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Abstract 
 

This work explores the preparation of Reversible Addition-Fragmentation chain-Transfer 

(RAFT)-functional polyethylene (PE). Challenges in developing methods to control the 

polymerization of primary radicals and prepare functional polyethylene are significant. Modest 

control over ethylene polymerization demonstrated via F-RAFT polymerization inspired our 

interest in RAFT agent design and we envisaged that metallo-RAFT agents could present 

different reactivities towards primary radicals. Considering the challenge of attempting to develop 

chemistry for the controlled radical polymerization of primary radicals, preparation of RAFT-

functional polyethylene-like poly(ω-pentadecalactone) (PPDL) was also investigated. We 

envisaged the preparation of RAFT-functional PPDL to be more convenient than reported 

strategies to prepare functional polyethylene all whilst being a “green” alternative to PE that may 

be suitable for some applications. 

Chapter 1 discusses challenges in preparing functional polyethylene via controlled radical 

polymerization techniques. Furthermore, metallo-RAFT chemistry and the ring-opening 

polymerization of macrocyclic esters are reviewed. 

Chapter 2 describes the synthesis of PPDL via enzymatic ring-opening polymerization 

(eROP). Using a bifunctional initiator appropriate for the RAFT polymerization of acrylic and 

styrenic monomers, RAFT-functional poly(ω-pentadecalactone) was prepared. Furthermore, chain 

extension of the macro-chain-transfer agent was utilized to prepare acrylic and styrenic block 

copolymers of PPDL. To our knowledge, this is the first preparation of block copolymers of 

poly(ω-pentadecalactone) via a combination of eROP and RAFT polymerization techniques. 

Chapter 3 describes the large scale synthesis and characterization of a selection of acrylic 

block copolymers of PPDL suitable for fuels applications. Furthermore, the fuels testing of these 

copolymers for cold flow applications is described. In general, all block copolymers of PPDL, in 

particular poly(ω-pentadecalactone)-b-poly(isodecyl acrylate) improved the cold flow 

performance of various diesel fuels.  

Chapter 4 reports the synthesis of Sn-RAFT agents and their subsequent use in the 

controlled radical polymerization of several vinylic monomers.  

Chapter 5 summarizes the findings in chapters 2 – 4 and Chapter 6 communicates the 

associated experimental data.  
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1.1 Block Copolymers and Higher Architectures of Polyethylene 

 Polyethylene (PE) is the most widely used material, with annual production exceeding 80 

million metric tons.
1
 Its ubiquity arises from the range of versatile properties exhibited by 

polyethylene depending on its density and degree of branching, and the fact that it is relatively 

cheap and easy to prepare. The cost of producing polyethylene products, however, is increased 

where essential post-polymerization modifications are required since polyethylene is highly 

hydrophobic and difficult to functionalize. Therefore, if appropriate copolymers of ethylene that 

do not require material modification could be prepared, costly steps in the production of countless 

products could be reduced or eliminated. Furthermore, since efficient techniques to functionalize 

polyethylene are limited, potentially interesting and useful defined copolymer architectures of 

polyethylene have yet to be fully explored.   

Although polyethylene can be prepared via free radical polymerization, it is generally 

commercially prepared via coordination polymerization since the free radical process requires 

high-pressure (1000-4000 bar), high-temperature (200-300 ºC) bulk conditions to minimize 

branching resulting from uncontrolled chain transfer.
2
 Both of these techniques, however, do not 

afford end-group control of the polymer product and consequently greatly limit the preparation of 

defined architectures of polyethylene and copolymers thereof. Therefore, the preparation of 

polyethylene via living or controlled radical polymerization (CRP) techniques is highly desirable. 

Preparation of polyethylene via CRP techniques, however, has not been achieved to date since 

these processes cannot control the polymerization of monomers generating primary propagating 

radicals, such as ethylene. The preparation of block copolymers of polyethylene using living and 

CRP techniques, however, has been demonstrated by applying atom transfer radical 

polymerization (ATRP), nitroxide-mediated polymerization (NMP), reversible addition-

fragmentation chain transfer (RAFT) polymerization, and ring-opening polymerization (ROP) 

techniques to appropriately modified polyethylene prepared via coordination polymerization.
3
 An 

interesting example includes preparing polyethylene via catalysed chain growth (CCG),
4,5

 

specifically neodymium catalysed chain growth on magnesium, reacting elemental sulfur with the 

resulting MgPE2 species, and reducing the resulting sulfide species to generate thiol terminated 

PE, which can be transformed into a RAFT macromonomer from which block copolymers can be 

readily prepared.
6,7
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1.2 Controlled Radical Polymerization 

Free radical polymerization enables the polymerization of a multitude of vinylic 

monomers under relatively undemanding reaction conditions compared to ionic and condensation 

polymerization techniques. Free radical polymerization, however, suffers from a lack of control. 

Since the lifetime of a radical chain is short (1-10 s), new chains are continually being formed, 

which results in high molecular weight chains being produced, through termination, early on in 

the reaction.
8
 In conventional living polymerization however, all chains are initiated at the start of 

the process and molecular weight (Mw) increases linearly and with narrow molecular weight 

distribution or dispersity (ÐM) until all of the monomer is consumed (Figure 1.1). Therefore, the 

ability to control radical polymerizations such that they exhibit pseudo-living rates of reactions 

achieves a handle on the Mw and ÐM of the polymer product. 

 

Figure 1.1: Relative reaction kinetics in living, free radical, and step-growth polymerization. 

 

Free radical polymerization also suffers from its inability to access higher polymer 

architectures including block copolymers since end-group control is absent. During the 1990s, 

however, a multitude of techniques to achieve control of radical polymerization were developed, 

including reversible activation-deactivation radical processes, notably nitroxide-mediated 

polymerization (NMP),
9
 atom transfer radical polymerization (ATRP),

10
 and reversible addition-
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fragmentation chain transfer (RAFT) polymerization.
11-13

 These processes achieve control of 

radical polymerization by reversibly deactivating propagating radical chains, reducing the 

concentration of propagating radicals (< 10
-7

 M) and ultimately reducing the incidence of 

termination relative to propagation.
8
 NMP (Scheme 1.1) and ATRP (Scheme 1.2) achieve this 

through generating a reversibly dormant radical species, whereas the RAFT process does so 

through reversible chain transfer (Scheme 1.3). 

 

Scheme 1.1: Mechanism of NMP using TEMPO (2,2,6,6-tetramethylpiperidin-1-yl)oxyl).
9
 

 

 

Scheme 1.2: Mechanism of ATRP.
10

 

 

NMP is routinely employed for its excellent end-group fidelity, however suffers from the 

limited number of vinylic monomers to which it can be applied and the high-temperature reaction 

conditions it generally requires. ATRP is a widely applicable technique since virtually any 

appropriate initiator can be synthesized. The process, however, yields a large amount of residual 

transition metal catalyst in the product mixture. RAFT polymerization is currently a highly 

desirable process since it can be applied to many vinylic monomers and is highly tolerant of 

functional side-groups, facilitating access to more complex polymer architectures. Since all of 

these techniques achieve good end-group control such that the majority of polymer chains 

generated can be reactivated, they can be employed to prepare end-functional polymers, high 

purity block copolymers, and polymers of more complex architectures. Consequently, controlled 

radical polymerization has rapidly become the industrially preferred method of preparing 

polymers of defined architecture, molecular number (Mn), and ÐM. 
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1.2.1 RAFT Polymerization 

1.2.1.1 The RAFT Process 

RAFT polymerization achieves control of radical polymerization on the basis of a 

degenerative chain transfer process (Scheme 1.3). As in conventional free radical polymerization, 

polymerization is initiated through a radical source, such as the azo- initiator 2,2'-

azodiisobutyronitrile (AIBN), which thermally cleaves homolytically to generate a stable tertiary 

radical, which in turn reacts with monomer to generate a radical chain. In the RAFT process, 

radical chains react with the thiocarbonyl of a chain-transfer agent (CTA) or RAFT agent to 

generate a radical adduct. Where the RAFT agent is appropriately designed, the so-called R group 

leaves as a radical species, capable of re-initiating polymerization, and regenerates the 

thiocarbonyl in the addition-fragmentation stage of the mechanism. Once a second radical chain 

adds to the thiocarbonyl, the chain transfer process commences. Where appropriate reaction 

conditions are employed, at least 90% of polymer chains are terminated with the RAFT agent 

upon monomer consumption. The RAFT process does not exhibit 100% end-group fidelity since 

radical-radical termination is unavoidable. The incidence of termination, however, can be reduced 

by optimizing reaction conditions, in particular through increasing the ratio of RAFT agent to 

initiator. Critically, re-initiation of RAFT-terminated polymers in the presence of a different 

monomer enables access to higher polymer architectures. 

 

Scheme 1.3: Mechanism of the RAFT process.
14 
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In order for the RAFT process to control radical polymerization, the chain transfer 

process must compete with the free radical process. This is achieved by tuning the reactivity of 

the thiocarbonyl relative to the monomer vinyl group through the so-called Z group of the RAFT 

agent. Furthermore, the leaving group must generate a more stable radical than the propagating 

radical chain in order for addition-fragmentation to occur and it is often useful, where possible, 

for this leaving group to have a similar structure to the monomer so that it does not interfere with 

the properties of the polymer chain. Therefore, RAFT agents are routinely designed with 

activating and leaving groups appropriate for the monomer(s) being polymerized (Figure 1.2). 

 

Figure 1.2: RAFT agent Z and R group monomer suitability. Solid line indicates control whilst 

dashed line indicates moderate control (some broadening of ÐM). Monomers presented include 

methyl methacrylate (MMA), vinyl acetate (VAc), N-vinylpyrrolidone (NVP), styrene (S), 

methylacrylate (MA), acrylamide (AM), and acrylonitrile (AN). Figure adapted from Barner-

Kowollik
14 

and Keddie.
15

 

 

1.2.1.1.1 Limitations of the RAFT Process 

1.2.1.1.2  Switchable RAFT Agents 

Despite its advantages, RAFT polymerization suffers from its inability to accommodate 

disparate monomer reactivities, such as those exhibited by styrene and vinyl acetate, which has 

consequently limited the preparation of many block copolymers via the RAFT process. Structure 

dictates monomer reactivity towards radical addition and is influenced by resonance, steric, and 

polar effects of both the monomer and the radical generated. Consider, for example, the polarity 

of the double bond in a monomer’s reactivity towards a radical, or substituent resonance effects in 

stabilizing the generated radical - ultimately, substituents that increase monomer reactivity do so 

through stabilizing and therefore decreasing the reactivity of the corresponding radical.
16

 

Although reactivity ratios of monomers cannot be universally reported, relative reactivity ratios of 

two different monomers in a copolymerization reaction can be calculated according to the Mayo-

Lewis equation and dictate the distribution of monomers in a copolymer and therefore the type of 

copolymer obtained (i.e.: block, alternating, statistical, or periodic).
16

 Vinylic monomers display 

varied reactivates, however it is useful to broadly classify these monomers as either “more-
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activated” monomers (MAMs), including styrenics, acrylates, methacrylates, and acrylamides, or 

“less activated” monomers (LAMs), including vinyl acetate, N-vinylpyrrolidone, and N-

vinylcarbazole for the purpose of discussing the RAFT process. Theoretically, only two RAFT 

agents are required to control polymerization of all monomers such that a xanthate or N,N-

disubstituted dithiocarbamate can be employed for LAMs and a di- or trithioester can be 

employed for MAMs.
14,17

 RAFT agents suitable for MAMs limit the polymerization of LAMs 

following the poor leaving-group ability of propagating radicals maintaining a terminal LAM 

unit. Furthermore, RAFT agents suitable for LAMs are less reactive towards radical addition of 

propagating MAMs since the double-bond character of the thiocarbonyl is reduced by the 

contribution of zwitterionic canonical forms localizing a positive charge on the Z group 

heteroatom and a negative charge on sulfur (Figure 1.3).
17

 Preparation of poly(MAM)-b-

poly(LAM)s remains a significant challenge within RAFT polymerization and therefore there is 

an urgent requirement for a universal RAFT agent. 

 

Figure 1.3: Zwitterionic canonical forms of xanthates and dithiocarbamates. 

Alternative strategies to prepare poly(MAM)-b-poly(LAM)s are numerous and include 

first preparing the MAM block via ATRP, converting the ATRP bromine end-group into a 

xanthate, and polymerizing the LAM from the resultant macro-RAFT agent.
18

 Furthermore, it has 

been demonstrated that organostibine-mediated radical polymerization (SMRP)
19

 or a bifunctional 

RAFT agent maintaining ATRP initiator functionality
20 

can be employed to prepare poly(MAM)-

b-poly(LAM)s, as can a copper-catalysed 1,3-dipolar click addition of RAFT synthesized 

polyLAM and polyMAM blocks.
21

 Although ingenious, these strategies are both challenging and 

expensive to execute on an industrial scale. 

The concept of a switchable or universal RAFT agent has only recently been 

experimentally realised.
17,22-24

 Specifically, it has been demonstrated that N-(4-pyridinyl)-N-

methyldithiocarbamates can control the polymerization of LAMs and when reduced, can control 

the polymerization of MAMs (Scheme 1.4) enabling the preparation of poly(MAM)-b-

poly(LAM)s with narrow molecular weight distributions. This process functions by manipulating 

the contribution of the zwitterionic resonance form of the dithiocarbamate such that it is favoured 

where the RAFT agent is unaltered, tuning the reactivity of the thiocarbonyl to LAMs, and 

disfavoured following reduction of the heterocycle, tuning the reactivity of the thiocarbonyl to 
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MAMs since the zwitterionic form unfavourably leads to loss of aromaticity. Polystyrene-b-

poly(vinyl acetate) has been prepared using this method, however, it was discovered that the 

MAM block must be prepared first since the polyLAM RAFT macromonomer maintains a low 

transfer constant for MAM polymerizations following the relatively poor leaving group ability of 

the polyLAM
 
radical. Thus, significant further investigations are required to truly realize a 

universal RAFT agent. 

 

Scheme 1.4: Outline of N-(4-pyridinyl)-N-methyldithiocarbamates as universal RAFT agents.
17  

 

1.2.1.1.3 Control of Primary Radicals
 

An additional challenge with RAFT polymerization is to achieve control of currently 

uncontrollable monomers, in particular those generating primary radicals, such as ethylene. The 

challenge in the application of the RAFT process to monomers that generate a primary radical is 

that the radical adduct yielded during chain-transfer (Figure 1.4) is too stable following the poor 

leaving group ability of primary polymer macroradicals. This limits regeneration of the 

thiocarbonyl and therefore prevents the chain transfer process from competing with the free 

radical process in order to control free radical polymerization. 

 

Figure 1.4: Radical adduct intermediate in RAFT chain-transfer. 

 

Modest control of radical ethylene polymerization, however, has been demonstrated using 

the RAFT agent isopropylfluorodithioformate (IFDF) (Figure 1.5), specifically reducing the high 

molecular weight shoulder observed in the free radical case.
25

 The fluorine Z group of the so-

called F-RAFT agent is thought to sufficiently destabilize the chain transfer adduct radical to 

release polyethylene macroradicals whilst maintaining the reactivity of the thiocarbonyl towards 

propagating polyethylene radicals since, unlike with conventional RAFT agent Z groups, fluorine 
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withdraws electron density solely along a sigma bond. This insight into F-RAFT agents, which 

are proposed although remain to be demonstrated as universal RAFT agents,
26

 will inform future 

investigations into the RAFT polymerization of currently uncontrollable monomers. 

 

Figure 1.5: Structure of the F-RAFT agent isopropylfluorodithioformate (IFDF). 

