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Generalised stochastic model for characterisation of subcutaneous
glucose time series*

Natasha Khovanova1, Yan Zhang1, and Tim A. Holt2

Abstract— A generalised stochastic model with second order
differential equations is proposed to describe the response of
blood glucose concentration to meals in groups of nondiabetic
people and two types of diabetic patients. A variational Bayesian
approach is applied in order to infer parameters of the models,
and the best model was selected based on the computed log-
evidence for each prandial event. The model with a linear
structure represents most of the events, while the nonlinear
terms need to be included more frequently for Type II diabetic
patients. This indicates different physiological mechanisms of
glucose absorption for different groups. The deterministic
parameters and intensities of stochastic components are com-
pared by groups using the ANOVA test, and the results show
significant differences between the groups. This model can
potentially be used for long term prediction of the glucose
concentration response to external stimuli.

I. INTRODUCTION

According to World Health Organisation, 347 million
people worldwide have diabetes and diabetes deaths will
double between 2005 and 2030. Diabetes is a group of
metabolic diseases that occur when the pancreas does not
produce enough insulin (type I diabetes), or when the
body cannot effectively use the insulin it produces (type
II diabetes). Untreated diabetes is characterised by chronic
hyperglycaemia (high levels of blood glucose). Control of
hyperglycaemia is important to prevent long term compli-
cations, including effects on the eyes, kidneys, peripheral
nerves, and cardiovascular system. However, low levels of
blood glucose level can also be dangerous, and even life
threatening. Therefore, controlling blood glucose levels and
reducing dramatic glucose fluctuation through both lifestyle
and pharmacological interventions are the main therapeutic
goals in the management of diabetes.

For more than half a century researchers have been
working towards establishing an effective dynamic model
describing and predicting blood glucose concentration levels.
Glucose concentration is tightly regulated by a complex
neuro-hormonal control system and can be influenced by
various factors. Exogenous factors such as food intake,
exercise, rate of digestion etc. deviate the glucose level
from the basal level, while endogenous factors, including
epinephrine, cortisol, growth hormone [1], and pancreatic
endocrine hormones (insulin and glucagon) [2], serve as
internal regulators to drive the glucose concentration level
back to normal and maintain it. Insulin is the main regu-
lator of glucose homoeostasis. The glucose-insulin interac-
tion comprises a feedback control system: when the blood
glucose level rises, insulin is released from pancreatic β-
cells to inhibit hepatic glucose production and promote

glucose utilization so as to bring the glucose rapidly to
the preperturbation level. If the glucose-insulin system is
impaired, high levels of blood glucose (hyperglycaemia) or
low levels (hypoglycaemia) may occur. Postprandial (after
a meal) glucose test are often performed to monitor the
control of diabetes patients. However, according to Cohen
et al. [3], measures of 2-h glucose concentrations alone
or combined with fasting concentration, body composition
etc. are poor predictors of glycaemic exposure. Modern
continuous glucose monitoring (CGM) has the advantage of
obtaining hundreds of data points over a week, and therefore
provides a better opportunity to understand the mechanisms
of postprandial glucose change.

II. MODELS AND METHODS

Various models have been developed and simulated in
continuous time to describe and predict changes in blood
glucose level, and numerous experiments have been designed
to define the parameters of these equations. The simplest
model pioneered by Bolie in 1961 describing the responses
of glucose levels to food intake has the following format{

Ġ(t) = −a1G(t)− a2I(t) + J(t)

İ(t) = a3G(t)− a4I(t)
(1)

where G, I denote the plasma glucose and insulin re-
spectively, J is the glucose input, and a1, a2, a3, a4 are
parameters [4]. This model was criticized as too simple
to represent the glucose-insulin system mostly due to its
assumption of linear relationship between insulin secretion
and glucose. Many models have been developed to overcome
this problem. The two most widely accepted are Bergman’s
minimal model [5] and Cobelli’s two compartment model
[6]. These models include multiple variables in order to
reflect and adequately describe glucose-insulin dynamics
as a multidimensional system. The limitation is that some
parameters of these models are not readily measurable, which
poses difficulties in the validation of these models and their
applicability for prediction of glucose dynamics. This is
because accessible experimental data for individual patients
diagnosed with diabetes still remain one-dimensional: only
one transient variable (the glucose level) as a function of
time is available, representing the response of a complex
system to an external influence. In order to overcome this
limitation, an entirely different minimal inference approach
has been employed by this research: development of a
multidimensional model represented by inferring parameters
of unrecorded variables.



Another accepted challenge accompanying modelling is
the presence of a strong stochastic component. One of the
main drawbacks of the models above is categorising every
misfitting as a measurement noise without considering the
imperfection of the model itself. The presence of the strong
stochastic component can be an internal characteristic of
the system alone and/or the result of measurement error.
In nonlinear systems, noise acts as a driving force and
can radically modify deterministic dynamics. While mea-
surement noise is normally considered as a blurring effect
to trajectories of the deterministic system, the coupling
of noise to nonlinear deterministic equations can lead to
non-trivial effects. Therefore, differentiation between system
noise and measurement error provides more realistic descrip-
tion of observed variations in system’s dynamics, accounts
for fluctuations in physiological parameters, and improves
estimations of the parameters and states of the system.

