce the size of (4.6), so
that we avoid the log n in the exponent on the right side of (4.10), and can effectively
use log log n instead.

For (n, x) ∈ Ld+1 let

s(n, x) = np(β)− E logZn,ω(x), s0(n) = np(β)− E logZn,ω.

so s(n, x) ≥ 0 by (4.2). s(n, x) may be viewed as a measure of the inefficiency created
when a path makes an increment of (n, x). As in the proof of Lemma 4.2, we consider a
polymer of length N = kn for some block length n to be specified and k ≥ 1. In general
we take n sufficiently large, and then take k large, depending on n; we tacitly take n to
be even, throughout. In addition to (4.1) we have the relation

Zn+m,ω(x+ y) ≥ Zn,ω(x)Z(n,x)
m,ω (y) for all x, y, z ∈ Zd and all n,m ≥ 1,

which implies that s(·, ·) is subadditive. Subadditivity of s0 follows from (4.1).
Let

ρ(m) =
log logm

K13(logm)1/2
, θ(m) = (logm)5/2, and ϕ(m) = b(logm)3c. (4.13)

For our designated block length n, for x ∈ Zd with (n, x) ∈ Ld, we say the transverse
increment x is inadequate if s(n, x) > n1/2θ(n), and adequate otherwise. Note the de-
pendence on n is suppressed in this terminology. For general values of m, we say (m,x)

is efficient is s(m,x) ≤ 4n1/2ρ(n), and inefficient otherwise; again there is a depen-
dence on n. For m = n, efficiency is obviously a stronger condition than adequateness.
In fact, to prove Theorem 1.2 it is sufficient to show that for large n, there exists x for
which (n, x) is efficient.

Let
hn = max{|x|∞ : x is adequate}.
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(Note we have not established any monotonicity for s(n, ·), so some sites x with |x|∞ ≤
hn may be inadequate.) We wish to coarse-grain on scale un = 2bhn/2ϕ(n)c. A coarse-
grained (or CG ) point is a point of form (jn, xjn) with j ≥ 0 and xjn ∈ unZd. A coarse-
grained (or CG ) skeleton is a simple skeleton {(jn, xjn) : 0 ≤ j ≤ k} consisting entirely
of CG points. By a CG path we mean a path from (0, 0) to (kn, 0) for which the simple
skeleton is a CG skeleton.

Remark 4.3. A rough strategy for the proof of Theorem 1.2 is as follows; what we
actually do is based on this but requires certain modifications. It is enough to show that
for some K15, for large n, s(n, x) ≤ K15n

1/2ρ(n) for some x. Suppose to the contrary
s(n, x) > K15n

1/2ρ(n) for all x; this means that for every simple skeleton S we have

E logZkn,ω(S) ≤ knp(β)− kK15n
1/2ρ(n).

The first step is to use this and Lemma 4.1 to show that, if we take n then k large, with
high probability

logZkn,ω(Ŝ) ≤ knp(β)− 1

2
kK15n

1/2ρ(n) for every CG skeleton Ŝ;

this makes use of the fact that the number of CG skeletons is much smaller than
the number of simple skeletons. The next step is to show that with high probability,
every simple skeleton S can be approximated by a CG skeleton Ŝ without changing
logZkn,ω(S) too much, and therefore

logZkn,ω(S) ≤ knp(β)− 1

4
kn1/2K15ρ(n) for every simple skeleton S.

The final step is to sum Zkn,ω(S) over simple skeletons S (of which there are at most
(2n)dk) to obtain

logZkn,ω ≤ dk log 2n+ knp(β)− 1

4
kn1/2K15ρ(n).

Dividing by kn and letting k → ∞ gives a limit which contradicts (1.3); this shows
efficient values x must exist.

We continue with the proof of Theorem 1.2. Let

ĤN = {x ∈ Zd : (N, x) ∈ HN , |x|1 ≤ N};

when N is clear from the context we refer to points x ∈ ĤN as accessible sites. Clearly
|ĤN | ≤ (2N)d.

Lemma 4.4. (i) There exists K16 such that for all n ≥ 2, s(n, 0) ≤ K16n
1/2 log n.

