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Maintaining data availability is one of the biggest challenges in decentralized online social networks (DOSNs). The existing work
often assumes that the friends of a user can always contribute to the sufficient storage capacity to store all data. However, this
assumption is not always true in today’s online social networks (OSNs) due to the fact that nowadays the users often use the smart
mobile devices to access the OSNs. The limitation of the storage capacity in mobile devices may jeopardize the data availability.
Therefore, it is desired to know the relation between the storage capacity contributed by the OSN users and the level of data
availability that the OSNs can achieve.This paper addresses this issue. In this paper, the data availability model over storage capacity
is established. Further, a novel method is proposed to predict the data availability on the fly. Extensive simulation experiments have
been conducted to evaluate the effectiveness of the data availability model and the on-the-fly prediction.

1. Introduction

In the last decade, online social networks (OSNs), such
as Facebook [1], Twitter, and Sina Weibo [2], have gained
extreme popularity withmore than a billion users worldwide.
OSNs allow a user to publish the data to all his friends in his
friend circle.

Currently, the OSN platforms are typically centralized,
where the users store their data in the centralized servers
deployed by the OSN service providers.The service providers
can utilize and analyze these data to know the users’ private
information, such as interest and personal affairs, and in
the worst case may sell this information to the third party.
Therefore, the current centralized online social networks
(COSNs) have raised the serious concerns in privacy [3–6].

In order to address the data privacy issue, the decentral-
ized online social networks (DOSNs) have been proposed
recently [7–11]. Although the DOSN products [12] are not as
popular andmature as theOSNproducts [1], DOSN is indeed
under active research and development [13–17]. In DOSNs,
in order to protect the data privacy the centralized servers

are bypassed and the data published by a user are stored
and disseminated only among the friend circle of the user
[9, 10]. Although DOSNs can help protect the data privacy,
maintaining data availability becomes a big challenge. This is
because if a friend of the user is offline, the data stored in the
friend cannot be accessed by other friends.

In order to achieve good data availability in DOSN,
the data replication approach has been widely used. In this
approach, a certain number of data replicas are created for
each data item published by a user and these data replicas
are stored in the user’s friend circle. By doing so, if a friend
is offline, the data in this offline friend node can be accessed
through the replicated data stored in other friend nodes.

In the existing data replication work in DOSN, it is
typically assumed that the friends of a user are always capable
of contributing sufficient storage capacity to store all the
published data [9, 14, 18]. This assumption is not ideal,
especially in the current modern times. Nowadays, the users
often use smart mobile devices, such as smart phones, to
access the OSN services. The resources in the mobile devices
are much more limited than the desktop computers used in
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the “old fashioned” style of accessing OSNs. Moreover, the
number of the friends in a friend circle is limited (typically
less than 200) [19]. Therefore, it is desired to know what
level of data availability can be achieved given the total
storage capacity contributed by the friend circle.However, the
existing work in DOSN has not yet conducted quantitative
research in this aspect.

This paper aims to address the above issue and build a
quantitative model to capture the relation between the total
storage capacity contributed by the friends and the level of
data availability in the DOSN.

The reason why we investigate the relation between the
total storage capacity and data availability is because a data
item is regarded as being available as long as it is stored in the
online friend nodes in the DOSN, no matter which online
friends the data replicas are stored in. The location of the
data replicas does not directly affect the data availability but
mainly imposes the impact in the following two aspects.

(i) Data accessing performance: due to, for example, the
bandwidth and latency of the friends where the data
are stored, other friends who are accessing the data
may experience different performance.

(ii) The data maintenance overhead: when a friend goes
offline, the data replicas on the friend have to be
generated on other online friends. Various attributes
of the friend, such as the storage capacity contributed
by this friend, bandwidth, and latency, have impact.
For example, if a friend offers the big storage capacity,
then potentially more data have to be generated in
other friends when this friend goes offline.

How to optimize data accessing performance and reduce
datamaintenance overhead is the work of the underlying data
replication and placement strategies. This work is situated
at the level of maintaining data availability. This is why this
work mainly concerns the total storage size provided by the
friends collectively. Following on from this work, we plan to
work down the management levels in DOSN and develop the
placement strategies for data replicas among the friends in
DOSN.

In order to build the data availability model, we need to
have deep understandings of the DOSN properties that are
related to data availability. In this paper, we analyze these
relevant properties and establish the probabilistic models for
them. Further, the models for the individual properties are
integrated to construct the data availability models. Further,
a novel method is proposed to predict the level of data
availability on the fly.

Using the data availability model developed in this paper,
the DOSN designers can determine the average size of
the storage pool that each friend should contribute for the
published data, given the level of data availability that the
DOSN desires to achieve. Moreover, in DOSN, the friends
become online and offline dynamically; the data availability
will drop when the number of online friends decreases. The
on-the-fly prediction method can be used to conduct the
real-time prediction for the level of data availability in the
near future. The quantitative prediction results produced by

the model can greatly help the data replication and storage
policies make judicious decisions on the fly.

The rest of this paper is organized as follows. Section 2
discusses related work about analyses of OSN properties,
the existing DOSN approaches, and data availability work.
Section 3 states the problem which we try to address.
Section 4 presents the data availability model over stor-
age capacity. Section 5 presents the on-the-fly prediction
model. Section 6 shows some case study. Section 7 conducts
extensive experiments to verify our models and analyzes
experimental results. Finally, we make conclusions.

2. Related Work

This section discusses the related work mainly in the follow-
ing three aspects: (i) the existing work of analyzing the OSN
properties, including both the characterizations of OSN net-
works and the analyses of user behaviors (Section 2.1), (ii) the
existing research onDOSN, that is, the alternative approaches
to decentralizing theOSNs (Section 2.2), and (iii) the existing
studies on data availability in DOSN (Section 2.3). Moreover,
this section also discusses the existing work in achieving data
availability in grids and clouds (Section 2.4).

2.1. Analyses of the OSN Properties

2.1.1. Characterizations of OSN Networks. Some studies use
the graphs to represent the OSN networks and investigate the
graph structures ofOSN, such as degree distribution, network
diameter, and clustering property. They conduct the analyses
through the crawled data gathered from popular OSN sites
such as Facebook, Twitter, MySpace, Flickr, YouTube, Live-
Journal, Cyworld, and orkut [13, 19–22]. It has been found
that (i) OSNsmanifest power-law, small-world, and scale-free
properties; (ii) the social network is nearly fully connected;
(iii) the neighborhoods of the users in the social graph
contain the surprisingly dense structure, while the graph is
sparse as a whole; (iv) most users have a moderate number
of friends (less than 200). The findings about the number of
friends will be used to design the simulation experiments in
this paper.