We applied the minimal inference technique in order to
define a model based on stochastic differential equations
which accounts for the nonlinear character of the blood
glucose response to food intake, has minimal order and
minimal number of unknown parameters, and is capable of
predicting the glucose dynamics in response to the external
stimuli.

A general form of stochastic differential equations for
characterisation and prediction of postprandial (reaction to
food intake) blood glucose levels can be written as follows:

d2

dt2
xt + f1 (xt)

d

dt
xt + f2 (xt) = ηt (2)

yt = xt + εt (3)

where

f1 (xt) =

n∑
i=0

θkix
i
t, f2 (xt) =

n∑
i=0

θix
i
t (4)

Formula (2) is an evolution equation and formula (3) rep-
resents a measurement equation. yt is the measured time
series from Continuous Glucose Monitoring System, and εt
is the measurement error. xt is the blood glucose time series,
also referred as hidden states, ηt is the dynamical noise. θi
and θki in formula (4) are evolution parameters. The initial
conditions are the glucose level measured at time t = 0
and its rate of change. f1 (xt) and f2 (xt) are polynomial
functions of xt. Increasing the polynomial terms of f1 (xt)
and f2 (xt) can introduce nonlinearity into the structure. The
best structure can be selected by the following variational
Bayesian method.

A variational Bayesian minimal inference approach selects
the best model by comparing the optimised evidence term for
each model. The evidence p(y|m) represents the plausibility
of the model by calculating the possibility of getting data y
given model m. However, intergrating over the distributions
of all the parameters θi and θki is usually computational
expensive, so they are approximated by tractable distributions
using mean-field approximation and Laplace approximation.
Therefore, the value of the model evidence can only be

approached. The variational Bayesian method constructs a
lower bound on the model evidence and optimises this bound
using an iterative scheme. The approximation can be ob-
tained by alternating between estimating the distribution over
hidden variables for a particular setting of the parameters and
then re-estimating the parameters given the distribution over
the hidden variables. The optimised model evidence is a key
quantity used to choose between different structures of the
model, and the model with the largest value of the optimised
evidence is chosen [7]. By introducing nonlinear terms into
the equations, this model improves Bolie’s oversimplified
model; at the same time, it does not need the extra data
source such as labelled meals required by Cobelli’s model.
Driven by the measured glucose data only, the inferred
parameters describe the dynamics and characteristics of the
underlying complex physiological processes influencing the
change of blood glucose levels with time. Since the mecha-
nisms of the glucose absorption is different for Type I, Type
II diabetes and non-diabetic people, different distributions of
parameters for these groups are expected.

III. RESULTS AND DISCUSSION

Fifteen glucose profiles for three categories of people
(5 profiles in control group of people without diabetes, 4
profiles in the group of patients with Type I diabetes, 5
profiles in the group of patients with Type II diabetes)
were available for the study. An example of a glucose time
series for one patient is shown in Figure 1. Subcutaneous
glucose values were taken every 5 minutes over 72 hours
using CGMS (Continuous Glucose Monitoring System) and
represent a number of postprandial peaks corresponding to
food intake. We chose all the distinguishable peaks in the
profile and analysed them using Eqn.(2)-(4).

A variational Bayesian toolbox [8] was applied to extract
the dynamic patterns hidden in noisy data, i.e. to fit available
glucose time series by Eqn.(2). The nonlinear functions
f1 and f2 were optimised by minimising the number of
nonlinear parameters θi and θki necessary to describe a
prandial event. Various degrees of polynomial nonlinearities
in Eqn.(2) were considered starting with the linear case
(linear f1 and f2). Nonlinear terms were added to the Eqn.(4)
until a satisfactory fitting was achieved.

103 out of 146 peaks across all fifteen profiles were
modelled by the linear model (Model 1) with f1 and f2
being linear functions with one parameter each, i.e. θi =
0 and θki = 0 for i > 0 in Eqn.(4). The rest of the
peaks were fit by a nonlinear model (Model 2), where
f1 (xt) = θk2x

2 + θk1x + θk0 is a quadratic function with
three parameters and f2 (xt) = θ0 is a linear function with
one parameter. Note that some of the peaks could be fitted
well using both models. Introducing nonlinearities to the
model can improve the performance in some cases, however
the model might be unstable due to overfitting. The trade-off
between a better fitting result and a more complex structure
needs to be carefully balanced. As discussed in the previous
section, model evidence is considered to be the best indicator
of selecting the best model [7]. The toolbox [8] defines the



Fig. 1. (a) Concentration of subcutaneous glucose level G(t) measured
continuously over 72 hours. Solid line represents the measured glucose
values and the dots are the values used for inferring parameters of single
prandial events (peaks). The dashed and solid vertical lines corresponds to 6
am and midnight respectively. There were 13 peaks observed over 72 hours
as labelled; (b) Fitting for peak 1; (c) Fitting for peak 2.

