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STABILITY OF ADVERSARIAL MARKOV CHAINS,
WITH AN APPLICATION TO ADAPTIVE MCMC ALGORITHMS
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NEAL MADRAS§, GARETH O. ROBERTS‡ AND JEFFREY S. ROSENTHAL∗
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and York University§

We consider whether ergodic Markov chains with bounded step size re-
main bounded in probability when their transitions are modified by an ad-
versary on a bounded subset. We provide counterexamples to show that the
answer is no in general, and prove theorems to show that the answer is yes
under various additional assumptions. We then use our results to prove con-
vergence of various adaptive Markov chain Monte Carlo algorithms.

1. Introduction. This paper considers whether bounded modifications of
stable Markov chains remain stable. Specifically, we let P be a fixed time-
homogeneous ergodic Markov chain kernel with bounded step size, and let {Xn}
be a stochastic process which follows the transition probabilities P except on a
bounded subset K where an “adversary” can make arbitrary bounded jumps. Un-
der what conditions must such a process {Xn} be bounded in probability?

One might think that such boundedness would follow easily, at least under mild
regularity and continuity assumptions, that is, that modifying a stable continuous
Markov chain inside a bounded set K couldn’t possibly lead to unstable behavior
out in the tails. In fact the situation is rather more subtle, as we explore herein. We
will provide counterexamples to show that boundedness may fail even for well-
behaved continuous chains. We will then show that under various additional con-
ditions, including bounds on transition probabilities and/or small set assumptions
and/or geometric ergodicity, such boundedness does hold.

The specific question considered here appears to be new, though it is somewhat
reminiscent of previous bounds on non-Markovian stochastic processes such as
those related to adversarial queuing theory [6, 13, 21]. We present our formal
setup in Section 2, our main results in Section 3 and some counterexamples in
Section 4. Our results are then proven in Sections 5 through 10.

In Section 11, we turn our attention to adaptive Markov chain Monte Carlo
(MCMC) algorithms. MCMC proceeds by running a Markov chain long enough
to approximately converge to its stationary distribution and thus provide useful
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samples. Adaptive MCMC algorithms attempt to improve on MCMC by modify-
ing the Markov chain transitions as they run, but this destroys the Markov prop-
erty and makes convergence to stationarity notoriously difficult to prove. We use
our main results herein to establish general conditions for convergence of certain
adaptive MCMC algorithms (Theorem 21). We then apply this result to a simple
but useful adaptive MCMC algorithm (Proposition 22), and also to a detailed sta-
tistical application involving a probit model for lupus patient data (Section 12).
For details and references about adaptive MCMC algorithms, see Section 11.

2. Formal setup and assumptions. Let X be a nonempty general (i.e., pos-
sibly uncountable) state space, on which is defined a metric η, which gives rise to
a corresponding Borel σ -algebra F . Assume that X contains some specified “ori-
gin” point 0 ∈ X . (In our examples and applications, X will usually be a subset of
Rd with the usual Euclidean metric.) Let P be the transition probability kernel for
a fixed time-homogeneous Markov chain on X . Assume that P is Harris ergodic
with stationary probability distribution π , so that

lim
n→∞

∥∥P n(x, ·) − π
∥∥ := lim

n→∞ sup
A∈F

∣∣P n(x,A) − π(A)
∣∣ = 0, x ∈ X .(1)

We assume, to relate the Markov chain to the geometry of X , that there is a con-
stant D < ∞ such that P never moves more than a distance D, that is, such that

P
(
x,

{
y ∈ X :η(x, y) ≤ D

}) = 1, x ∈ X .(2)

Let K ∈ F be a fixed bounded nonempty subset of X , and for r > 0 let Kr be the
set of all states within a distance r of K (so each Kr is also bounded).

In terms of these ingredients, we define our “adversarial Markov chain” pro-
cess {Xn} as follows. It begins with X0 = x0 for some specific initial state x0; for
simplicity (see the proof of Lemma 8) we assume that x0 ∈ K . Whenever the pro-
cess is outside of K , it moves according to the Markov transition probabilities P ,
that is,

P(Xn+1 ∈ A|X0,X1, . . . ,Xn) = P(Xn,A), n ≥ 0,A ∈ F,Xn /∈ K.(3)

When the process is inside of K , it can move arbitrarily, according to an adver-
sary’s wishes, perhaps depending on the time n and/or the chain’s history in a
nonanticipatory manner (i.e., adapted to {Xn}; see also Example 3 below), subject
only to measurability [i.e., P(Xn+1 ∈ A|X0,X1, . . . ,Xn) must be well defined for
all n ≥ 0 and A ∈ F ], and to the restriction that it can’t move more than a dis-
tance D at each iteration—or more specifically that from K , it can only move to
points within KD . In summary, {Xn} is a stochastic process which is “mostly” a
Markov chain following the transition probabilities P , except that it is modified by
an adversary when it is within the bounded subset K .

We are interested in conditions guaranteeing that this process {Xn} will be
bounded in probability, that is, will be tight, that is, will satisfy that

lim
L→∞ sup

n∈N
P

(
η(Xn,0) > L|X0 = x0

) = 0.(4)
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3. Main results. We now consider various conditions under which (4) will or
will not hold. For application of our results to the verification of adaptive MCMC
algorithms, see Section 11 below.

3.1. First results. We first note that such boundedness is guaranteed in the
absence of an adversary:

PROPOSITION 1. In the setup of Section 2, suppose {Xn} always follows the
transitions P (including when it is within K , i.e., there is no adversary). Then (4)
holds.

Indeed, Proposition 1 follows immediately since if P is Harris ergodic as in (1),
then it converges in distribution, so it must be tight and hence satisfy (4). [In fact,
even if P is just assumed to be φ-irreducible with period d ≥ 1 and stationary
probability distribution π , then this argument can be applied separately to each of
the sequences {Xdn+j }∞n=0 for j = 0,1, . . . , d − 1 to again conclude (4).]

Boundedness also holds for a lattice like Zd , or more generally if the state space
X is topologically discrete (i.e., countable and such that each state x is topologi-
cally isolated and hence open in X ). In this case, bounded subsets like K2D must
be finite, and the result holds without any further assumptions:

PROPOSITION 2. In the setup of Section 2, suppose P is an irreducible
positive-recurrent Markov chain with stationary probability distribution π on a
countable state space X such that K2D is finite. Then (4) holds.

Proposition 2 is proved in Section 5 below.
However, (4) does not hold in general, not even under a strong continuity as-

sumption:

PROPOSITION 3. There exist adversarial Markov chain examples following
the setup of Section 2, on state spaces which are countable subsets of R2, which
fail to satisfy (4), even under the strong continuity condition that X is closed and

∀x ∈ X ,∀ε > 0,∃δ > 0 s.t.
∥∥P(y, ·) − P(x, ·)∥∥ < ε

(5)
whenever η(x, y) < δ.

Proposition 3 is proved in Section 4 below, using two different counterexam-
ples.

Proposition 3 says that the adversarial process {Xn} may not be bounded in
probability, even if we assume a strong continuity condition on P . Hence, addi-
tional assumptions are required, as we consider next.
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REMARK 1. The counterexamples in Proposition 3 are discrete Markov
chains in the sense that their state spaces are countable. However, their state
spaces X are not topologically discrete, since they contain accumulation points,
and in particular sets like K2D are not finite there, so there is no contradiction with
Proposition 2.

3.2. A result using expected hitting times. We now consider two new assump-
tions. The first provides an upper bound on the Markov chain transitions out
of KD :

(A1) There is M < ∞, and a probability measure μ∗ concentrated on K2D \
KD , such that P(x, dz) ≤ Mμ∗(dz) for all x ∈ KD \ K and z ∈ K2D \ KD .

Note that in (A1) we always have z 
= x, which is helpful when considering,
for example, Metropolis algorithms which have positive probability of not mov-
ing. Choices of μ∗ in (A1) might include Uniform(K2D \ KD), or π |K2D\KD

. The
second assumption bounds an expected hitting time:

(A2) The expected time for a Markov chain following the transitions P to reach
the subset KD , when started from the distribution μ∗ in (A1), is finite.

In terms of these two assumptions, we have:

THEOREM 4. In the setup of Section 2, if (A1) and (A2) hold for the same μ∗,
then (4) holds; that is, {Xn} is bounded in probability.

Theorem 4 is proved in Section 5 below.

3.3. A result assuming a small set condition. Condition (A2), that the hitting
time of KD has finite expectation, may be difficult to verify directly. As an alter-
native, we consider a different assumption:

(A3) The set K2D \ KD is small for P ; that is, there is some probability mea-
sure ν∗ on X , and some ε > 0, and some n0 ∈ N, such that P n0(x,A) ≥ εν∗(A)

for all states x ∈ K2D \ KD and all subsets A ∈ F .

We then have:

THEOREM 5. In the setup of Section 2, if (A1) and (A3) hold where either
(a) ν∗ = μ∗, or (b) P is reversible and μ∗ = π |K2D\KD

, then (4) holds; that is,
{Xn} is bounded in probability.

Theorem 5 is proved in Section 7 below.
Assumption (A3) is often straightforward to verify. For example:
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PROPOSITION 6. Suppose X is an open subset of Rd which contains
a bounded rectangle J which contains K2D \ KD . Suppose there are δ > 0 and
ε > 0 such that

P(x, dy) ≥ ε Leb(dy) whenever x, y ∈ J with |y − x| < δ,(6)

where Leb is Lebesgue measure on Rd . Then (A3) holds with ν∗ = Uniform(K2D \
KD).

Proposition 6 is proved in Section 8 below.