 

1.2.2 Metallo-RAFT Agents 

Although the RAFT process was developed as a metal-free radical approach to preparing 

defined polymers, considering the potential scope of the F-RAFT process for the preparation of 

polyethylene, we envisaged that the use of metals in RAFT agent design could significantly alter 

the electronics of RAFT agents, either by strongly withdrawing electron density along the RAFT 

agent Z group or destabilizing the chain transfer adduct radical, to control the radical 

polymerization of primary radicals. Furthermore, incorporation of metals into RAFT agent design 

could potentially inspire the development of alternate switchable RAFT agents, in particular to 

overcome the current limitation of having to polymerize MAMs in advance of LAMs using N-(4-

pyridinyl)-N-methyldithiocarbamates as switchable RAFT agents. Four potential sites of 

interaction between metals and RAFT agents have been identified (Figure 1.6) and inspire 

possible directions for the development of metallo-RAFT agents. Xanthates and to a lesser extent 

dithiocarbamates
27

 are well known to coordinate metals via the dithioester moiety and it is 

envisaged that metal coordination could be exploited to influence both the reactivity of the 

thiocarbonyl and stability of the chain transfer adduct radical. Furthermore, rational design of 

organometallic RAFT agents whereby the reactivity of the Z group is tuned by a coordinated 

metal is a promising strategy for the development of both switchable RAFT agents and CTAs 

capable of controlling the radical polymerization of primary radicals. Finally, direct coordination 

of a metal complex to the thiocarbonyl carbon of a RAFT agent presents an excellent opportunity 

to finely influence the electron withdrawing character of the RAFT agent Z group for controlled 

polymerization of primary radicals. 

 

Figure 1.6: Potential metal-RAFT agent interaction sites. 



Chapter 1 

11 

 

Increasing interest in polymers terminated with organometallic groups for applications in 

opto-electrical materials, dispersants, and nanotechnologies has inspired the development of 

several organometallic RAFT agents and RAFT agents incorporating metal ligating functionality 

(Tables 1.1-1.3).
28

 These RAFT agents have been developed to prepare metallopolymers of 

exclusively MAMs with end-group metal functionality for opto-electrical materials, and to access 

metallo-supramolecular polymers. Furthermore, Lo et al.
29

 claim controlled radical 

polymerization and increased curing rates using organometallic RAFT agents with Z group 

organometallic functionality (Figure 1.7). 

Table 1.1: RAFT agents with organometallic functionality in ‘Z’. Table reproduced from Moad et 

al.
28

 Monomers presented include butyl acrylate (BA).
 

Raft Agent Polymers 

  

 

I
30

 

S
30 

  

 

II X = CH2CN
31 

III X = CH2Ph
32 

IV X = CH2CH=CH2
32 

S, BA
31,32 
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Table 1.2: RAFT agents with organometallic functionality in ‘R’. Table reproduced from Moad 

et al.
28

 Monomers presented include N-isopropylacrylamide (NIPAM), 4-(3-butenyl)styrene 

(StB), ethylene glycol dimethacrylate (EGDMA), and divinyl benzene (DVB).
 

Raft Agent Polymers 

  

 

V
33

 

S-Coumarin
33

 

  

 

VI
33

 

 

S-Coumarin
33-35

 

S-Coumarin-b-NIPAM
34,35

 

 

VII
36,37

 

S/StB
36 

S/StB-b-MMA
36 

EGDMA/MMA
37

 

DVB/S
37
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Table 1.2 Continued  

  

 

VIII
36

 

StB
36 

StB-b-S
36 

  

 

IV
30

 

S
30 

 

 

 

Table 1.3: RAFT agents containing metal ligating functionality. Table reproduced from Moad et 

al.
28

 Monomers presented include tert-butyl acrylate (
t
BA).

 

RAFT Agent Metal Polymer 

   

 
X

38 

Pd MA
32 

MA-b-
t
BA

32 

   

   

 
XI

39
 

Ru S
39,40 

NIPAM
17,33 
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Table 1.3 Continued  

  

 

XII
41

 

Ru S
18,41 

  
 

 

XIII
42

 

 
t
BA

42 

S
42 

 

 

XIV
42

 

 

 

Ru
II
, Eu

III
, Fe

II 

 

MMA
42 

t
BA

42 

S
42 

S-b-
t
BA

42 

 

XV
43

 

 

 

 

 

 

Ru S
43 

NIPAM
41 
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Table 1.3 Continued   

   

 

XVI
44 

Ru S
44 

BA
44 

S-b-BA
44 

BA-b-S
44 

 

 

 

 

Figure 1.7: Organometallic RAFT agents claimed by Lo et al.
29

 

 

Beyond organometallic RAFT agents, polymers maintaining thiocarbonylthio or derived 

thiol functionality have also been reported to bind metals via the RAFT agent thiocarboxylate 

moiety.
45-47

 Additionally, metals have been employed alongside the RAFT process. For example, 

it has been demonstrated that the presence of molecular ferrocene
 48 

and iron
49

 accelerate and 

decelerate the rate of RAFT polymerizations, respectively. Furthermore, it has been demonstrated 

that RAFT agents can be activated to behave like pseudo halides in ATRP, reducing the 

requirement for a radical source where the RAFT process is conducted in the presence of suitable 

ATRP catalysts.
50
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1.3 Ring-Opening Polymerization of Macrocyclic Esters 

Considering the significant challenge of attempting to develop chemistry for the CRP of 

primary radicals, alternative strategies towards obtaining RAFT-functional PE were concurrently 

considered. Reports that poly(ω-pentadecalactone) (PPDL) maintains similar properties to low 

density polyethylene (LDPE)
51

 and can be prepared via the ring-opening polymerization (ROP) of 

the macrocyclic lactone ω-pentadecalactone (PDL) motivated our interest in the preparation of 

RAFT-functional PPDL. We envisaged the preparation of RAFT-functional PPDL to be both 

more convenient and commercially applicable than reported strategies to prepare RAFT-

functional PE, critically not requiring transformations on the polymer chain-end since ROP 

techniques afford α-chain-end functional polymers via choice of initiator. Furthermore, since 

PPDL can be prepared from the PDL using metal-free catalysts, and maintains hydrolysable ester 

linkages, PPDL upholds the added potential of becoming a “green” alternative to PE.  

 

1.3.1 Introduction to ROP 

 
Poly(ester)s are widely applied in biomedical and pharmaceutical, particularly drug-

delivery applications since they maintain appropriate mechanical properties and are frequently 

both biodegradable and biocompatible (degradation products inclusive).
52-54

 Although poly(ester)s 

are more cumbersome and expensive to prepare than conventional commodity plastics, they are 

receiving increasing interest as environmentally-friendly materials since they are both 

biodegradable and frequently prepared from sustainable monomer feedstocks. Aliphatic 

poly(ester)s were originally prepared via condensation polymerization of hydroxyl acids or 

diacids and diols (Scheme 1.5).
55

 Disadvantages of polycondensation reactions, however, include 

the requirement for stringent monomer purification, precise stoichiometry in reactions between 

diacids and diols, and high reaction temperatures which promote undesirable side reactions. 

Critically, since condensation polymerization proceeds via step-growth polymerization kinetics, 

the ability to both control the reaction and obtain high molecular weight material is incredibly 

difficult to achieve.  
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Scheme 1.5: Preparation of poly(ester)s via condensation polymerization of a) hydroxyl acids and 

b) diacids and diols. 

 

The modern preparation of aliphatic poly(ester)s via ROP of cyclic esters affords 

excellent control over the polymerization through to high molecular weight material and under 

relatively mild reaction conditions (Scheme 1.6). ROP techniques are regarded as living 

polymerization systems since 1) they proceed via chain-growth kinetics, resulting in a linear 

increase in the molecular weight of the polymer with increasing monomer conversion, 2) the 

molecular weight of the polymer can be directly controlled by the ratio of monomer to initiator in 

the initial reaction mixture, 3) the resulting polymer maintains a narrow dispersity, and 4) high 

end-group fidelity is preserved throughout the polymerization. The ability to perform a 

polymerization with living characteristics ultimately facilitates control of the bulk properties of a 

material, which is crucial for a number of applications.  

 

 

Scheme 1.6: ROP of cyclic esters to yield aliphatic poly(ester)s. 

 

ROP techniques are employed in the polymerization of numerous classes of cyclic 

monomers, and monomers that are frequently polymerized alongside aliphatic cyclic esters 

include glycolide, p-dioxanone, 1,5-dioxepan-2-one (DXO), lactide, and trimethylene carbonate 

(TMC) (Figure 1.8). Since both nucleophiles and electrophiles can initiate the ionic 

polymerization of polarized monomers, the range of catalysts appropriate for ROP is vast and 
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includes metal complexes, organic compounds, and enzymes.
56

 Ultimately, initiation in ROP 

proceeds via either an anionic, cationic, coordination-insertion, or activated monomer mechanism. 

Alkali and earth-alkali alkoxides are amongst the first class of catalysts demonstrated to initiate 

the anionic polymerization of cyclic esters. Specifically, the alkoxide anion undergoes 

nucleophilic addition to the carbonyl carbon of the cyclic ester, releasing an alkoxide end-group 

which propagates in the same manner (Scheme 1.7). A significant disadvantage of this strategy, 

however, is that the propagation step is frequently accompanied by numerous side reactions, in 

particular backbiting to regenerate the monomer or yield macrocyclic oligomers. 

 

Figure 1.8: Cyclic monomers frequently polymerized alongside aliphatic cyclic esters. 

 

 

Scheme 1.7: Mechanism for metal-catalysed anionic ring-opening polymerization of cyclic esters. 

 

Consequently, transition and rare-earth metal catalyst-initiator systems have been 

developed for ROP and proceed via a co-ordination-insertion mechanism. Specifically, co-

ordination of the carbonyl oxygen of the monomer to the metal alkoxide complex activates the 

monomer and results in nucleophilic addition of the alkoxide to the monomer carbonyl carbon. 

Acyl bond cleavage ring-opens the monomer and generates a metal alkoxide from which the 

polymerization can propagate (Scheme 1.8).
55

 Modification of the catalyst ligands has been 

demonstrated to reduce side reactions and enable the attainment of high molecular weight and 

stereoregular polymers.
57,58
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Scheme 1.8: Mechanism for metal-catalysed co-ordination/insertion ring-opening polymerization 

of cyclic estsers. Scheme adapted from Williams.
55

 

 

Although metal-catalysed ROPs are highly efficient, the requirement for metal-free 

processes for biomedical and microelectronic applications, where metals are incompatible even in 

trace amounts, has driven the development of organic catalysts for ROP. The majority of organic-

catalysed ROPs proceed via an activated monomer mechanisms. For example, the simple 

pyridine-based organo-catalyst 4-(dimethylamino)pyridine (DMAP) undergoes nucleophilic 

addition to the carbonyl carbon of the monomer to form a zwitterion intermediate, which 

undergoes ring-opening of the monomer acyl bond. The resulting alkoxide deprotonates the 

initiator or propagating alcohol species to generate another anion that undergoes a nucleophilic 

addition to the monomer carbonyl carbon to regenerate the catalyst and yield the hydroxyl-

terminated propagating species (Scheme 1.9).   
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Scheme 1.9: Mechanism for ring-opening polymerization of cyclic esters mediated by DMAP. 

Scheme adapted from Nederberg et al.
59

 

 

Another important organic catalyst for ROP is the “superbase” 1,5,7- 

triazabicyclo[4.4.0]dec-5-ene (TBD) which has demonstrated tremendous versatility in the range 

of monomers that it is capable of polymerizing. Interestingly, TBD catalyses the ROP of cyclic 

esters via dual activation of the monomer and initiating species (Scheme 1.10). Significant 

research concerns modulating the physio-chemical properties of polymers prepared from cyclic 

monomers including glass transition temperature, hydrophobicity, degradability, and Young’s 

modulus through the preparation of higher polymer architectures, copolymerization with other 

monomers, and the preparation and polymerization of novel, non-aliphatic cyclic monomers 

possessing side-chain functionality that can undergo post-polymerization modification. 

Consequently, the development of new organic catalysts for ROP frequently concerns the 

development of highly efficient, mild catalysts that can tolerate particular functional groups.
60

 

Additional classes of organic catalysts reported for ROP include carbenes, phosphazenes, 

bifunctional catalyst systems, and electrophiles, such as acids.
56

 

 

Scheme 1.10: Mechanism for the ring-opening polymerization of cyclic esters mediated by TBD. 

Scheme adapted from Pratt et al.
61

 

  

A final class of catalysts that can be employed in ROP are enzymes. There is a 

tremendous amount of interest in utilizing enzymes for chemical transformations since they 

perform biochemical transformations with remarkable precision and efficiency, specifically with a 
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high degree of chemo-, regio-, and enantio-selectivity, all under mild conditions. Furthermore, 

enzymes are non-toxic and recyclable, and therefore a “green” alternative to conventional 

catalysts. Where they are immobilized on a solid support, they have the added advantage of being 

easy to remove from a reaction mixture or polymer product, unlike most conventional catalysts, 

and consequently are receiving increasing interest in polymerization reactions.
62,63

 A popular class 

of enzymes explored for organic transformations are lipases, which hydrolyse fatty acid esters in 

vivo, and have additionally been demonstrated to polymerize cyclic esters. The hydrophobic 

lipase catalytic site consists of a serine, histidine, and aspartate residue and it is proposed that a 

cyclic ester substrate undergoes nucleophilic addition by the serine alcohol to generate an 

intermediate which cleaves the monomer acyl bond and releases an alkoxy anion to generate the 

enzyme-activated monomer (EAM) species.
56

 The resulting EAM subsequently undergoes 

nucleophilic addition of the initiating or propagating alcohol species to generate a new 

intermediate, the final product of which is released via cleavage of the acyl bond to regenerate the 

enzyme (Scheme 1.11). Interestingly, lipases have a strong preference for R-secondary alcohols in 

the deacylation step and consequently can be utilized to prepare stereoregular poly(ester)s via 

kinetic resolution polymerization.
56

 Enzymatic ring-opening polymerization (eROP)
64,65

 is 

considered to proceed via an activated monomer mechanism. However, since the enzyme does not 

discriminate between ester groups, transesterification reactions occur, resulting in chain scission 

and the production of cyclic and linear polymer products. Therefore, eROP cannot be considered 

a living polymerization process even though reasonable control of molecular weight and end-

group functionality can be achieved using an initiating nucleophile such as water, an alcohol, an 

amine, or a thiol. Regardless, eROP has proven to be an important catalyst for the preparation of 

new polymeric materials, particularly from macrocyclic esters, which are difficult to polymerize 

using conventional ROP catalysts.  
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Scheme 1.11: Proposed ping-pong mechanism for the enzymatic ring-opening polymerization of 

cyclic esters. Scheme adapted from Dubois et al.
56

 

 

ROP performed on small (up to 6 atom) and medium (between 7 and 11 atom) lactones is 

well-understood and thermodynamically driven by a negative change in entropy during the release 

of angular or transannular strains, respectively. Macrocyclic esters (containing ring sizes of 12 or 

more atoms), however, have little or no ring strain and consequently attempts to polymerize 

macrocyclic esters using conventional, non-enzymatic catalysts typically yield only oligomeric 

material.
56

 Beginning in the 1990s, enzymes were explored as catalysts for the ROP of 

macrocyclic esters and the success of eROP has resulted in the preparation of novel polymeric 

material and the development of new processes in polymer synthesis.  
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1.3.2 Ring-Opening Polymerization of Macrocyclic Esters 

1.3.2.1 Homopolymerization of Macrocyclic Esters 

Initial eROP reactions were attempted on conventional ROP monomers such as CL,
66-68

 

and an initial bulk copolymerization of CL and PDL using the lipase Pseudomonas fluorescens 

reported only trace incorporation of PDL after 10 days.
69

 Thereafter, the eROP of 11-

undecalactone (UDL), 12-dodecalactone (DDL), and PDL (Figure 1.9) was investigated using 

various lipases, notably lipases derived from Pseudomonas fluorescens (lipase P) and Candida 

cylindracea (lipase B) in bulk conditions and at various temperatures. Uyama and co-workers
70-72

  

discovered that the rate of eROP varies depending on the origin of the lipase, increases with 

temperature and immobilization on Celite, and proceeds more rapidly for macrocyclic esters than 

for CL. Subsequently, it was discovered that the rate of the eROP of PDL could be increased 100-

fold, further increasing the Mn and conversion, and improving the ÐM of the polymer product, by 

utilizing immobilized, surfactant-coated lipases in organic media, notably toluene.
56,73-75

  

11-Undecanolide 

(UDL) 

12-Dodecanolide 

(DDL) 

15-Pentadecanolide 

(PDL)

16-Hexadecanolide 

(HDL)
 

Figure 1.9: Structures of commercially available aliphatic macrocyclic lactones.  