(ii) There exists K17 such that for n large (depending on β) and even, if |x|1 ≤
K17n

1/2θ(n) then x is adequate.

Proof. We first prove (i). It suffices to consider n large. Let m = n/2. It follows from
Proposition 3.3(ii) that

P
(
|logZm,ω(x)− E logZm,ω(x)| ≥ 2dK−15 m1/2 logm for some x ∈ Ĥm

)
≤ (2m)de−2d logm

≤ 1

2
. (4.14)
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It follows from (4.14), Theorem 1.1 and Lemma 4.2 that with probability at least 1/4,
for some accessible site x we have

exp
(
E logZm,ω(x) + 2dK−15 m1/2 logm

)
≥ Zm,ω(x)

≥ 1

(2m)d
Zm,ω

≥ 1

(2m)d
exp

(
E logZm,ω −m1/2

)
≥ exp

(
p(β)m− 2K14m

1/2 logm
)
, (4.15)

and therefore we have the deterministic statement

E logZm,ω(x) ≥ p(β)m−K18m
1/2 logm. (4.16)

Then by symmetry and subadditivity,

s(n, 0) ≤ s(m,x) + s(m,−x) ≤ 2K18n
1/2 log n. (4.17)

Turning to (ii), let J = 2bK19n
1/2θ(n)c, with K19 to be specified. Analogously to

(4.14) and using Proposition 3.3(ii), we have that, for large n,

P
(
|logZn−2J,ω(−x)− E logZn−2J,ω(−x)| ≥ 2dK−15 n1/2 log n for some x ∈ ĤJ

)
≤ (2J)d8e−2d logn

≤ 1

4
. (4.18)

Similarly, also for large n,

P
(

logZJ,ω
(
(n− 2J, x), (n− J, 0)

)
> 2p(β)J for some x ∈ ĤJ

)
≤ P

(
logZJ,ω

(
(n− 2J, x), (n− J, 0)

)
− E logZJ,ω

(
(n− 2J, x), (n− J, 0)

)
> p(β)J for some x ∈ ĤJ

)
≤ (2J)d8e−K5p(β)J

1/2

<
1

4
. (4.19)

Then analogously to (4.15), since

Zn−J,ω(0) =
∑
x∈Ĥj

Zn−2J,ω(x)ZJ,ω
(
(n− 2J, x), (n− J, 0)

)
,

by (4.17)—(4.19), Proposition 3.3(ii) and Lemma 4.2, with probability at least 1/4, for
some x ∈ ĤJ we have

exp
(
E logZn−2J,ω(x) + 2dK−15 n1/2 log n

)
≥ Zn−2J,ω(x)

≥ Zn−2J,ω(x)ZJ,ω
(
(n− 2J, x), (n− J, 0)

)
e−2p(β)J

≥ 1

|ĤJ |
Zn−J,ω(0)e−2p(β)J

≥ 1

(2J)d
exp

(
E logZn−J,ω(0)− 2dK−15 n1/2 log n− 2p(β)J

)
≥ exp

(
p(β)n− 5p(β)K19n

1/2θ(n)
)
, (4.20)
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and therefore

E logZn−2J,ω(x) ≥ p(β)n− 6p(β)K19n
1/2θ(n). (4.21)

If |y|1 ≤ J , then |y − x|1 ≤ 2J , so there is a path {(i, xi)}n−2J≤i≤n from (n − 2J, x)

to (n, y). Therefore using (4.21), bounding Z2J,ω

(
(n − 2J, x), (n, y)

)
below by the term

corresponding to this single path we obtain

E logZn,ω(y) ≥ E logZn−2J,ω(x) + E logZ2J,ω

(
(n− 2J, x), (n, y)

)
≥ E logZn−2J,ω(x)− 2J log 2d+ βE

n∑
i=n−2J+1

ωi,xi

= E logZn−2J,ω(x)− 2J log 2d

≥ p(β)n−K19

(
6p(β) + 4 log 2d

)
n1/2θ(n). (4.22)

Taking K19 = (6p(β) + 4 log 2d)−1, this shows that y is adequate whenever |y|1 ≤ J .