2.1.2. Analyses of User Behaviours. The work in [23–27]
studied the patterns of the user behaviors through the
crawled or clickstream data. Jin et al. [23] conducted a
comprehensive review about the user behavior in OSNs from
several perspectives, including social connectivity and inter-
action among users, traffic activity, and the characteristics
in mobile environments. Benevenuto et al. [24] collected the
clickstream data over 12 days to study the characteristics
of OSN sessions, including the accessing frequency, session
durations, and total time spent on OSNs. Schneider et al.
[25] focused on feature popularity, session characteristics,
and the dynamics in the OSN sessions. Kwon and Wen
[26] empirically examined how the individual characteristics
affect the actual user acceptance of social network services.
Yan et al. [27] studied the human behavior using the data
obtained from the “SinaMicroblog,” which is one of the most
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popular OSN sites in China. They found that the human
activity patterns are heterogeneous and bursty and often
follow the power-law distribution.

Since the existing research has revealed the dynamic
characteristics about user behaviors, such as the distributions
of online and offline durations, these will be used as the
knownparameters whenwe derive the data availabilitymodel
and the on-the-fly prediction in this paper.

2.2. DOSN. To address the data privacy problem in COSNs,
several decentralized approaches have been proposed [7–
11]. Buchegger et al. [7] proposed a decentralized, peer-to-
peer approach coupled with encryption. Yeung et al. [8]
adopted a decentralized approach by using the URIs as the
identifiers throughout, which can provide the same (or even
higher) level of user interaction as with many of the current
popular OSN sties. Tandukar and Vassileva [9] also proposed
a decentralized OSN.With this approach, users can maintain
the control over their data to protect their data privacy and
forward the social data selectively to reduce the irrelevant
data among the users. None of these approaches only stores
the data published by a user in his friend circle.

There is another type of DOSNs [10, 11], known as friend-
to-friend storage systems, which focus on providing the
data storage services for all participants. Li and Dabek [10]
argued that a node should choose its neighbors where the
data are stored based on existing social relationships instead
of randomly. Sharma et al. [11] find that the limitation of
storing data only on friends has a marked impact on the
data availability. They showed that the problem of obtaining
maximal availability while minimizing redundancy is NP
complete and proposed greedy data placement heuristics to
improve the data availability. Our data availability model and
the on-the-fly prediction can be integrated into these existing
DOSNs; for example, the quantitative results produced by our
models can be used to help make the data replication and/or
data storage decisions.

2.3. Data Availability in DOSN. Because of the requirement
of protecting data privacy, the data published by a user are
only stored in his friend circle in the DOSN. Consequently,
data availability is one of the biggest challenges in DOSNs.
The existing work in improving data availability mainly
focuses on designing smart data replication and data storage
policies.

Shakimov et al. [28] propose three schemes for storing
the data in DOSNs: the cloud-based scheme, the desktop-
based scheme, and the hybrid scheme combining the above
two. In the cloud-based scheme, the data will be stored in the
cloud servers. In the desktop-based scheme, twomechanisms
may be used: (i) the data replicas are encrypted when they
are stored in potentially untrusted hosts; (ii) the users take
advantage of the trust embedded in the social network to store
the data replicas on trustworthy friends. The drawbacks of
these mechanisms come from the complexity and overhead
in the encryption key or trust management.

The approach proposed by Koll et al. [18] exchanges
the recommendations among the socially related nodes in

order to effectively distribute a user’s data replicas among the
eligible nodes carefully selected in the OSN.

In the approach developed byOlteanu and Pierre [14], the
preferences are given to the nodes when it comes to selecting
the nodes for storing the data (and their replicas) published
by a user [14]. The online friends of the user have the highest
priority. When all friends are offline, the data are then stored
in the nodes which are not in the user’s friend circle.

Buchegger et al. designed a two-tieredDOSNarchitecture
(PeerSoN) [7]. One tier serves as a look-up service which is
implemented by OpenDHT. The second tier consists of the
peers and contains the user data. When a user is offline, all
his data will be stored across the whole network.

Cutillo et al. [29] propose a P2P-basedDOSN (Safebook),
in which each node is accessible through the so-called shells.
The profile data is mirrored and stored in a subset of a node’s
direct contacts, which form the so-called innermost shell.The
data retrieval requires traversing the shells along a path of the
nodes that are online and are friends with each other.

Tegeler et al. [30] propose an approach called Gemstone.
Gemstone protects the user’s privacy by encrypting all data
using ABE and stores the user’s data in the so-called data
holding agents (DHAs). If aDHA itself is offline, the data have
to be passed to the DHAs of this offline DHA.

All the above existing work about data availability focuses
onhow to store the data replicas so that they are still accessible
when the users or certain friends of the users are offline.
They all implicitly assume that the friends are always able
to contribute the adequate storage capacities to store the
replicated data.

2.4. Data Availability in Grids and Clouds. We also studied
the existing work in achieving data availability in grids and
clouds. Amjad et al. [31] surveyed the dynamic replication
strategies for improving data availability in data grids. Koss-
mann et al. [32] proposed a modular cloud storage system.
Zeng et al. [33] studied the cloud storage architecture and
then pointed out the key techniques.

However, we found that the focuses and the considera-
tions in achieving data availability in grids and clouds are
quite different from those in DOSN. One of the biggest
differences is that the data replicationmechanisms in grids or
clouds do not treat the total storage capacity as a limitation,
although some studies considered the case where the storage
capacity of individual nodes in a grid system is limited.
Namely, these studies all explicitly or implicitly assume that
the total storage space in grids or clouds is always sufficient to
store the data replicas.This assumption is reasonable for grids
and clouds because of the scale of such systems. However,
it is not always true for DOSN due to the aforementioned
facts that (1) smart mobile devices, whose storage capacity
is limited, are often used in DOSN and (2) the number of
friends in a friend circle is also limited.

3. Problem Statement

Figure 1 illustrates the data availability problem. In Figure 1,
the user publishes the data at a series of time points along the
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Figure 1: The illustration of the data availability problem.

time line. Assume 𝑡
1
is the first time point when he publishes

the data, Data
1
, after he comes online, and 𝑡

𝑘
is the last time

point the user publishes the data, Data
𝑘
, before he goes offline

at the time point 𝑡𝑢out. Now let us consider one of the friends
in the user’s friend circle. Assume that the friend goes offline
at time point 𝑡𝑓out just before the user publishes Data𝑘󸀠 (and
after the user publishes Data

𝑘
󸀠
−1
) and then comes online at

time point 𝑡𝑓in after the user goes offline. Therefore, Data
𝑘
󸀠 to

Data
𝑘
are the data that the friend missed when he is offline

and consequently need to be updated when he comes online.
Since the user is already offline, the friend can only update the
missed data from other online friends where the data replicas
are stored. Note that if the friend comes online before the
user goes offline, the friend can update all missed data from
the user directly. Therefore, data availability is not a problem
under this circumstance.

