
http://wrap.warwick.ac.uk/

Original citation:
Saginbekov, Sain and Jhumka, Arshad. (2014) Efficient code dissemination in wireless
sensor networks. Future Generation Computer Systems, Volume 39 . pp. 111-119.
Permanent WRAP url:
http://wrap.warwick.ac.uk/64378

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work of researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.
Publisher statement:
“NOTICE: this is the author’s version of a work that was accepted for publication in
Future Generation Computer Systems. Changes resulting from the publishing process,
such as peer review, editing, corrections, structural formatting, and other quality control
mechanisms may not be reflected in this document. Changes may have been made to
this work since it was submitted for publication. A definitive version was subsequently
published in Saginbekov, Sain and Jhumka, Arshad. (2014) Efficient code dissemination
in wireless sensor networks. Future Generation Computer Systems, Volume 39 . pp.
111-119. http://dx.doi.org/10.1016/j.future.2013.12.008
A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see
the ‘permanent WRAP url’ above for details on accessing the published version and note
that access may require a subscription.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/29192002?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/64378
http://dx.doi.org/10.1016/j.future.2013.12.008
mailto:publications@warwick.ac.uk

Efficient Code Dissemination in Wireless Sensor NetworksI

Sain Saginbekova,1,∗, Arshad Jhumkaa

aDepartment of Computer Science
University of Warwick

Coventry CV4 7AL, UK

IThis is an extended version of a paper [?] that was published in the Proceedings of the International Conference on Ubiquitous Computing and
Communications (IUCC) 2012.

∗Corresponding author
Email addresses: sain@dcs.warwick.ac.uk (Sain Saginbekov), arshad@dcs.warwick.ac.uk (Arshad Jhumka)

1Tel: +44 24 7657 3780, Fax: +44 24 7657 3024

Preprint submitted to Elsevier September 11, 2013

Abstract

Given the dynamic nature of the mission of a wireless sensor network (WSN), and of the environment in which it is usually

deployed, network reprogramming is an important activity that enables the WSN to adapt to the mission and/or environment.

One important component of a reprogramming protocol is code dissemination and maintenance, during which new code is

propagated to relevant WSN nodes. Several dissemination protocols have been proposed, each with a specific objective in

mind. Protocols such as Trickle minimise dissemination latency by periodically broadcasting advertisement messages at the

expense of energy consumption, while protocols, e.g., Varuna, reduce energy usage by broadcasting advertisement only when

needed. In certain type of WSNs, such as event-based WSNs, Varuna has high code dissemination latency, while the energy

consumption of Trickle does not improve in such WSNs. Further, the efficiency of Varuna drops drastically in the presence

of asymmetric links. In this paper, we propose a new code dissemination protocol, called Triva, for event-based WSNs, by

leveraging the properties of Trickle and Varuna. Our simulation and experimental results show that, for event-based WSNs,

Triva outperforms Trickle and Varuna in terms of energy consumption and code dissemination latency respectively. Triva also

outperforms Trickle and Varuna when there are unidirectional links in the network. We also show that Triva provides excellent

results during bursty traffic in event-based WSNs. Triva is the first information dissemination protocol for event-based WSNs

and that tolerates asymmetric links.

Keywords: Information dissemination; Wireless Sensor Networks; Event-Based; Asymmetric Links;

2

1. Introduction

A wireless sensor network (WSN) consists of a set of resource-constrained devices, called nodes or motes, that commu-

nicate wirelessly with each other. These networks have enabled novel applications such as monitoring and tracking. These

devices are battery-operated, and have limited computational power (e.g., small memory). Given that these networks are

generally deployed unattended for long periods, e.g., buried in bird burrows [11] or collared on roving herds of zebras for

years possibly, they have to adapt either to their environment or to any change in the WSN mission. To achieve this adaptivity,

network reprogramming is an important activity during which new code or parameters2 are uploaded onto the nodes over-

the-air. One important component of network reprogramming is code dissemination, during which the new code is wirelessly

propagated to all the target nodes in the network. Several code dissemination protocols exist (e.g., Trickle [9], MNP [7],

Varuna [14]), each focusing on specific dissemination aspects.

Any code dissemination protocol needs to satisfy some important properties: (i) energy efficiency: wireless communication

has a high energy cost, and primarily defines the system lifetime. Where laptops or mobile phones can be recharged, sensor

networks die due to energy exhaustion. Thus, an effective code dissemination protocol for reprogramming must send as few

packets as possible, while ensuring that all target nodes receive the code update. (ii) dissemination latency: while the new

code is being propagated, the network may be in an erroneous, useless state, since interacting nodes may have different code

versions running, possibly running different missions. In this case, transition time is wasted time, leading to a waste in energy.

Therefore, an effective code dissemination protocol must also propagate new code quickly. The code dissemination protocol

typically consists of two components, namely (i) a code maintenance part and (ii) a code download part. The code maintenance

enables nodes to determine if they need to download new code or not, whereas the code download part enables relevant nodes

to download the code.