Observe that for a simple skeleton S = {(jn, xjn), j ≤ k}, we have a sum over blocks:

logZN,ω(S) =

k∑
j=1

logZn,ω

(
((j − 1)n, x(j−1)n), (jn, xjn)

)
. (4.23)

The rough strategy outlined in Remark 4.3 involves approximating ZN,ω(S) by ZN,ω(Ŝ),
where Ŝ is a CG skeleton which approximates the simple skeleton S; equivalently, we
want to replace x(j−1)n, xjn in (4.23) by CG points. This may be problematic for some
values of j and some paths in ΓN (S), however, for three reasons. First, if we do not
restrict the possible increments to satisfy |xjn − x(j−1)n|∞ ≤ hn, there will be too many
CG skeletons to sum over. Second, even when increments satisfy this inequality, there
are difficulties if increments are inadequate. Third, paths which veer to far off course
transversally within a block present problems in the approximation by a CG path. Our
methods for dealing with these difficulties principally involve two things: we do the CG
approximation only for “nice” blocks, and rather than just CG skeletons, we allow more
general sums of the form

l∑
j=1

logZτj−τj−1,ω((τj−1, yj), (τj , zj)),

which need not have yj = zj−1. We turn now to the details.
In approximating (4.23) we want to in effect only change paths within a distance

n1 ≤ 6dn/ϕ(n) (to be specified) of each hyperplane Hjn. To this end, given a site
w = (jn ± n1, yjn±n1

) ∈ Hjn±n1
, let zjn be the site in unZ

d closest to yjn±n1
in `1 norm

(breaking ties by some arbitrary rule), and let πjn(w) = (jn, zjn), which may be viewed
as the projection into Hjn of the CG approximation to w within the hyperplane Hjn±n1

.
Given a path γ = {(i, xi), i ≤ kn} from (0, 0) to (kn, 0), define points

dj = dj(γ) = (jn, xjn), 0 ≤ j ≤ k,

ej = (jn+ n1, xjn+n1), 0 ≤ j ≤ k − 1,

fj = (jn− n1, xjn−n1), 1 ≤ j ≤ k.

We say a sidestep occurs in block j in γ if either

|x(j−1)n+n1
− x(j−1)n|∞ > hn or |xjn − xjn−n1

|∞ > hn.
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Let
Ein = Ein(γ) = {1 ≤ j ≤ k : xjn − x(j−1)n is inadequate},

Eside = Eside(γ) = {1 ≤ j ≤ k : j /∈ Ein and a sidestep occurs in block j},

E = Ein ∪ Eside
and let

e′j−1 = π(j−1)n(ej−1), f ′j = πjn(fj), j /∈ E .

Blocks with indices in E are called bad blocks, and E is called the bad set. Define the
tuples

Tj = Tj(γ) =

{
(dj−1, ej−1, fj , dj) if j ∈ E ,
(e′j−1, f

′
j) if j /∈ E ,

(4.24)

define the CG-approximate skeleton of γ to be

SCG(γ) = {Tj : 1 ≤ j ≤ k}

and define the CG-approximate bad (respectively good) skeleton of γ to be

SbadCG(γ) = {Tj : j ∈ E}, SgoodCG (γ) = {Tj : j /∈ E}.

Note Ein(γ), Eside(γ), SbadCG(γ) and SgoodCG (γ) are all functions of SCG(γ). We refer to the
bad set E also as the index set of SbadCG(γ). Let CCG (respectively CbadCG) denote the class of
all possible CG-approximate skeletons (respectively bad skeletons) of paths of length kn
starting at (0, 0). For B ⊂ {1, . . . , k} let CCG(B) denote the class of all CG-approximate
skeletons in CCG with bad set B, and analogously, let CbadCG(B) denote the class of all
possible CG-approximate bad skeletons in CbadCG with index set B. Then for b ≤ k define

CbadCG(b) = ∪B:|B|=b CbadCG(B).

The partition function corresponding to a CG-approximate skeleton SCG is

Z̃N,ω(SCG) =

∏
j /∈E

Zn1,ω(e′j−1, f
′
j)

∏
j∈E

Zn1,ω(dj−1, ej−1)Zn−2n1,ω(ej−1, fj)Zn1,ω(fj , dj)

 .