When a friend comes online, assume that the total
amount of the data that the friend tries to update is 𝐷update.
Out of 𝐷update, the amount of data that are stored in online
friends of the user is 𝐷stored. The level of data availability
(denoted by DA) is defined as

DA =
𝐷stored
𝐷update

. (1)

The data replication frameworks typically work in the
following way [10, 18, 34]. When the user publishes a data
item, a certain number of data replicas are created and stored
in the storage pools of the selected friends of the user. When
a friend goes offline the data replicas which are stored in this
friend will be recreated and stored on other online friends to
maintain fixed number of data replicas for each data item. If
the size of the storage pools is unlimited, the new data will
just be added to the friend’s storage pool. If the storage pool
is limited and the pool is already full, the oldest data in the
storage pool will be replaced with the new data. Therefore,
the size of the storage pool will determine what period of
data is stored in the pool, which affects the data availability
of the DOSN. Consider Figure 1 again; for example, if the
storage pool in the friends is limited and can only store the
data published from 𝑡

𝑘
back to 𝑡

𝑘
󸀠󸀠 , then the data earlier than

𝑡
𝑘
󸀠󸀠 are not available when the friend comes online at 𝑡𝑓in.
One aim of this paper is to establish the data availability

model to capture the relation between the level of data
availability and the total size of the storage pools contributed
by the friends. This is presented in Section 4.

Now consider a time point 𝑡󸀠 after the current time 𝑡.
The other aim of this paper is to predict the level of data
availability at 𝑡󸀠 on the fly, which is presented in Section 5.
This prediction is very useful for the data replication or
storage policies to make judicious decisions dynamically.

The notations that are used in the derivations of the data
availability models are introduced as Table 1.

4. The Data Availability Model over
Storage Capacity

As discussed in Section 3, the total size of the storage pool
contributed by a user’s friends (denoted by SS) can determine
the period of the published data stored in the storage pool. 𝑡

𝑡𝑙

denotes the publishing time of the oldest data stored in the
storage pool (i.e., 𝑡

𝑘
󸀠󸀠 in Figure 1), and 𝑡𝑢out denotes the time

when the user goes offline. Then [𝑡
𝑡𝑙
, 𝑡𝑢out] is the period of the

published data stored in the storage pool. This section first
determines 𝑡

𝑡𝑙
(Section 4.1) and then presents the method of

establishing the relation between SS and the DA of the data
published by the user (Section 4.2).

4.1. Calculating 𝑡
𝑡𝑙
. In order to determine 𝑡

𝑡𝑙
, the size of the

data published by the user has to be calculated first. 𝑋(𝑡pu)
denotes the number of times that the user publishes the data
in the time duration 𝑡pu.𝑋(𝑡pu) is a discrete random variable.
𝑃pu(𝑥(𝑡pu)) denotes the probability density function (pdf)
of 𝑋(𝑡pu). 𝑎 denotes the average size of the data published
by the user each time. 𝑆(𝑡pu) denotes the total size of the
data published by the user in 𝑡pu. Clearly, 𝑆(𝑡pu) = 𝑎𝑋(𝑡pu).
Therefore, the pdf of 𝑆(𝑡pu), denoted by 𝑆pu(𝑠(𝑡pu)), can be
determined by (2) and the expectation of 𝑠(𝑡pu) can be
calculated by (3) as follows:

𝑆pu (𝑠 (𝑡pu)) = 𝑎 ⋅ 𝑃pu (𝑥 (𝑡pu)) , (2)

𝐸 [𝑆 (𝑡pu)] = 𝑎 ⋅ 𝐸 [𝑋 (𝑡pu)] = 𝑎 ⋅

+∞

∑
𝑥=1

𝑥 ⋅ 𝑃pu (𝑥 (𝑡pu)) . (3)

Thepublishing time of the oldest data stored in the storage
pool, 𝑡

𝑡𝑙
, can be calculated using (4) given SS, where 𝑘 is the

replication degree in the OSN, that is, the number of replicas
created for each data item. Consider

𝐸 [𝑆 (𝑡
𝑢

out − 𝑡𝑡𝑙)] ⋅ 𝑘 = SS. (4)

4.2. Establishing the Relation between DA and SS. When a
friend comes online at 𝑡𝑓in (as in Figure 1) and his last logout
time (denoted by 𝑡𝑓out) is no earlier than 𝑡

𝑡𝑙
, the friend can

update all the data missed during his offline duration from
other online friends. Namely, DA for a friend coming online
at 𝑡𝑓in, denoted by DA(𝑡𝑓in, 𝑡

𝑓

out), is 100% in this case. When
𝑡
𝑓

out is earlier than 𝑡
𝑡𝑙
, the data published in [𝑡

𝑓

out, 𝑡𝑡𝑙] are not
available to the friend. Therefore, DA in this case equals the
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Table 1: The notations that are used in the derivation.

Notations Descriptions

V
𝑡

The user

𝑁 The number of the user’s friends

𝑡 Current time point

𝑡󸀠
Target time point in near future, 𝑡󸀠 = 𝑡 + Δ𝑡,
where Δ𝑡 is a time duration after 𝑡. We want to
predict the state of the DOSN at the time point 𝑡󸀠

𝑡𝑢out The time point at which the user V
𝑡
goes offline

𝑉on
The set of all online users in the friend circle of
the user V

𝑡
at current time 𝑡

𝑁on The number of online users in set 𝑉on

𝑉off
The set of all offline users in the friend circle of
the user V

𝑡
at current time 𝑡

𝑁off The number of offline users in set 𝑉on

𝑡onin 𝑖
The latest login time of the online user V

𝑖
in 𝑉on

before current time 𝑡

𝑡
on
out 𝑖

The first logout time of the online user V
𝑖
in 𝑉on

after current time 𝑡

𝑡offout 𝑗
The latest logout time of the offline user V

𝑗
in 𝑉off

before current time 𝑡

𝑡
off
in 𝑗

The first login time of the offline user V
𝑗
in 𝑉off

after current time 𝑡

𝐸login
𝐸logout

The login and logout events, respectively. When
any of these two events occurs, the state of a user
changes from OFFLINE to ONLINE or from
ONLINE to OFFLINE