3.4. A result assuming geometric ergodicity. Assumption (A3) can be verified
for various Markov chains, as we will see below. However, its verification will
sometimes be difficult. An alternative approach is to consider geometric ergodicity,
as follows (see, e.g., [17] for context):

(A4) The Markov chain transition kernel P is geometrically ergodic; that is,
there is ρ < 1 and a π -a.e. finite measurable function ξ :X → [1,∞] such that
‖P n(x, ·) − π‖ ≤ ξ(x)ρn for n ∈ N and x ∈ X .

We also require a slightly different version of (A1):

(A5) There is M < ∞ such that P(x, dz) ≤ Mπ(dz) for all x ∈ KD and z ∈
K2D .

[Of course, (A5) holds trivially for z /∈ K2D , since then P(x, dz) = 0.] We then
have:

THEOREM 7. In the setup of Section 2, if (A4) and (A5) hold, then (4) holds;
that is, {Xn} is bounded in probability.

Theorem 7 is proved in Section 10 below.

4. Counterexamples to prove Proposition 3. We next present two coun-
terexamples to illustrate that with the setup and assumptions of Section 2, the
bounded in probability property (4) might fail. Each example has a state space
X which is a countable subset of R2 with the usual Euclidean metric η(x, y) :=
|y − x|. In Example 1, X is not closed, and (5) does not hold; this is remedied in
Example 2.

EXAMPLE 1. Let X = {(1
i
, j ) : i ∈ N, j = 0,1, . . . } be the state space. That

is, X = ⋃
i∈N Xi where each Xi ≡ {(1

i
, j )}j=0,1,... is a different “column.” Let

π(1
i
, j ) = 2−i (1

i
)(1 − 1

i
)j , so that π restricted to each Xi is a geometric distribu-

tion with mean i. Let K = {(1
i
,0)} consist of the bottom element of each column;

see Figure 1.
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FIG. 1. Part of the state space in Example 1.

Let the Markov chain P proceed, outside of K , by doing a simple ±1 Metropo-
lis algorithm up and down its current column Xi to be reversible with respect to π .
That is, for j ≥ 1, P((1

i
, j ), (1

i
, j − 1)) = 1

2 and P((1
i
, j ), (1

i
, j + 1)) = 1

2(1 − 1
i
),

and the leftovers P((1
i
, j ), (1

i
, j )) = 1 − P((1

i
, j ), (1

i
, j − 1)) − P((1

i
, j ), (1

i
,

j + 1)). Intuitively, the larger the column number i, the higher is the conditional
mean of π on Xi , so the higher the chain will tend to move within Xi , and the
longer it will take to return to K .

Inside of K , choose any appropriate transitions to make the chain irre-
ducible and reversible with respect to π ; for example, choose P((1

i
,0), (1

i
,1)) =

1
2(1 − 1

i
) and P((1

i
,0), ( 1

i−1 ,0)) = 1/4 (for i > 1 only, otherwise 0), and

P((1
i
,0), ( 1

i+1 ,0)) = i/8(i + 1), and the leftovers P((1
i
,0), (1

i
,0)) = 1 −

P((1
i
,0), ( 1

i+1 ,0)) − P((1
i
,0), ( 1

i−1 ,0)) − P((1
i
,0), (1

i
,1)).

Let the adversary proceed within K as follows. If Xn ∈ K , then Xn+1 = ( 1
n
,1).

That is, the chain moves from K to higher and higher column numbers as time
goes on.

With these specifications, K is bounded, and the process {Xn} never moves
more than a distance D = 1, so the setup of Section 2 is satisfied. However,
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the process {Xn} will, over time, move closer and closer to 0 in the x-direction,
and will then tend to climb higher and higher in the y-direction. More formally,
write Xn,1 and Xn,2 for the x-coordinate and y-coordinate of Xn. Then given
any L < ∞, choose m ∈ N such that the median of a mean-m Geometric ran-
dom variable, −1/ log2(1 − 1

m
)�, is at least L. Then let τ = inf{n :Xn,1 ≤ 1

m
}.

Then after time τ , the y-coordinate of Xn will be stochastically larger than a
usual ±1 Metropolis algorithm for a Geometric distribution with mean m. Hence,
lim infn→∞ P(Xn,2 ≥ L) will be at least as large as the probability that a mean-m
Geometric random variable will be ≥ L. This probability is at least 1

2 . It follows
that {Xn,2}, and hence also {Xn}, are not bounded in probability, that is, that (4)
does not hold.

(Alternatively, the adversary could proceed within K by moving from (1
i
,0)

to either (1
i
,1) with probability 1

2(1 − 1
i
), or to ( 1

i+1 ,0) with probability (1 +
1
i
)/4, or to ( 1

i−1 ,0) with probability (1 + 1
i
)/4 [for i > 1 only, otherwise 0], or

remain at (1
i
,0) with the leftover probability. This would make the process {Xn}

be time-homogeneous Markov and reversible with respect to the infinite measure
π defined by π(1

i
, j ) = (1

i
)(1 − 1

i
)j . Then {Xn} will therefore be null recurrent.

Hence, again, (4) will not hold.)

Now, in the above example, the state space X is not closed. One could easily
“extend” the example to include {(0, j) : j ∈ N} and thus make X closed. However,
this cannot be done in a continuous way; that is, there is no way to satisfy (5) in
this example. This might lead one to suspect that a continuity condition such as (5)
suffices to guarantee (4). However, that is not the case, as the following example
shows:

EXAMPLE 2. Our state space X will be another countable subset of R2,
defined as follows. Let O = (0,0) be the origin. Let S0 = {(i,0) : i ∈ N}. Let
{βk}∞k=1 be an increasing sequence of integers with βk > k to be specified later.
For k ∈ N, let Sk consist of the k points (i, i

k
) for i = 1,2, . . . , k, together with

βk − 1 additional points equally spaced on the line segment from (k,1) to the y-
axis point (0, βk). Finally, let Y = {(0, i) : i ∈ N} be the positive integer y-axis.
Then X = O ∪Y ∪ ⋃∞

k=0 Sk ; see Figure 2.
Define transitions P on X as follows. On S0, we have P((i,0), (i − 1,

0)) = 1; that is, it always moves toward the origin. Similarly, on Y , we have
P((0, i), (0, i − 1)) = 1; that is, it again always moves toward the origin. On the
first k − 1 points of Sk , we have P((i, i

k
), (i + 1, i+1

k
)) = i

k
, and P((i, i

k
), (i −

1,0)) = 1 − i
k

; that is, it either continues upwards on Sk , or moves toward the
origin on S0. On the remaining points of Sk , with probability 1 it moves one ad-
ditional point along Sk’s path toward (0, βk). The chain’s step sizes are thus all
bounded above by, for example, D = √

2.
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FIG. 2. Part of the state space in Example 2, including O (origin), and Y (y-axis), and S0 (x-axis),
and S1 with β1 = 2 [through (1,1)], and S3 with β3 = 5 [through (3,1)], and S5 with β5 = 7
[through (5,1)].

Note that these transition probabilities are continuous in a very strong sense: if
xn → x (which can only happen for x ∈ S0 or for a.a. constant sequences), then
P(xn, y) → P(x, y) for all y ∈ X , and in particular ‖P(xn, ·)−P(x, ·)‖ → 0. So,
(5) is satisfied.

Note also that if this chain is started at (1, 1
k
), then it has probability

∏k
i=1(

i
k
) >

0 of continuing along Sk all the way to (k,1), in which case it will take a total of
k + 2βk iterations to return to O . Otherwise, for 1 ≤ j ≤ k − 1, it takes 2j − 1
iterations with probability (

∏j−1
i=1

i
k
)(1 − j

k
). Thus, if rk = E(τO |X0 = (1, 1

k
)) is

the expected return time to O from (1, 1
k
), then

rk = (k + 2βk)

(
k∏

i=1

i

k

)
+

k−1∑
j=1

(2j − 1)

(j−1∏
i=1

i

k

)(
1 − j

k

)
.

In particular, by letting βk grow sufficiently quickly, we can make rk grow as
quickly as desired.
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Finally, we specify that from O , for k ∈ N the Markov chain moves to (1, 1
k
)

with probability ak , for some positive numbers ak summing to 1 to be specified
later.

Meanwhile, the adversary’s compact set is given by the single state K = {O}.
From O , the adversary proceeds simply by moving to each (1, 1

k
) with probabil-

ity bk , where the bk are nonnegative and sum to 1, and will be specified later.
(Thus, the adversary’s actions are chosen to still be time-homogeneous Markov.)

To complete the construction, we choose {βk} and {ak} and {bk} so that∑
k akrk < ∞ but

∑
k bkrk = ∞. For example, we can do this by first choosing

βk so that rkk
−k → 1, and then letting ak ∝ (2k)−k and bk ∝ (k/2)−k .

It then follows that for the Markov chain P (governed by the {ak}) the expected
return time to O from O is finite, and hence the chain has a unique stationary
probability measure π . On the other hand, for the adversarial process {Xn} (gov-
erned by the {bk}) the expected return time to O from O is infinite. Hence, the
adversarial process is null recurrent, so it will move to larger and larger Sk as time
progresses. In particular, the adversarial process will not be bounded in probability,
even though the transition probabilities P are continuous.