(4.25)

So that we may consider these two products separately, we denote the first as Z̃N,ω(SgoodCG )

and the second as Z̃N,ω(SbadCG).
For a CG-approximate skeleton in CCG(B), and for j /∈ B, if e′j−1 = (n(j−1), w), dj−1 =

(n(j − 1), x), f ′j = (nj, y) and dj = (nj, z), we always have

|w − x|∞ ≤ hn +
un
2
, |z − y|∞ ≤ hn +

un
2
.

It follows readily that if T1, . . . , Tj−1 are specified and j /∈ B, then there are at most
(4hnu

−1
n + 3)2d ≤ (5ϕ(n))2d possible values of Tj; if j ∈ B there are at most (2n)4d. It

follows that the number of CG-approximate skeletons satisfies

|CCG(B)| ≤ (5ϕ(n))2d(k−|B|)(2n)4d|B|. (4.26)

Note that the factor ϕ(n) in place of n in (4.26) represents the entropy reduction result-
ing from the use of CG paths. Summing (4.26) over B we obtain

|CCG| ≤ 2k(2n)4dk. (4.27)
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For B = {j1 < · · · < j|B|} ⊂ {1, . . . , k}, setting j0 = 0 we have

|CbadCG(B)| ≤
∏

1≤i≤|B|

[(2(ji − ji−1)n)d(2n)3d] ≤
(

16n4k

|B|

)d|B|
, (4.28)

so for each b ≤ k, using
(
k
b

)
≤ (ke/b)b,

|CbadCG(b)| ≤
(
k

b

)(
16n4k

b

)db
≤
(

8n2k

b

)2db

. (4.29)

We also use the non-coarse-grained analogs of the Tj , given by

Vj = Vj(γ) = (dj−1, ej−1, fj , dj), j ≤ k, (4.30)

and define the augmented skeleton of γ to be

Saug(γ) = {Vj , 1 ≤ j ≤ k}.

We write Caug for the class of all possible augemented skeletons of paths from (0, 0) to
(kn, 0). Note that Eside(γ), Ein(γ) and SCG(γ) are functions of Saug(γ); we denote by F
the “coarse-graining map” such that

SCG(γ) = F (Saug(γ)) .

We can write

ZN,ω =
∑

SCG∈CCG

∑
Saug∈F−1(SCG)

ZN,ω(Saug),

and define

Z̃N,ω =
∑

SCG∈CCG

|F−1(SCG)|Z̃N,ω(SCG).

Now for a given choice of e′j−1 there are at most (2n1)d possible choices of ej−1 and
then at most (2n1)d for dj−1, and similarly for f ′j , fj , dj , so for all SCG,

|F−1(SCG)| ≤ (2n1)4dk. (4.31)

The following will be proved in the next section.

Lemma 4.5. For n sufficiently large, there exists an even integer n1 ≤ 6dn/ϕ(n) such
that for all p ∈ Hn1 we have

E logZn1,ω(π0(p), p) ≥ p(β)n1 − 20dn1/2ρ(n).

This lemma is central to the following, which bounds the difference between parti-
tion functions for a skeleton and for its CG approximation.

Lemma 4.6. There exists K20 such that under the conditions of Theorem 1.1, for n
sufficiently large,

P
(

logZN,ω(Saug)− log Z̃N,ω(F (Saug)) ≥ 80dkn1/2ρ(n) for some Saug ∈ Caug
)

≤ e−K20k(logn)(log logn). (4.32)
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Proof. We have

P
(

logZN,ω(Saug)− log Z̃N,ω(F (Saug)) ≥ 80dkn1/2ρ(n) for some Saug ∈ Caug
)

≤
∑

SCG∈CCG

∑
Saug∈F−1(SCG)

P
(

logZN,ω(Saug)− log Z̃N,ω(SCG) ≥ 80dkn1/2ρ(n)
)
. (4.33)

Fix SCG ∈ CCG and Saug ∈ F−1(SCG). We can write Saug as {Vj , j ≤ k} with Vj as in
(4.30). Then using Lemma 4.2,

logZN,ω(Saug)− log Z̃N,ω(SCG)