 

Bisht et al.
76

 further investigated lipase choice in the eROP of PDL in bulk conditions at 

80 °C by screening commercially available lipases over 24 hours. Novozyme-435, specifically 

Candida antartica immobilized on an acrylic resin, notably yielded the highest conversion and 

has since become the enzyme of choice for eROP reactions. Although an extensive range of 

enzymes have been studied for the eROP of macrocyclic esters, they have all been lipases with 

the exception of a cutinase from Humicola insolens (HiC),
77

 which exhibits similar kinetics for 

the eROP of macrolactones as Novozyme-435.
78 

Kinetic studies have been performed for the 

Novozyme-435 catalysed polymerization of 6-, 13-, and 16-membered lactones.
79

 Temperature 

was determined to be an important factor such that increasing the temperature from 60 °C to 80 

°C increases both the rate of the polymerization and the Mn of the polymer product, however, 

further increasing the temperature to 110 °C decreases both the rate and Mn. Therefore, it can be 

concluded that elevated reaction temperatures denature the native structure of the enzyme, 

impairing its ability to perform transesterification reactions. Bisht et al.
76

 additionally investigated 
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the effect of water content, which was found to affect both the rate and Mn such that increasing the 

water content increases the rate polymerization however decreases the Mn of the polymer product. 

This result is consistent with the conclusion of Matsumoto et al.,
80 

that water is the initiating 

species. Although the rate of eROP reactions can be increased by using an alcohol as an initiating 

species,
81

 which is more efficient than using a thiol since thiols maintain higher binding affinities 

to lipases than alcohols,
82

 the presence of some water is critical for the enzyme to adopt the 

correct structure via non-covalent bonding, and consequently too little water greatly reduces 

enzymatic activity.
56

  

Duda and co-workers
83

 compared the polymerization kinetics of various sized cyclic 

lactones via a zinc 2-ethylhexanoate (Zn(Oct)2)/butyl alcohol catalyst-initiator system and eROP 

at 100 ⁰C and discovered a reverse trend. Specifically, the orders of polymerization rates were 

determined to be 2500:330:21:0.9:1.0:0.9:1.0 for 6-, 7-, 9-, 12-, 13-, 16-, and 17-membered 

lactones, respectively using zinc 2-ethylhexanoate, and 0.1:0.13:0.19:0.74:1.0 for 7-, 12-, 13-, 16-, 

and 17-membered lactones using Novozyme-435, clearly indicating that eROP is a more 

appropriate polymerization technique for macrocyclic lactones. Ultimately, eROP proceeds more 

rapidly for larger rather than smaller cyclic lactones since formation of the EAM is promoted by 

increasing the hydrophobicity of the monomer following the hydrophobic nature of the enzyme 

active site.
83

 Furthermore, numerous studies into the enantioselective eROP of substituted 

lactones report varied selectivities and rates, however, these differences can be attributed to the 

lactone ester conformation, which can exist either in the higher-energy cisoid or lower-energy 

transoid conformation, the latter of which exhibits dramatically increased rates of eROP (Figure 

1.10).
56,79

 Critically, seven-membered rings and smaller can only exist in the cisoid conformation 

whereas ten-membered rings and larger exist exclusively in the transoid conformation.
56

 

Although the eROP of monomers that can adopt both ester conformations is non-selective, 

polymerizations are S-selective with exclusively cisoid monomers and R-selective with 

exclusively transoid monomers in order to afford the R-secondary alcohol as a nucleophile, which 

propagates considerably more rapidly than the S-stereoisomer.
56

 Interestingly, the rate of eROP 

decreases for substituted macrolactones where a methyl group is present in the α-position.
84

  

 

Figure 1.10: Cisoid and transoid conformations of ester bonds. Figure adapted from Dubois et 

al.
56
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The rate of eROP can be further increased by performing the polymerization in a 

miniemulsion,
85

 which Taden et al.
86

 report as a useful method for preparing PPDL nanoparticles. 

Furthermore, Wosnick et al.
87 

demonstrate that poly(ester)s including PPDL can be prepared via 

continuous-flow eROP using a packed-bed reactor. This method reduces the amount of solvent 

required to separate the enzyme from the polymer product, therefore greatly reducing the amount 

of solvent consumed in polymer purification. 

 

1.3.2.2 Copolymerization of Macrocyclic Esters  

Block copolymers of poly(ester)s can be readily prepared via eROP by initiating from a 

hydroxyl terminated polymer that does not contain any ester functionality. This strategy has been 

employed to prepare poly(butadiene)-b-PPDL,
88

 in addition to block and triblock copolymers of 

poly(ethylene glycol) (PEG) and CL and/or DXO.
89,90

 The copolymerization of PDL and TMC 

using stannous octanoate, methylaluminoxane (MAO), or aluminium isopropoxide as a catalyst 

yielded either TMC homopolymer or PPDL-b-poly(TMC) copolymers since these catalysts 

polymerize TMC more rapidly than PDL.
91

 Interestingly, block copolymers of CL and lactide 

have been prepared via the eROP of CL followed by carbene catalysed ROP of lactide in one 

pot.
92

 

The majority of copolymers prepared via eROP are statistical, the sequence composition 

for which can be evaluated by 
13

C NMR spectroscopic analysis.
93

 Kumar et al.
94 

investigated the 

copolymerization of CL and PDL using Novozyme-435, optimizing the reaction temperature (70 

°C) and volume of toluene (1:1 wt./vol.) and obtained a statistical copolymer (Mn = 22,300 g mol
-

1
, ÐM 1.97) after 6 hours despite the fact that PDL is 13 times more reactive than CL with this 

enzyme. Ultimately, Kumar et al.
95

 highlighted the ability of lipases to not only polymerize cyclic 

esters but to also perform intermolecular transesterification reactions by combining 

poly(caprolactone) (PCL) (Mn = 44000 g mol
-1

, ÐM 1.65), PPDL (Mn = 40,000 g mol
-1

, ÐM 1.71), 

and Novozyme-435 to yield multiblock copolymers (Mn = 18,200 g mol
-1

, ÐM 1.92) within the 

first hour and statistical copolymers (Mn = 31,200 g mol
-1

, ÐM 1.87) after 30 hours. This novel 

synthetic strategy towards copoly(ester)s has been utilized to prepare statistical copolymers via 

polymerization of macrolactones in the presence of aliphatic poly(ester)s.
96

 Similarly, microblock 

copoly(ester)s were prepared via sequential copolymerization of CL and DXO.
97

 Furthermore, 

this strategy has been utilized to prepare statistical copolymers of PDL and TMC,
91

 p-

dioxanone,
98

  glycolide,
45,46

 γ-methacryloyl-ε-caprolactone (McrCL),
99

 and γ-benzoyl-ε-

caprolactone (BenzCL),
99

 ambrettolide (Am),
99

 the corresponding epoxide of ambrettolide 

(AmE),
99

 and 1-oxa-8-aza-cyclotetradecan-9,14-dione (cEA) (Figure 1.11).
99

 Interestingly, porous 
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scaffolds prepared from random copolymerization of PDL and CL via supercritical carbon 

dioxide foaming have been investigated for tissue regeneration applications,
100

 and copolymer 

networks containing PPDL and CL crystalline segments have been employed for triple-shape 

polymer systems
101-107

 and hydrogels.
108

  

 

Figure 1.11: Structures of selected functional cyclic monomers γ-methacryloyl-ε-caprolactone 

(McrCL), γ-benzoyl-ε-caprolactone (BenzCL), ambrettolide (Am), ambrettolide (AmE), and 1-

oxa-8-aza-cyclotetradecan-9,14-dione (cEA). 

 

Statistical copolymerization importantly enables the ability to tailor the crystallinity and 

degradability of a polymer product. For example, oxo-crown-ethers have been copolymerized 

with CL and PDL to improve biodegradability.
109,110

 Copolymerization with functional cyclic 

esters also enables the incorporation of added functionality into polymers, and the preparation of 

novel poly(ester)s.
111

 For example, unsaturated macrolactones including globalide and 

ambrettolide have been copolymerized with CL, DXO, and 4-methyl-caprolactone (4MeCL) in 

order to prepare cross-linked networks via subsequent free radical or thiol-ene reactions.
112,113

 

Cross-linked gels have similarly been prepared via eROP of α-methylenemacrolides including 2-

methylene-4-oxa-12-dodecanolide and subsequent radical polymerization of the pendant 

methacrylic groups.
114

  

Simultaneous eROP and polycondensation reactions have additionally been reported. For 

example, Namekawa et al.
115

 report the preparation of copolymers from macrolactones, divinyl 

esters of adipic and sebacic acid, and α,ω-glycols. Similarly, the copolymerization of diethyl 

succinate, 1,4-butane diol, and PDL has been reported to form aliphatic poly(ester)s.
116,117

 The 

latter reaction was performed at 95 °C in the following two stages: 1) oligomerization under low 

vacuum to prevent monomer evaporation, followed by 2) polymerization under high vacuum to 

drive the equilibrium transesterification to high conversion (Scheme 1.12).
116

 This method has 

been additionally extended to prepare a poly(carbonate-co-ester)
118

 from diethyl carbonate, 1,4-

butanediol, and PDL, and poly(lactone-co-β-amino ester) from PDL and ethyl 3-(4-

(hydroxymethyl)piperidin-1-yl)propanoate (EHMPP).
119

 PPDL is not cytotoxic
120

 and numerous 
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microspheres prepared from copolymerization and simultaneous eROP and polycondensation of 

PDL have been investigated for encapsulation and drug delivery applications.
121-123

 Interestingly, 

poly(PDL-co-butylene-co-succinate) particles (100-300 nm) were demonstrated to deliver 

camptothecin to tumour cells following intravenous administration.
124

  

 

Scheme 1.12: Two-stage process for the copolymerization of PDL, diethyl succinate, and 1,4-

butane diol. Scheme reproduced from Jiang.
116

 

 

1.3.2.3 Preparation of Telechelic Poly(ester)s via eROP 

End-group functionality can be introduced onto the chain-ends of polymers prepared via 

eROP through choice of initiator and/or end-capping compound, as with ROP, and has enabled 

the preparation of complex architectures from hyperbranched CL
125

 through to CL initiated from a 

decorated sugar core.
126

 Interestingly, Kobayashi and co-workers
127

 demonstrated that the 

transesterase activity of lipases can be exploited to prepare methacryl macromonomers (Scheme 

1.13) and α,ω-carboxylic acid terminated poly(ester)s by performing eROP in the presence of 

vinyl methacrylate and divinyl sebacate, respectively. This strategy has similarly been reported 

using ethylene glycol diacrylate to yield α,ω-diacrylate end-groups.
128

 

 

Scheme 1.13: Preparation of a poly(ester) macromonomer via eROP in the presence of a vinyl 

ester. Scheme adapted from Uyama et al.
129

 

 

Kalra et al.
130

 prepared brush copolymers using 2-hydroxyethylmethacrylate (2-HEMA) 

and ω-hydroxyl-ω’-methacrylate-poly(ethylene glycol) (PEGMA) (Mn 360 g mol
-1

) as initiators 

for the eROP of PDL, and subsequently polymerized the corresponding macromonomers using 

AIBN at 70 ⁰C in toluene (Scheme 1.14). Furthermore, Srivastava et al.
131

 initiated the eROP of 

CL and DXO from 2-HEMA to yield methacrylate terminated macromonomers that were 
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subsequently homo or copolymerized with methacrylic monomers via free radical polymerization. 

Importantly, Takwa et al.
132

 report that the polymerization of PDL and CL using 2-HEMA as an 

initiator results in a mixture of polymers with either zero, one, or two methacrylate end-groups 

since lipases catalyse the cleavage of the ester bond in the 2-HEMA end-group of poly(ester)s, 

substantiated by evidence for the incorporation of the 1,2-ethanediol moiety of 2-HEMA within 

the poly(ester). Therefore, the use of initiators with cleavable ester bonds in eROP yields 

polymers with mixed composition and end-groups, although this can be minimized through 

careful initiator selection and reducing reaction times. For example, Xiao et al.
133

 report that 2-

hydroxyethyl acrylate (2-HEA) and 2-HEMA have similar initiator efficiencies, however, 

transacylation occurs 15 times faster with 2-HEA than 2-HEMA. Methacrylate end-functional 

PPDL has alternatively been prepared by initiating from 2-HEMA and end-capping with vinyl 

methacrylate.
132

  

 

Scheme 1.14: Preparation of brush copolymers using 2-HEMA as an initiator in the eROP of 

PDL and subsequent polymerization of the resulting macromonomers. Scheme adapted from 

Kalra et al.
130

 

 

Thiol-terminated CL has been prepared by initiating from 2-mercaptoethanol without the 

requirement for protection and deprotection steps following the disparate rates of reactivity 

between alcohols and thiols with lipases, or end-capping the polymer with γ-thiobutyrolactone or 

3-mercaptopropionic acid (Scheme 1.15).
134,135

 Similarly, α,ω-functional PPDL macromonomers 

have been prepared via the eROP of PDL initiated from 6-mercapto-1-hexanol  and end-capped 

with γ-thiobutyrolactone, 11-mercapto-1-undecanoic acid, or vinyl acrylate.
128,136

 Thiol-

terminated CL has been utilized to prepare CL-b-PS via macromolecular radical chain transfer
135

 

and α,ω-thiol-functional PPDL has been used to prepare cross-linked films by irradiating molten 

polymer alongside ene monomers including tetrafunctional norbornene and trifunctional allyl 

ether maleate species in the presence of a photoinitiator.
137

 Diepoxy-functional macromonomer 

prepared from PDL, glycidol, and adipic acid has additionally been copolymerized with 

cycloaliphatic diepoxide using a cationic photoinitiator to yield highly crystalline cross-linked 

films.
138
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Scheme 1.15: Preparation of an α,ω-thiol functional poly(ester) via eROP, initiating from 6-

mercaptohexanol and terminating with γ-thiobutyrolactone. Scheme adapted from Takwa et al.
136

  

 

CRP and eROP have additionally been combined through the use of bifunctional initiators 

to prepare PCL-b-PS,
139

 for example, in two steps. Furthermore, using a bifunctional NMP 

initiator, PCL-b-PS was prepared both via a two-step macroinitiation and a one pot cascade 

reaction. The concept was extended to include the enzymatic resolution polymerization of 

racemic 4-methyl-ε-caprolactone in order to prepare block copolymers with a high enantiomeric 

excess in the poly(ester) block. PCL-b-PS has similarly been prepared using a bifunctional ATRP 

initiator in two steps.
140

 The one pot synthesis of block copolymers of CL and MMA was 

investigated using a bifunctional ATRP initiator.
141

 It was determined that ATRP catalysts inhibit 

enzyme activity, which was less pronounced where the catalyst maintained multivalent ligands 

such as dinonyl bipyridine, and that the enzyme transesterifies MMA but not t-butyl methacrylate 