REMARK 2. Example 2 is only defined on a countable state space X , but if
desired it could be “extended” to a counterexample on all of R2. For instance, we
could let δ = 10−6, and replace π(·) by the convolution π(·)∗N(O, δ2) with a tiny
normal distribution, and replace P(x, ·) by the convolution P(x, ·) ∗ N(O, δ2) for
each x ∈ X , and then continuously interpolate new transition probabilities P(x, ·)
at all x ∈ R2 \ X such that P(x, ·) is a probability measure for each x ∈ R2, and
the mapping x �→ P(x,A) is continuous over x ∈ R2 for each fixed A ∈ F . This
could be done in such a way that (5) would still be satisfied, but (4) would still fail,
thus providing a counter-example even on the continuous state space R2.

Finally, in a rather different direction, we consider what happens if the process
is allowed to be anticipatory, that is, to make moves based on future randomness,
with (3) replaced by the weaker condition that P(Xn+1 ∈ A|Xn = x) = P(x,A)

but without conditioning on the previous history X0, . . . ,Xn−1. It turns out that,
under this subtle change, our theorems no longer hold:

EXAMPLE 3. Let X = [0,∞) ⊆ R. Define Markov chain transitions P as fol-
lows. For x ≤ 1, P(x, ·) = Uniform[0,2]. For 1 < x ≤ 3, P(x, ·) = Uniform[x −
1, x +1]. For 3 < x ≤ 4, P(x, ·) = Uniform[4,5]. For x > 4, P(x, ·) = 1

2δx+1(·)+
1
2 Uniform[x − 2, x − 1], where δx+1 is a point-mass at x + 1. Then P is φ-
irreducible, with negative drift for x > 4, so P must be positive recurrent with
some stationary probability distribution π to which it converges as in (1). Also,
P never moves more than a distance D = 2 as in (2).

We next define the adversarial process {Xn}. Let K = [0,2], so KD = [0,4]
and K2D = [0,6]. Let {Bi}∞i=0 be i.i.d. with P(Bi = 0) = P(Bi = 1) = 1/2, and let
{Ui}∞i=0 be i.i.d. ∼ Uniform[0,1], and let a∗ = 4 + ∑∞

i=1 Bi2−i . For any r ∈ X , let
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r[i] be the coefficient of 2i in the nonterminating binary expansion of r , so that
r = ∑

i∈Z r[i]2i . Conditionally on Xn, we construct Xn+1 by: (a) if Xn ≤ 1, then
Xn+1 = 2Un; (b) if 1 < Xn ≤ 3, then Xn+1 = Xn − 1 + 2Un; (c) if 3 < Xn ≤ 4,
then Xn+1 = a∗; (d) if Xn > 4, then Xn+1 = In(Xn + 1)+ (1 − In)(Xn − 1 −Un),
where In = 1Xn[−n]=Bn is the indicator function of whether the coefficient of 2−n

in the binary expansion of Xn is equal to Bn.
Then it is easily checked that {Xn} follows the one-step transitions P for all

x ∈ X (including x ∈ K), in the sense that P(Xn+1 ∈ A|Xn = x) = P(x,A) for
all A (but without also conditioning on X0, . . . ,Xn−1). Furthermore, (A1) holds
with M = 1 and μ∗ = Uniform[4,5]. Also, (A2) holds for the same μ∗ due to P ’s
negative drift for x > 4.

On the other hand, by construction a∗ has the property that a∗[−n] = Bn for
all n ∈ N. Hence, once the chain hits the interval (3,4], then it will move to a∗,
and from there it will always add 1 with probability 1. Therefore, Xn → ∞ with
probability 1, so {Xn} is not bounded in probability, so (4) does not hold. This
process thus provides a counterexample to Theorem 4 if we assume only that
P(Xn+1 ∈ A|Xn = x) = P(x,A), without also conditioning on the previous his-
tory X0, . . . ,Xn−1 as in (3).

5. Proof of Theorem 4 and Proposition 2. We begin by letting {Yn} be a
“cemetery process” which begins in the distribution μ∗ at time 0, and then follows
the fixed transition kernel P , and then dies as soon as it hits KD . Assumption (A2)
then says that this cemetery process {Yn} has finite expected lifetime. For L >

0 := sup{η(x,0) :x ∈ KD}, let BL = {x ∈ X :η(x,0) ≥ L}, and let NL denote the
cemetery process’s total occupation time of BL (i.e., the number of iterations that
{Yn} spends in BL before it dies). We then have:

LEMMA 8. Let {Xn} be the adversarial process as defined previously. Then
assuming (A1), for any n ∈ N, and any L > 0, and any x ∈ K , we have

P(Xn ∈ BL|X0 = x) ≤ ME(NL),

where NL is the occupation time of BL for the cemetery process {Yn} defined
above.

PROOF. Let σ be the last return time of {Xn} to KD by time n (which must
exist since X0 ∈ KD), and let μk be the (complicated) law of Xk when starting
from X0 = x0. Then letting I = KD \K (“inside”) and O = K2D \KD (“outside”),
we have

P(Xn ∈ BL|X0 = x0)

=
n−1∑
k=0

P(Xn ∈ BL,σ = k|X0 = x0)

=
n−1∑
k=0

∫
y∈I

∫
z∈O

P(Xk ∈ dy,Xk+1 ∈ dz,Xn ∈ BL,σ = k|X0 = x0)
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=
n−1∑
k=0

∫
y∈I

∫
z∈O

μk(dy)P (y, dz)

× P(Xn ∈ BL,σ = k|X0 = x0,Xk = y,Xk+1 = z)

≤
n−1∑
k=0

∫
y∈I

∫
z∈O

μk(dy)Mμ∗(dz)

× P(Xn ∈ BL,σ = k|X0 = x0,Xk = y,Xk+1 = z)

≤
n−1∑
k=0

∫
y∈I

∫
z∈O

μk(dy)Mμ∗(dz)P(Yn−k−1 ∈ BL|Y0 = z)

(by letting Yn = Xn+k+1, and noting that if σ = k, then the process did not return
to KD by time n, so it behaved like the cemetery process between times n − k − 1
and n)

≤ M

n−1∑
k=0

∫
z∈O

P(Yn−k−1 ∈ BL|Y0 = z)μ∗(dz)

≤ M

∞∑
j=0

∫
z∈O

P(Yj ∈ BL|Y0 = z)μ∗(dz).

But this last sum is precisely the expected total number of iterations that the ceme-
tery process {Yn} spends in BL when started from the distribution μ∗. �

PROOF OF THEOREM 4. For each A ∈ F , let ν(A) be the above cemetery
process’s expected occupation measure, that is, the expected number of iterations
that the cemetery process {Yn} spends in the subset A. Then the total measure ν(X )

equals the expected lifetime of the cemetery process, and is thus finite by (A2).
Hence, by the usual continuity of measures,

lim
L→∞ν(BL) = ν

(⋂
L

BL

)
= ν(∅) = 0.

This shows that E(NL) → 0 as L → ∞. Hence, by Lemma 8,

lim
L→∞ sup

n∈N
P(Xn ∈ BL|X0 = x0) ≤ M lim

L→∞ E(NL) = 0,

so {Xn} is bounded in probability. �

We now turn our attention to discrete chains as in Proposition 2. We begin with
a lemma. [Here and throughout, Ex(· · ·) means expected value conditional on the
process starting at the initial state x ∈X .]

LEMMA 9. For an irreducible Markov chain on a discrete state space with
stationary probability distribution π , for any two states x and y, we have Ex(τy) <

∞; that is, the chain will move from x to y in finite expected time.
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PROOF. If this were not the case, then it would be possible from y to travel
to x and then take infinite expected time to return to y. This would imply that
Ey(τy) = ∞, contradicting the fact that we must have Ey(τy) = 1/π(y) < ∞ by
positive recurrence. �

PROOF OF PROPOSITION 2. Since X is countable and P is irreducible,
π(x) > 0 for all x ∈ X . Let O = K2D \ KD , and assume that π(O) > 0 [other-
wise increase D to make this so, which can be done unless π(KD) = 1 in which
case the statement is trivial].

Since K2D is finite, assumption (A1) with μ∗ = π |K2D\KD
follows immediately

with, for example, M = (maxx,z∈K2D
P (x, z))/(minz∈K2D

π(z)) < ∞.
Next, note that Ex(τKD

) < ∞ for each individual x ∈ O; indeed, this follows
by applying Lemma 9 with any one specific y ∈ KD (which must exist since we
assume K is nonempty). But then Eμ∗(τKD

) = ∑
x∈O μ∗(x)Ex(τKD

), which must
also be finite since O is finite. Hence, (A2) also holds. The result thus follows from
Theorem 4. �

6. Two additional probability lemmas. In this section, we prove two proba-
bility results which we will use in the following section.

We first consider expected hitting times. Lemma 9 above shows that discrete
ergodic Markov chains always have Ex(τy) < ∞. On a general state space, one
might think by analogy that for any positive-recurrent φ-irreducible Markov chain
with stationary distribution π , if π(A) > 0 and π(B) > 0, then we must have
Eπ |A(τB) < ∞, where τB is the hitting time of B . However, this is false. For
example, consider a birth-death chain on the positive integers having stationary
distribution π(j) ∝ j−2. Then if B = {1} and A = {J,J + 1, J + 2, . . . } for any
J > 1, then Eπ |A(τB) ≥ ∑∞

j=J π(j)(j − 1) ∝ ∑∞
j=J j−2(j − 1) = ∞.

On the other hand, this result is true in the case A = B . Indeed, we have:

LEMMA 10. Consider a Markov chain with stationary probability distribu-
tion π , and let A ∈F with π(A) > 0. Then:

(i) Eπ |A(τA) = 1/π(A) < ∞, where τA is the first return time to A.

(ii) For all k ∈ N, Eπ |A(τ
(k)
A ) = k/π(A) < ∞, where τ

(k)
A is the kth return time

to A.