≤
∑
j /∈B

[ (
logZn1,ω(dj−1, ej−1)− logZn1,ω(e′j−1, ej−1)

)
+
(
logZn1,ω(fj , dj)− logZn1,ω(fj , f

′
j)
) ]

≤
∑
j /∈B

[
(logZn1,ω(dj−1, ej−1)− E logZn1,ω(dj−1, ej−1))

−
(
logZn1,ω(e′j−1, ej−1)− E logZn1,ω(e′j−1, ej−1)

)
+ (logZn1,ω(fj , dj)− E logZn1,ω(fj , dj))

−
(
logZn1,ω(fj , f

′
j)− E logZn1,ω(fj , f

′
j)
) ]

+
∑
j /∈B

[
2p(β)n1 − E logZn1,ω(e′j−1, ej−1)− E logZn1,ω(fj , f

′
j)
]
. (4.34)

By Lemma 4.5, the last sum is bounded by 40dkn1/2ρ(n). Hence letting T denote the
first sum on the right side of (4.34), we have by (4.34) and Lemma 4.1(ii):

P
(

logZN,ω(Saug)− log Z̃N,ω(SCG) ≥ 80dkn1/2ρ(n)
)

≤ P
(
T > 40dkn1/2ρ(n)

)
≤ 22k+1 exp

(
−20K13dkρ(n)

(
n

n1

)1/2
)

≤ e−kK21(logn)(log logn). (4.35)

Combining (4.33) and (4.35) with (4.27) and (4.31) we obtain that for large n,

P
(

logZN,ω(Saug)− log Z̃N,ω(F (Saug)) ≥ 80dkn1/2ρ(n) for some Saug ∈ Caug
)

≤ (2n)9dke−kK21(logn)(log logn)

≤ e−kK21(logn)(log logn)/2. (4.36)

It is worth noting that in (4.36) we do not make use of the entropy reduction con-
tained in (4.26). Nonetheless we are able to obtain a good bound because we apply
Lemma 4.1(ii) with nmax = n1 instead of nmax = n.

Let bnk = bk log logn
(logn)3/2

c. We deal separately with CG-approximate skeletons according
to whether the number of bad blocks exceeds bnk. Let

C−CG = ∪B:|B|≤bnkCCG(B), C+CG = ∪B:|B|>bnkCCG(B).
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The next lemma shows that bad blocks have a large cost, in the sense of reducing
the mean of the log partition function—compare the n1/2θ(n) factor in (4.37) to the
n1/2 log n factor in (4.7).

Lemma 4.7. For n sufficiently large, for all 1 ≤ b ≤ k and SbadCG ∈ CbadCG(b),

E log Z̃N,ω(SbadCG) ≤ p(β)bn− 1

2
bn1/2θ(n). (4.37)

Proof. Fix B ⊂ {1, . . . , k} with |B| = b, fix SbadCG ∈ CbadCG(B), let Ein, Eside be the corre-
sponding sets of indices of bad blocks, and let {Tj , j ∈ B} be as in (4.24). Then

E logZ̃N,ω(SbadCG)

=
∑
j∈B

[
E logZn1,ω(dj−1, ej−1) + E logZn−2n1,ω(ej−1, fj) + E logZn1,ω(fj , dj)

]
.

(4.38)

For j ∈ Ein we have

E logZn1,ω(dj−1, ej−1) + E logZn−2n1,ω(ej−1, fj) + E logZn1,ω(fj , dj)

≤ E logZn,ω(dj−1, dj)

≤ p(β)n− n1/2θ(n). (4.39)

For j ∈ Eside, write ej−1 − dj−1 as (n1, x), so |x|∞ > hn and therefore x is inadequate. If
the sidestep occurs from (j − 1)n to (j − 1)n + n1, then by superadditivity and Lemma
4.4(i),

E logZn1,ω(dj−1, ej−1) = E logZn1,ω((0, 0), (n1, x))

≤ E logZn,ω((0, 0), (n, x))− E logZn−n1,ω((n1, x), (n, x))

≤ p(β)n− n1/2θ(n)−
(
p(β)(n− n1)−K16n

1/2 log n
)