(
t
BMA). Block copolymers of CL and 

t
BMA were therefore successfully prepared in one pot by 

adding the ATRP catalyst following the completion of the eROP. Where the reaction was 

performed by combining all reagents in one pot, significant poly(
t
BMA) was detected. Using the 

bifunctional initiator 2-hydroxyetheyl α-bromoisobutyrate, the eROP of CL and subsequent 

incorporation of vinyl acrylate was performed to generate a macroinimer, which was polymerized 

via ATRP to prepare branched block copolymers.
142

 Interestingly, the controlled preparation of 

block copolymers has been demonstrated via simultaneous eROP of CL and ATRP of MMA in 

supercritical CO2 (scCO2) (Scheme 1.16),
143,144

 and this strategy has been extended to prepare 

block copolymers of CL and 1H,1H,2H,2H-perfluorooctyl methacrylate (PFOMA).
145

 Similarly, 

the copolymerization of CL and PS has been achieved using a bifunctional RAFT initiator in 

scCO2.
146

 One-pot eROP and CRP in scCO2 is the subject of a recent review.
147

 

 

Scheme 1.16: One-pot synthesis of block copolymers of MMA and CL via eROP and ATRP. 
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Challenges associated with eROP include the indiscriminate transesterification reactions 

catalyzed by the enzyme, which make it difficult to utilize some materials, including acrylates and 

methacrylates. Lipase catalyzed transesterification, however, has been exploited to perform some 

interesting chemistry, including the preparation of graft copolymers
148,149

 and surface grafted 

poly(ester)s.
150,151

 For example, lipase was used to selectively graft onto the R enantiomer of 

copolymers of styrene and p-vinylphenylethanol (Scheme 1.17).
152,153

 Furthermore, lipase has 

been shown to transesterify the side chains of poly(methacrylates) prepared by ATRP
154-156

 or 

RAFT
157

 with simple alcohols or hydroxyl terminated polymers. Interestingly, the synthesis of 

optically active polymer via concurrent cooperation of enzymatic kinetic resolution and ATRP 

has been reported all in one pot.
158

  

 

Scheme 1.17: R-selective enzymatic grafting of copolymers of styrene and p-vinylphenylethanol 

with vinyl acetate. Scheme adapted from Duxbury et al.
152

 

 

 

1.3.2.4 Physical Properties of Poly(ω-Pentadecalactone) and Poly(ω-

Pentadecalactone)-Containing Materials 

The physical properties of poly(ester)s prepared from macrocyclic lactones range between 

those reported for CL, a semi-crystalline polymer (Tg of -60 ⁰C, Tm  of 60 ⁰C, Young’s modulus of 

400 MPa, and a tensile strength of 15 MPa) and PE, and vary significantly with molecular 

weight.
56

 An initial report on the physical properties of PPDL (Mn 5500, ÐM 3.53) included a Tm 

of 82-89 °C and a Tg between -3 and -28 °C.
159,160

 A subsequent analysis of PPDL reported a Tm 

between 95-106 °C and the failure to detect a Tg by DSC analysis, even with rapid quenching 

from the melt, indicating that the material is highly crystalline.
161

 Focarete et al.
51

 similarly 

evaluated the physical properties of PPDL (Mw of 64,500, ÐM 2.0) and have likened it to LDPE. 

They report 1) thermal properties including a Tm of 97 °C, a Tg of -27 °C (detected by dynamic 

mechanical and dielectric spectroscopies) and a main thermal loss at 425 °C, 2) mechanical 

properties including elongation at break between 100-200%, a tensile strength of 14.5 MPa, and a 

modulus of 370 MPa, and 3) a degree of crystallinity between 54% (calculated by wide angle X-



Chapter 1 

31 

 

ray diffraction measurements) and 64% (calculated from DSC heat of fusion).
51

 The crystal 

structure of PPDL is similar to that of PCL, however exhibits lower crystal symmetry due to an 

even number of atoms in its backbone.
162

 Numerous other physical properties of PPDL have been 

reported including its dipole moment
163

 and crystallisation kinetics.
164

 Interestingly, high 

molecular weight PPDL melted into fibres and elongated 9-10 times their original length exhibit 

tensile strengths up to 0.7GPa
165

 and high molecular weight PPDL (>189,000 g mol
-1

) exhibits 

strain hardening following chain entanglement.
166,167

 

Random copolymers of PPDL and PCL are highly crystalline across composition ranges 

and the melt temperatures of these materials differ linearly with composition from PPDL (97 °C) 

to PCL (59 °C).
168

 It has also been reported that random copolymerization of large lactones 

enhances aliphatic polycarbonate crystallinity.
169

 The thermal stability of PPDL-poly(TMC) 

copolymers also changes with microstructure such that it improves with randomization, indicating 

that the monomers co-crystallize. 
170

 Ultimately, as with other poly(ester)s, the Tm of PPDL can be 

significantly modulated via copolymerization with other monomers, which is an important 

consideration in tuning both the crystallinity and hydrophobicity of PPDL ester linkages for 

numerous applications, in particular for degradation applications, in order to increase accessibility 

for hydrolysis.
171,172

 Interestingly, Zotzmann et al.
101,173

 report that polymer networks containing 

PPDL and PCL segments exhibit a triple-shape effect such that its crystalline domains recover its 

permanent shape due to entropic elasticity. Finally, the PE-like properties of PPDL make it 

attractive for modulating physical properties of materials. For example, blending PPDL into 

poly(L-lactic acid)
174

 and polyurethane
175

 has been shown to increase both the Young’s Modulus 

and Tg of these materials. 

 

1.3.2.5 Chemically Catalysed Ring-Opening Polymerization of Macrocyclic Lactones 

Despite the ability of enzymes to successfully polymerize macrocyclic lactones, 

conventional ROP of macrocyclic lactones has also been demonstrated using several catalysts. 

For example, the anionic polymerization of UDL and the 13-membered lactone laurolactone was 

performed in bulk at 120 ⁰C, initiating from lithium, sodium, or potassium methoxide to obtain 

material up to Mn 11,000 g mol
-1

.
176

 The polymerization of PDL initiated from potassium 

alkoxides in THF at 35 ⁰C, however yielded high molecular weight polymers (Mn up to 100,000 g 

mol
-1

).
177

 Finally, yttrium isopropoxide has been reported to initiate the controlled ROP of PDL in 

toluene and in bulk conditions, proceeding to full monomer conversion within as little as 5 

minutes.
161

  



Chapter 1 

32 

 

Tetrahydroborate complexes of rare earth metals lanthanum, neodymium, and ytterbium 

have additionally been determined to be highly active catalysts for the polymerization of PDL.
178

 

Furthermore, macrocyclic lactones have been polymerized in bulk and in aqueous miniemulsion 

conditions using acid catalysts, specifically dodecylbenzenesulfonic acid (DBSA), diphenyl 

phosphate (DPP), and trifluoromethanesulfonic acid (TfOH).
179

 Yttrium triflate, using isopropanol 

as an initiator has been reported to catalyse the ROP of CL in the absence of inert conditions, 

however copolymerization with PDL resulted in minimal incorporation of PDL.
180

 Aluminum 

triflate, using glycerol as an initiator, however catalysed the ROP of PDL in bulk anhydrous 

conditions, although with reduced reaction rates (49% conversion at 110 °C for 6 h - Mn 12,400, 

ÐM 2.24).
181

 Finally, aluminium-salen complexes,
182,183

 TBD,
184

 and magnesium 2,6-di-tert-butyl-

4-methylphenoxide (Mg(BHT)2(THF)2)
185

 have recently been reported to control the ROP of PDL 

through to high molecular weight material. Importantly, (Mg(BHT)2(THF)2) catalyses the 

polymerization of PDL in the absence of both inert conditions and initiation from water.
185
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1.4 Conclusions 

 Efficient methods to prepare functional PE in order to access block copolymers and 

higher architectures of polyethylene are highly desirable. The RAFT process is a robust CRP 

technique and therefore RAFT-functional PE is a versatile polymer to target for both industrial 

and research applications. Development of F-RAFT agents in an attempt to control the radical 

polymerization of ethylene inspired our consideration of metallo-RAFT agents since we envisage 

that metallo-RAFT agents could potentially exhibit a greater range of reactivity towards vinylic 

monomers than organic CTAs. Considering the significant challenge in attempting to develop 

chemistry for the CRP of primary radicals, RAFT-functional polyethylene-like poly(ω-

pentadecalactone) is identified as an interesting target material that can be readily functionalized 

through ROP techniques.   
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Synthesis of Poly(ω-pentadecalactone)-b-Poly(acrylate) Copolymers via a 

Combination of Ring-Opening and RAFT Polymerization Techniques  
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2.1 Introduction 

Reports that PPDL maintains similar properties to LDPE
1
 and potentially high density 

polyethylene (HDPE) at higher molecular weights motivated our interest in PPDL as a “green” 

alternative to PE following its hydrolysable ester linkages. Furthermore, since PPDL can be 

prepared via eROP techniques, which enables α-chain-end functionalization via choice of 

initiator, we envisaged that the preparation of a PPDL macro-CTA utilizing a bifunctional 

initiator could enable facile preparation of RAFT-functional polymers with PE-like properties. 

Ultimately, this strategy could, in some circumstances, be a suitable, simple solution to the 

difficult problem of preparing block copolymers of PE via controlled radical polymerization 

techniques.  

Preparation of block copolymers of CL via eROP has been demonstrated using 

bifunctional initiators with appropriate CRP techniques including NMP,
2
 ATRP,

3-8
 and RAFT

9
 

polymerization. Although block copolymers are typically prepared in two steps when combining 

ROP and CRP techniques, many of these strategies concern the one-pot preparation of block 

copolymers via eROP and ATRP which, remarkably proceed in scCO2 1) without the metal 

catalyst impairing enzyme activity, and 2) in the absence of transesterification reactions on 

methacrylic monomers.
6-8

 To our knowledge, block copolymers of PPDL have not been prepared 

via eROP using a bifunctional initiator appropriate for CRP. 

Our research group has previously demonstrated that the hydroxy-functional RAFT agent 

1 (Figure 2.1) can be prepared in good yield and utilized for the preparation of block copolymers 

via ROP and RAFT polymerization techniques.
10-12

 Specifically, it has been employed in the 

preparation of block copolymers of polylactide. As a trithioester absent of ester functionality, we 

envisaged that 1 is a suitable bifunctional initiator for the eROP of PPDL. However, since this 

CTA is appropriate for the CRP of acrylic and styrenic monomers, the PPDL block must be 

prepared first since the solution eROP of an acrylic macroinitiator would result in a mixture of 

products instead of defined block copolymers following transesterification of both the acrylic and 

PPDL block by the enzyme. 

 

Figure 2.1: Structure of dodecyl 4-(hydroxymethyl) benzyl carbonotrithioate (1), which has been 

previously demonstrated as a bifunctional initiator for the preparation of block copolymers via 

ROP and RAFT polymerization techniques.
10-12
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Our initial interest concerning the preparation of RAFT-functional PPDL is to prepare 

acrylic or methacrylic block copolymers of PPDL for fuels applications, specifically as a potential 

cold-flow additive for diesel and biofuels. Many cold-flow additives are traditionally 

polyethylene-based copolymers and therefore PPDL-based polymers may present a novel 

paradigm for cold-flow technology. Herein the preparation of PPDL via eROP and the chain 

extension of a PPDL macro-CTA to prepare block copolymers of PPDL are investigated. The 

scaled up synthesis and fuels testing of selected block copolymers of PPDL is described in 

Chapter 3. 
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2.2 Results and Discussion 

2.2.1 Enzymatic Ring-Opening Polymerization of ω-Pentadecalactone 

2.2.1.1 Enzymatic Ring-Opening Polymerization of ω-Pentadecalactone Initiating from Benzyl 

Alcohol 

PPDL was successfully prepared via the eROP of PDL adapted from literature methods.
13

 

Specifically, PDL was polymerized using Novozyme 435 as a catalyst and benzyl alcohol 

(BnOH) as an initiator in toluene at 60 ⁰C (Scheme 2.1). The amount of lipase utilized, 

specifically 1 wt.%, was selected to obtain good control over the polymerization within a practical 

time frame.  

 

Scheme 2.1: Enzymatic ring-opening polymerization (eROP) of PDL using Novozyme-435 as a 

catalyst and benzyl alcohol as an initiator. 

 

The polymerization was monitored by comparing the integral of the methylene protons 

adjacent to the ester in the cyclic monomer (δ = 4.13 ppm) and polymer (δ = 4.05 ppm) in 
1
H 

NMR spectra (Figure 2.2). Furthermore, the degree of polymerization was evaluated by 

comparing the integral of the benzyl methylene protons (δ = 5.11 ppm) to that of the methylene 

protons adjacent to the ester in the polymer (δ = 4.05 ppm). By altering the ratio of monomer to 

initiator, the target degree of polymerization was varied. 
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Figure 2.2: 
1
H NMR spectral overlay of PDL and DP 32 PPDL prepared via eROP, initiated from 

benzyl alcohol ([M]/[I] = 35), and recrystallized from ethyl acetate, illustrating the chemical shift 

between the methylene protons adjacent to the ester in the monomer and polymer (300 MHz; 

CDCl3). 

 

Good control was demonstrated for the eROP of PDL initiating from benzyl alcohol 

across a range of targeted DPs, specifically DP 20, 35, 50, 75, and 100. This was evidenced by 

linear semi-logarithmic plots (Figure 2.3), a linear correlation between the Mn and monomer 

conversion, and a decrease in the ÐM of the polymer with increasing degrees of polymerization 

(Figure 2.4). Interestingly, the dispersity is significantly higher than that observed with 

conventional ROP techniques since eROP is a transesterification process that does not 

discriminate between ester bonds in the monomer or polymer product, resulting in chain scission, 

and consequently cannot be considered a living polymerization technique.
14

 Overall, however, a 

good correlation between the Mn and DP was observed across all degrees of polymerization 

performed, and follow theoretical values (Figure 2.5). Finally, MALDI-ToF mass spectral 

analysis of PPDL revealed two distributions with regular repeat units equal to the molecular 

weight of PDL (Figure 2.6). One distribution, centered on m/z = 2052.91 corresponds to sodium 

charged linear polymer initiated from benzyl alcohol, and the other corresponds to sodium 

charged cyclic polymer. The observation of cyclic polymers is consistent with the observations of 

other authors and arises following chain scission followed by cyclization during the 
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polymerization.
15

 Importantly, a distribution corresponding to the polymer initiated from water 

was not observed. 

 
Figure 2.3: Semi-logarithmic plots for the eROP of PDL, initiating from benzyl alcohol.   

 
Figure 2.4: Plot of Mn and ÐM versus monomer conversion for the eROP of PDL, initiating from 

benzyl alcohol. Please note that trend lines fitted to ÐM versus percent monomer conversion plots 

are provided solely to guide the eye. 
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Figure 2.5: Plot of Mn versus DP for the eROP of PDL, initiating from benzyl alcohol. 

 

 
Figure 2.6: MALDI-ToF mass spectrum analysis of crude DP 10 PPDL prepared via eROP and 

initiated from benzyl alcohol ([M]/[I] = 20). 
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2.2.1.2 Enzymatic Ring-Opening Polymerization of ω-Pentadecalactone Initiating from 

Dodecyl 4-(hydroxymethyl) benzyl carbonotrithioate (1) 

In order to prepare RAFT-functional PPDL, the bifunctional initiator dodecyl 4-

(hydroxymethyl) benzyl carbonotrithioate (1) was synthesized according to literature methods  

(Scheme 2.2).
10

 Specifically, all in one pot, dodecane thiol was deprotonated using potassium 

phosphate in acetone, and the resulting anion underwent a nucleophilic addition to an excess of 

carbon disulfide. Thereafter, the resulting dithiocarboxylate anion underwent a nucleophilic 

addition to 4-(chloromethyl)benzyl alcohol, driven by the formation of potassium chloride, to 

yield 1 in good yield (94%), exceeding reported yields (81%
10

 and 90%
11

). Since the reaction was 

performed in acetone, the reaction time, however, could have been significantly reduced by 

performing an in situ Finkelstein reaction
16,17

 on 4-(chloromethyl)benzyl alcohol during the final 

step via the addition of NaI to generate the corresponding iodo- compound (Scheme 2.3), which is 

more reactive towards the dithiocarboxylate anion than the chloro- derivative. The 
1
H and 

13
C 

distortionless enhancement by polarization transfer (DEPT) NMR spectra obtained for 1 match 

reported values (Figure 2.7).
10

  

 

Scheme 2.2: Synthesis of dodecyl 4-(hydroxymethyl) benzyl carbonotrithioate (1). 