To achieve the first goal, viz. energy efficiency, protocols control energy expenditure in various ways, especially during

code maintenance. For example, energy efficiency is achieved by either reducing the number of messages being sent [9] (using

some form of “polite gossip”) or using some well-defined duty-cycling [7] or by integrating the version inconsistency detection

during payload communication, thereby avoiding special packet transmission [14]. On the other hand, one way of reducing

the code dissemination latency is to periodically perform a “polite gossip”, i.e., periodically perform a code maintenance (to

determine whether any node needs code updating). However, there seems to be a tradeoff between dissemination latency

and energy efficiency: specifically, to reduce latency, version inconsistency needs to be detected fast, requiring periodic

transmission of code information. On the other hand, to reduce energy consumption, inconsistencies need only be detected

“when needed”, i.e., when nodes communicate. Trickle [9] is an algorithm that achieves low dissemination latency through

periodic advertisement of the new code. However, there is a steady expenditure of energy, even when the network is in a

steady state (i.e., when no node needs updating). This is due to the proactive step to detect inconsistencies. On the other hand,

in Varuna [14], inconsistencies are detected during application message communication. In this case, no additional energy is

spent in the steady state.

WSN applications can be classified according to their data delivery model as either continuous (periodic), event-driven,

observer-initiated or hybrid [18]. For event-based WSNs, messages are sent only when a given event is detected, over a time

period [1, 22]. In applications like forest fire detection and flood detection, when a node detects a fire or a flood, it must

2We will call a new program, new parameters or new values as new code.

3

A

B

C

D

E

Ne

Nd

Nc

Nb

Na

(a) Multihop network divided into regions ac-
cording to hop distance from the sink.

A

B

C

D

E

(b) Network after communications of nodes in
region B with the nodes in region A.

Figure 1: Varuna in action.

immediately send an alarm to the sink for a certain time. However, if events of interest are far between, i.e., the occurrences of

the events are rare, then any code dissemination protocol that are based on regular data communication, e.g., Varuna, can suffer

from high dissemination latency. If data packets are sent rarely, like in such event-based sensor networks, nodes further away

from the sink will update their code very late, depending on how frequently data packet is sent. Moreover, in Varuna, most

of the application data will be discarded by intermediate nodes, during convergecast, due to code incompatibilities, thereby

reducing the yield of the network. Figure 1(a) illustrates these drawbacks of Varuna. For the sake of simplicity, consider a

multihop network in which nodes located in the same region labeled with X have the same number of hops away from the

sink. The nodes in neighbouring regions have one hop distance. Assume that triangular node located in the corner is sink, the

rectangular nodes in region A are updated nodes and circular nodes in other regions are not updated. According to Varuna

protocol, nodes in regionsB,C,D andE communicate and accept each others data because they have the same version codes.

However, since nodes in region A have bigger version numbers than the nodes in other regions, the nodes in region A should

not communicate with other nodes. They will not forward messages received from nodes in B and will discard them. They

detect inconsistency and let the nodes in region B update their code. For example, assume that a node Ne in region E has

detected a fire and wants to send an alarm message to the sink immediately. It sends to a node Nd in D, which accepts and

forwards it further to a node Nc in C. Nc forwards to node Nb. When data is forwarded from Nb to a node Na in region A,

Na will cancel it because node Nb has lower version than Na. In other words, the data originated at Ne will be waste after

flowing through the entire network. Similarly, many packets originated at regions B, C, D and E will be discarded since the

time when new code is injected. Therefore, when events are rare, leading to bursts of data packets, Varuna not only waste

resources such as energy and bandwidth, but also increases dissemination latency and delivery latency. Figure 1(b) shows the

network after communication of nodes in region B with the nodes in region A.

Further, in WSNs, link quality can fluctuate[2], causing asymmetric links to exist in the network, and this can be due

to several reasons. For example, the network can transmit low-power signals, thus creating links that are often asymmetric.

The link quality depends strongly on hardware inaccuracy and environmental factors [2]. Hardware inaccuracy may create

asymmetric links between nodes [2]. In [10], the authors observed that transceiver frequency mismatch can also be a reason

for asymmetric links. Further, the duration of these asymmetric links may be very small (i.e., transient) or very long (i.e.,

permanent) [12]. Protocols that assume bidirectional links may not work or may not be efficient in networks with asymmetric

links. Specifically, Varuna will not work efficiently if asymmetric links exist in the network since the protocol is based on

bidirectional communication. Asymmetric links create several major problems in wireless sensor networks [19]. Overall,

4

Trickle spends a lot of energy, even in steady state, for code maintenance, while Varuna, which addresses the shortcomings of

Trickle, does not perform well in presence of asymmetric links or if the network application is event-based.

Thus, there is a need for a code dissemination protocol performs well in event-based WSNs and that tolerates asymmetric

links. Such a protocols needs to have the following properties: (i) low dissemination latency as Trickle, and (ii) does not incur

steady energy expenditure during steady state, as Varuna. To achieve this, we propose a new protocol, called Triva, which is

an adaptive code dissemination protocol that leverages the properties of Trickle and Varuna. Specifically, when dissemination

is needed, Triva behaves like Trickle, but when dissemination is not needed (maintenance is needed), it behaves like Varuna.