≤ p(β)n1 −
1

2
n1/2θ(n), (4.40)

and therefore

E logZn1,ω(dj−1, ej−1) + E logZn−2n1,ω(ej−1, fj) + E logZn1,ω(fj , dj)

≤ p(β)n− 1

2
n1/2θ(n). (4.41)

Combining (4.38), (4.39) and (4.41) we obtain

E log Z̃N,ω(SbadCG) ≤ p(β)bn− 1

2
bn1/2θ(n). (4.42)

It follows by additivity that

E log Z̃N,ω(SCG) ≤ kE logZn,ω (4.43)

for all CG skeletons SCG. Rather than considering deviations of log Z̃N,ω(SCG) above
its mean, it will be advantageous to consider deviations above the right side of (4.43).
The next two lemmas show that it is unlikely for this deviation to be very large for any
CG skeleton. We will use the fact that for each SCG ∈ CCG with bad set B, we have by
Lemmas 4.2 and 4.7

|B|E logZn,ω − E log Z̃N,ω(SbadCG) ≥ 1

2
|B|n1/2θ(n)−K14|B|n1/2 log n ≥ 1

4
|B|n1/2θ(n).

(4.44)
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Lemma 4.8. Under the conditions of Theorem 1.1, if n and then k are chosen suffi-
ciently large,

P

(
log Z̃N,ω(SCG)− kE logZn,ω ≥ 80dkn1/2ρ(n) for some SCG ∈ C−CG

)
≤ e−16K13dkρ(n). (4.45)

Proof. From (4.26) we see that

|C−CG| ≤ 2k(5ϕ(n))2dk(2n)4dbnk ≤ e10dk log logn. (4.46)

Combining this with Lemma 4.1(ii),(iii) (with nmax = n) and (4.27), (4.29), we obtain

P

(
log Z̃N,ω(SCG)− kE logZn,ω ≥ 80dkn1/2ρ(n) for some SCG ∈ C−CG

)
≤

bnk∑
b=0

P

(
log Z̃N,ω(SbadCG)− bE logZn,ω ≥ 40dkn1/2ρ(n) for some SbadCG ∈ CbadCG(b)

)
+ P

(
log Z̃N,ω(SgoodCG )− (k − |B|)E logZn,ω ≥ 40dkn1/2ρ(n) for some SCG ∈ C−CG

)
≤

bnk∑
b=0

P

(
log Z̃N,ω(SbadCG)− E log Z̃N,ω(SbadCG) ≥ 40dkn1/2ρ(n) for some SbadCG ∈ CbadCG(b)

)
+ |C−CG|2

k+1 exp
(
−20K13dkρ(n)(log n)1/2

)
≤

bnk∑
b=1

|CbadCG(b)|23b+1e−20K13dkρ(n) + |C−CG|2
k+1e−20dk log logn

≤
bnk∑
b=1

(
32n2k

b

)2db

e−20K13dkρ(n) + e−9dk log logn. (4.47)

Note that the event in the third line of (4.47) is well-defined because SgoodCG is a function
of SCG. For each b ≤ bnk we have

log 32n2k
b

32n2k
b

≤
log 32n2k

bnk
32n2k
bnk

≤ 3 log log n

32n2(log n)1/2
(4.48)

so

2db log
32n2k

b
≤ 3dk log log n

(log n)1/2
= 3K13dkρ(n). (4.49)

With (4.47) this shows that for k sufficiently large (depending on n),

P

(
log Z̃N,ω(SCG)− kE logZn,ω ≥ 80dkn1/2ρ(n) for some SCG ∈ C−CG

)
≤ bnke−17K13dkρ(n) + e−9dk log logn

≤ e−16K13dkρ(n). (4.50)

We continue with a similar but simpler result for C+CG.

Lemma 4.9. Under the conditions of Theorem 1.2, for n sufficiently large and N = kn,

P

(
log Z̃N,ω(SCG)− kE logZn,ω ≥ 0 for some SCG ∈ C+CG

)
≤ e−K13k(logn)(log logn)/16.