𝑡on
𝑓on (𝑡on)

𝐹on (𝑡on)

The time duration of a user being online
continuously (i.e., the time duration from an 𝐸login
event to the following 𝐸logout event), which is a
random variable and whose probability density
function and probability distribution function are
denoted by 𝑓on (𝑡on) and 𝐹on (𝑡on), respectively

𝑡off
𝑓off (𝑡off )

𝐹off (𝑡off )

The time duration of a user being offline, which is
also a random variable and whose probability
density function and probability distribution
function are denoted by 𝑓off (𝑡off ) and 𝐹off (𝑡off ),
respectively

𝑥

𝑃pu (𝑥, 𝑡)

The number of times that the user publishes the
data, which is a discrete random variable and
whose probability density function in a duration t
is denoted by 𝑃pu (𝑥, 𝑡)

𝑎
The statistical average size of the data published
by the user each time. 𝑎 is a constant

𝑘
The replication degree, that is, the number of
replicas created for each data item

𝑡
𝑡𝑙

The publishing time of the oldest data stored in
the storage pool

SS The total storage capacity contributed by all
online friends

S Themaximum storage capacity that each friend is
able to contribute

proportion of the data that are published in [𝑡
𝑡𝑙
, 𝑡𝑢out] to those

in [𝑡𝑓out, 𝑡
𝑢

out]. In summary,DA(𝑡𝑓in, 𝑡
𝑓

out) can be calculated using

DA (𝑡
𝑓

in, 𝑡
𝑓

out) =
{{

{{

{

100% 𝑡
𝑓

out ≥ 𝑡
𝑡𝑙

𝐸 [𝑆 (𝑡𝑢out − 𝑡𝑡𝑙)]

𝐸 [𝑆 (𝑡𝑢out − 𝑡
𝑓

out)]
⋅ 100% 𝑡

𝑓

out < 𝑡
𝑡𝑙
.
(5)

𝑡off denotes the time duration of a friend being offline
continuously. 𝑓off (𝑡off ) denotes the pdf of 𝑡off . The probability
that a friend went offline at 𝑡𝑓out and then comes online at 𝑡𝑓in
is 𝑓off (𝑡

𝑓

in − 𝑡
𝑓

out)𝑑𝑡
𝑓

out and the corresponding DA(𝑡𝑓in, 𝑡
𝑓

out) is
obtained by (5). Then, DA at time point 𝑡𝑓in can be expressed
by

∫
0

𝑡
𝑢

out

𝑓off (𝑡
𝑓

in − 𝑡
𝑓

out) ⋅ DA (𝑡
𝑓

in, 𝑡
𝑓

out) 𝑑𝑡
𝑓

out. (6)

DA
[𝑡
𝑢

out , ℎ]
denotes the expectation of DA over the time

duration between 𝑡𝑢out and 𝑡
𝑓

in, where ℎ is the duration between
the user’s two consecutive logins (the work in [25, 35, 36] has
presented the method to obtain the value of ℎ). DA

[𝑡
𝑢

out , ℎ]
can

be calculated by (7), where 𝑓at(𝑡
𝑓

in) is the probability density
function that a friend comes online at time 𝑡𝑓in:

DA
[𝑡
𝑢

out , ℎ]
= ∫
ℎ

𝑡
𝑢

out

𝑓at (𝑡
𝑓

in)

⋅ ∫
0

𝑡
𝑢

out

𝑓off (𝑡
𝑓

in − 𝑡
𝑓

out)DA (𝑡
𝑓

in, 𝑡
𝑓

out) 𝑑𝑡
𝑓

out𝑑𝑡
𝑓

in.

(7)

DA
[0,𝑡
𝑢

out]
denotes the expectation of DA over the time

duration between 0 and 𝑡𝑢out. Since the user is online between
0 and 𝑡𝑢out, DA is 100% over the time duration between 0 and
𝑡𝑢out; that is, (8) holds:

DA
[0,𝑡
𝑢

out]
= 100%. (8)

𝑡on denotes the time duration of a friend being online
continuously. 𝑓on(𝑡on) denotes the pdf of 𝑡on. DA of the data
published by the user under the given value of ℎ, denoted by
DA(ℎ), can be calculated by combining (7) and (8) as follows:

DA (ℎ) = ∫
ℎ

0

𝑓on (𝑡
𝑢

out)

⋅ (
𝑡𝑢out
ℎ

⋅ DA
[0,𝑡
𝑢

out]
+
ℎ − 𝑡
𝑢

out
ℎ

⋅ DA
[𝑡
𝑢

out , ℎ]
)𝑑𝑡
𝑢

out.

(9)

ℎ = 𝑡on + 𝑡off is also a random variable. 𝑓
𝐻
(ℎ) denotes the

probability density function of ℎ, which can be derived from
the probability density functions of 𝑡on and 𝑡off and has also
been studied in the literature [26, 37].

Therefore, DA of the data published by the user can be
finally calculated using

DA = ∫
∞

0

DA (ℎ) ⋅ 𝑓
𝐻
(ℎ) 𝑑ℎ. (10)
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As can be seen from (9), DA is a function over DA
[𝑡
𝑢

out , 𝐻]
,

which is in turn a function over DA(𝑡𝑓in, 𝑡
𝑓

out) (shown in (7)).
DA(𝑡𝑓in, 𝑡

𝑓

out) is the function over 𝑡
𝑡𝑙
(shown in (5)). As shown

in (4), 𝑡
𝑡𝑙
can be calculated from SS. Therefore, we have now

established the function of DA over SS.

5. Predicting the Data Availability on the Fly

Using the method presented in Section 4, we can calculate
SS required to achieve the desired DA of the data published
by the user. Note that SS is the total size of the storage pool
contributed by all online friends of the user. The friends log
in and out dynamically and therefore the number of online
friends varies over time. When the number of online friends
decreases, the size of the individual storage pool contributed
by each online friend has to be increased in order tomaintain
the desired DA. The existing work in the literature often
assumes that the friends of a user are always capable of
contributing sufficient storage capacity for the replicated data
published by the user. Consequently, there is little work yet in
the literature investigating the impact of the friends’ dynamic
behaviors (i.e., dynamic login and logout) on DA. However,
as we have discussed in the introduction section, it is not
always acceptable to assume that the friends are willing and
able to contribute unlimited storage capacity in the nowadays
OSNs. In this paper, we assume that the maximum storage
capacity that each friend is able to contribute is 𝑆. When
the required SS exceeds the total storage capacity contributed
by all online friends, the DA will drop. Due to the friends’
dynamic behaviors, it is very useful to be able to predict the
DA on the fly. This section addresses this issue. Consider
Figure 1 again. Assume the current time is 𝑡. The problem of
the on-the-fly prediction ofDA is to predict theDA at a future
time point 𝑡󸀠(𝑡󸀠 > 𝑡).