Our results show that Triva outperforms both protocols in general. Further, Triva outperforms both Trickle and Varuna in

presence of asymmetric links. We also show that Triva handles bursty traffic much better than Varuna.

Our paper is structured as follows: We present an overview of related work in Section 2. We present our network model

in Section 3. We propose Triva, an adaptive algorithm for event-based WSNs in Section 4. We explain our simulation and

experimental setup in Section 5, and discuss our results in Section 6. Finally, we conclude the paper in Section 7.

2. Related Work

2.1. Overview of Related Work

There exist several dissemination protocols for updating codes. While some of the protocols deliver complete binary image

of the code like [3], [16], [5], [7], some deliver only the difference between the new code and the old code [6, 15]. Also there

exist protocols which deliver tasks[4], network parameters[20], and queries[23].

In XNP[3], the base station broadcasts the code image to the nodes which are in the coverage range of it. The nodes

which are not in the range cannot receive the code image. The protocol proposed in MOAP[16] is a multi-hop dissemination

protocol, which can deliver code images to nodes that are several hops away from the base station. Each node forwards the

code image further after receiving the complete code image. Deluge[5] allows large data transmission by fragmenting the

data into fixed-size pages. It also supports pipelined page transmission to make dissemination faster. Unlike MOAP, nodes in

Deluge should not wait for the complete code image before forwarding it. The authors of MNP[7] proposes another protocol

which, like Deluge, fragments the code image and uses a pipelining mechanism. However, unlike Deluge, MNP selects the

sender of the code such that there is at most one sender at any time in a neighbourhood, i.e., a sender with the highest coverage

will be chosen to avoid message collisions. A sender selection mechanism reduces collisions and avoids the hidden terminal

problem. Also, in MNP, some of the nodes can go to the sleep mode to save energy whenever there is no data to receive or

transmit.

Because of the features of wireless sensor networks, e.g., transient link failures and node mobility, not all nodes will update

their code to the newest one during the dissemination phase. Some of the nodes may not receive any message at all during the

dissemination period because of transient link failures or node rejoins. To ensure the delivery of the updated code to all nodes

in a network, any updated node should continuously check the consistency of its neighbours, by broadcasting advertisement

messages. Blindly broadcasting advertisement messages causes the so-called “broadcast storm problem” [13]. There are two

algorithms which address this problem. The first one is Trickle [9], which addresses this problem by using a “polite gossip”

policy. In Trickle, a node suppresses its advertisement message transmissions when it hears a number of messages identical

to its own. The second algorithm that addresses the broadcast storm problem is Varuna [14], which supports code update

5

maintenance. Varuna consumes constant energy in steady phase when the network is in a steady state, i.e., when all nodes

have the same code.

Since our proposed algorithm Triva leverages the properties of Trickle and Varuna, we will discuss both of these algorithms

in more details in the subsequent sections.

2.2. Trickle

In Trickle, every node broadcasts advertisement messages that contain a metadata that includes the version number of the

code, at most once per period given between [τ /2, τ]. If a node hears more than k identical metadata before it transmits its

advertisement, it suppresses its broadcast and doubles the value of τ up to τh, which is an upper bound for τ . If it hears a

different metadata, τ is set to τl, which is a lower bound for τ . By increasing the broadcast interval, τ , Trickle sends less

number of advertisement messages, thus saving energy. By decreasing τ ,Trickle can update nodes more quickly. So, there

is a trade-off between dissemination latency and energy to be achieved when selecting τ . As noted in [14], in addition to the

dissemination latency, increasing the value of τ to large values causes some other problems such as message communication

between two nodes, which have different code versions. In Trickle, the number of advertisement messages increases linearly

as a function of time, as the dissemination is irrespective of the mission of the WSN application.

2.3. Varuna

Varuna[14] is another protocol which supports code update maintenance. Varuna saves energy in the network steady phase,

a phase where no dissemination is being done as all the nodes have the same code version. Unlike Trickle, where there is a

linear increase of energy consumption, energy consumption in Varuna is constant in the steady phase. To achieve this constant

energy consumption in the steady phase, nodes, in Varuna, send advertisement messages only when there is a change in their

neighbourhood topology or metadata since their last advertisement transmissions. To learn about this change, each node

stores its neighbour IDs in its neighbourhood table. A node stores only the IDs of neighbours which are consistent with it, i.e.,

neighbours that have the same code as it. For example, if a node N1 sends a message to a node N2, N2 checks the existence

of N1’s ID. If it exists in the table, it is assumed to be consistent with the N2, and then N2 does not send an advertisement

message. Otherwise, N2 checks the consistency of its code with the node N1 by sending an advertisement message. If the

version numbers are equal, N2 stores the ID of N1 in its table. If they are different, the node which has bigger version number

sends an advertisement message to let other nodes request and download the code with the bigger version. After receiving the

new code, the node resets its table (as it has to detect new consistent nodes). When all nodes receive the newest code, every

node’s table will contain the IDs of all neighbouring nodes. This state stops sending advertisement messages, which makes

energy drain constant in steady phase after some time. In Varuna, a node detects inconsistency only if it receives a message

from a node which has smaller version number. It means that, a node will not update its code unless it communicates with

a node with new version number. This makes the update latency, the time from the injection of new code to the time when

all nodes receive the new code, dependent to a communication rate of a node. Therefore, update latency in Varuna increases

linearly with data communication rate or with the event time if the application is event based.