PROOF. Part (i) is essentially the formula of Kac [14]. Indeed, using Theo-
rem 10.0.1 of [17] with B = X , we obtain

1 = π(X ) =
∫
x∈A

π(dx)Ex

[
τA∑

n=1

1Xn∈X
]

=
∫
x∈A

π(dx)Ex[τA] = π(A)Eπ |A[τA],

giving the result.
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For part (ii), we expand the original Markov chain to a new Markov chain
on X × {0,1, . . . , k − 1}, where the first variable is the original chain, and the
second variable is the count (mod k) of the number of times the chain has re-
turned to A. That is, each time the original chain visits A, the second vari-
able increases by 1 (mod k). Then the expanded chain has stationary distribution
π ×Uniform{0,1, . . . , k−1}. Hence, by part (i), if we begin in (π |A)×δ0, then the
expected return time of the expanded chain to A×{0} equals 1/[π(A) × (1/k)] =
k/π(A). But the first return time of the expanded chain to A × {0} corresponds
precisely to the kth return time of the original chain to A. �

We also require the following generalization of Wald’s equation.

LEMMA 11. Let {Wn} be a sequence of nonnegative random variables each
with finite mean m < ∞, and let {In} be a sequence of indicator variables each
with P(In = 1) = p > 0. Assume that the sequence of pairs {(Wn, In)} is i.i.d. [i.e.,
the sequence {Zn} is i.i.d. where Zn = (Wn, In)]. Let τ = inf{n : In = 1}, and let
S = ∑τ

i=1 Wi . Then E(S) = m
p

< ∞.

PROOF. We can write S = ∑∞
i=1 Wi1τ≥i . Now, the event {τ ≥ i} is equiv-

alent to the event that I1 = I2 = · · · = Ii−1 = 0. Hence it is contained in
σ(Z1, . . . ,Zi−1) and is thus independent of Wi by assumption. Also, τ is dis-
tributed as Geometric(p) and hence has mean 1/p. We then compute that

E(S) = E

( ∞∑
i=1

Wi1τ≥i

)
=

∞∑
i=1

E(Wi1τ≥i )

=
∞∑
i=1

E(Wi)E(1τ≥i ) =
∞∑
i=1

mP(τ ≥ i) = mE(τ ) = m/p,

as claimed. �

7. Proof of Theorem 5. The key to the proof is the following fact about
Markov chain hitting times.

LEMMA 12. Consider a φ-irreducible Markov chain on a state space (X ,F)

with transition kernel P and stationary probability distribution π . Let B,C ∈ F
with π(B) > 0 and π(C) > 0, and let μ be any probability measure on (X ,F).
Suppose C is a small set for P with minorizing measure μ; that is, there is ε > 0
and n0 ∈ N such that P n0(x,A) ≥ εμ(A) for all states x ∈ C and all subsets
A ∈ F . Let τB be the first hitting time of B . Then Eμ(τB) < ∞.

PROOF. It suffices to consider the case where n0 = 1, since if not we can
replace P by P n0 and note that the hitting time of B by P is at most n0 times the
hitting time of B by P n0 .
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We use the Nummelin splitting technique [17, 19]. Specifically, we expand the
state space to X × {0,1}, where the second variable is an indicator of whether or
not we are currently regenerating according to μ.

Let α = X × {1}. Then α is a Markov chain atom (i.e., the chain has identi-
cal transition probabilities from every state in α), and it has stationary measure
π(α) = επ(C) > 0. So, by Lemma 10(i) above, if the expanded chain is started
in α (corresponding to the original chain starting in μ), then it will return to α in
finite expected time 1/π(α) < ∞.

We now let Wn be the number of iterations between the (n − 1)st and nth
returns to α, and let In = 1 if this nth tour visits B , otherwise In = 0. Then
P[In = 1] > 0 by the φ-irreducibility of P . Hence, {(Wn, In)} satisfies the con-
ditions of Lemma 11.

Therefore, by Lemma 11, the expected number of iterations until we complete
a tour which includes a visit to B is finite. Hence, the expected hitting time of B is
finite. �

COROLLARY 13. (A3) with ν∗ = μ∗ implies (A2).

PROOF. This follows immediately by applying Lemma 12 with C = K2D \
KD , and B = KD , and μ = μ∗ = ν∗. �

PROOF OF THEOREM 5. Under assumption (a) that ν∗ = μ∗, result (4) fol-
lows by combining Corollary 13 with Theorem 4. Under assumption (b) that P is
reversible and μ∗ = πK2D\KD

, it follows from the Appendix (Section 12.5 below)
that (A3) also holds with ν∗ = π |K2D\KD

= μ∗. Hence assumption (a) still applies,
so (4) again follows. �

REMARK 3. One might wonder if it suffices in Theorem 5 to assume (A1)
with any distribution μ∗, and (A3) with any distribution ν∗, without requiring
that either ν∗ = μ∗ or μ∗ = π |K2D\KD

. Under these assumptions, it would still
follow from Lemma 10(ii) that the return times to K2D all have finite expecta-
tion. And it would still be true that if we regenerate from ν∗ in finite expected
time, then we will eventually hit KD in finite expected time. The problem is that
the expected time to first regenerate from ν∗ might be infinite. Indeed, condition-
ally upon visiting K2D but repeatedly failing to regenerate, the chain could per-
haps move to worse and worse states from which it would then take longer and
longer to return to K2D . (It is tempting to apply Lemma 11 here where Wn is
the time between consecutive visits to K2D and In = 1 if we regenerate other-
wise 0, but unfortunately in this case {(Wn, In)} are not i.i.d., and conditionally
on nonregeneration the values of E[Wn|I1 = · · · = In = 0] could grow unbound-
edly.)



3606 R. V. CRAIU ET AL.

8. Proof of Proposition 6. Let A ⊆ Rd be the ball centered at the origin of
radius 1, and let B ⊆ Rd be the ball centered at the point (3/2,0,0, . . . ,0) of ra-
dius 1. Then A ∩ B has nonempty interior, so vd := Leb(A ∩ B) > 0. In terms of
this, we have:

LEMMA 14. Let A,B ⊆ Rd be two balls with radii r ≤ R, such that their
centers are a distance w ≤ 3r/2 + (R − r) apart. Then Leb(A ∩ B) ≥ rdvd .

PROOF. If r = R = 1, then this is just the definition of vd . If one of the balls is
stretched by a factor R > 1 while moving its center a distance R − r further away,
then the new ball contains the old ball, so Leb(A ∩ B) can only increase. Finally,
if each of w and r and R are multiplied by the same constant a > 0, then the entire
geometry is scaled by a factor of a, so Leb(A∩B) is multiplied by ad . Combining
these facts, the result follows. �

LEMMA 15. Let P be a Markov chain on an open subset X ⊆ Rd . Let J be
a rectangular subset of X , of the form J = (a1, b1) × · · · × (ad, bd) ⊆ X , where
ai < bi are extended real numbers (i.e., we might have ai = −∞ and/or bi = ∞
for some of the i). Suppose there are δ > 0 and ε > 0 satisfying the condition (6)
that P(x, dy) ≥ ε Leb(dy) whenever x, y ∈ J with |y − x| < δ. Then for each
n ∈ N, there is βn > 0 such that P n(x, dy) ≥ βn Leb(dy) whenever x, y ∈ J with
|y − x| < δ(n + 1)/2.

PROOF. We first consider the case where ai = −∞ and bi = ∞ for all i. The
result for n = 1 follows by assumption. Suppose the result is true for some n ≥ 1.
Let |y − x| < δ(n + 1)/2, let A be the ball centered at x of radius δ(n + 1)/2 and
let B be the ball centered at y of radius δ. Then applying Lemma 14 with r = δ

and R = δ(n + 1)/2 and w = δ(n + 2)/2, we see that Leb(A ∩ B) ≥ δdvd . The
result now follows from the calculation

P n+1(x, dy) =
∫
z∈X

P n(x, dz)P (z, y) ≥
∫
z∈A∩B

P n(x, dz)P (z, y)

≥
∫
z∈A∩B

βn Leb(dz)ε Leb(dy) ≥ Leb(A ∩ B)βnε Leb(dy)

≥ δdvdβnε Leb(dy) =: βn+1 Leb(dy).

For the general case, by shrinking δ as necessary, we can assume that δ <
1
2 mini (bi − ai). Then in the above calculation we can only use those parts of
A ∩ B which are still inside J . But here J must contain at least half of A ∩ B in
each coordinate, that is, at least 1/2d of A ∩ B overall. Hence, Leb(A ∩ B ∩ J ) ≥
(1/2d)Leb(A ∩ B). So, the above calculation still goes through, except now with
βn+1 multiplied by an extra factor of 1/2d . �
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PROOF OF PROPOSITION 6. Let z = Diam(J ) < ∞. Find n0 ∈ N such that
δ(n0 + 1)/2 > z. Then it follows from Lemma 15 that there is εn0 > 0 such that
P n0(x, dy) ≥ εn0 Leb(dy) for all x, y ∈ J ⊇ K2D \KD . Hence, (A3) holds for this
n0 with ν∗ = Uniform(K2D \ KD) and ε = εn0 Leb(K2D \ KD). �

9. Some facts about geometric ergodicity. To prove Theorem 7, we need
to understand the implications of the geometric ergodicity assumption (A4). The
following proposition shows that we can always find a geometric drift function of
a certain form. To state it, let PV (x) = ∫

y∈X V (y)P (x, dy) be the action of the
Markov kernel P on a function V , and let τC = inf{n ≥ 1 :Xn ∈ C} be the first
hitting time of C by a Markov chain {Xn} following the transitions P . Also, say
that V is a geometric drift function if

PV (x) ≤ λV (x) + b1C(x)(7)

for some small set C ∈F and some real numbers λ < 1 and b < ∞.