According to the discussions above, the key of predicting
DA is to predict the number of online friends. At the current
time 𝑡, we know how many friends are online or offline. We
can predict the number of friends who are online at a future
time 𝑡󸀠, if we can predict the following two parameters: (i)
how many of the friends who are online at time 𝑡 do not
change their states from online to offline before or at 𝑡󸀠, and
(ii) how many of the friends who are offline at time 𝑡 change
their states to online before or at 𝑡󸀠.Themethods of predicting
the above two parameters are presented in Sections 5.1 and
5.2, respectively. Section 5.3 combines the results obtained in
Sections 5.1 and 5.2 to predict the number of online friends
and further predict the DA at time 𝑡󸀠.

5.1. Predicting the Number of the Friends Who Are Online at 𝑡
and Do Not Change to Offline before or at 𝑡󸀠. Given an online
friend V

𝑖
at time 𝑡, we can know the time point at which

the friend logged in (i.e., became online), which is denoted
by 𝑡

on
in 𝑖. The probability that friend V

𝑖
does not change to

offline before 𝑡󸀠 equals the probability that V
𝑖
will only log

out after 𝑡󸀠 (i.e., V
𝑖
’s logout time, denoted by 𝑡onout 𝑖, is greater

than 𝑡󸀠). The probability, denoted by 𝑝on
out 𝑖(𝑡

on
out 𝑖 > 𝑡󸀠), in turn

equals the probability that V
𝑖
’s online duration is greater than

(𝑡
󸀠 − 𝑡onin 𝑖) under the condition that V

𝑖
’s online duration is

no less than (𝑡 − 𝑡onin 𝑖), which can be computed using the
conditional probability shown in (11). The condition of (𝑡on ≥
𝑡 − 𝑡onin 𝑖) in (11) reflects the fact that V

𝑖
has been staying online

for the duration of (𝑡 − 𝑡onin 𝑖):

𝑝
on
out 𝑖 (𝑡

on
out 𝑖 > 𝑡

󸀠
)

= 𝑝on ((𝑡on > 𝑡
󸀠
− 𝑡

on
in 𝑖) | (𝑡on ≥ 𝑡 − 𝑡

on
in 𝑖))

=
𝑝on (𝑡 > 𝑡󸀠 − 𝑡onin 𝑖)

𝑝on (𝑡 > 𝑡 − 𝑡onin 𝑖)

=
1 − 𝐹on (𝑡

󸀠 − 𝑡onin
𝑖

)

1 − 𝐹on (𝑡 − 𝑡
on
in
𝑖

)
.

(11)

𝑉on and 𝑁on denote the set and the number of all online
friends at time 𝑡, respectively.Then the number of the friends
in 𝑉on who are still online at time 𝑡󸀠 can be predicted using

𝑁on

∑
𝑖=1

𝑝
on
out 𝑖 (𝑡

on
out 𝑖 > 𝑡

󸀠
) . (12)

5.2. Predicting the Number of the Friends Who Are Offline at
𝑡 and Change the States to Online before or at 𝑡󸀠. Themethod
of predicting the number of the friends who are offline at 𝑡
and change the states to online before or at 𝑡󸀠 is similar to that
presented in Section 5.1:

𝑝
off
in 𝑗 (𝑡

off
in 𝑗 ≤ 𝑡

󸀠
)

= 𝑝off ((𝑡off ≤ 𝑡
󸀠
− 𝑡

off
out 𝑗) | (𝑡off ≥ 𝑡 − 𝑡

off
out 𝑗))

=
𝑝off (𝑡 − 𝑡

off
out 𝑗 ≤ 𝑡off ≤ 𝑡󸀠 − 𝑡offout 𝑗)

𝑝off (𝑡off ≥ 𝑡 − 𝑡offout 𝑗)

=
𝐹off (𝑡

󸀠 − 𝑡offout 𝑗) − 𝐹off (𝑡 − 𝑡
off
out 𝑗)

1 − 𝐹off (𝑡 − 𝑡
off
out 𝑗)

.

(13)

Given an offline friend V
𝑗
at time 𝑡, we can know the

time when V
𝑗
logged off, denoted by 𝑡offout 𝑗. The probability

that V
𝑗
changes the state to online before or at 𝑡󸀠 equals the

probability that V
𝑗
’s login time, 𝑡offin 𝑗, is no later than 𝑡󸀠. The

probability, denoted by 𝑝off
in 𝑗(𝑡

off
in 𝑗 ≤ 𝑡󸀠), in turn equals the

probability that V
𝑗
’s offline duration is smaller than (𝑡󸀠−𝑡offout 𝑗)

under the condition that V
𝑗
’s offline duration is no less than

(𝑡 − 𝑡offout 𝑗), which can be calculated using (13).
𝑉off and𝑁off denote the set and the number of all offline

friends at time 𝑡, respectively.Then the number of the friends
in𝑉off who change the states to online before or at time 𝑡󸀠 can
be predicted using

𝑁off

∑
𝑗=1

𝑝
off
in 𝑗 (𝑡

off
in 𝑗 ≤ 𝑡

󸀠
) . (14)
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5.3. Predicting the Number of Online Friends and the DA at 𝑡󸀠.
𝑁on(𝑡

󸀠) denotes the number of online friends at 𝑡󸀠.𝑁on(𝑡
󸀠) can

be calculated by (15) by combining (12) and (14) as follows:

𝑁on (𝑡
󸀠
) =

𝑁on

∑
𝑖=1

𝑝
on
out 𝑖 (𝑡

on
out 𝑖 > 𝑡

󸀠
) +

𝑁off

∑
𝑗=1

𝑝
off
in 𝑗 (𝑡

off
in 𝑗 ≤ 𝑡

󸀠
)

=

𝑁on

∑
𝑖=1

(
1 − 𝐹on (𝑡

󸀠 − 𝑡onin 𝑖)

1 − 𝐹on (𝑡 − 𝑡
on
in 𝑖)

)

+

𝑁off

∑
𝑗=1

(
𝐹off (𝑡

󸀠 − 𝑡offout 𝑗) − 𝐹off (𝑡 − 𝑡
off
out 𝑗)

1 − 𝐹off (𝑡 − 𝑡
off
out 𝑗)

) .