2.4. Asymmetric links

In wireless networks, especially in networks which transmit low-power signals, links are often asymmetric. The link

quality, as mentioned in [2], have a strong dependency on hardware inaccuracy and environmental factors. Hardware inaccu-

6

racy may also create asymmetric links between nodes [2]. In their experiments[10], they observed that transceiver frequency

mismatch can also be a reason for asymmetric links. And these asymmetric links may be transient or permanent[12].

Many proposed protocols for WSNs in the literature assume symmetric or bidirectional links, i.e, two nodes can receive

each others messages. However, as mentioned above, the links can be asymmetric or unidirectional. Therefore, they may not

function properly, may be inefficient in terms of different metrics such as energy and delay as intended, or they may not work

at all.

There are also protocols which deal with asymmetric links. In[17], authors propose two WSN MAC protocols that increase

reliability, connectivity and network lifetime by utilizing unidirectional links. In[21], authors propose a framework which

allows routing protocols designed for bidirectional links to function in the presence of unidirectional links. Another energy

efficient reliable transport protocol for WSNs which overcomes the negative impact of asymmetric links is presented in[10].

One of the most important performance criteria when designing WSNs protocols, may it be a routing protocol, MAC

protocol or other layer protocol, is energy conservation. And one of the reasons of energy waste is retransmission of packets

due to reasons such as collisions and asymmetric links as in Varuna. Recall that, in Varuna, a node sends ADV packets until

it receives a response for that. The node may never receive the response, if the link beetween them is unidirectional, in other

words, if there exists only downlink.

3. Network Model

We define a wireless sensor node as a computing device equipped with a wireless interface and associated with a unique

identifier. The node has limited computational resources, such as limited memory and power. A wireless sensor network

is a collection of wireless sensor nodes that communicate via the wireless interfaces, and is modelled as a directed graph

G = (V,A) where V is a set of N wireless sensor nodes (i.e., |V | = N) and A is a set of arcs, representing the direction of

message travel. Each directed link (m,n) represents a pair of distinct nodes, and a directed edge exists between two nodes

(m,n) only if node n can receive a message from node m. A node n is said to be a 1-hop neighbour (or neighbour) of

m if (m,n) ∈ A. We denote by M the set of m’s neighbours. We say that two nodes m and n can collide at node p if

(m, p) ∈ A ∧ (n, p) ∈ A3. Our model allows the network to have asymmetric links. In such a case, any signal with a low

signal-to-noise ratio (SiNR) such that the signal is not correctly received at an intended receiver can be omitted from the graph.

However, we also assume that the network remains connected in that every node has at least one arc incident on it and at least

one outgoing link, i.e., ∀m ∈ V ∃p, q · (m, p) ∈ A ∧ (q,m) ∈ A.

We assume that there are two special types of messages: (i) An advertisement message, which is broadcast by a node

to inform its neighbourhood about the version number of the code it has, as is the case with existing code dissemination

protocols, and (ii) a request message that is used by a node to request new code from one of its neighbours.

4. Triva: Efficient Algorithm for Code Dissemination in Event-Based WSNs

In this section, we explain our proposed protocol, Triva, and subsequently give a formal description of its working.

Triva is a code maintenance protocol, as part of a code dissemination protocol intended specifically for event-based wire-

less sensor networks. It works in such a way so as to enable nodes to update their code quickly, very much like Trickle.

3We will say two nodes m and n can collide if such a node p exists

7

Varuna’ Trickle’
Update completed

count(th) > q

Trickle

+ Neighbourhood table

+ count(th)

MOODy
(2’) HELP

Quiescent

Disseminate

Figure 2: The state machine for Triva, which is a combination of Trickle’ and Varuna, where Trickle’ is obtained by adding a Neighbourhood table and
variable count(τh) to Trickle.

However, unlike Trickle, it does not consume much energy in steady state. Specifically, it consumes little energy, like Varuna,

when there is no new code in the network. Further, when there unidirectional links exist in the network, Varuna’s energy

efficiency drops drastically as redundant message transmissions are necessary. Triva tries to address the unidirectional link

problem by making use of other neighbours, circumventing the problem when a relevant neighbour cannot be reached.

Informally, our protocol leverages the working of both Trickle and Varuna to achieve efficient dissemination and works in

the following way: When a node N1 updates its code, it tries to quickly disseminate the code to its neighbours. N1 broadcasts

advertisement messages at a random time in given period, as in Trickle. If, during these transmissions, a neighbouring node

N2 requests the new code, N1 sends the new code toN2. However, unlike in Trickle, ifN1 receives an advertisement message

with the same version number from N2, it saves N2’s ID in its neighbourhood table. After broadcasting advertisement

messages for some time, the node stops broadcasting and acts like in Varuna in the steady phase to save energy. In Triva, there

is no concern with selecting an upper bound value τh (see Section 2.2) as, in Triva, a node sends advertisement message, as in

Trickle, only for a short period after the node has updated its code.