PROPOSITION 16. If P is geometrically ergodic as in (A4), then there is a
small set C ⊆ X with π(C) > 0, and a real number κ > 1, such that the function
V :X → R defined by V (x) = Ex(κ

τC ) is π -a.e. finite, and r := supx∈C V (x) <

∞, and the geometric drift equation (7) holds with this C for some b < ∞ and with
λ = κ−1 < 1. Furthermore, there is ρ < 1 and c < ∞ such that ‖P n(x, ·) − π‖ ≤
cV (x)ρn for all n ∈ N and x ∈ X .

PROOF. Let AM = {x ∈ X : ξ(x) ≤ M}. Since π{x ∈ X : ξ(x) < ∞} = 1, we
can find M < ∞ with π(AM) > 0. The existence of some small set C ⊆ AM

with π(C) > 0 follows from, for example, [20] (where they are called C-sets)
or [19] or Theorem 5.2.2 of [17]. The fact that C ⊆ AM then implies condi-
tion (15.1) of [17] for this C [with P ∞(C) = π(C) and MC = M and ρC = ρ].
The existence of a (possibly different) small set C and κ > 1 with π(C) > 0 and
r := supx∈C Ex(κ

τC ) < ∞. then follows from Theorem 15.0.1(ii) of [17].
Let V (x) = Ex(κ

τC ). We compute directly that if {Wn} follows P , then for
x /∈ C,

V (x) = E
(
κτC |W0 = x

) = E
[
E

(
κτC |W1

)|W0 = x
]

=
∫
y∈X

E
(
κτC |W1 = y

)
P(x, dy) =

∫
y∈X

E
(
κτC+1|W0 = y

)
P(x, dy)

=
∫
y∈X

κE
(
κτC |W0 = y

)
P(x, dy) = κ

∫
y∈X

V (y)P (x, dy) = κPV (x),

which shows that PV (x) = κ−1V (x) for x /∈ C.
To prove the geometric drift condition, it remains only to prove that b :=

supx∈C PV (x) is finite. For this we use some additional results from [17]. We
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first compute that in the special case f ≡ 1, we have that

sup
x∈C

Ex

(
τC−1∑
k=0

f (Wk)κ
k

)
= sup

x∈C

Ex

(
τC−1∑
k=0

κk

)
= sup

x∈C

Ex

(
κτC − 1

κ − 1

)

= supx∈C Ex(κ
τC ) − 1

κ − 1
= r − 1

κ − 1
< ∞.

This means that C is an “f -Kendall set” for f ≡ 1, as defined on page 368
of [17]. Hence, by Theorem 15.2.4 of [17], the function G(x) := G

(κ)
C (x, f ) which

equals 1 inside C and equals

Ex

(
τC∑

k=0

f (Wk)κ
k

)
= Ex

(
τC∑

k=0

κk

)
= Ex(κ

τC+1) − 1

κ − 1
= κV (x) − 1

κ − 1
(8)

outside of C, satisfies its own geometric drift condition, say PG(x) ≤ λGG(x) +
bG1C(x) where λG < 1 and bG < ∞. In particular, since G(x) = 1 for x ∈ C,
this means that supx∈C PG(x) ≤ λG + bG < ∞. Now, by (8), for x /∈ C we have
V (x) = 1

κ
[1 + (κ − 1)G(x)] ≤ 1 +G(x). Since V (x) ≤ r for x ∈ C, it follows that

for all x ∈ X , we have V (x) ≤ r + G(x). Therefore, PV (x) ≤ r + PG(x). This
shows, finally, that

b := sup
x∈C

PV (x) ≤ r + sup
x∈C

PG(x) ≤ r + λG + bG < ∞.

The above two facts together show that PV (x) ≤ κ−1V (x) + b1C(x) with
b < ∞.

The bound on ‖P n(x, ·) − π‖ then follows from Theorem 16.0.1 of [17]. �

We next establish some bounds based on geometric-drift-type inequalities.

LEMMA 17. Let {Zn} be any stochastic process. Suppose there are 0 < λ < 1
and b < ∞ such that for all n ∈ N, we have E(Zn|Z0, . . . ,Zn−1) ≤ λZn−1 + b.
Then for all n ∈ N,

E(Zn|Z0) ≤ λnZ0 + b

1 − λ
≤ Z0 + b

1 − λ
.

PROOF. We claim that for all n ≥ 0,

E(Zn|Z0) ≤ λnZ0 + (
1 + λ + · · · + λn−1)

b.(9)

Indeed, for n = 0 this is trivial, and for n = 1 this is equivalent to the hypothesis
of the lemma. Suppose now that (9) holds for some value of n. Then

E(Zn+1|Z0) = E
(
E(Zn+1|Z0, . . . ,Zn)|Z0

) ≤ E(λZn + b|Z0)

≤ λ
(
λnZ0 + (

1 + λ + · · · + λn−1)
b
) + b

= λn+1Z0 + (
1 + λ + · · · + λn−1 + λn)

b,

so (9) holds for n + 1. Hence, by induction, (9) holds for all n ≥ 0.
The result now follows since 1 + λ + · · · + λn−1 = 1−λn

1−λ
≤ 1

1−λ
. �
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PROPOSITION 18. If P is geometrically ergodic with stationary probability
distribution π and π -a.e. finite geometric drift function V satisfying PV (x) ≤
λV (x) + b where 0 ≤ λ < 1 and 0 ≤ b < ∞, then Eπ(V ) ≤ b/(1 − λ) < ∞.

PROOF. Choose any x ∈ X with V (x) < ∞ (which holds for π -a.e. x ∈ X ).
Then applying Lemma 17 to Zn = P nV (x) gives P nV (x) ≤ V (x) + b

1−λ
, and in

particular P nV (x) 
→ ∞. But Theorem 14.3.3 of [17] with f = V states that if
π(V ) = ∞, then P nV (x) → ∞ for all x ∈ X . Hence, by contraposition, we must
have π(V ) < ∞.

Finally, we have by stationarity that π(V ) = π(PV ). So, taking expectations
with respect to π of both sides of the inequality PV ≤ λV + b and using that
π(V ) < ∞, we obtain that π(V ) ≤ λπ(V ) + b, whence π(V ) ≤ b/(1 − λ). �

REMARK 4. If P is uniformly ergodic, meaning that (A4) holds for a con-
stant function V < ∞, then it follows from Theorem 16.0.2(vi) of [17] that
U := supx∈X Ex(τKD

) < ∞, which implies that Eμ∗(τKD
) ≤ U < ∞, so (A2)

must hold.

10. Proof of Theorem 7. The key to the proof is a uniform bound on certain
powers of P :

LEMMA 19. Assuming (A4) and (A5), with V as in Proposition 16,
supx∈KD

supn≥0 P nV (x) < ∞.

PROOF. For x ∈ KD , PV (x) = Ey∼P(x,·)V (y) ≤ MEy∼πV (y) = Mπ(V ) <

∞ by (A5) and Proposition 18. Then applying Lemma 17 to Zn = P nV (x) gives
P nV (x) ≤ Mπ(V ) + b

1−λ
. In particular, supx∈KD

supn≥1 P nV (x) < ∞.
Furthermore, for x ∈ KD , V (x) = Ex(κ

τC ) = κEP(x,·)(κτC ) ≤ κMEπ(κτC ) =
κMπ(V ) < ∞ by Proposition 18, so the above “sup” can be extended to include
n = 0 too. �

REMARK 5. For Metropolis algorithms on continuous state spaces, usually
P(x, {x}) > 0 for most x ∈ X , so (A5) usually won’t hold [though (A1) often
will; see Section 11]. On the other hand, if P(x, ·) = r(x)δx(·)+ (1 − r(x))R(x, ·)
where δx is a point-mass at x and 0 ≤ r(x) ≤ 1 and R satisfies (A5), then it is
easily seen that if κr(x) ≤ B < 1 for all x ∈ KD , then Lemma 19 still holds with
supx∈KD

V (x) ≤ κMπ(V )/(1 − B) < ∞, and the rest of the proof of Theorem 7
then goes through without change.

PROPOSITION 20. Assuming (A4) and (A5), the random sequence {V (Xn)}
is bounded in probability.
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PROOF. Lemma 19 with n = 0 says that U := supx∈KD
V (x) < ∞. Since the

adversary can only adjust the values of {Xn} within KD , it follows that the ad-
versary can only change the “next value of V (Xn)” by at most U , so {Xn} will
still satisfy a drift condition similar to (7), for the same C and λ but with b re-
placed by b + U < ∞. (Of course, C might not be a small set for the adversarial
process.) More precisely, it follows from (7) that the adversarial process {Xn} sat-
isfies that E[V (Xn)|X0,X1, . . . ,Xn−1] ≤ λV (Xn−1) + b + U . Hence, applying
Lemma 17 to Zn = V (Xn) says that {Ex0[V (Xn)]} is bounded in probability, that
is, that ζ := supx∈KD

supn≥0 E[V (Xn)|X0 = x0] < ∞. It then follows by Markov’s
inequality that Px0[V (Xn) ≥ R] ≤ ζ/R for all n and all R > 0. Hence, {V (Xn)} is
bounded in probability. �

REMARK 6. Proposition 20 immediately implies a bound on the ε-convergence
times [24] defined by Mε(x) = inf{n ≥ 1 :‖P n(x, ·) − π(·)‖ ≤ ε}. Indeed,
by Proposition 16 we have ‖P n(x, ·) − π‖ ≤ cV (x)ρn, whence Mε(x) ≤
log(cV (x)/ε)/ log(1/ρ)�. Since {V (Xn)} is bounded in probability by Propo-
sition 20, it follows that {Mε(Xn)} is bounded in probability too; see also the
containment condition (15) below.