 

 

 

Scheme 2.3: Finkelstein reaction of 4-(chloromethyl)benzyl alcohol to generate 4-

(iodomethyl)benzyl alcohol. 
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Figure 2.7: 
1
H and 

13
C DEPT NMR spectra of 1 (400 MHz, CHCl3). 

 

The polymerization of PDL via eROP using Novozyme-435 as a catalyst and 1 as an 

initiator (Scheme 2.4) was monitored as previously described (Figure 2.2). Similarly, the DP was 

evaluated by comparing the integral of the benzyl methylene protons (b) of 1 (δ = 5.08 ppm) to 

that of the methylene protons adjacent to the ester in the polymer (δ = 4.05 ppm) (Figure 2.8). 
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Scheme 2.4: Enzymatic ring-opening polymerization (eROP) of PDL using Novozyme-435 as a 

catalyst and 1 as an initiator. 

 

Figure 2.8: 
1
H NMR spectrum of DP 11 PPDL prepared via eROP, initiating from 1 ([M]/[I] = 

20) and recrystallized from ethyl acetate (300 MHz; CDCl3). 

 

As with the eROP of PDL initiated from BnOH, good control was demonstrated for the 

eROP of PDL initiated from 1 when targeting a range of DPs, specifically DP 20, 50, and 100. 

This was evidenced by linear semi-logarithmic plots (Figure 2.9), a linear correlation between the 

Mn and monomer conversion, and a decrease in the ÐM of the polymer with increasing degrees of 

polymerization (Figure 2.10). Overall, a good correlation between the Mn and DP was observed 

across all degrees of polymerization performed, and follow theoretical values (Figure 2.11). 

Finally, MALDI-ToF mass spectral analysis of PPDL revealed two distributions with regular 

repeat units equal to the molecular weight of PDL (Figure 2.12). One distribution, centered 

around m/z = 2583.75 corresponds to sodium charged linear polymer initiated from 1, and the 

other distribution to sodium charged cyclic polymer. As with the eROP of PDL initiated from 

BnOH, cyclic polymers were observed following chain scission reactions followed by cyclization, 
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both catalysed by the enzyme, and importantly, no distribution corresponding to PDL initiated 

from water was observed. 

 

Figure 2.9: Semi-logarithmic plots for the eROP of PDL initiating from 1.   

 
Figure 2.10: Plot of Mn and ÐM versus monomer conversion for the eROP of PDL, initiating from 

1 ([M]/[I] = 20). Please note that trend lines fitted to ÐM versus percent monomer conversion plots 

are provided solely to guide the eye. 
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Figure 2.11: Plot of Mn versus DP for the eROP of PDL, initiating from 1 ([M]/[I] = 20). 

 

 

 
Figure 2.12: MALDI-ToF mass spectrum of crude DP 16 PPDL (2) prepared via eROP initiated 

from 1 ([M]/[I] = 20). 
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2.2.1.3 Synthesis and Purification of DP 16 Poly(ω-Pentadecalactone) macro-CTA 2 

In order to synthesize block copolymers of PPDL, a large batch of PPDL macro-CTA (2) 

was prepared via eROP initiating from 1 (Scheme 2.5 and Table 2.1). A DP of 17 was targeted 

since an Mn approximating to 4000 g mol
-1

 was desired for block copolymers of PPDL for fuels 

applications.  

 

Scheme 2.5: Synthesis of DP 16 PPDL macro-CTA 2. 

 

Table 2.1: Characterization of crude PPDL macro-CTA 2 prepared according to Scheme 2.5. 

[M]/[I] [M]t/[M]t
a 

Mn (g mol
-1

)
b 

Mn (g mol
-1

)
a
 ÐM

b 
DP

a
 

20 0.72 4600 4200 3.65 16 

a
Determined by 

1
H NMR spectral analysis in CDCl3; 

b
Determined by GPC analysis in CHCl3. 

 

Purification of 2 from PDL and cyclic PPDL oligomers was performed via precipitation 

in methanol from chloroform, as reported in the literature,
1,13

 or recrystallization from ethyl 

acetate. Unfortunately, all attempts at purification resulted in significant fractionation of the 

polymer mixture, specifically the removal of the majority of material below 1000 g mol
-1 

(Figure 

2.13). Since this low molecular weight material likely contains both cyclic oligomers and RAFT-

functional linear oligomers, chain extension of 2 was performed utilizing the crude material in 

order to preserve the integrity of the macro-CTA mixture. This strategy was supported by the 

observation that acrylic block copolymers of 2 could be readily purified from trace PDL and 

cyclic PPDL oligomers via precipitation in methanol.  
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Figure 2:13: Overlay of GPC (CHCl3) chromatograms of PDL and macro-CTA 2 (crude, 

precipitated in methanol (MeOH), and recrystallized from ethyl acetate (EtOAc)). 

 

2.2.2 RAFT Polymerization of Selected Acrylates Using 1 as a CTA 

The homopolymerization of selected acrylates, including those suitable for fuels 

applications, specifically 2-ethylhexyl acrylate (EHA), isodecyl acrylate (IDA), lauryl acrylate 

(LA), and stearyl acrylate (SA) was performed to verify that 1 controls the radical polymerization 

of acrylates (Scheme 2.6). The reaction temperature and solvent were selected to ensure 

dissolution of the PPDL macro-CTA during chain extension. The polymerization of methyl 

acrylate was monitored by comparing the integral of the methyl ester protons adjacent to the ester 

in the monomer (δ = 3.76 ppm) and polymer (δ = 3.65 ppm) in 
1
H NMR spectra (Figure 2.14), 

whereas the polymerization of long chain acrylates was monitored by comparing the integral of 

acrylic protons in the monomer (δ = 6.45-5.75 ppm) and methylene protons adjacent to the ester 

in the polymer (δ ≈ 4.40-3.50 ppm) (Figure 2.15). Further, the DP was evaluated by comparing 

the integral of the benzyl methylene protons of 1 (δ = 5.08 ppm) to that of the methyl ester in MA 

or methylene protons adjacent to the ester in the polymer of long chain acrylates.  

 

Scheme 2.6: Synthesis of polyacrylates via the RAFT process using 1 as a CTA. 
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Figure 2.14: 
1
H NMR spectral overlay of methyl acrylate and DP 59 poly(methyl acrylate) 

prepared via the RAFT process using 1 as a CTA and AIBN at 80 ºC ([M]:[CTA]:[I] = 100:1:0.1) 

in toluene (50 wt.%) (300 MHz; CDCl3). 
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Figure 2.15: 
1
H NMR spectral overlay of acrylic monomers and DP 48 poly(2-ethylhexyl 

acrylate), DP 25 poly(isodecyl acrylate), DP 20 poly(lauryl acrylate), and DP 327 poly(stearyl 

acrylate) prepared via the RAFT process using 1 as a CTA AIBN at 80 ºC ([M]:[CTA]:[I] = 

100:1:0.1) in toluene (50 wt.%) (300 MHz; CDCl3). 

 

The semi-logarithmic plots for RAFT polymerizations performed in toluene (50 wt.%) are 

linear, indicating a constant concentration of propagating radicals, for the first 25 minutes of the 

polymerization for all monomers with the exception of SA, which exhibits an induction period 
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(Figure 2.16). Potential causes of an induction period include slow fragmentation, slow re-

initiation, the presence of impurities, and the occurrence of side reactions.
18

 Although slow 

fragmentation of the CTA benzylic R group is expected with acrylates, it is well known that 

propagating acrylic monomer radicals undergo backbiting β-scission reactions which complicate 

the polymerization of these monomers (Scheme 2.7).
19

 The incidence of backbiting increases with 

increasing monomer side chain length and, in the case of stearyl acrylate, these reactions compete 

with propagation and therefore likely account for the observed induction period.
20

 Importantly, 

backbiting β-scission reactions result in branching, which is especially pronounced at high 

monomer conversions and molecular weights.
20

 At t = 25 minutes, rate retardation is observed and 

control of the polymerization is lost, as evidenced by an increase in ÐM, a loss in linearity 

between Mn and monomer conversion, and a decrease in Mn with increasing monomer conversions 

(Figure 2.17). These observations are consistent with an increased incidence of backbiting β-

scission reactions at higher monomer conversions. Interestingly, although MA, EHA, and IDA 

exhibit similar rates of polymerization under these reaction conditions, the rate of polymerization 

of LA and SA is noticeably slower predominantly since the reaction conditions selected result in 

more dilute conditions for larger monomers. Regardless, monomer conversions between 35% 

(SA) and 65% (IDA) can be achieved within the first 25 minutes of the polymerization. 

Furthermore, MALDI-ToF mass spectral analysis of methyl acrylate (MA) revealed a single 

distribution with a regular repeat unit equal to the molecular weight of MA (Figure 2.18). A single 

distribution, centered around m/z = 2145.00 corresponds to sodium charged linear poly(methyl 

acrylate) polymerized from 1, indicating good end-group fidelity. 

 

Scheme 2.7: Backbiting β-scission reactions in the RAFT polymerization of acrylates. Scheme 

adapted from Moad et al.
19
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Figure 2.16: Semi-logarithmic plots for the RAFT polymerization of selected acrylates using 1 as 

a CTA and AIBN at 80 ºC ([M]:[CTA]:[I] = 100:1:0.1) in toluene (50 wt.%). 

 

 

Figure 2.17: Plot of Mn and ÐM versus monomer conversion for the RAFT polymerization of 

selected acrylates using 1 as a CTA and AIBN at 80 ºC ([M]:[CTA]:[I] = 100:1:0.1) in toluene 

(50 wt.%). 
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Figure 2.18: MALDI-ToF mass spectrum of poly(methyl acrylate) ([M]t/[M]0 = 0.39) prepared 

via the RAFT process using 1 as a CTA and AIBN at 80 ºC ([M]:[CTA]:[I] = 100:1:0.1) in 

toluene (50 wt.%). 

 

In order to verify that the discrepancy observed in the rates of polymerization between 

shorter and longer chain acrylates for reactions performed in toluene (50 wt.%) result from varied 

monomer concentration, the RAFT polymerizations were performed at a fixed concentration (2.55 

M) in toluene. The rates of polymerization were similar between monomers as evidenced by the 

semi-logarithmic plots (Figure 2.19). Since the monomer concentration was decreased for all 

monomers except stearyl acrylate, a decreased rate of polymerization was observed relative to 

those presented in Figure 2.16, which pronounced induction periods arising from slow 

fragmentation of the CTA benzylic R group during the addition-fragmentation stage of the RAFT 

process and backbiting β-scission reactions. Control of the polymerization, however, was 

achieved between approximately 15% and 50% monomer conversion for all monomers as 

evidenced by favorable disperities and a linear relationship between Mn and monomer conversion 

(Figure 2.20).  
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Figure 2.19: Semi-logarithmic plots for the RAFT polymerization of selected acrylates using 1 as 

a CTA and AIBN at 80 ºC ([M]:[CTA]:[I] = 100:1:0.1) in toluene (2.55 M). 

 

 

Figure 2.20: Plot of Mn and ÐM versus monomer conversion for the RAFT polymerization of 

selected acrylates using 1 as a CTA and AIBN at 80 ºC ([M]:[CTA]:[I] = 100:1:0.1) in toluene 

(2.55 M). 
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2.2.3 Chain Extension of PPDL macro-CTA 2 via the RAFT Process 

Standard reaction conditions employed in the homopolymerization of acrylates using 1 as 

a CTA (Scheme 2.6) were applied in the chain extension of PPDL macro-CTA 2 using 2-

ethylhexyl acrylate (Scheme 2.8). The polymerization was monitored by comparing the integral of 

the acrylic protons in the monomer (δ = 6.45-5.75 ppm) and the methylene protons adjacent to the 

ester in the polymer (δ = 4.01-3.70 ppm) in 
1
H NMR spectra (Figure 2.21). Furthermore, the DP 

was evaluated by comparing the integral of the methylene protons of 2 (δ = 5.05 ppm) to that of 

the methylene protons adjacent to the ester in the polymer (δ = 4.01-3.70 ppm). 

 

 

Scheme 2.8: General reaction scheme for the chain extension of macro-CTA 2 using acrylic or 

styrenic monomers. 
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Figure 2.21: 
1
H NMR spectrum of PPDL-b-(DP 32 PEHA) prepared via the chain extension of 2 

([M]:[CTA]:[I] = 100:1:0.1) with 2-ethylhexyl acrylate using AIBN at 80 ºC in toluene (50 wt.%), 

and precipitated in methanol from ethyl acetate (300 MHz; CDCl3). 

 

Good control was achieved up to 56% monomer conversion as evidenced by a linear 

semi-logarithmic plot (Figure 2.22), a linear correlation between the Mn and monomer conversion, 

and a decrease in the ÐM of the polymer with increasing degrees of polymerization (Figure 2.23). 

Importantly, an induction period was observed following slow fragmentation of the macro-CTA 

benzylic R group during the addition-fragmentation stage of the RAFT process. Beyond 56% 

monomer conversion, however, loss of control followed significant backbiting β-scission 

reactions as evidenced by an increase in ÐM, a loss in linearity between Mn and monomer 

conversion, and a decrease in Mn with increasing monomer conversions. Ultimately, control of the 

chain extension reaction can be achieved across various target DPs, specifically DP 50, 75, 100, 

and 300 where monomer conversions are limited to approximately 50% (Figures 2.24 and 2.25). 
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Figure 2.22: Semi-logarithmic plot for the chain extension of 2 with 2-ethylhexyl acrylate using 

AIBN at 80 ºC ([M]:[CTA]:[I] = 100:1:0.1) in toluene (50 wt.%). 

 

 

Figure 2.23: Plot of Mn and ÐM versus monomer conversion for the chain extension of 2 with 2-

ethylhexyl acrylate using AIBN at 80 ºC ([M]:[CTA]:[I] = 100:1:0.1) in toluene (50 wt.%). 
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Figure 2.24: Semi-logarithmic plots for the chain extension of 2 with 2-ethylhexyl acrylate, 

varying [M]:[CTA] and using the reaction conditions outlined in Scheme 2.8. 

 

Figure 2.25: Plot of Mn and ÐM versus monomer conversion for the chain extension of 2 using 2-

ethylhexyl acrylate, varying [M]:[CTA] and using the reaction conditions outlined in Scheme 2.8. 

Please note that trend lines fitted to ÐM versus percent monomer conversion plots are provided 

solely to guide the eye. 
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In order to purify block copolymer from PPDL homopolymer, in particular cyclic 

polymeric impurities obtained in the preparation of 2, block copolymers were precipitated in 

methanol. GPC chromatograms of crude 2, crude PPDL-b-PEHA, and purified PPDL-b-PEHA 

(Figure 2.26) suggest that a significant portion of macro-CTA 2 initiated from the bifunctional 

initiator 1 and was chain extended to prepare block copolymer via the RAFT process.  

 
Figure 2.26: Overlay of GPC (CHCl3) chromatograms for macro-CTA 2, crude PPDL-b-PEHA, 

and PPDL-b-PEHA purified via precipitation in methanol. 