Specifically, we extend Trickle with some Varuna-like variables, such as neighbourhood table to reduce the broadcasting

of advertisement messages. Then, in steady state, Triva behaves as Varuna, while in the dissemination phase, it behaves like

Trickle. Further, in the MOODy state of Varuna’, we extend the working of Varuna to handle asymmetric links, through HELP

messages (see Figure 2).

4.1. Formal protocol description

Figure 2 illustrates the state machine of our protocol, which we now detail.

• Trickle’ state:

When a node N1 enters this state, it sets counter, which is a Trickle variable, to 0, and sets τ to τl. In this state, N1

sends an advertisement message periodically at a random time between [τ /2, τ], if it has not heard k advertisement

messages about the same version number, i.e., if counter< k, otherwise, it doubles τ up to τh.

– If node N1’s τ becomes τh, count(τh) is incremented by one.

8

N1 N2

N3

ADV

N4 N5

N6

N2
N7
…

N7

N1
N4
…

N8
N4
…

N8

Packet

Figure 3: N3 is addressing the asymmetric link between N1 and N2. There exists only one link between N1 and N2: the link from N2 to N1

– If a node N1 receives an advertisement message from a node N2, N1 compares the received version number with

its own. If the version number of N2 is bigger, then N1 requests the code after a randomly chosen time between

[0, R] seconds, then downloads the code, and updates from N2. If the version number of N2 is smaller, then N1

broadcasts advertisement messages. If the version numbers are equal and ifN2 does not exist in its neighbourhood

table, N1 adds N2 in its table, then doubles τ up to τ ′h and increments counter by one.

– If a node N1 receives a request message from N2, N1 sends the new code to N2.

– If a node N1 updates its code from N2, it first clears its neighbourhood table and then adds N2 in its table. It sets

counter to 0, sets q to 0 and sets τ to τl.

– If, during τ time, N1 does not send any advertisement message, it doubles τ up to τh. If τ is already equal to τh,

it increments countQ by one and sets counter to 0.

– If count(τh) > q, N1 sets counter to 0, count(τh) to 0 and goes to Varuna’ state.

• Varuna’:

– If a node N1 updates its code from a node N2, it clears its neighbourhood table and adds N2 in its table, and then

it goes to Trickle’ state.

– If a node N3 receives an advertisement message destined to N2 from a node N1, and if N2 is in the neighborhood

table of N3 and if N1’s version number is equal to N3’s version number, then N3 sends a HELP packet (see

Figure 2), which includes the ID of N2, to N1 with a propability P after random time between [0, 1] second.

– If a node N1 receives a HELP packet that is destined to itself, then N1 extracts the node ID N2 from the packet

and adds it into its neighborhood table if N2 does not exist in the table (see Figure 3).

– Otherwise, Varuna’ behaves as Varuna.

• Download state:

– After sending a new code, a node returns to the previous state.

– After downloading a new code, a node goes to the Trickle’ state.

9

4.2. Fast dissemination

In Triva, every node tries to quickly disseminate its code, whenever it receives a new code. It does so by broadcasting

advertisement packet periodically between [τ /2,τ]. Since a node broadcasts only a limited number of advertisement packets, τ

can be a small number. Therefore, the amount of energy spent sending advertisement messages is bounded, unlike in Trickle.

4.3. Constant energy consumption

In Triva, a node eventually fills its neighborhood table with the IDs of all of its neighbours, which means that all its

neighbouring nodes have received the new code. Therefore, like in Varuna, in this steady phase, there is no advertisement

message transmission, thereby limiting the energy expenditure due to advertisement broadcasts.

4.4. Addressing asymmetric/unidirectional links

In Triva, a node tries to help two of its neighbouring nodes that may have an asymmetric link between them. It does so by

informing them about their code consistency if the node’s code is consistent with those two nodes. Figure 3 depicts the Triva

process of addressing the unidirectional links between N1 and N2: Node N1, after receiving any packet from N2, checks if

N2 exists in its neighbourhood table. If not, then N1 sends an advertisement message to N2. However, N2 will not respond as

it cannot hear packets from N1 (due to asymmetric link). If N3 and N4 can overhear messages between the nodes, then they

can help N1 receive information about N2’s version number, as long as their codes are consistent with both N1’s and N2’s

code. They do it by sending a HELP packet, which contains the ID of N2, to N1. However, since there may be several nodes

that can hear both N1 and N2, they send the HELP packet with a probability P .

In addressing the asymmetric link problem, we assume that the two nodes which have asymmetric links between them

share a common neighbour. If there is no such a node, then Triva will not be executed, thereby making no message overhead.