(15)

𝑆 is the maximum storage capacity that each friend is able
to contribute. Then the total storage capacity contributed by
all online friends at time 𝑡󸀠 is (𝑆 ⋅ 𝑁on(𝑡

󸀠)). Using the method
presented in Section 4, the DA at 𝑡󸀠 can be determined.

6. Case Study

When we derive the DA model over storage capacity and
the on-the-fly prediction of DA in Sections 4 and 5, we used
the generic form of the probability distribution for online
and offline durations (i.e., 𝑓on(𝑡on) and 𝑓off (𝑡off )) as well as
for the data publishing pattern, that is, the number of times
that the user publishes the data in a given time duration (i.e.,
𝑃pu(𝑥, 𝑡)). However, it has been shown that the online and
offline durations may follow the power-law distribution or
the exponential distribution [35, 37, 38] and that the data
publishing pattern may follow the Poisson process [37]. In
this section, we conduct a few case studies by substituting
the generic formof the probability distribution for the power-
law, the exponential, and the Poisson distribution. In fact, any
probability distributions can be used in the proposedmodels.
Even if the mathematical derivations may not be carried
out with some probability distributions, the Mathematica
software [39] can be used to calculate the model results.

6.1. Poisson Distribution. The data publishing pattern may
follow the Poisson process [35]. If 𝑋(𝑡pu) follows the Poisson
distribution with the parameter 𝜆pu, then we have (16).
Consequently, 𝐸[𝑋(𝑡pu)] can be calculated using (17), as
follows:

𝑃pu (𝑥 (𝑡pu)) = 𝑒
−𝜆pu𝑡pu

(𝜆pu𝑡pu)
𝑥

𝑥!
, (16)

𝐸 [𝑋 (𝑡pu)] = 𝜆pu𝑡pu. (17)

Further, (3) can be transformed to

𝐸 [𝑆 (𝑡pu)] = 𝑎 ⋅ 𝐸 [𝑋 (𝑡pu)] = 𝑎𝜆pu𝑡pu. (18)

With (18), (4) becomes

𝑎𝑘𝜆pu (𝑡
𝑢

out − 𝑡𝑡𝑙) = SS. (19)

Therefore, given the storage capacity SS, the replication
degree 𝑘, and the logout time of the user 𝑡𝑢out, the publishing

time of the oldest data stored in the storage pool, 𝑡
𝑡𝑙
, can be

calculated using

𝑡
𝑡𝑙
= 𝑡
𝑢

out −
SS

𝑎𝑘𝜆pu
. (20)

Moreover, with (18), (5) then becomes

DA (𝑡
𝑓

in, 𝑡
𝑓

out) =
{{

{{

{

100% 𝑡
𝑓

out ≥ 𝑡
𝑡𝑙

𝑡𝑢out − 𝑡𝑡𝑙

𝑡𝑢out − 𝑡
𝑓

out

⋅ 100% 𝑡
𝑓

out < 𝑡
𝑡𝑙
.

(21)

6.2. Power-Law Distribution. If the offline duration, 𝑡off ,
follows the power-law distribution with parameter 𝜆off , then
we have (22), where 𝑐 = (𝜆off − 1)𝑡min

𝜆off−1 given the minimal
duration 𝑡min [40]:

𝑓off (𝑡off) = 𝑐 ⋅ 𝑡off
−𝜆off . (22)

We now show how to use the power-law distribution to
derive the on-the-fly prediction for the number of online
friends, which is obtained in Section 5 through (11), (13), and
(15).

Equation (11) can be further derived with the power-law
distribution to obtain

𝑝
on
out 𝑖 (𝑡

on
out 𝑖 > 𝑡

󸀠
)
pl
=
1 − 𝐹on (𝑡

󸀠 − 𝑡onin 𝑖)

1 − 𝐹on (𝑡 − 𝑡
on
in 𝑖)

=
1 − ∫
𝑡
󸀠
−𝑡

on
in 𝑖

𝑡min
𝑐𝑡on
−𝜆on𝑑𝑡on

1 − ∫
𝑡−𝑡

on
in 𝑖

𝑡min
𝑐𝑡on
−𝜆on𝑑𝑡on

= (
𝑡󸀠 − 𝑡onin

𝑖

𝑡 − 𝑡onin
𝑖

)

1−𝜆on

.

(23)

Equation (13) can be further derived to obtain

𝑝
off
in 𝑗 (𝑡

off
in 𝑗 ≤ 𝑡

󸀠
)
pl

=
𝐹off (𝑡

󸀠 − 𝑡offout 𝑗) − 𝐹off (𝑡 − 𝑡
off
out 𝑗)

1 − 𝐹off (𝑡 − 𝑡
off
out 𝑗)

=

∫
𝑡
󸀠
−𝑡

off
out 𝑗

𝑡−𝑡
off
out 𝑗

𝑐𝑡off
−𝜆off𝑑𝑡off

1 − ∫
𝑡−𝑡

off
out 𝑗

𝑡min
𝑐𝑡off
−𝜆off𝑑𝑡off

=

𝑡min
𝜆off−1 ((𝑡 − 𝑡offout 𝑗)

1−𝜆off
− (𝑡󸀠 − 𝑡offout 𝑗)

1−𝜆off
)

1 − 𝑡min
𝜆off−1 (𝑡min

1−𝜆off − (𝑡 − 𝑡offout 𝑗)
1−𝜆off

)

= 1 − (
𝑡󸀠 − 𝑡offout

𝑗

𝑡 − 𝑡offout
𝑗

)

1−𝜆off

.

(24)
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Figure 2: The states of all friends at current time point.
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Figure 3: The impact of SS on DA.

Equation (15) can be further derived to

𝑁on(𝑡
󸀠
)pl =

𝑁on

∑
𝑖=1

𝑝
on
out 𝑖 (𝑡

on
out 𝑖 > 𝑡

󸀠
)
pl

+

𝑁off

∑
𝑗=1

𝑝
off
in 𝑗 (𝑡

off
in 𝑗 ≤ 𝑡

󸀠
)
pl

=

𝑁on

∑
𝑖=1

(
𝑡󸀠 − 𝑡onin 𝑖
𝑡 − 𝑡onin 𝑖

)

1−𝜆on

+

𝑁off

∑
𝑗=1

(1 − (
𝑡󸀠 − 𝑡offout

𝑗

𝑡 − 𝑡offout
𝑗

)

1−𝜆off

).

(25)

6.3. Exponential Distribution. If a random variable 𝑡 follows
the exponential distribution with parameter 𝜆, then its prob-
ability density function and probability distribution function
can be expressed as in

𝑓 (𝑡) = 𝜆𝑒
−𝜆𝑡

,

𝐹 (𝑡) = 1 − 𝑒
−𝜆𝑡

.