(4.51)
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Proof. In contrast to (4.26), it is straightforward that

|C+CG| ≤ (2n)4dk. (4.52)

Using (4.44) we obtain that for SCG ∈ CCG(B) with |B| ≥ bnk,

kE logZn,ω − E log Z̃N,ω(SCG)

=
[
|B|E logZn,ω − E log Z̃N,ω(SbadCG)

]
+
[
(k − |B|)E logZn,ω − E log Z̃N,ω(SgoodCG )

]
≥ 1

4
bnkn

1/2θ(n). (4.53)

Combining this with Lemma 4.1(ii) (with nmax = n) and (4.52), we obtain

P

(
log Z̃N,ω(SCG)− kE logZn,ω ≥ 0 for some SCG ∈ C+CG

)
≤ P

(
log Z̃N,ω(SCG)− E log Z̃N,ω(SCG) ≥ 1

4
bnkn

1/2θ(n) for some SCG ∈ C+CG
)

≤ |C+CG|2
3k+1e−K13bnkθ(n)/8

≤ e−K13k(logn)(log logn)/16. (4.54)

We can now complete the proof of Theorem 1.2. If we take n and then k large, with
probability greater than 1/2, none of the events given in Lemmas 4.6, 4.8 and 4.9 occur,
and we then have for all Saug ∈ Caug:

logZN,ω(Saug) ≤ kE logZn,ω + 160dkn1/2ρ(n). (4.55)

Then since |Caug| ≤ (2n)3dk, summing over Saug ∈ Caug shows that, still with probability
greater than 1/2,

logZkn,ω ≤ kE logZn,ω + 160dkn1/2ρ(n) + 3dk log(2n) ≤ kE logZn,ω + 161dkn1/2ρ(n).

(4.56)
By (1.3), for fixed n, for sufficiently large k we have, again with probability greater than
1/2:

1

kn
logZkn,ω ≥ p(β)− 1

n
. (4.57)

Thus with positive probability, both (4.56) and (4.57) hold, and hence

kE logZn,ω + 161dkn1/2ρ(n) ≥ knp(β)− k,

which implies
E logZn,ω ≥ np(β)− 162dn1/2ρ(n).

5 Proof of Lemma 4.5

We begin with some definitions. A path ((l, xl), (l+ 1, xl+1), . . . , (l+m,xl+m)) is clean
if every increment (t−s, xt−xs) with l ≤ s < t ≤ l+m is efficient. Let x∗ be an adequate
site with first coordinate x∗1 = |x∗|∞ = hn. Given a path γ = {(m,xm)} from (0, 0) to
(n, x∗), let

τj = τj(γ) = min{m : (xm)1 = jun}, 1 ≤ j ≤ ϕ(n).

The climbing skeleton of γ is Scl(γ) = {(τj , xτj ) : 1 ≤ j ≤ ϕ(n)}. A climbing segment of
γ is a segment of γ from (τj−1, xτj−1

) to (τj , xτj ) for some j. A climbing segment is short
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if τj − τj−1 ≤ 2n/ϕ(n), and long otherwise. (Note n/ϕ(n) is the average length of the
climbing segments in γ.) Since the total length of γ is n, there can be at most ϕ(n)/2

long climbing segments in γ, so there are at least ϕ(n)/2 short ones. Let

Js(γ) = {j ≤ ϕ(n) : the jth climbing segment of γ is short},

Jl(γ) = {j ≤ ϕ(n) : the jth climbing segment of γ is long},

Jl(γ) =
(
∪j∈Jl(γ)(τj−1, τj)

)
∩
⌊

2n

ϕ(n)

⌋
Z.

If no short climbing segment of γ is clean, we say γ is soiled. For soiled γ, for each
j ∈ Js(γ) there exist αj(γ) < βj(γ) in [τj−1, τj ] for which the increment of γ from (αj , xαj )

to (βj , xβj ) is inefficient. (If αj , βj are not unique we make a choice by some arbitrary
rule.) We can reorder the values {τj , j ≤ ϕ(n)} ∪ {αj , βj : j ∈ Js(γ)} ∪ Jl(γ) into a single
sequence {σj , 1 ≤ j ≤ N(γ)} with ϕ(n) ≤ N(γ) ≤ 4ϕ(n), such that at least ϕ(n)/2 of the
increments (σj − σj−1, xσj − xσj−1

), j ≤ N(γ), are inefficient. The augmented climbing
skeleton of γ is then the sequence Sacl(γ) = {(σj , xσj ) : 1 ≤ j ≤ N(γ)}. The set of all
augmented climbing skeletons of soiled paths from (0, 0) to (n, x∗) is denoted Cacl.
Lemma 5.1. Provided n is large, there exists a path from (0, 0) to (n, x∗) containing a
short climbing segment which is clean.