Trickle will not be affected by the presence of asymmetric links as, in Trickle, nodes independently send advertisement

packets periodically. In the case of Varuna, using the above example, N1 will send advertisement packets i times periodically

until it gets a response from N2. N1 does this every time it receives any data packet from N2. Therefore, in Varuna, a node

transmits i ADV packets periodically, whenever it gets a data packet and there is no uplink. Thus, if the nodes in the network

send packets periodically every T time, then each node transmits O(A ∗ i ∗ T) advertisements packets even when there is no

new version in the network. Here, A is the number of unidirectional links (downlinks) between a node and its neighbors.

5. Simulation Setup

q 15 τ ′h 20 sec TMOODY 60 sec DIS RAND 2 sec
τl 1 sec k 2 τv 8 sec ADV RAND 2 sec
τh 60 sec b 1, 30, 60 R 1 sec P 0.5

Table 1: Parameters for the simulation

We perform TOSSIM[8] simulations on a 20x20 grid network to evaluate Triva. We used a network topology generator

tool given on tinyos.net to construct the network. We set the distance between neighboring nodes to 10 feet. By appropriately

choosing the power decay value for the reference distance, we constructed the network such that a node has a communication

radius of around 30 feet. Each node is given a noise model from the ”casino-lab” noise trace file, which is real noise trace

10

taken in the Casino Lab of Colorado School of Mines. The file itself can be found in Tossim/noise folder. The parameter

values used in our simulation are given in Table 1, while all other parameter values used are the same as in Trickle and Varuna.

The value of τ ′h can be set to the value of τh. However, since Triva runs Trickle for a short period, we keep the value

of τ ′h small. The value of q can be set according to how fast a node’s neighborhood table can be filled with its neighboring

nodes’ IDs. Simulations show that almost all (≥ 90%) neighboring nodes’ IDs can be saved when q is between 15 to 20. The

parameter τv is τ used in Varuna. The probability P of sending a HELP packet can be set according to the density of the

network. If the network is dense, the P can be set to a small value. If the network is sparse, then P can be set to larger values.

In our simulations, we set P to 0.5.

In our simulations, we ran three protocols: (i) Triva, (ii) Trickle and (iii) Varuna, to assess (i) the number of advertisement

packets transmitted, (ii) the total number of discarded data packets (relevant for Varuna) from the time when the new version

is injected and (iii) the completion time or dissemination latency, the time from the point when a new version is injected to the

point when the last node receives the update. We simulated three scenarios:

1. Periodic traffic : Each node periodically sends data packet, with the period randomly selected between [0 . . . 1] minute.

2. Event-based traffic : Each node sends only one packet at a randomly selected time between [λ, λ+ 1] minute, where λ

is the time the event occurred. Events occur every λ minutes.

3. Event-based bursty traffic [24] : Each node sends b packets, one packet per second, after a randomly selected time

between [λ, λ+ 1] minute, where λ is the time the event occurred. Events occur every λ minutes.

To evaluate the performance of the three protocols on networks with different link symmetry, we simulated them on a

network (i) with symmetric links and (ii) with asymmetric links.

In all our simulations, all nodes boot randomly in the first minute and a packet with a new version is injected into the

top-left node (the sink) after 2 minutes. We also assume that the network starts in a “Varuna” state.

6. Results

We assume that Triva is in the Varuna’ state (see Figure 2) at the beginning of execution of the simulations. We show the

simulation results of Triva, Varuna and Trickle.

6.1. Metrics

In our simulations, we used the following metrics: (i) the number of advertisement packets transmitted, as the number

of transmissions is directly related to energy consumption, (ii) the number of discarded application, packets as this metric

captures the amount of resources wasted as bandwidth and energy, and (iii) completion time (dissemination latency), which is

another important criteria in network reprogramming, to enable the network to work efficiently.

6.2. Number of Advertisement Packets

Figure 4 shows the number of advertisement packets transmitted for completely disseminating the code update in the

network. Figure 4(a) shows the number of advertisement packets where a node periodically sends one data packet, with the

period randomly chosen between [0 . . . 1] minute in the network with symmetric links. As can be observed, the number of

advertisement packets Trickle sends increases linearly with time, even when there is no new code in the network, while the

amount of transmitted advertisement messages in Varuna decreases eventually. As it can be observed from Figure 4(a), in

11

0

10000

20000

30000

40000

50000

60000

0 100 200 300 400 500 600 700 800 900

Triva

Trickle

Varuna

(a) Scenario 1 - Periodic Traffic, Symmetric Links: Data
packets generated randomly every 0 . . . 1 minute for periodic
traffic

0

10000

20000

30000

40000

50000

60000

0 100 200 300 400 500 600 700 800 900

Triva

Trickle

Varuna

(b) Scenario 2 - Periodic Traffic, Asymmetric Links: Data
packets generated randomly every 0 . . . 1 minute for periodic
traffic.

Figure 4: The number of advertisement packets during dissemination.

Triva, the transmission of advertisement and HELP packets stop after some time and never transmitted again, as long as there

is no new code in the network. In the network with symmetric links, Triva sends advertisement and HELP packets 10 times

less than Trickle and 3 times less than Varuna.

Figure 4(b) shows the number of advertisement packets transmitted in the network with high asymmetric links. Here, we

can also see that Triva transmits advertisement packets 10 times less than Trickle and 7 times less than Varuna.