 

 

In order to explore whether control of the chain extension process could be achieved up to 

higher conversions, the polymerization was repeated at 100 ⁰C using the azo initiator 1,1′-

azobis(cyclohexanecarbonitrile) (AICN). In a subsequent reaction, a second charge of AICN was 

added 47 minutes into the reaction in an attempt to prolong control of the reaction. The semi-

logarithmic plots for these polymerizations (Figure 2.27) indicate that the initial reaction 

temperature and initiator selected (Scheme 2.8) afforded the best control, as additionally 

evidenced by the correlation between the Mn and monomer conversion, and the ÐM and monomer 

conversion of the polymerizations (Figure 2.28). Furthermore, since Zhu et al.
21

 report a dramatic 

increase in the dispersity of poly(stearyl acrylate) in RAFT polymerizations performed above 80 

⁰C, subsequent reactions were thus performed at 80 ⁰C. 
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Figure 2.27: Semi-logarithmic plots for the chain extension of 2 with 2-ethylhexyl acrylate 

([M]:[CTA]:[I] = 100:1:0.1) in toluene (50 wt.%), varying the initiator and reaction temperature. 

 

 

Figure 2.28: Mn and ÐM versus monomer conversion for the chain extension of 2 with 2-

ethylhexyl acrylate ([M]:[CTA]:[I] = 100:1:0.1) in toluene (50 wt.%), varying the initiator and 

reaction temperature. 
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The effect of monomer concentration on the control of the RAFT polymerization of 2 was 

similarly explored by varying the solvent content. As expected, increasing and decreasing the 

monomer concentration increases and decreases the rate of the polymerization, respectively as 

evidenced by semi-logarithmic plots (Figure 2.29). Performing a polymerization in 25 wt.% 

toluene furthermore resulted in rapid increases in the Mn of polymer whereas dilute conditions 

(100 wt.% and 150 wt.% toluene) yielded marginal increases in Mn within an unpractical time 

frame as evidenced by the plot of Mn versus monomer conversion (Figure 2.30). Therefore, in 

order to achieve repeatable control over the Mn of the polymer product within a practical time 

frame, the original reaction conditions (Scheme 2.8) were adopted for subsequent reactions.  

 

Figure 2.29: Semi-logarithmic plots for the chain extension of 2 with 2-ethylhexyl acrylate using 

AIBN at 80 ºC ([M]:[CTA]:[I] = 100:1:0.1), varying [M] in toluene. 
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Figure 2.30: Plot of Mn and ÐM versus monomer conversion for the chain extension of 2 with 2-

ethylhexyl acrylate using AIBN at 80 ºC ([M]:[CTA]:[I] = 100:1:0.1), varying [M] in toluene. 

 

The chain extension of 2 targeting DP 100 and DP 300 was further demonstrated using 

the acrylic monomers IDA, LA, and SA. As with the chain extension of 2 with EHA (Figure 

2.21), the polymerization was monitored by comparing the integral of the acrylic protons in the 

monomer (δ = 6.45-5.75 ppm) and the methylene protons adjacent to the ester in the polymer (δ ≈ 

4.40-3.50 ppm) in 
1
H NMR spectra (Figure 2.31). Furthermore, the DP was evaluated by 

comparing the integral of the methylene protons of 2 (δ = 5.05 ppm) to that of the methylene 

protons adjacent to the ester in the polymer (δ ≈ 4.40-3.50 ppm). The chain extension 

polymerizations proceeded with good control as evidenced by linear semi-logarithmic plots 

(Figure 2.32 and Figure 2.35), a linear correlation between the Mn and monomer conversion, and a 

decrease in the ÐM of the polymer with increasing degrees of polymerization (Figure 2.33 and 

Figure 2.36). The rate of chain extension was fastest for EHA and slowest for SA, as observed in 

the RAFT homopolymerizations in 50 wt.% toluene (Figure 2.16). In order to target specific 

acrylic block lengths in the large scale synthesis of acrylic block copolymers of PPDL, plots of 

DP versus time were prepared (Figure 2.34 and Figure 2.37). Furthermore, respectable end-group 

fidelity was achieved as evidenced by the overlay of RI and UV GPC chromatograms for crude 

PPDL-b-PLA (Figure 2.38). Although a minor amount of UV-inactive and therefore non-

functional material was observed, it is suspected that this material is residual cyclic PPDL 
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homopolymer from the crude macro-CTA 2 that can be removed via precipitation of the 

copolymer in methanol. 

 

Figure 2.31: 
1
H NMR spectra of PPDL-b-(DP 17 PIDA), PPDL-b-(DP 30 PLA), and PPDL-b-

(DP 47 PSA) prepared via the chain extension of 2 ([M]:[CTA]:[I] = 100:1:0.1) with selected 

acrylates using AIBN at 80 ºC in toluene (50 wt.%), and precipitated in methanol from ethyl 

acetate (300 MHz; CDCl3). 
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Figure 2.32: Semi-logarithmic plots for the chain extension of 2 with selected acrylates using 

AIBN at 80 ºC ([M]:[CTA]:[I] = 100:1:0.1) in toluene (50 wt.%). 

 

Figure 2.33: Plot of Mn and ÐM versus monomer conversion for the chain extension of 2 with 

selected acrylates ([M]:[CTA]:[I] = 100:1:0.1) using AIBN at 80 ºC in toluene (50 wt.%). Please 

note that trend lines fitted to ÐM versus percent monomer conversion plots are provided solely to 

guide the eye. 
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Figure 2.34: Plot of DP versus time for the chain extension of 2 with selected acrylates using 

AIBN at 80 ºC ([M]:[CTA]:[I] = 100:1:0.1) in toluene (50 wt.%). 

 

Figure 2.35: Semi-logarithmic plots for the chain extension of 2 with selected acrylates using 

AIBN at 80 ºC ([M]:[CTA]:[I] = 300:1:0.1) in toluene (50 wt.%). 
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Figure 2.36: Plot of Mn and ÐM versus monomer conversion for chain extension of 2 with 

acrylates using AIBN at 80 ºC ([M]:[CTA]:[I] = 100:1:0.1) in toluene (50 wt.%). Please note that 

trend lines fitted to ÐM versus percent monomer conversion plots are provided solely to guide the 

eye. 

 

Figure 2.37: Plot of DP versus time for the chain extension of 2 with selected acrylates using 

AIBN at 80 ºC ([M]:[CTA]:[I] = 300:1:0.1) in toluene (50 wt.%). 
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Figure 2.38: Overlay of RI and UV-GPC (CHCl3, 309 nm) chromatograms of crude PPDL-b-

PLA copolymer ([M]t/[M]0 = 0.48) prepared via the chain extension of 2 with lauryl acrylate 

using AIBN at 80 ºC ([M]:[CTA]:[I] = 100:1:0.1) in toluene (50 wt.%). 

 

Finally, the chain extension of 2 was performed with MA, S, and the thermoresponsive 

monomer N-isopropylacrylamide (NIPAM) according to reaction conditions outlined in Scheme 

2.8, with the exception that the chain extension with NIPAM was performed in chloroform at 60 

ºC. The polymerization was monitored by comparing the integral of the acrylic protons in the 

monomer (δ ≈ 6.80-5.10 ppm) and the methyl ester protons in poly(MA) (δ = 3.65 ppm), the 

methyne proton in polystyrene (δ = 2.20-1.85 ppm), and the methyl protons in poly(NIPAM) (δ = 

1.2–0.95 ppm). Furthermore, the DP was evaluated by comparing the integral of the methylene 

protons of 2 (δ = 5.05 ppm) with that for the specified polymer resonances. The chain extension 

polymerizations proceeded with good control as evidenced by linear semi-logarithmic plots 

(Figure 2.40), a linear correlation between the Mn and monomer conversion, and a decrease in the 

ÐM of the polymer with increasing degrees of polymerization (Figure 2.41). The rate of chain 

extension was fastest with MA and slowest with styrene following varied resonance stabilization 

of the radicals generated. Furthermore, a significant induction period was observed in the chain 

extension with NIPAM following slow fragmentation of the macro-CTA benzylic R group during 

the addition-fragmentation stage of the RAFT process. 
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Figure 2.39: 
1
H NMR spectra of PPDL-b-(DP 43 P(MA)), PPDL-b-(DP 27 P(NIPAM)), and 

PPDL-b-(DP 31 P(S)) prepared via the chain extension of 2 with MA, NIPAM, and S using AIBN 

([M]:[CTA]:[I] = 100:1:0.1), and precipitated in methanol (P(MA) and P(S)) or diethyl ether 

(P(NIPAM)) (300 MHz; CDCl3). 

 

Figure 2.40: Semi-logarithmic plots for the chain extension of 2 with MA, NIPAM, and S using 

AIBN ([M]/[I] = 100) ([M]:[CTA]:[I] = 100:1:0.1).  
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Figure 2.41: Plot of Mn and ÐM versus monomer conversion for the chain extension of 2 with 

MA, NIPAM, and S using AIBN ([M]/[I] = 100) ([M]:[CTA]:[I] = 100:1:0.1). Please note that 

trend lines fitted to ÐM versus percent monomer conversion plots are provided solely to guide the 

eye. 
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2.3 Conclusions 

PPDL was successfully prepared via eROP, initiating from BnOH in a controlled fashion.  

Furthermore, controlled eROP of PPDL initiating from the bifunctional initiator dodecyl 4-

(hydroxymethyl) benzyl carbonotrithioate, which is appropriate for RAFT polymerization, was 

also demonstrated. Using both initiators, however, the presence of cyclic PPDL was noted 

alongside the desired linear polymer with intended functionality. Cyclic PPDL results via chain 

scission and cyclization reactions catalysed by indiscriminate transesterification by lipases, and its 

presence is consistent with literature reports.
15,22,23

  

Chain extension of a PPDL macro-CTA was successfully performed with a selection of 

acrylic monomers, in particular those relevant to fuels applications, namely EHA, IDA, LA, and 

SA, in addition to MA, styrene and NIPAM. Good control of the RAFT process was observed 

with all monomers investigated and respectable end-group fidelity was achieved as evidenced by 

an overlay of the RI and UV (309 nm) GPC (CHCl3) chromatograms of crude PPDL-b-PLA. The 

kinetic data obtained herein informed the large scale synthesis and characterization of PPDL-b-

poly(acrylate) copolymers prepared in Chapter 3 for fuels testing.  

Demonstrating that RAFT-functional PE-like PPDL can be readily prepared with 

moderate end-group fidelity and that the RAFT functionality can be successfully employed for 

CRP, it is anticipated that interesting novel materials can be prepared. Future studies could 

include the preparation of RAFT-functional PPDL from bifunctional initiators maintaining 

different Z and/or R groups or via convergent synthetic strategies, the preparation of higher 

architectures of PPDL and copolymers thereof, and the investigation of high molecular weight 

material. Additional investigations could include the development of non-enzymatic catalysts 

capable of polymerizing macrocyclic lactones in the absence of significant chain scission 

reactions and initiation from water.   
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3.1 Introduction 

Although the popularity of diesel vehicles has fluctuated with the general public, 

especially within North America, the diesel engine remains the motor of choice within industry 

and the military for both transport and machinery. Advantages of the diesel engine include its 

superior efficiency, reliability, durability, and torque in addition to its minimal carbon monoxide 

emissions and ability to withstand turbo-charging, limited only by the strength of individual 

engine components. Advantages of diesel fuel include that diesel is significantly less flammable 

than petrol and, in principle, cheaper since diesel can be sourced from a broad range of 

feedstocks, from petroleum through to plant and animal fats and used without significant blending 

or processing following the robustness of diesel engine design. Despite these advantages, diesel 

engines suffer some disadvantages, in particular cold weather operability, which restrict their 

performance, reliability, and popularity for personal vehicle use. Not only are diesel engines 

significantly more difficult to start when cold, diesel fuel is prone to gelling at cold temperatures, 

blocking fuel lines, filters, and pumps, leading to fuel starvation and resulting in loss of power 

and even complete failure depending on the fuel, temperature, and engine design. Although fuel 

line and tank heaters can be installed to reduce fuel gelling, chemical additives have been 

developed, beginning in the 1960s, to significantly improve the cold flow properties of diesel at 

low treat rates and extend the operable temperature range of diesel engines. This strategy, 

however, suffers from the fact that additive performance is highly dependent on diesel fuel 

composition. 

Diesel fuel sourced from petroleum is simply a middle distillate of crude oil with a typical 

boiling point range of 130 – 370 ⁰C1
 and is comprised predominantly of hydrocarbons including 

alkanes, cycloalkanes, and aromatics, some of which contain heteroatoms. Straight chain paraffins 

account for 15-30% of diesel content, with a distribution from C9 through to C36 that varies 

significantly depending on the regional source of the crude oil and the fractionation efficiency of 

the refinery at which it was processed (Figure 3.1).
2
 Diesel cold flow properties are highly 

dependent on n-alkane content and distribution since, at low temperatures, larger paraffins 

precipitate from the fuel as rhomboid crystals that can grow up to 1 mm in diameter and block 

fuel lines and filters. Furthermore, in the presence of as little as 0.5% precipitated wax, a gel 

structure forms whereby bulk fuel is trapped in a “house of cards” of interlocking wax crystals 

following their strong edge-to-edge attractive forces.
3
 Cold flow problems typically arise when 

overnight temperatures reach between -10 ⁰C and -15 ⁰C, and unfortunately, removal of paraffins 

from diesel altogether results in ignition failures.
4
 Middle distillates can be generalized by both 
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their boiling point range and final boiling point temperature.
2
 Narrow boiling distillates are 

significantly waxier and exhibit very poor cold flow performance relative to broader boiling 

distillates since, in broad boiling distillates, the lighter fraction solubilizes the heavier paraffin 

content to a significant extent. Furthermore, high final boiling point distillates also exhibit inferior 

cold flow performance following their greater heavy paraffin content. Therefore, extremely 

narrow or high boiling distillates can be very difficult to treat in order to achieve desirable cold 

flow performance. Indeed, the most difficult to treat fuels often require blending with other 

distillates, preferably those with high aromatic content.  

 

Figure 3.1: Characteristics of middle distillate fuels sourced from different national production 

sites, including the distribution of n-alkanes separating 10 ⁰C below the cloud point. Figure 

adapted from Reference 2.
2 
 

 

 
In order to predict the field performance of various diesel fuels, two laboratory 

assessments were initially developed, namely the Cloud Point or temperature at which the first 

wax crystal precipitates from fuel, and the Pour Point or temperature at which fuel solidifies. 

These assessments, however, were determined to be too severe and too optimistic, respectively 

since most diesel engines running untreated fuel fail just below the cloud point.
2
 In 1965, 

however, the Cold Filter Plugging Point (CFPP) test was developed and thereafter standardized 

and widely adopted following its good correlation in predicting the low temperature operability of 
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diesel fuel. Using a specialized apparatus, the CFPP is defined as the temperature at which diesel, 

when cooled under prescribed conditions, either fails to pass, under vacuum, through a 

standardized filtration device within a specified amount of time, or fails to flow back through the 

filter prior to the next vacuum cycle.
2
 Ultimately, the CFPP evaluates the flow and filterability of 

diesel below its cloud point, and therefore in the presence of wax crystals, and remains the most 

precise and reliable cold flow performance test to date. 