PROOF OF THEOREM 7. The bounded-jumps condition (2) implies that the
small set C must be bounded (in fact, of diameter ≤ 2Dn0). Let r = sup{|x| :x ∈
C} < ∞. Then if |x| > r , it takes at least (|x| − r)/D steps to return to C

from x. Hence, V (x) ≥ κ(|x|−r)/D . Therefore, |x| ≤ r + D log(V (x))/ log(κ),
so |Xn| ≤ r + D log(V (Xn))/ log(κ). But {V (Xn)} is bounded in probability by
Proposition 20. Hence, so is {Xn}. �

11. Application to adaptive MCMC algorithms. Markov chain Monte
Carlo (MCMC) algorithms proceed by running a Markov chain {Xn} with station-
ary probability distribution π , in the hopes that {Xn} converges in total variation
distance to π , that is, that

lim
n→∞ sup

A∈F
∣∣P(Xn ∈ A) − π(A)

∣∣ = 0, x ∈ X ,A ∈ F .(10)

If so then for large n, the value of Xn is approximately a “sample” from π . Such
algorithms are hugely popular in, for example, Bayesian statistical inference; for
an overview see, for example, [7].

Adaptive MCMC algorithms [11] attempt to speed up the convergence (10) and
thus make MCMC more efficient by modifying the Markov chain transitions dur-
ing the run (i.e., “on the fly”) in a search for a more optimal chain; for a brief
introduction, see, for example, [26]. Such algorithms often appear to work very
well in practice (e.g., [4, 8, 10, 25]). However, they are no longer Markov chains
(since the adaptions typically depend on the process’s entire history), making it ex-
tremely difficult to establish mathematically that the convergence (10) will even be



ADVERSARIAL MARKOV CHAINS 3611

preserved (much less improved). As a result, many papers either make the artificial
assumption that the state space X is compact (e.g., [4, 8, 11]), or prove the con-
vergence (10) using complicated mathematical arguments requiring strong and/or
uncheckable assumptions (e.g., [1–3, 10, 15, 24, 28]), or do not prove (10) at all
and simply hope for the best. It is difficult to find simple, easily checked conditions
which provably guarantee the convergence (10) for adaptive MCMC algorithms.

One step in this direction is in [24], where it is proved that convergence (10)
is implied by two conditions. The first condition is diminishing adaptation, which
says that the process adapts less and less as time goes on; see (14) below. The sec-
ond condition is containment, which says that the process’s convergence times are
bounded in probability; see (15) below. The first of these two conditions is usually
easy to satisfy directly by wisely designing the algorithm, so it is not of great con-
cern. However, the second condition is notoriously difficult to verify (see, e.g., [5])
and thus a severe limitation (though an essential condition; cf. [16]). On the other
hand, the containment condition (15) is reminiscent of the boundedness in proba-
bility property (4), which is implied by our various theorems above. This suggests
that our theorems might be useful in establishing the containment condition (15)
for certain adaptive MCMC algorithms, as we now explore.

11.1. The adaptive MCMC setup. We define an adaptive MCMC algorithm
within the context of Section 2 as follows. Let X be an open subset of Rd for some
d ∈ N, on which π is some probability distribution. Assume that for some compact
index set Y , there is a collection {Pγ }γ∈Y of Markov kernels on X , each of which
leaves π stationary and in fact is Harris-ergodic to π as in (1). The adversary
proceeds by choosing, at each iteration n, an index �n ∈ Y (possibly depending on
n and/or the process’s entire history, though not on the future). The process {Xn}
then moves at time n according to the transition kernel P�n , that is,

P(Xn+1 ∈ A|Xn = x,�n = γ,X0, . . . ,Xn−1,�0, . . . ,�n−1) = Pγ (x,A).

To reflect the bounded jump condition (2), we assume there is D < ∞ with

Pγ

(
x, {y ∈ X : |y − x| ≤ D}) = 1, x ∈X , γ ∈ Y.(11)

To reflect that the adversary can only adapt inside K , we assume that the Pγ ker-
nels are all equal outside of K , that is, that

Pγ (x,A) = P(x,A), A ∈ F, x ∈ X \ K,(12)

for some fixed Markov chain kernel P(x, dy) also satisfying (1). We further as-
sume that

∃M < ∞ s.t. P(x, dy) ≤ M Leb(dy), x ∈ KD \ K,z ∈ K2D \ KD.(13)

We also assume the ε–δ condition (6) that P(x, dy) ≥ ε Leb(dy) whenever x, y ∈
J with |y − x| < δ, for some bounded rectangle J with K2D \ KD ⊆ J ⊆ X .



3612 R. V. CRAIU ET AL.

We shall particularly focus on the case where each Pγ is a Metropolis–
Hastings algorithm. This means that Pγ proceeds, given Xn, by first choosing
a proposal state Yn+1 ∼ Qγ (Xn, ·) for some proposal kernel Qγ (x, ·) having a
density qγ (x, y) with respect to Leb. Then, with probability αγ (Xn,Yn+1) :=
min[1,

π(Yn+1)qγ (Yn+1,Xn)

π(Xn)qγ (Xn,Yn+1)
] it accepts this proposal by setting Xn+1 = Yn+1. Oth-

erwise, with probability 1 − αγ (Xn,Yn+1), it rejects this proposal by setting
Xn+1 = Xn. That is,

Pγ (x,A) = r(x)δx(A) +
∫
y∈A

Qγ (x, dy)αγ (x, y),

where δx(·) is a point-mass at x, and r(x) = 1 − ∫
y∈X Qγ (x, dy)αγ (x, y) is the

overall probability of rejecting. Note that (11), (12) and (13) are each automatically
satisfied for Pγ and P if the corresponding equations are satisfied for correspond-
ing Qγ and Q.

11.2. An adaptive MCMC theorem. Our theorem shall follow up on the result
from [24] that convergence (10) is implied by the twin properties of diminishing
adaptation and containment. Diminishing adaptation says that the process adapts
less and less as time goes on, or more formally that

lim
n→∞ sup

x∈X
sup
A∈F

∣∣P�n+1(x,A) − P�n(x,A)
∣∣ = 0 in probability.(14)

Containment says that the process’s convergence times are bounded in probability,
or more formally that{

Mε(Xn,�n)
}∞
n=1 is bounded in probability,(15)

where Mε(x, γ ) = inf{n ≥ 1 :‖P n
γ (x, ·) − π(·)‖ ≤ ε} is the ε-convergence time.

The containment condition (unlike diminishing adaptation) is notoriously difficult
to establish in practice (see, e.g., [5]), but the theorems herein can help. To state a
clean theorem, we assume continuous densities, as follows:

(A6) π has a continuous positive density function (with respect to Leb), and the
transition probabilities Pγ (x, dy) either (i) have densities which are continuous
functions of x and y and γ , or (ii) are Metropolis–Hastings algorithms whose
proposal kernel densities qγ (x, dy) are continuous functions of x, y and γ .

In terms of the above setup, we have:

THEOREM 21. Consider an adaptive MCMC algorithm as in Section 11.1, on
an open subset X of Rd , such that the kernels Pγ (or the proposal kernels Qγ

in the case of adaptive Metropolis–Hastings) have bounded jumps as in (11), and
no adaption outside of K as in (12), with the fixed kernel P (or a correspond-
ing fixed proposal kernel Q) bounded above as in (13). We further assume the
ε–δ condition (6) for P , and the continuous densities condition (A6). Then the
algorithm satisfies the containment condition (15). Hence, assuming diminishing
adaptation (14), the algorithm converges in distribution to π as in (10).
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Theorem 21 is proved in Section 11.3 below. Clearly, similar reasoning also ap-
plies with alternative assumptions and to other versions of adaptive MCMC includ-
ing, for example, adaptive Metropolis-within-Gibbs algorithms (with P replaced
by P d for random-scan); cf. [15].

Theorem 21 requires many conditions, but they are all easy to ensure in practice,
as illustrated by the following type of adaptive MCMC algorithm:

The bounded adaption Metropolis (BAM) algorithm. Let X = Rd , let K ⊆ X
be bounded, let π be a continuous positive density on X and let D > 0. Let Y be
a compact collection of d-dimensional positive–definite matrices, and let �∗ ∈ Y
be fixed. Define a process {Xn} as follows: X0 = x0 for some fixed x0 ∈ K . Then
for n = 0,1,2, . . . , given Xn, we generate a proposal Yn+1 by: (a) if Xn /∈ K ,
then Yn+1 ∼ N(Xn,�∗); (b) if Xn ∈ K with dist(Xn,K

c) > 1, then Yn+1 ∼
N(Xn,�n+1), where the matrix �n+1 ∈ Y is selected in some fashion, perhaps de-
pending on Xn and on the chain’s entire history; (c) if Xn ∈ K but dist(Xn,K

c) =
u with 0 ≤ u ≤ 1, then Yn+1 ∼ (1 − u)N(Xn,�∗) + uN(Xn,�n+1). Once Yn+1
is chosen, then if |Yn+1 − Xn| > D, the proposal is rejected so Xn+1 = Xn. Oth-
erwise, if |Yn+1 − Xn| ≤ D, then with probability min[1,

π(Yn+1)
π(Xn)

] the proposal is
accepted so Xn+1 = Yn+1, or with the remaining probability the proposal is re-
jected so Xn+1 = Xn.