In Figure 6, Triva, and Varuna are compared in terms of the number of advertisement packets sent, when each node in the

network sends 30 packets back-to-back at 1 packet/second, with λ = 5 minutes. In this figure, Triva again stops transmitting

advertisement packets after some time.

6.3. Number of Discarded Application Packets

Figure 5 shows the number of discarded application data packets after the time when a packet with a new version is

injected, i.e., after 2 minutes. Figure 5(a) shows the values obtained from the network in which a node periodically sends

only one, i.e, b=1, data packet at randomly selected time between [λ, λ + 1] minutes. In both Triva and Varuna, values are

relatively high when λ=0, as the randomly selected time by a node could be very small such as 150 ms, which forces nodes to

send more data packets in a small amount of time. This is shown in Figure 5(a).

In Figure 5(b), a node sends b=60 packets back-to-back every 1 second. The number of data packets discarded by Varuna

remains constant, with increasing idle time. On the other hand, the number of dropped packets in Triva is very low, due to the

fact that the nodes quickly obtain the updated code.

Overall, when the number of discarded data packets is low, it captures the fact that the all nodes have the same code

version, i.e., code dissemination has completed quickly.

6.4. Code Dissemination Latency

Figure 7 shows the time taken from the point when a packet with new version is injected to the point when the last node

in a network receives that packet, i.e., the code dissemination latency. We investigated the latency under two scenarios: (i)

periodic traffic, and bursty traffic. Triva and Trickle have very low dissemination latency (for both scenarios), whereas Varuna

has increasing latency with increasing idle time.

12

0

200

400

600

800

1000

1200

1400

0 1 2 3 4 5 6 7 8 9

N
u

m
. o

f
d

is
ca

rd
e

d
 d

at
a

p
ac

ke
ts

Event period (min)

Varuna

Triva

(a) Scenario 3 - Event-Based Traffic: (λ, λ+1) minutes, λ
represents x-axis, Data packets: One data packet is sent for
every event.

0

500

1000

1500

2000

2500

3000

3500

0 1 2 3 4 5 6 7 8 9

N
u

m
. o

f
d

is
ca

rd
e

d
 d

at
a

p
ac

ke
ts

Event period (min)

Varuna

Triva

(b) Scenario 4: Event-Based Bursty Traffic: (λ, λ+1) min-
utes, λ represents x-axis, Data packets: 60 packets are sent at
1 packet/second.

Figure 5: Number of discarded data packets after injecting new code.

0

5000

10000

15000

20000

25000

30000

35000

40000

0 100 200 300 400 500 600 700 800 900

Triva

Varuna

Figure 6: Scenario 5 - Bursty Traffic: 30 packets are sent at 1 packet/second, λ = 5 minutes for bursty traffic.

6.5. Experimental Results

We have implemented Triva and Varuna on TelosB platform based nodes. Our implementation of Triva takes 989 bytes

in memory, which includes two tables, each of size 20 entries of 2 bytes, and other algorithm related variables. To have an

asymmetric link between nodes, we set the power levels of all nodes to 31 except one which is set to 2. In our experiment, we

used 11 nodes and we measured the number of advertisement packets. Table 6.5 shows the results of our experiment. Triva,

after around 100 minutes, stopped sending advertisement packets at 104. On the other hand, Varuna, about every minute,

sends 11 advertisement packets.

Triva 104
Varuna 661

Table 2: The number of transmitted advertisement packets.

7. Conclusion

In this paper, we proposed a new code dissemination protocol called Triva that leverages the properties of two well-known

code dissemination protocols, namely Trickle and Varuna. It adapts both Trickle and Varuna to achieve energy efficiency and

low dissemination latency in event-based sensor networks and in the presence of asymmetric links. Our results show that Triva

13

0

500

1000

1500

2000

2500

0 1 2 3 4 5 6 7 8 9

C
o

m
p

le
ti

o
n

 T
im

e
 (

se
c)

Event period (min)

Triva

Trickle

Varuna

VarunaB

Figure 7: Scenarios 6 and 7: Completion time as a function of λ, the event period. Scenario 1: Data packets generated every (0 . . . 1) minute, Scenario 3: 30
packets per event at 1 packet/second.

outperforms both Trickle and Varuna (i) in periodic traffic, (ii) event-based traffic, (iii) bursty traffic, and (iv) in networks with

asymmetric links.

References

[1] A. Arora and et al. A line in the sand: A wireless sensor network for target detection, classification, tracking. Computer

Networks (Elsevier), 46(5), 2004.

[2] Nouha Baccour, Anis Koubaa, Luca Mottola, Marco Zuniga, Habib Youssef, Carlo Boano, and Mario Alves. Radio Link

Quality Estimation in Wireless Sensor Networks: a Survey. ACM Transactions on Sensor Networks, 2011.

[3] Inc. Crossbow Technology. Mote in-network programming user reference, www.tinyos.net/tinyos-1.x/doc/xnp.pdf.

2003.