In order to improve CFPP performance, additives were developed to promote 1) 

nucleation, enabling the formation of a large number of smaller wax crystals that are less prone to 

blocking fuel lines, pumps, and filters by interacting with the first crystal nuclei formed several 

degrees above the cloud point, 2) growth inhibition, preventing large crystal growth and crystal-

crystal interactions that cause fuels to gel by adsorbing onto growing crystal surfaces, preventing 

plate type growth, and forcing crystals to adopt more compact shapes such as needles, and 3) wax 

anti-settling, stabilizing wax dispersion through the fuel in order to prevent wax crystals from 

settling, enabling faster re-melting of wax as fuel warms up and ensuring uniform paraffin content 

in fuel for good ignition.
4
 Importantly, these middle distillate flow improvers (MDFIs) do not 

alter the cloud point or quantity of wax that precipitates from diesel. Rather, they increase 

tolerance to wax by modifying the size and shape of the crystals generated since, where wax 

crystals no longer pass through filters, their modified shape ensures that a porous wax crystal cake 

is formed, permitting continued flow of liquid diesel, ultimately altering the CFPP and pour point 

of the fuel (Figure 3.2).
2
 Interestingly, where cloud point depressants are employed, CFPP 

performance can be seriously impaired since cloud point depressants yield very large, although 

well-separated crystals.
5
 Since MDFIs modify both the size and shape of wax crystals formed in 

diesel, they are also referred to as wax crystal modifiers (WCMs). It is additionally commonplace 

to visualize wax crystal morphology by microscopy and evaluate wax dispersion throughout a 

treated fuel at specified temperatures in the laboratory assessment of WCM performance. These 

observations assist in developing a fundamental understanding of the affect and mechanism of an 

additive as a WCM in a specific fuel. 
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Figure 3.2: Comparison of wax crystal growth in diesel with and without MDFIs. Figure adapted 

from Reference 2.
2
 

 
MDFIs are typically fuel-soluble, polymeric materials maintaining n-alkane- or 

polyethylene-like backbones. The most effective and widely used MDFIs are random ethylene-co-

vinyl acetate copolymers (EVAs) prepared via high pressure, high temperature free radical 

polymerization. Interestingly, EVAs can function as both nucleators and growth arrestors 

depending on the middle distillate and the EVA vinyl acetate content.
4
 For example, varying the 

vinyl acetate content tunes the function of the EVA.
6
 Although very little is known about their 

structure and monomer distribution, it is widely accepted that EVAs function as growth arrestors 

by adsorbing onto the growing face of a wax crystal via the polyethylene backbone, and that the 

acetate groups extend into the fuel, inhibiting both further crystal growth and crystal-crystal 

interactions.
7
 EVA performance is further improved where vinyl acetate branches are eliminated 

via hydrolysis and re-acetylation, and intrachain interactions are promoted by tuning the 

molecular weight and vinyl acetate content of the copolymer to the fuel.
8
 Similarly, block 

copolymers maintaining a semi-crystalline polyethylene block coupled to an amorphous diblock 

copolymer such as poly(ethylene-co-propylene) or poly(ethylene-co-butene) behave as both 

nucleators and growth arrestors whereby the semi-crystalline polyethylene block promotes 

nucleation and the amorphous component serves as a steric barrier.
3
 Wax anti-settling agents 
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(WASAs), which prevent wax crystal sedimentation by adsorbing onto wax crystal surfaces and 

enhancing their colloidal stability, are typically adducts of dialkylamines and cyclic anhydrides 

(Figure 3.3).
4
 Additional MDFIs include comb polymers maintaining branch chain lengths 

between C12 and C18, which typically form assemblies in fuel and behave as cloud point 

depressants or WASAs depending on the polymer molecular weight.
9
 Interestingly, fumarate 

vinyl acetate comb polymers have been found to specifically nucleate waxes of a given carbon 

chain length depending on the length of the alkyl side branches.
10

  

 

Figure 3.3: Dialkyl amine adducts of phthalic anhydride (left) and succinic anhydride (right) 

commonly employed as wax anti-settling agents (WASAs).
4
 

 
Cold flow technology is similarly employed to increase the reliability of heating oil and 

marine fuel, and the pipeline transport of crude oil and heavy fuel. Furthermore, it is routinely 

used in refinery processing to increase capacity by reducing the amount of filters and heating 

facilities required for de-waxing, and to increase revenue through improved fractionation, 

increasing yields, upgrading less valuable, heavier streams to diesel, and liberating higher value 

fractions, such as kerosene.
2
 The fuel additives industry has also realized the development of 

numerous additional products to increase engine power, economy, and overall performance 

including additives for detergency, which maintain fuel injector systems, lubricity, to reduce 

engine wear following the introduction of low-sulfur diesel, improved combustion, anti-corrosion, 

fuel stabilization, fuel demulsification, and the regeneration of diesel particulate filters.
11

 Despite 

these achievements, however, there remains a demand for 1) an improved understanding of MDFI 

mechanisms, 2) more universal MDFI packages, reducing the need to tailor an additives package 

to each fuel processed at a refinery, and 3) improved cold flow performance since winterized 

diesel blends, or diesel treated to reduce low temperature fuel gelling, continue to require 

kerosene and, in some remote regions, heavy duty vehicles continue to be left running overnight 

in severe climates to prevent fuel gelling. Furthermore, it has been reported that conventional 

MDFIs are not as effective with biodiesel.
12

 

Growing demand for energy security, especially following the energy crisis of the 1970s, 

in addition to environmental policies calling for a reduction in petroleum consumption have 

driven the legislated use of biodiesel as set out by EN 590 standards for diesel characteristics in 
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Europe. Biodiesel is typically composed of transesterified vegetable oils since unprocessed oils, 

specifically triglycerides of saturated or unsaturated fatty acids, suffer from high viscosity, poor 

atomization, and the tendency to cause engine coking. Fatty acid methyl esters (FAMEs) are 

suitable for direct-injection diesel engines and their superior cetane rating, lubricating properties, 

and reduced emissions relative to low sulfur petroleum diesel make them an attractive fuel 

choice.
13

 Additional advantages of biodiesel include that it is safer to handle following its low 

toxicity and higher flash point, and that it is sourced from renewable feedstocks including edible 

vegetable oil, non-edible vegetable oil, waste or recycled oil, and animal fat. Unfortunately, waste 

oil and animal fats are highly saturated and consequently maintain very high cloud points, often 

exceeding 15 ⁰C, and therefore must be blended for fuels applications.
13,14

 Highly unsaturated 

vegetable oils exhibit superior biodiesel cold flow performance, however, their reduced cetane 

rating and oxidative stability relative to other biodiesels similarly often limits their use to blends 

with petroleum diesel.
14,15

  

Currently, biodiesel is typically sold as a 5-20 % blend in conventional diesel, the amount 

of which is designated by a “B” factor - for example, blended diesel fuel consisting of 10% 

biodiesel is designated “B10” - since blended diesel is easier to treat than neat biodiesel and since 

biodiesel significantly improves the lubricating properties and cetane rating of low sulfur 

petroleum diesel, even in 1-2% blends.
12,14

 Biodiesel however, suffers problems for which 

additives are required including water contamination, degradation, inconsistent fuel quality, 

biological growth, increased nitrogen oxide emissions, increased motor wear, hazing during 

storage, and critically, poor cold flow performance.
1,14

 The very narrow n-alkane distribution in 

biodiesel results in biodiesel having a significantly higher cloud point than petroleum diesel, 

namely 0 ⁰C compared to -16 ⁰C, respectively, which is very difficult to treat with conventional 

MDFIs and suggests the requirement for biodiesel specific cold flow additives.
14

 Therefore, 

biodiesel continues to be blended with petroleum diesel in order to satisfy performance 

requirements, although cold flow properties can also be improved using additives, blending with 

kerosene or alcohols, or via costly chemical modification.
12,16

  

Advantages of the diesel engine have driven successive technological improvements that 

have been greatly supported by developments within the fuel additives industry, in particular cold 

flow technology (Figure 3.4). Furthermore, socio-economically driven changes including the 

legislated use of low-sulfur diesel, biodiesel, and diesel particulate filters, for example, have 

delivered additional challenges that have also been successfully managed by the additives 

industry. The enhanced operability and reliability of diesel vehicles has increased their popularity 
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to the extent that diesel engines currently account for nearly half of the vehicles in Western 

Europe. On-going developments in MDFI technology are expected to continue improving the 

reliability and cold weather operability of diesel vehicles; however, the overwhelming challenge 

remains to treat varied diesel quality from different sources.  

 

Figure 3.4: Timeline of the cold flow additives industry. Figure adapted from Reference 17.
17

 

 

To date, alternate commercial MDFI products have not matched the umbrella success of 

EVAs. Therefore, new MDFI research initiatives are often polyolefin-based approaches. Recent 

reports that PPDL maintains polyethylene-like properties motivated our interest in PPDL for cold 

flow technology, particularly since its hydrolysable ester linkages, which uphold PPDL as a 

potential “green” alternative to PE, complements environmental incentives for legislated biodiesel 

production.
18

 Therefore, chemistry developed in Chapter 2 was utilized to prepare PPDL 

copolymer samples for cold flow fuel testing, the results for which are discussed herein.  
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3.2 Results and Discussion 

3.2.1 Synthesis and Fuels Testing of Poly(ω-Pentadecalactone)-b-Poly(2-Ethylhexyl acrylate) 

Block Copolymers 

3.2.1.1 Polymer Synthesis 

Analysis conducted on PPDL samples at Infineum UK Ltd determined that PPDL is 

insoluble in fuel, even with heating, which was expected since PPDL is insoluble in the majority 

of common laboratory solvents, with the exception of chloroform. In order for PPDL to be 

explored as a potential fuels additive, it must be soluble in fuel. Therefore, block copolymers of 

PPDL were proposed whereby the second block is highly soluble in fuel and therefore solubilizes 

the PPDL component of the copolymer. Since polyacrylates are well known to be soluble in fuel 

and since the bifunctional CTA 1 described in Chapter 2 is well known in our research group and 

suitable for both the initiation of ROP and the RAFT polymerization of acrylates, the chemistry 

described in Chapter 2 was developed. Poly(2-ethylhexyl acrylate) (PEHA) was selected for the 

second block for initial fuels testing since 1) it is known to be highly soluble in fuels, and 2) its 

branched nature will disrupt the linearity of the acrylic backbone and therefore reduce the ability 

of the acrylic block to promote nucleation. Therefore, whilst developing the chemistry in Chapter 

2, an initial set of PPDL-b-PEHA copolymers with varied acrylic block length were prepared in 

two steps for fuels testing to evaluate the efficacy of this strategy for fuels applications. 

First, a batch of purified DP 19 PPDL macro-CTA 3 was prepared on a 10 g scale 

(Scheme 3.1 and Table 3.1) via the eROP of PDL from the bifunctional initiator 1. Thereafter, the 

PPDL macro-CTA was chain extended with 2-ethylhexyl acrylate (EHA) to prepare a selection of 

block copolymers with varying acrylic block lengths as described (Scheme 3.2, Table 3.2). 

Finally, the samples underwent fuels testing at Infineum UK Ltd. 

 

Scheme 3.1: Synthesis of PPDL macro-CTA 3 (target DP 17). 
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Table 3.1: Characterization of PPDL macro-CTA 3 prepared according to Scheme 3.1. 

[M]0/[I]0 [M]t/[M]0
a 

Mn (g mol
-1

)
b 

Mn (g mol
-1

)
a
 ÐM

b 
DP

a
 

20 0.67 7800 4600 2.15 19 

a
Determined by 

1
H NMR spectroscopic analysis in CDCl3; 

b
Determined by GPC analysis in 

CHCl3. 

 

 

Scheme 3.2: Chain extension of DP 19 PPDL macro-CTA 3 to prepare PPDL-b-PEHA 

copolymers. 

 

 

Table 3.2: Summary of PPDL-b-PEHA copolymers prepared according to Scheme 3.2. 

Entry [M]0/[I]0 
Time 

(min) 

Mp          

(g mol
-1

)
a 

Mn 

(g mol
-1

)
a 

Mn 

(g mol
-1

)
b
 

ÐM
a DP 

PEHA
b 

Block 

Ratio
b 

1 100 42 11000 8800 5700 1.88 6 0.3 

2 100 82 12000 10800 8400 1.63 21 1.1 

3 100 162 17600 14800 16200 1.38 63 3.3 

4 100 1200 20900 12600 18600 1.69 76 4.0 

5 200 75 25100 22100 37900 1.24 181 9.5 

6 200 80 35400 13600 29800 2.43 137 7.2 

7 200 370 40800 30100 45800 1.43 224 11.8 

a
Determined by GPC analysis in CHCl3; 

b
Determined by 

1
H NMR spectroscopic analysis in 

CDCl3. 
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All GPC chromatograms of the block copolymers (Figure 3.5), with the exception of 

those that correspond to entries 4 and 6 in Table 3.2, are monomodal and exhibit a good 

correlation between the Mp of the copolymer and the acrylic block length as evaluated by 
1
H 

NMR spectroscopy, indicating good control of the polymerizations. Since polymer entry 4 (Table 

3.2) was obtained from the end point of a lengthy polymerization and at a monomer conversion 

well beyond a controlled polymerization range, at which point significant backbiting β-scission 

reactions occur, it is likely that the low molecular weight shoulder present in this sample is PEHA 

homopolymer. It is also possible that PEHA homopolymer was obtained since the reaction 

mixture was not homogeneous at the start of the reaction. Similarly, the low molecular weight 

shoulder observed for the entry 6 (Table 3.2) may be PEHA homopolymer, however, is also 

possible that these low molecular weight shoulders are PPDL homopolymer resulting from 

initiation from water during eROP. These poorly defined polymers provided the opportunity to 

determine whether the presence of PPDL or PEHA homopolymer affects the fuels testing 

performance of the copolymers. Furthermore, these results informed future syntheses for defined 

copolymers of PPDL such that: 1) the bifunctional initiator was thereafter dried over 3 Å 

molecular sieves instead of P2O5 to reduce initiation from water, 2) chain extensions were 

thereafter performed within a controlled radical polymerization range, as evaluated by semi-

logarithmic plots, and 3) the azo initiator was injected into reaction mixtures equilibrated to the 

desired reaction temperature in order to improve the repeatability and dispersity of the RAFT 

polymerizations, especially where reactions were performed on different scales. 
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Figure 3.5: GPC (CHCl3) chromatograms of PPDL-b-PEHA copolymers of various acrylic block 

ratios as described in Table 3.2 (DP PPDL:PEHA = 1:0.3, 1:1.1, 1:3.3, 1:4.0, 1:7.2, 1:9.5, and 

1:11.8). 

 

Differential scanning calorimetry (DSC) analysis of the copolymers (Figure 3.6) indicate 

that, in general, the onset crystallization temperature of the copolymers decreases as the size of 

the acrylic block is increased, substantiating the assertion that the copolymers are block 

copolymers. Entry 6 (Table 3.2) however does not fit this trend. This sample is suspected to 

contain a significant amount of PEHA homopolymer and therefore exhibits a higher acrylic block 

ratio than determined by 
1
H NMR spectroscopy, as substantiated by the Mp of the predominant 

polymer product. A corrected acrylic block ratio, however, fits the onset crystallization 

temperature trend. Similarly, since entry 4 (Table 3.2) did not disrupt the trend, it is suspected that 

the low molecular weight shoulder observed in the GPC chromatogram for this sample is PEHA. 
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Figure 3.6: Onset crystallization temperatures for PPDL-b-PEHA copolymers described in Table 

3.2, as determined by DSC analysis. 

 

3.2.1.2 Fuels Testing 

The block copolymers were used to treat Fuel A (Figure 3.7) and underwent CFPP testing 

(Figure 3.8). Fuel A contains 2% biodiesel and maintains a very narrow distribution of lower 

molecular weight paraffins, with the predominant n-alkane content being C15. It was determined 

that all of the polymer samples had a positive impact on CFPP performance at a treat rate of 200 

ppm, reducing the temperature at which the test failed relative to untreated fuel. In general, most 

of the polymers reduced the CFPP temperature from -9 ⁰C to between -16 ⁰C and -18 ⁰C, 

indicating that the size of the acrylic block length is not critical, although a block ratio greater 

than two and below ten achieves superior results. Anomalies were observed, however, particularly 

with the sample described in entry 4 (Table 3.2), the CFPP results for which suggest the presence 

of insoluble PPDL and not PEHA homopolymer. 
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Figure 3.7: Distribution of n-alkanes separating from B2 Fuel A.  