(26)

We now show how to use the exponential distribution
to derive the on-the-fly prediction for the number of online
friends.

With the exponential distribution, (11) can be derived to
obtain

𝑝
on
out
𝑖

(𝑡
on
out
𝑖

> 𝑡
󸀠
)
exp

=
1 − 𝐹on (𝑡

󸀠 − 𝑡onin
𝑖

)

1 − 𝐹on (𝑡 − 𝑡
on
in
𝑖

)

=
1 − (1 − 𝑒

−𝜆on(𝑡
󸀠
−𝑡

on
in
𝑖
)
)

1 − (1 − 𝑒
−𝜆on(𝑡−𝑡

on
in
𝑖

)
)

= 𝑒
−𝜆on(𝑡

󸀠
−𝑡)
.

(27)

Also, (13) can be transformed to

𝑝
off
in 𝑗 (𝑡

off
in 𝑗 ≤ 𝑡

󸀠
)
exp

=
𝐹off (𝑡

󸀠 − 𝑡offout 𝑗) − 𝐹off (𝑡 − 𝑡
off
out 𝑗)

1 − 𝐹off (𝑡 − 𝑡
off
out 𝑗)

=
𝑒
−𝜆off (𝑡−𝑡

off
out
𝑗
)

− 𝑒
−𝜆off (𝑡

󸀠
−𝑡

off
out
𝑗
)

𝑒
−𝜆off (𝑡−𝑡

off
out
𝑗
)

= 1 − 𝑒
−𝜆off ⋅(𝑡

󸀠
−𝑡)
.

(28)

Further, (15) then becomes

𝑁on(𝑡
󸀠
)exp =

𝑁on

∑
𝑖=1

𝑝
on
out 𝑖 (𝑡

on
out 𝑖 > 𝑡

󸀠
)

+

𝑁off

∑
𝑗=1

𝑝
off
in 𝑗 (𝑡

off
in 𝑗 ≤ 𝑡

󸀠
)

= 𝑁on ⋅ (𝑒
−𝜆on ⋅(𝑡

󸀠
−𝑡)
) + 𝑁off ⋅ (1 − 𝑒

−𝜆off ⋅(𝑡
󸀠
−𝑡)
) .

(29)

7. Evaluation

A discrete simulator has been developed in this work to
simulate an OSN. There are 𝑁 users in the simulated OSN.
Some users act as the friends of another user and update the
data published by the user. The online and offline durations
of the users in the simulated OSN follow the power-law
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Figure 4: The impact of the offline durations on DA.
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Figure 5: The impact of the data publishing rate on DA.

distribution (PL) or the exponential distribution (Exp), as
observed in the literature [37]. The user publishes the data
following the Poisson process and 𝑘 copies of replicas are
created for each data item and stored in the online friends.

In order to evaluate the DA model over storage capacity,
the DA is predicted given the size of storage capacity and the
values of other OSN parameters. Then the simulated OSN is
run using those parameters values. Each friend contributes
the same storage capacity and the storage capacity is allowed
to be adjusted so that the total storage capacity of all online
friends always equals the storage capacity used to predict the

DA. During the running, when a friend comes online at a
time point, the DA of the published data for the friend is
recorded. The average of all recorded DA is regarded as the
actual DA, which is compared against the predicted DA to
measure the accuracy of the prediction.

In order to evaluate the on-the-fly prediction, the experi-
mental scenario is designed as follows. A user and his friends
log in and out following the specified distribution during the
time interval [0, 𝑙]. The current time is set to be 𝑚th min
(𝑚 < 𝑙 and the user is offline at time 𝑚). The online or
offline states of all friends at time 𝑚 as well as the latest
login or logout time before time𝑚 are collected.The collected
data, combining with the specified distributions, are used to
predict the number of online friends and DA at the future
time points (i.e., the time points later than𝑚). The predicted
data are then compared against the data obtained from the
actual running. For example, the number of the friends of a
user is set to be 150. Figure 2 shows the online/offline state
of each friend when the current time is set to be 31st min. A
point above the red line (i.e., when𝑦 = 0) represents the latest
login time of a friend who is online at 31st min, while a point
below the red line shows the latest logout time of a friendwho
is offline at 31st min.

In the rest of this section, the DA model over storage
capacity is evaluated in Section 7.1 with regard to the follow-
ing aspects: (i) the impact of storage capacity on DA, (ii)
the impact of the DOSN parameters, including online/offline
duration and the rate of user publishing data, on DA, and (iii)
the accuracy of the relation established between DA and SS.

In Section 7.2, the on-the-fly prediction is evaluated with
regard to the following aspects: (i) the accuracy of predicting
the number of online friends on the fly and (ii) the accuracy
of the DA predicted on the fly.

Unless stated otherwise, the experimental parameters
used in the performance evaluations take the values shown



10 The Scientific World Journal

0 50 100 150 200 250

1

0.95

0.9

0.85

0.8

0.75

0.7

Time

D
at

a a
va

ila
bi

lit
y

Statistical DA
Real DA

(a) From the perspective of DA

0 50 100 150 200 250

Time

250

200

150

100

50

0

−50

t t
l

Statistical ttl
Real ttl

(b) From the perspective of 𝑡𝑡𝑙

Figure 6: The accuracy of the DA model.

Table 2: The default parameters in performance evaluations.

Notations Default
value Descriptions

𝑁 150 The number of the user’s friends
a 1 The average size of published data

𝜆expon 1/3
The parameter of the online time duration
which follows exponential distribution

𝜆
exp
off 1/11

The parameter of the offline time duration
which follows exponential distribution

𝜆plon 2.5 The parameter of the online time duration
which follows power-law distribution

𝜆
pl
off 2.1 The parameter of the offline time duration

which follows power-law distribution

𝜆pspu 1
The parameter of the number of times the
user publishes data which follows Poisson
distribution

in Table 2. These values are chosen based on those used in
the literature [19, 35, 37].

7.1. Evaluating the DA Model over Storage Capacity

7.1.1. Impact of Storage Capacity on DA. Figure 3 shows the
impact of the total storage capacity (i.e., SS in Section 4) on
the DA calculated from the DAmodel presented in Section 4.
As shown in Figure 3, theDA increases as SS increases. Under
both exponential distribution and power-law distribution of
the friends’ online duration, data availability tails off after SS
increasesmore than a certain value.These results suggest that
it is unnecessary to ask the friends to contribute unlimited
storage capacity, as often assumed in thework in the literature
[14, 18].