[4] O. Gnawali, K. Jang, J. Paek, M. Vieira, R. Govindan, B.Greenstein, A.Joki, D.Estrin, and E. Kohler. The tenet archi-

tecture for tiered sensor networks. In SenSys, pages 153–166, 2006.

[5] Jonathan W. Hui and David Culler. The dynamic behavior of a data dissemination protocol for network programming at

scale. In Proceedings of the 2nd international conference on Embedded networked sensor systems, SenSys ’04, pages

81–94, 2004.

[6] Jaein Jeong and David Culler. Incremental network programming for wireless sensors. In IEEE Sensor and Ad Hoc

Communications and Networks (SECON, pages 25–33, 2004.

[7] Sandeep S. Kulkarni and Limin Wang. Mnp: Multihop network reprogramming service for sensor networks. In In

Proceedings of the 25th International Conference on Distributed Computing Systems (ICDCS, pages 7–16, 2005.

[8] Philip Levis, Nelson Lee, Matt Welsh, and David Culler. Tossim: accurate and scalable simulation of entire tinyos

applications. In Proceedings of the 1st international conference on Embedded networked sensor systems, SenSys ’03,

pages 126–137, 2003.

14

[9] Philip Levis, Neil Patel, David Culler, and Scott Shenker. Trickle: a self-regulating algorithm for code propagation and

maintenance in wireless sensor networks. In Proceedings of the 1st conference on Symposium on Networked Systems

Design and Implementation - Volume 1, pages 2–2, 2004.

[10] Ren Ping Liu, Zvi Rosberg, Iain B. Collings, Carol Wilson, Alex Y. Dong, and Sanjay Jha. Overcoming radio link

asymmetry in wireless sensor networks. In Proceedings of the IEEE 19th International Symposium on Personal, Indoor

and Mobile Radio Communications, PIMRC 2008, 15-18 September 2008, Cannes, French Riviera, France, pages 1–5.

IEEE, 2008.

[11] A. Mainwarig and et al. Wireless sensor networks for habitat monitoring. In Proceedings WSNA, pages 88–97, 2002.

[12] Luca Mottola, Gian Pietro Picco, Matteo Ceriotti, Ştefan Gunǎ, and Amy L. Murphy. Not all wireless sensor networks

are created equal: A comparative study on tunnels. ACM Trans. Sen. Netw., 7(2):15:1–15:33, September 2010.

[13] Sze-Yao Ni, Yu-Chee Tseng, Yuh-Shyan Chen, and Jang-Ping Sheu. The broadcast storm problem in a mobile ad hoc

network. In Proceedings of the 5th annual ACM/IEEE international conference on Mobile computing and networking,

MobiCom ’99, pages 151–162, 1999.

[14] Rajesh Krishna Panta, Madalina Vintila, and Saurabh Bagchi. Fixed cost maintenance for information dissemination in

wireless sensor networks. In Proc. SRDS, pages 54–63, 2010.

[15] N. Reijers and K. Langendoen. Efficient code distribution in wireless sensor networks. In Proc. of the 2nd Int. Conf. on

Wireless Sensor Networks and Applications (WSNA), 2003.

[16] Thanos Stathopoulos, John Heidemann, and Deborah Estrin. A remote code update mechanism for wireless sensor

networks. Technical Report CENS-TR-30, UCLA, Center for Embedded Networked Computing, 2003.

[17] Jorg Nolte Stephan Mank, Reinhardt Karnapke. Mac protocols for wireless sensor networks: Tackling the problem of

unidirectional links. International Journal on Advances in Networks and Services, 2(4):218–229, 2009.

[18] S. Tilak, N. Abu-Ghazaleh, and W. Heinzelman. A taxonomy of wireless micro-sensor network models. ACM Mobile

Computing and Communication Review, 6(2), 2002.

[19] T.Masuzawa and S.Tixeuil. Stabilizing locally maximizable tasks in unidirectional networks is hard. In Proceedings of

International Conference on Distributed Computing Systems, 2010.

[20] Gilman Tolle and David E. Culler. Design of an application-cooperative management system for wireless sensor net-

works. In EWSN, pages 121–132, 2005.

[21] R. Chandra V. Ramasubramanian and D. Mosse. Providing a bidirectional abstraction for unidirectional ad-hoc networks.

In In Proceedings of the IEEE Infocom, 2002.

[22] Geoff Werner-Allen, Konrad Lorincz, Jeff Johnson, Jonathan Lees, and Matt Welsh. Fidelity and yield in a volcano

monitoring sensor network. In Proceedings of the 7th symposium on Operating systems design and implementation,

OSDI ’06, pages 381–396, 2006.

15

[23] Kamin Whitehouse, Gilman Tolle, Jay Taneja, Cory Sharp, Sukun Kim, Jaein Jeong, Jonathan Hui, Prabal Dutta, and

David Culler. Marionette: using rpc for interactive development and debugging of wireless embedded networks. In Proc.

IPSN, 2006.

[24] H. Zhang, A. Arora, Y. Choi, and M. Gouda. Reliable bursty convergecast in wireless sensor networks. Computer

Communications, 30(13), 2007.

16