TABLE I
SUMMARY OF PEAK FITTING USING MODEL 1 AND MODEL 2

control type I type II
Total Peaks 50 47 49

No. of peaks fitted by Model 1 35 34 34
No. of peaks fitted by Model 2 23 24 33

lower bound of the log-evidence as free energy F . There is
also another important criterion to choose the correct model
based on the physiological background of the model. Since
the data describe the blood glucose level response to an
external stimulus, the system needs to be stabilised at a
reasonable level without too many oscillations for several
hours after the food intake. Please refer to Table I for the
details of the fitting. From the table, around 70% of the peaks
can be fitted using the linear model (Model 1) for all the
groups. Less than 50% of the peaks can be fitted using the
nonlinear model (Model 2) for the control and Type I group,
but around 67% of the peaks can be fitted by Model 2 for
the Type II diabetic group, which indicates a strong nonlinear
character of the response in Type II diabetic patients.

For the linear model (Model 1), two parameters are
inferred to capture the dynamics of the glucose level change.√
θ0 is the natural frequency of the system, which determines

how fast the system oscillates, and θk0/2
√
θ0 is the damping

ratio describing how oscillations in a system decay after

TABLE II
ANOVA TEST RESULTS (P VALUES) FOR THE PARAMETERS AND NOISE

INTENSITIES, COMPARED BETWEEN THREE GROUPS FOR MODEL 1

control-type I type I-type II control-type II
θk0 0.0211 0.5798 0.0029
θ0 5.44E-5 0.6872 2.59E-5

Isystem 1.85E-4 0.0051 0.0538
Imeasure 4.22E-8 9.64E-4 8.32E-5

Fig. 2. ANOVA test result for (a) θ0 and (b) θk compared among three
groups using Model 1 (linear model)

a disturbance. Comparing the inferred parameters among
groups may bring insights of different characteristics of
the glucose level variation. The parameters θk0 and θ0 in
Model 1 for 103 peaks were compared by groups using
ANOVA which is a parametric test to analyse the differences
between groups. If the p-value from the test between two
groups is below 0.05, the two groups are considered to
be significantly different from each other. The result are
shown in Table II.or both parameters, the mean values of
the Control group are significantly different from Type I
or Type II group, while Type I and Type II group do not
show significant differences. Please refer to Figure 2 for
details. This conclusion supports the results of [9], which
shows larger inter-dependence between neighbouring values
in diabetes groups compared with the control group. Another
way to determine the plausibility of the models is to compare
the intensity of the system noise and measurement error,
which are shown in Figure 3. Comparing differences between
all three groups estimated by ANOVA, the mean value of the
system noise intensity for the control group is the smallest,
which suggests that this linear model fits the data from
control group better than Type I or Type II groups.

Model 2 fits 80 peaks well, including 43 peaks which



Fig. 3. ANOVA test result for (a) system (b) measurement noise intensities
compared among three groups using Model 1 (linear model)

Fig. 4. ANOVA test result for (a) system (b) measurement noise intensities
compared among three groups using Model 2 (nonlinear model)

can not be fitted by Model 1. Comparing the four param-
eters (θk0, θk1, θk2 and θ0) between these three groups
by ANOVA, the mean values of all the parameters are
significantly different from each other between the Control
and Type II groups, and show no differences between Type I
and Type II. This result is similar to the linear model, which
indicates similar characteristics between diabetic glucose
variations. It is shown (Fig. 4) that the mean value of the
system noise intensity of Type II is the smallest of the three
groups, which is different from the linear model where the
control group has the smallest mean value of system noise
intensity. This test result confirms the suggestion from [9]
that nonlinear models in response to external stimuli for some
diabetic patients are better than linear models. As shown in
Fig. 3, the Type II diabetes group has smaller system noise
intensity in Model 2, which indicates that a nonlinear model
fits Type II data better than other groups. Compared with

TABLE III
ANOVA TEST RESULTS (P VALUES) OF THE PARAMETERS AND NOISE

INTENSITIES, COMPARED BETWEEN THREE GROUPS FOR MODEL 2

control vs type I type I vs type II control vs type II
θk0 0.1109 0.0838 1.33E-5
θk1 9.46E-4 0.4259 1.22E-5
θk2 0.0907 0.5719 0.0381
θ0 0.0237 0.5819 1.95E-4

Isystem 0.0521 0.0077 0.0538
Imeas 4.22E-8 9.64E-4 8.32E-5

Fig. 4, the Control group has lower system noise intensity
in Model 1.

IV. CONCLUSION

In summary, a generalised stochastic model for glucose
time series characterisation has been developed. It can be
used to describe the responses of blood glucose levels to
food intake in people with or without diabetes. The majority
of the prandial events can be fitted well using a linear model,
but some events need a nonlinear damping term f1 (xt) =
θk2x

2+θk1x+θk0. This nonlinear damping term is required
more often in diabetes patients which indicates a stronger
nonlinear character of the response in diabetes patients
compared with people from the control group. Values of
parameters vary from peak to peak for a single profile, but
the distributions of the values show significant differences
between diabetes patients and the Control group, while the
differences between Type I and Type II patients are not as
obvious.
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