From this figure, we can also determine SS that is required
to achieve a certain DA. For example, DA reaches 99% under
PL or Exp when SS is 194.38 and 151.97, respectively.

7.1.2. Impact of On/Offline Durations on DA. As can be
seen from the derivation of the DA model presented in
Section 4, the online/offline durations have impact on DA.
We conducted the experiments to evaluate their impact. Since
the online and offline durations have the similar impact,
only the results for offline durations are presented in this
subsection. Given the distribution of the offline duration, the
average duration is controlled by 𝜆off . The inverse of 𝜆off is
the length of the duration.

Figure 4 shows the impact of 𝜆off on DA. In the experi-
ments in Figure 4, SS is set to be 194.38 and 151.97 under PL
and Exp (as shown in Figure 3), respectively, so that DA is
99% under the default value of 𝜆off (as in Table 2). We then
change the value of 𝜆off and plot the corresponding DA. It
can be observed that DA increases as 𝜆off increases under
both Exp and PL. These results can be explained as follows.
When 𝜆off increases, the average length of the friends’ offline
durations decreases. Given the certain SS, the period of the
stored data (i.e., [𝑡

𝑡𝑙
, 𝑡]) is fixed. Therefore, the shorter offline

durations of the friends result in higher probability that the
times of the data that the friends try to update fall into [𝑡

𝑡𝑙
, 𝑡].

Consequently, DA is higher.

7.1.3. Impact of the Data Publishing Rate on DA. From the
DA model, we can also know that the pattern with which the
user publishes data has the impact on DA. It is shown in the
literature that the number of times that the user publishes the
data in a duration follows the Poisson distribution. Then, the
parameter of the Poisson distribution, 𝜆pu, reflects the data
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Figure 7: The accuracy of prediction model over time.

publishing rate. The higher the 𝜆pu, the higher the data
publishing rate.

Figure 5 demonstrates the impact of 𝜆pu on DA. The
setting of SS is the same as that in Figure 4. The figure shows
that DA decreases as 𝜆pu increases. This is because when the
data are published at a higher rate, [𝑡

𝑡𝑙
, 𝑡] is shorter given a

fixed SS. Consequently, DA is lower.

7.1.4. Accuracy of the DA Model. The DA model over storage
capacity proposed in Section 4 can calculate the DA given
an SS. We conducted the experiments to study how accurate

the calculated DA is, compared with the DA obtained from
the actual running.The results are presented in Figure 6.The
results under Exp and PL show similar pattern. Therefore,
only the results under Exp are presented.

In Figure 6, the setting of SS is the same as that in Figure 4
(i.e., SS = 151.97). The DA calculated by the DA model
is 99%, which is the red line in Figure 6(a). We run the
simulated OSNwith this SS and plot the actual DA over time,
which is the blue line in Figure 6(a). It can be seen that theDA
is fairly close to the calculated DA inmost cases.These results
suggest that the DA model is effective. In order to reveal the
fundamental reason for this, we also compared 𝑡

𝑡𝑙
obtained
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Figure 8: The accuracy of the on-the-fly prediction of DA.

in the DA model (the red line in Figure 6(b)) with the time
of the oldest data that a friend tried to update when he came
online at a time point (plotted in blue in Figure 6(b)). If the
time of the oldest data is not earlier than the calculated 𝑡

𝑡𝑙
, the

DA model is effective. As can be seen from Figure 6(b), the
blue line is higher (i.e., the corresponding time is later) than
the red line in most cases. This gives the fundamental reason
why the DA model is effective; that is, with the SS obtained
by the DA model, the online friends can in most cases
store the data that a friend tries to update when he comes
online.

7.2. Evaluating the on-the-Fly Prediction of DA

7.2.1. Accuracy of the Predicted Number of Online Friends and
the Impact of Online and Offline Durations. As shown in
Section 5, the predicted number of online friends (i.e., 𝑁on)
determines the value of the on-the-flyDA.Therefore, we con-
ducted the experiments to evaluate the accuracy of predicting
𝑁on. The experimental scenario has been presented in the
third paragraph of Section 7. The experimental results are
shown in Figure 7. In Figure 7, the current time point is set to
be 31st min and the on-the-fly prediction predicts 𝑁on from
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31st min onwards, which is plotted in blue. The actual 𝑁on
from 31st min onwards is plotted in green. Figures 7(a), 7(b),
7(c), and 7(d) show the results under different 𝜆on and 𝜆off
(i.e., online and offline durations).

It can be seen from Figure 7(a) that, compared with
its actual values, the prediction of 𝑁on is fairly accurate
in the first 10 minutes, which shows the effectiveness and
applicability of the proposed prediction method since the
prediction can be conducted on the fly as the time elapses.
By comparing Figures 7(a), 7(b), 7(c), and 7(d), we can see
that the length of the accurate prediction decreases as the
settings of 𝜆on and 𝜆off change from Figures 7(a)–7(d).These
results indicate that the online and offline durations have
impact on the prediction accuracy. After carefully analyzing
the changing trend of 𝜆on and 𝜆off , it appears that the
minimum value between the online and the offline durations
(i.e., min(1/𝜆on, 1/𝜆off )) determines the length of accurate
prediction. The less the value of min(1/𝜆on, 1/𝜆off ), the
shorter the length of the accurate prediction. The reason for
this is because whenmin(1/𝜆on, 1/𝜆off ) is smaller, the friends
are more dynamic and, consequently, it is more difficult to
obtain the accurate prediction in the future.

7.2.2. Accuracy of the Predicted DA. Finally, Figure 8 presents
the experiments results that show the accuracy of the on-the-
fly prediction of DA. The experimental settings in Figure 8
are the same as those in Figure 7. It can be seen from Figure 8
that the trends shown in Figure 8 are consistent with those in
Figure 7. This once again shows the effectiveness of the on-
the-fly prediction.

8. Conclusions

This paper proposes a data availability model over storage
capacity for DOSNs. Further, a novel method is proposed to
predict the data availability on the fly. Extensive simulation
experiments have been conducted. The results show that
the proposed data availability method is able to capture
the relation between data availability and storage capacity
effectively, and that the on-the-fly prediction method can
predict the level of data availability accurately.

This work is situated at the level of maintaining the data
availability. How to optimize the data accessing performance
and reduce the data maintenance overhead is the work of the
underlying data replication and placement strategies. In the
future, we plan to work down themanagement level inDOSN
and develop the strategies of placing data replicas among
friends in DOSN. When designing the placement strategies,
the attributes of individual friends, such as the bandwidth
and latency associated with a friend and the storage capacity
contributed by a friend, will be taken into account.
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