Note that Lemma 5.1 is a purely deterministic statement, since the property of being
clean does not involve the configuration ω.

Translating the segment obtained in Lemma 5.1 to begin at the origin, we obtain a
path α∗ from (0, 0) to some site (m∗, y∗), with the following properties:

m∗ ≤ 2n

ϕ(n)
, y∗1 = un and α∗ is clean. (5.1)

By definition, every increment of α∗ is efficient. The proof of ([5], Lemma 2.3) then
applies unchanged: for n1 = 2d(m∗ + 1), given p ∈ Ĥn1

with π0(p) = 0, one can find
4d+ 1 segments of α∗ (or reflections of such segments through coordinate hyperplanes,
which are necessarily also efficient) such that the sum of the increments made by these
segments is p. By subadditivity this shows that s(p) ≤ (4d+ 1)n1/2ρ(n), proving Lemma
4.5.

Proof of Lemma 5.1. Let D∗ denote the set of all soiled paths from (0, 0) to (n, x∗). We
will show that P(Zn,ω(D∗) < Zn,ω(x∗)) > 0, which shows that unsoiled paths exist,
proving the lemma.

Since x∗ is adequate, it follows from Proposition 3.3(ii) that

P

(
logZn,ω(x∗) > p(β)n− 2n1/2θ(n)

)
>

1

2
. (5.2)

On the other hand, for paths in D∗, fixing Sacl = {(σj , xσj ) : 1 ≤ j ≤ r} ∈ Cacl, since
there are at least ϕ(n)/2 inefficient increments (σj − σj−1, xσj − xσj−1

), we have

E logZn,ω(Sacl) ≤ p(β)n− 2n1/2ϕ(n)ρ(n). (5.3)

Hence by Lemma 4.1(ii) (with nmax = 6dn/ϕ(n)),

P
(

logZn,ω(Sacl) ≥ p(β)n− n1/2ϕ(n)ρ(n)
)

≤ P
(

logZn,ω(Sacl)− E logZn,ω(Sacl) ≥ n1/2ϕ(n)ρ(n)
)

≤ 24ϕ(n)+1 exp

(
−K13

2
n1/2ϕ(n)ρ(n)

(
ϕ(n)

6dn

)1/2
)

≤ e−(logn)
4(log logn)/6d1/2 . (5.4)
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Since 3θ(n) ≤ ϕ(n)ρ(n) and
|Cacl| ≤ (2n)4(d+1)ϕ(n), (5.5)

it follows from (5.4) that, in contrast to (5.2),

P
(

logZn,ω(D∗) > p(β)n− 2n1/2θ(n)
)

≤ P
(

log |Cacl|+ max
Sacl∈Cacl

logZn,ω(Sacl) > p(β)n− 2n1/2θ(n)

)
≤ P

(
logZn,ω(Sacl) ≥ p(β)n− 3n1/2θ(n) for some Sacl ∈ Cacl

)
≤ |Cacl|e−(logn)

4(log logn)/6d1/2

≤ e−(logn)
4(log logn)/12d1/2 . (5.6)

It follows from (5.2) and (5.6) that P(Zn,ω(D∗) < Zn,ω(x∗)) > 0, as desired.

Remark 5.2. The exponents on logm in the definition (4.13) of θ(m) and ϕ(m) are not
the only ones that can be used. The proof of Lemma 4.6 requires (ignoring constants)
ϕ(n) ≥ (log n)3, Lemma 4.9 requires θ(n) ≥ (log n)5/2 and Lemma 5.1 requires ϕ(n) ≥
θ(n)(log n)1/2.
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