REMARK 7. In the above BAM algorithm, qγ (Yn+1,Xn) = qγ (Xn,Yn+1), so
those factors cancel in the formula for the acceptance probability.

REMARK 8. One good choice for the proposal covariance matrix �n+1 in
part (b) of the BAM algorithm is (2.38)2Vn/d , where Vn is the empirical covari-
ance matrix of X0, . . . ,Xn from the process’s previous history (except restricted
to some compact set Y), since that choice approximates the optimal proposal co-
variance; see the discussion in Section 2 of [25].

PROPOSITION 22. The above BAM algorithm satisfies containment (15).
Hence, if the selection of the �n satisfies diminishing adaptation (14), then con-
vergence (10) holds.

PROOF. The BAM algorithm satisfies all of the conditions of Theorem 21.
Indeed, bounded jumps (11) and no adaption outside of K (12) are both im-
mediate. Here the fixed kernel Q is bounded above (13) by the constant M =
(2π)−d/2|�∗|−1/2, and the ε–δ condition (6) holds by the formula for Q together
with the continuity of the density π (which guarantees that it is bounded above and
below on any compact rectangle J containing the compact set K2D). Furthermore
the continuous densities condition (A6) holds by construction. Hence, the result
follows from Theorem 21. �
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11.3. Proof of Theorem 21. We begin with a result linking the boundedness
property (4) for {Xn} with the containment condition (15) for {Mε(Xn,�n)}, as
follows:

PROPOSITION 23. Consider an adaptive MCMC algorithm as in Section 11.1.
Suppose (4) holds, and for each n ∈ N the mapping (x, γ ) �→ �(x,γ,n) :=
‖P n

γ (x, ·) − π(·)‖ is continuous. Then the containment condition (15) holds.

PROOF. Since each Pγ is Harris ergodic, limn→∞ �(x,γ,n) = 0 for each
fixed x ∈ X and γ ∈ Y . Also, since π is a stationary distribution for Pγ , the map-
ping n �→ �(x,γ,n) is nonincreasing; see, for example, Proposition 3(c) of [23]. If
the mapping (x, γ ) �→ �(x,γ,n) is continuous, then it follows by Dini’s theorem
(e.g., [27], page 150) that for any compact subset C ⊆ X , since Y is compact,

lim
n→∞ sup

x∈C

sup
γ∈Y

�(x,γ,n) = 0.

Hence, given C and ε > 0, there is n ∈ N with supx∈C supγ∈Y �(x,γ,n) < ε. It
follows that supx∈C supγ∈Y Mε(x, γ ) < ∞ for any fixed ε > 0.

Now, if {Xn} is bounded in probability as in (4), then for any δ > 0, we can find
a large enough compact subset C such that P(Xn /∈ C) ≤ δ for all n. Then given
ε > 0, and if L := supx∈C supγ∈Y Mε(x, γ ), then L < ∞, and P(Mε(Xn,�n) >

L) ≤ δ for all n as well. Since δ was arbitrary, it follows that {Mε(Xn,�n)}∞n=0 is
bounded in probability. �

We then need a lemma guaranteeing continuity of �(x,γ,n):

LEMMA 24. Under the continuous density assumptions (A6), for each n ∈ N,
the mapping (x, γ ) �→ �(x,γ,n) is continuous.

PROOF. Assuming (A6)(ii), this fact is contained in the proof of Corollary 11
of [24]. The corresponding result assuming (A6)(i) is similar but easier. �

PROOF OF THEOREM 21. The bounded jumps condition (11), together with
no adaption outside of K (12), ensure that the algorithm {Xn} fits within the setup
of Section 2. Since the densities of P(x, dy) are bounded above by (13), it follows
that (A1) holds with μ∗ = Uniform(K2D \KD). Also, using the ε–δ condition (6),
it follows from Proposition 6 that (A3) holds for ν∗ = μ∗. Hence, by Theorem 5(a),
{Xn} is bounded in probability; that is, (4) holds. In addition, using the continuity
assumption (A6), it follows from Lemma 24 that �(x,γ,n) is a continuous func-
tion. Containment (15) thus follows from Proposition 23. The final assertion about
convergence (10) then follows from [24]. �
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12. A detailed statistical MCMC example: RCA. Relying on the theoreti-
cal advances in this paper, we shall now demonstrate the effectiveness of a gen-
eral adaptive strategy which we call regime change algorithm (RCA) that can be
implemented in a wide number of practical instances. Specifically, during the ini-
tialization period the chain is run using a transition kernel that can provide some
information about the target. We do not assume that this initial kernel is optimal
in any way, just that it would be a reasonable initial choice for an MCMC algo-
rithm. After the initialization period, inside a chosen compact set, the initial kernel
is slowly replaced by an adaptive kernel that is shown to exhibit better mixing.
In a statistical example below, we shall see that this regime change dramatically
increases the algorithm efficiency, since the adaptive kernel is increasingly more
suitable for sampling the target inside the compact. Our regime change idea is in
the same general vein as the two-stage adaptation proposed by Giordani and Kohn
[10]. However, their theoretical justification follows a rather different approach
from ours.

12.1. Model and data. We shall consider a Bayesian probit regression model
applied to a well-known collection of lupus patient data originally supplied by
Haas [12] and later simplified in [29]. The data, shown in Table 1, contain disease
status for 55 patients of which 18 have been diagnosed with latent membranous
lupus, together with two clinical covariates, IgA and �IgG (which is equal to
IgG3 − IgG4 in the lupus context), which are computed from their levels of im-
munoglobulin of type A and of type G, respectively. We consider a probit regres-
sion (PR) model; that is, for each patient 1 ≤ i ≤ 55, and we model the disease

TABLE 1
The number of latent membranous lupus nephritis cases (numerator),
and the total number of cases (denominator), for each combination
of the values of the two covariates, for the 55 lupus patients in the

data set described in Section 12.1

IgA

�IgG 0 0.5 1 1.5 2

−3.0 0/1 – – – –
−2.5 0/3 – – – –
−2.0 0/7 – – – 0/1
−1.5 0/6 0/1 – – –
−1.0 0/6 0/1 0/1 – 0/1
−0.5 0/4 – – 1/1 –

0 0/3 – 0/1 1/1 –
0.5 3/4 – 1/1 1/1 1/1
1.0 1/1 – 1/1 1/1 4/4
1.5 1/1 – – 2/2 –
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indicator variables as independent

Yi ∼ Bernoulli
(
�

(
xT
i β

))
,

where �(·) is the CDF of N(0,1), xi = (1,�IgGi, IgAi) is the vector of covari-
ates, and β is a 3 × 1 vector of parameters which is assigned a flat prior p(β) ∝ 1.
The posterior is thus

πPR( �β| �Y , �IgA, ��IgG)

∝
55∏
i=1

[
�(β0 + �IgGiβ1 + IgAiβ2)

Yi

× (
1 − �(β0�IgGiβ1 + IgAiβ2)

)(1−Yi)
]
.

We wish to design effective algorithms to sample from this posterior distribu-
tion πPR.

12.2. The best previous algorithm: PX-DA. The current state-of-the-art most
efficient algorithm to sample from the above posterior distribution πPR is the pa-
rameter expanded data augmentation (PX-DA) algorithm developed by van Dyk
and Meng [29]. The PX-DA transition kernel for updating β(t) is defined by the
following steps:

• Draw

φ
(t+1)
i ∼

{
N+

(
xT
i β(t),1

)
, if Yi = 1,

N−
(
xT
i β(t),1

)
, if Yi = 0,

where N+(μ,σ 2) and N−(μ,σ 2) are normal distributions with mean μ and
variance σ 2 that are truncated to (0,∞) and (−∞,0), respectively. Set φ(t+1) =
(φ

(t+1)
1 , . . . , φ

(t+1)
n ).

• Let β̃t+1 = (XT X)−1XT φ(t+1), and define R(t+1) = ∑n
i=1(φ

(t+1)
i −xT

i β̃(t+1))2.

• Sample Z ∼ N(0,1), W ∼ χ2
n and set β(t+1) =

√
W

R(t+1) β̃
(t+1) + Chol[(XT ×

X)−1]Z.

12.3. A new algorithm: RCA. The regime change algorithm (RCA) is initial-
ized by running the PX-DA chain for M iterations. Based on the samples obtained,
we determine a compact subset K and a distance bound D which remain fixed for
the rest of the simulation. The algorithm then proceeds by constructing a Gaussian
approximation of the target inside K that continuously evolves as the samples are
collected, thus allowing for better and better proposal values.

To proceed, for n ≥ M we define

μn := 〈X0〉 + 〈X1〉 + · · · + 〈Xn−1〉
n

,
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and

�n := Cov
(〈X0〉, 〈X1〉, . . . , 〈Xn−1〉) + εId,

where Cov is the empirical covariance function, and 〈r〉 is the shrunken version
of r ∈ Rd with each coordinate shrunk into the interval [−L,L], that is, 〈r〉i =
max[−L,min(L, ri)]. We then define K to be the ball centered at μM , of radius
max1≤i≤d(�M)

1/2
ii (i.e., the largest sample standard deviation on the diagonal of

�M ), and we let D be any suitably large distance bound (e.g., D = 20).
We then consider the independence Metropolis (IM) transition kernel Pμn,�n ,

with proposal distribution given (independently of the current state of the process)
by the Gaussian distribution N(μn,�n), except truncated (in a continuous manner;
see Remark 9 below) to remain in the compact K and to never move more than a
distance D. We also let PPX(x, y) be the PX-DA algorithm described above, also
truncated in a continuous manner to remain in the compact K and to never move
more than a distance D.

In terms of these definitions, the update for the RCA follows these steps:

(1) If Xn ∈ Kc, then Xn+1 ∼ PPX(Xn, ·).
(2) If Xn ∈ K and d(Xn,K

c) > 1, then

Xn+1 ∼ λn+1Pμn,�n(Xn, ·) + (1 − λn+1)PPX(Xn, ·),
with λn = min[max(θn,0.2),0.8], where θn is the empirical acceptance rate of all
of the IM proposals made so far between time M + 1 and time n− 1 (or we simply
set λn = 1/2 if there have been no such proposals).

(3) If Xn ∈ K and d(Xn,K
c) = u with 0 ≤ u ≤ 1, then

Xn+1 ∼ u
[
λn+1Pμn,�n(Xn, ·) + (1 − λn+1)PPX(Xn, ·)] + (1 − u)PPX(Xn, ·),

with λn as above.

That is, letting γn = (μn,�n,λn) be the complete adaptive parameter, we can
say that when d(Xn,K

c) > 1, the chain moves according to the adaptive kernel

PK,γn(Xn, ·) = λn+1Pμn,�n(Xn, ·) + (1 − λn+1)PPX(Xn, ·),
and when Xn ∈ Kc the chain follows the transition PPX(Xn, ·), with a linear inter-
polation near the boundary of K to satisfy the continuous densities condition (A6).

REMARK 9. In our description of RCA above, we required certain Gaussian
distributions to be restricted to certain subsets. If this is done naively, then it will
result in a discontinuous density, which may violate (A6). However, this issue can
be easily avoided if we make the density continuous by smoothing the edge via a
linear interpolation. For example, to restrict a univariate normal density with mean
μ and variance σ 2 to the range (a, b) for a < b, one can choose small υ > 0 and
define

fυ(x|μ,σ, a, b) = (2πσ 2)−1/2 exp[−(x − μ)2/(2σ 2)]
�(b − υ) − �(a + υ)

,
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and then use the density function proportional to

g(x|μ,σ, a, b,υ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

fυ(x|μ,σ, a, b), if a + υ ≤ x ≤ b − υ,

fυ(b − υ|μ,σ, a, b)(b − x)/υ, if b − υ < x < b,

fυ(a + υ|μ,σ, a, b)(x − a)/υ, if a < x < a + υ,

0, otherwise.

The general multivariate case can be handled by similarly truncating each of the
independent univariate Gaussian variables used to construct the multivariate Gaus-
sian. In this way, it can be assured that even truncated Gaussians still have contin-
uous densities.

12.4. Verification of the theoretical assumptions. To justify the use of our new
RCA algorithm, we wish to prove asymptotic convergence as in (10). Proving such
convergence of adaptive MCMC algorithms is usually very difficult, but we shall
manage this by applying Theorem 21. To do this, we need to verify the assumptions
of Theorem 21 including those which are implicit in the setup of Section 11.1.
Fortunately, this is not too difficult.

For the RCA algorithm, the “bounded jumps” condition (11) and the “fixed
kernel outside of K” condition (12) are both satisfied by construction.

Furthermore, the “fixed kernel bounded above by a multiple of Lebesgue” con-
dition (13), and the “ε–δ bounded below by a multiple of Lebesgue” condition (6),
both concern the transition probabilities outside of K , and hence they both follow
since our fixed transition probabilities are absolutely continuous with respect to
Lebesgue measure with densities that are uniformly bounded away from 0 and ∞
on compact subsets.

In addition, the continuous densities condition (A6) is satisfied since all tran-
sition kernels involved in the construction of the chain are Metropolis–Hastings
(MH) kernels with proposal densities that are continuous functions of the adaption
parameters and of x and y; cf. Remark 9.

Finally, we note that RCA also satisfies the diminishing adaptation condi-
tion (14), since the difference between the values of each of the adaptation pa-
rameters at iterations n and n + 1 is always O(n−1).

Hence RCA satisfies all of the assumptions of Theorem 21 and Section 11.1,
and also satisfies Diminishing Adaptation (14), so we conclude:

COROLLARY 25. The RCA algorithm described above converges asymptoti-
cally to π as in (10).

12.5. A simulation study. To test our new RCA algorithm in practice, we ran1

both it and the PX-DA algorithm, each for 5000 iterations starting with X0 equal
to the maximum likelihood estimate (MLE).

1The R computer program we used is available at: www.probability.ca/lupus

http://www.probability.ca/lupus
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FIG. 3. Autocorrelation (ACF) plots for the probit regression model simulation study of Sec-
tion 12.5, comparing the PX-DA (left column) and RCA (right column) algorithms, for each of the
three parameters β0 (top), β1 (middle) and β2 (bottom), showing significantly smaller autocorrela-
tions (and hence better performance) for RCA than for PX-DA.

We found that the RCA algorithm did indeed perform significantly more ef-
ficiently than PX-DA did. As one measure of this, we plotted the autocorrelation
function (ACF) plots of both algorithms for each of the three parameters (Figure 3).
This plot indicates that the autocorrelations for RCA are significantly smaller than
those for PX-DA, thus indicating faster mixing and thus a more efficient algo-
rithm. Indeed, the sums of the nonnegligible positive-lag autocorrelations for the
three parameters were respectively 41.20, 40.87 and 43.87 for PX-DA, but just
10.56, 11.88 and 10.00 for RCA, and again showing much greater efficiency of
RCA.

Another way to think about this is in terms of effective sample size (ESS). This
is a measure of how many true independent samples our algorithm is equivalent to,
in terms of variance of the resulting estimator. The ESS is well known (see, e.g.,
[9], page 2) to be inversely proportional to 1 + 2S where S is the autocorrelation
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sum as above. By this measure, in our simulations the ESS for RCA is larger than
for PX-DA, for the three parameters respectively, by factors of 3.77, 3.34 and 4.23.
This indicates quite significant improvements in efficiency of RCA over PX-DA
for this example.

We conclude that having the possibility to sample from the IM kernel reduces
the autocorrelation within the samples produced by the algorithm and thus signif-
icantly increases the effective sample size. This indicates that the RCA algorithm
(as justified in Corollary 25, by applying Theorem 21) is indeed a superior algo-
rithm for this problem.

APPENDIX: REPLACING THE MINORIZING MEASURE BY π

Recall that assumption (A3) requires that the set K2D \ KD be small for P ,
with some minorizing measure ν∗. It turns out that if assumption (A3) holds for
any ν∗, and if P is reversible, then assumption (A3) also holds for the specific
choice ν∗ = π |K2D\KD

, that is, where ν∗(A) = π(A∩ (K2D \KD))/π(K2D \KD),
with the step size n0 replaced by 2n0. Under the additional assumption of uniform
ergodicity, this fact is Proposition 1 of [22]. For arbitrary reversible chains, this fact
follows from Lemma 5.9 of the Polish doctoral thesis [18], which for completeness
we now reproduce:

LEMMA 26 (Lemma 5.9 of [18]). Let P be a Markov chain transition ker-
nel on (X ,F), with invariant probability measure π . Let C ∈ F such that
π(C) > 0. Assume that C is a small set for P ; that is, for some n0 ∈ N and β > 0
and probability measure ν,

P n0(x,A) ≥ β1C(x)ν(A), A ∈ F .(16)

Then

P n0
(
P ∗)n0(x,A) ≥ 1

4β21C(x)π(A ∩ C), A ∈ F,(17)

where P ∗ is the L2(π) adjoint of P . In particular, if P is reversible with respect
to π , so that P ∗ = P , then

P 2n0(x,A) ≥ 1
4β21C(x)π(A ∩ C), A ∈F .

Hence if K2D \ KD is an n0-small set with minorizing measure ν, and P is
reversible with respect to π , then K2D \ KD is a (2n0)-small set with minorizing
measure π |K2D\KD

.

PROOF OF LEMMA 26. By replacing P by P n0 and P ∗ by (P ∗)n0 , it suffices
to assume that n0 = 1. Now, the Radon–Nikodym derivative dν

dπ
of ν with respect

to π satisfies that
∫
X

dν
dπ

(x)π(dx) = ν(X ) = 1. Hence, for every ε ∈ [0,1], the set

D(ε) :=
{
x ∈ X :

dν

dπ
(x) ≥ ε

}
(18)
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has π(D(ε)) > 0. We then compute that

ν
(
D(ε)c

) =
∫
D(ε)c

dν

dπ
(x)π(dx) ≤ ε

∫
X

π(dx) = ε

and hence

ν
(
D(ε)

) ≥ 1 − ε.(19)

Recall also that the adjoint P ∗ satisfies

π(dx)P (x, dy) = π(dy)P ∗(y, dx).(20)

Now let x ∈ C, and A ∈F with A ∩ C 
= ∅. Using first (16) and then (18),

PP ∗(x,A) =
∫
z∈X

P ∗(z,A)P (x, dz) ≥ β

∫
z∈X

P ∗(z,A ∩ C)ν(dz)

≥ β

∫
z∈D(ε)

∫
y∈A∩C

P ∗(z, dy)επ(dz).

To continue, use (20), then (16) again and finally (19) to obtain

PP ∗(x,A) ≥ βε

∫
z∈D(ε)

∫
y∈A∩C

π(dy)P (y, dz)

≥ β2εν
(
D(ε)

)
π(A ∩ C) ≥ β2ε(1 − ε)π(A ∩ C).

Setting ε = 1/2 yields (17). �
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