 

 
Figure 3.8: CFPP results for various acrylic block lengths of PPDL-b-PEHA (200 ppm treat rate 

in B2 Fuel A). 
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The polymers were further tested in Fuel B (Figure 3.9), which does not contain biodiesel 

and maintains a broad distribution of lower molecular weight n-alkanes, with the predominant n-

alkane being C10. It was determined that, as with Fuel A, all of the block copolymers had a 

positive impact on CFPP performance, reducing the temperature at which the test failed relative to 

untreated fuel from -7.5 ⁰C to as low as -17.5 ⁰C at a treat rate of 300 ppm (Figure 3.10). As with 

Fuel A, the CFPP results obtained with Fuel B indicate that superior results are obtained where 

the size of the acrylic block ratio is between two and ten. Since the 1:0.3 PPDL-b-PEHA sample 

failed the CFPP test in Fuel B, it can be concluded that there is a minimum acrylic block ratio 

required to solubilize the block copolymer in a range of fuels. As with Fuel A, some anomalies in 

CFPP performance were observed with Fuel B, notably with the polymer described in entry 4 

(Table 3.2). This anomaly, however, can similarly be attributed to the presence of PPDL 

homopolymer in the copolymer sample, as indicated by low molecular weight shoulders present 

in the GPC chromatogram for this sample. 

 

Figure 3.9: Distribution of n-alkanes separating from B0 Fuel B. 
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Figure 3.10: CFPP results for various acrylic block lengths of PPDL-b-PEHA (300 ppm treat rate 

in B0 Fuel B). Please note that 1:0.3 PPDL-b-PEHA failed the test. 

 

Overall, initial CFPP results indicate that block copolymers of PPDL merit further 

investigation as WCMs in fuels. Importantly, it was determined that the presence of PPDL 

homopolymer could potentially hinder CFPP performance whereas the presence of PEHA 

homopolymer may not where a corrected acrylic block ratio is taken into account. Furthermore, 

since testing was performed on unoptimized samples in the absence of any additional additives, it 

is anticipated that further improvements in performance could be observed, especially since 

WCMs can often perform in combination with other additives. Finally, the observation that the 

change in CFPP is greater in Fuel B than Fuel A suggests that Fuel A is more difficult to treat as a 

result of its narrower n-alkane distribution. 

 

3.2.2 Synthesis and Fuels Testing of a Selection of Acrylic Block Copolymers of Poly(ω-

Pentadecalactone) 

3.2.2.1 Polymer Synthesis 

The promising results obtained with the PPDL-b-PEHA copolymers inspired the 

synthesis of a more extensive range of acrylic block copolymers of PPDL for further fuels testing. 

Ultimately, the chemistry developed in Chapter 2 was utilized to prepare 18 different PPDL block 
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copolymer samples using acrylates, namely 2-ethylhexyl acrylate, isodecyl acrylate (IDA), lauryl 

acrylate (LA), and stearyl acrylate (SA) as the solubilizing block in various acrylic block lengths. 

The block copolymers were prepared by first preparing a batch of DP 19 PPDL macro-CTA (4) 

(Scheme 3.3 and Table 3.3), the crude material of which was thereafter chain extended with 

acrylic monomers via RAFT polymerization to prepare various block copolymers as described 

(Scheme 3.4 and Tables 3.4-3.7). Semi-logarithmic plots (Figure 2.31 and Figure 2.34) and plots 

of DP versus time (Figure 2.33 and Figure 2.36) for the chain extension of 2 using various 

acrylates determined in Chapter 2 were utilized to select appropriate reaction conditions and times 

for the preparation of desired range of block copolymer ratios described in Tables 3.4-3.7. 

Importantly, the Mp increased whilst the dispersity of the block copolymers obtained decreased 

with increasing acrylic block length, and there is a good correlation between the Mn evaluated by 

GPC and 
1
H NMR spectroscopic analysis. 

 

Scheme 3.3: Synthesis of DP 19 PPDL macro-CTA 4 (target DP 17). 

 

Table 3.3: Characterization of crude PPDL macro-CTA 4 prepared according to Scheme 3.3. 

[M]0/[I]0 [M]t/[M]0
a 

Mn (g mol
-1

)
b 

Mn (g mol
-1

)
a
 ÐM

b 
DP

a
 

20 0.70 4100 4600 3.81 19 

a
Determined by 

1
H NMR spectroscopic analysis in CDCl3; 

b
Determined by GPC analysis in 

CHCl3.

 
 

Scheme 3.4: Chain extension of crude DP 19 PPDL macro-CTA 4 to prepare PPDL-b-

poly(acrylate) copolymers. 
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Table 3.4: Summary of PPDL-b-PEHA copolymers. 

Entry 
[M]0/

[I]0 

Time 

(min) 

[M]t/

[M]0
a
 

Mp  

(g mol
-1

)
a 

Mn 

(g mol
-1

)
a 

Mn 

(g mol
-1

)
b
 

ÐM
a DP 

PEHA
b 

Block 

Ratio
b 

1 100 8 0.15 10600 9900 8100 1.95 19 1:1 

2 100 11 0.56 11400 11200 11600 1.69 38 1:2 

3 100 28 0.45 13400 14400 18600 1.45 76 1:4 

4 300 15 0.31 22200 19100 31000 1.38 143 1:7.5 

5 300 29 0.62 35000 25600 50100 1.46 247 1:13 

a
Determined by 

1
H NMR  spectroscopic analysis in CDCl3; 

b
Determined by GPC analysis in 

CHCl3. 

Table 3.5: Summary of PPDL-b-PIDA copolymers. 

Entry 
[M]0/

[I]0 

Time 

(min) 

[M]t/

[M]0
a
 

Mp 

(g mol
-1

)
a 

Mn 

(g mol
-1

)
a 

Mn 

(g mol
-1

)
b
 

ÐM
a DP 

PEHA
b 

Block 

Ratio
b 

1 100 10 0.33 11000 11200 8800 1.83 20 1:1 

2 100 17 0.43 12000 12500 12600 1.68 38 1:2 

3 100 31 0.62 16000 15400 22000 1.45 82 1:4.3 

4 300 15 0.38 24000 18600 28800 1.45 114 1:6 

a
Determined by 

1
H NMR  spectroscopic analysis in CDCl3; 

b
Determined by GPC analysis in 

CHCl3. 

Table 3.6 Summary of PPDL-b-PLA copolymers. 

Entry 
[M]0/

[I]0 

Time 

(min) 

[M]t/

[M]0
a
 

Mp 

(g mol
-1

)
a 

Mn 

(g mol
-1

)
a 

Mn 

(g mol
-1

)
b
 

ÐM
a DP 

PEHA
b 

Block 

Ratio
b 

1 100 10 0.25 10900 10100 9100 1.95 19 1:1 

2 100 17 0.42 14400 12800 15400 1.63 45 1:2.4 

3 100 31 0.55 18500 17400 22800 1.40 76 1:4 

4 300 23 0.46 34400 27300 48600 1.35 183 1:9.6 

5 300 23 0.59 37300 28900 59900 1.36 230 1:12 

a
Determined by 

1
H NMR  spectroscopic analysis in CDCl3; 

b
Determined by GPC analysis in 

CHCl3. 

Table 3.7: Summary of PPDL-b-PSA copolymers. 

Entry 
[M]0/

[I]0 

Time 

(min) 

[M]t/

[M]0
a
 

Mp 

(g mol
-1

)
a 

Mn 

(g mol
-1

)
a 

Mn 

(g mol
-1

)
b
 

ÐM
a DP 

PEHA
b 

Block 

Ratio
b 

1 100 9 0.18 10700 12000 10700 1.64 19 1:1 

2 100 17 0.37 17100 16200 19800 1.40 47 1:2.5 

3 100 27 0.50 20000 18000 29600 1.37 77 1:4 

4 300 21 0.51 40300 29100 70100 1.43 202 1:10.6 

a
Determined by 

1
H NMR  spectroscopic analysis in CDCl3; 

b
Determined by GPC analysis in 

CHCl3. 
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All of the polymers exhibit a good correlation between an increase in the Mn and Mp 

evaluated by GPC, and an increase in acrylic block ratio as evaluated by 
1
H NMR spectroscopy. 

Furthermore, a good correlation exists between increasing acrylic block length and decreasing 

polymer dispersity, indicating good control of the chain extension polymerization reaction. GPC 

chromatograms of the polymers precipitated to remove monomer and cyclic PPDL oligomers 

(Figures 3.11-3.14) are predominantly monomodal, noting that the low molecular weight 

shoulders observed, particularly in low molecular weight copolymers, are resolved oligomers. 

 

Figure 3.11: GPC (CHCl3) chromatograms of PPDL-b-PEHA copolymers described in Table 3.4 

(DP PPDL:PEHA = 1:1, 1:2, 1:4, 1:7.5, and 1:13). 
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Figure 3.12: GPC (CHCl3) chromatograms of PPDL-b-PIDA copolymers described in Table 3.5 

(DP PPDL:PIDA = 1:1, 1:2, 1:4.3, and 1:6). 

 

 

 

Figure 3.13: GPC (CHCl3) chromatograms of PPDL-b-PLA copolymers described in Table 3.6 

(DP PPDL:PLA = 1:1, 1:2.4, 1:4, 1:9.6, and 1:12). 
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Figure 3.14: GPC (CHCl3) chromatograms of PPDL-b-PSA copolymers described in Table 3.7 

(DP PPDL:PSA = 1:1, 1:2.5, 1:4, and 1:10.6). 

 

In order to evaluate the end group fidelity of the precipitated copolymers, RI and UV-

GPC (CHCl3, 309 nm) data was acquired (Figure 3.15). Importantly, it was determined that all 1:1 

block copolymers were UV inactive in the high molecular weight range, indicating the presence 

of PPDL homopolymer that is not functionalized with initiator 1, as similarly observed in the 

overlay of the RI and UV-GPC chromatograms of macro-CTA 4 (Figure 3.16). This observation 

is consistent with de Geus et al.’s
19

 conclusion that water initiation dominates the initial eROP 

process. Specifically, initiation in eROP predominates from trace water present for the enzyme to 

function, however as the reaction progresses, the intended initiator becomes incorporated into the 

polymer via the transesterification mechanism of the enzyme. Therefore, the longer the reaction 

takes place, the greater the probability of the intended initiator functionalizing the polymer 

product. Importantly, the structure of the initiator must be carefully considered to ensure that it 

cannot be further transesterified in order to ensure that it does not become incorporated into the 

polymer main chain. 

Preparation of a larger second block, however, facilitated purification of the block 

copolymer from PPDL homopolymer. In general, the mid-length block copolymers exhibit similar 

RI and UV GPC chromatograms, indicating good end-group fidelity and substantiating the 

preparation of block copolymer architecture. Importantly, the larger acrylic ratio block copolymer 
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samples 1:13 PPDL-b-PEHA and 1:10.6 PPDL-b-PSA exhibit  bimodal UV-GPC chromatograms, 

indicating significant branching via backbiting β-scission reactions at the monomer conversions 

obtained, specifically 62% and 51%, respectively.  

 
 

Figure 3.15: Overlay of RI and UV-GPC (CHCl3, 309 nm) chromatograms of PPDL-b-

poly(acrylate) copolymers described in Tables 3.4-3.7: A) DP PPDL:PEHA = 1:1, 1:2, 1:4, 1:7.5, 

1:13, B) DP PPDL:PIDA = 1:1, 1:2, 1:4.3, 1:6, C) DP PPDL:PLA = 1:1, 1:2.4, 1:4, 1:9.6, 1:12, 

D) DP PPDL:PSA = 1:1, 1:2.5, 1:4, 1:10.6. 
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Figure 3.16: Overlay of RI and UV-GPC (CHCl3, 309 nm) chromatogram of crude DP 19 PPDL 

macro-CTA 4. 

 

DSC analysis of the copolymers (Figure 3.17) indicate that the onset crystallization 

temperature decreases as the size of the acrylic block increases, which substantiates the assertion 

that the copolymers are block copolymers. Furthermore, the polymers exhibit markedly different 

physical appearances (Figures 3.18-3.21). Specifically, they dramatically decrease in crystallinity 

with increasing acrylic block length, with the exception of PPDL-b-PSA copolymers, all of which 

appear crystalline following side chain intermolecular aggregation.
20
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Figure 3.17: Onset crystallization temperatures for PPDL-b-poly(acrylate) copolymers described 

in Tables 3.4 – 3.7, as determined by DSC analysis. 
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Figure 3.18: Image of PPDL-b-PEHA copolymers described in Table 3.4 (Left to right: DP 

PPDL:PEHA = 1:1, 1:2, 1:4, 1:7.5, and 1:13). 

 

 

 

 

Figure 3.19: Image of PPDL-b-PIDA copolymers described in Table 3.5 (Left to right: DP 

PPDL:PIDA = 1:1, 1:2, 1:4.3, 1:6). 

 

 

 

 

Figure 3.20: Image of PPDL-b-PLA copolymers described in Table 3.6 (Left to right: DP 

PPDL:PLA = 1:1, 1:2.4, 1:4, 1:9.6, 1:12). 

 

 

 

 

Figure 3.21: Image of PPDL-b-PSA copolymers described in Table 3.7 (Left to right: DP 

PPDL:PSA = 1:1, 1:2.5, 1:4, 1:10.6). 
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MALDI-ToF mass spectrometry is not routinely utilized to characterize copolymers since 

a complex mixture of distribution patterns is generally observed (Figure 3.22). However, since the 

molecular weight of PDL and LA are exactly the same, namely 240.38 g mol
-1

, a single 

distribution pattern is expected in the MALDI-ToF mass spectrum of these copolymers. MALDI-

ToF mass spectra were therefore acquired for several PPDL-b-PLA copolymer samples and 

exhibit both a single distribution pattern (neglecting the presence of cyclic PPDL) and increases in 

the average mass to charge ratio of the copolymer with increasing acrylic block length, 

substantiating block copolymer architecture (Figures 3.23 and 3.24). It should be noted, however, 

that MALDI-ToF mass spectroscopy is not a quantitative technique and since higher molecular 

weight polymers are less susceptible to ionization, low molecular weight cyclic PPDL 

homopolymers present in trace quantities are more readily observed when analysing larger 

molecular weight polymers (Figure 3.24). Importantly, high molecular weight PPDL initiated 

from water, hypothesized from the overlay of RI and UV-GPC chromatograms (Figures 3.15 and 

3.16) was not observed. 

 

 

 

Figure 3.22: MALDI-ToF mass spectrum of PPDL-b-PEHA prepared via the chain extension of 

crude PPDL macro-CTA 4 ([M]:[CTA]:[I] = 100:1:0.1) in toluene (50 wt.%). 
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Figure 3.23: Overlay of the MALDI-ToF mass spectra of crude PPDL macro-CTA 4 with 1:1 

PPDL-b-PLA. 
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Figure 3.24: MALDI-ToF mass spectra of crude PPDL macro-CTA 4, 1:1 PPDL-b-PLA, and 

1:2.4 PPDL-b-PLA. 

 

In conclusion, 18 acrylic block copolymers of DP 19 PPDL were prepared with good 

control of the RAFT chain extension polymerization process, as indicated by good correlations 

between an increase in Mn and Mp and increasing acrylic block length, and decreasing polymer 

dispersity. UV-GPC analyses indicate that the precipitated polymers exhibit good end-group 

fidelity where the acrylic block length is between a ratio of 2 and 10. Below 2, it is suspected that 
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a significant amount of high molecular weight unfunctionalized PPDL homopolymer exists, 

which is difficult to remove by precipitation. Above 10, significant branching was observed since 

the chain extensions were performed to monomer conversions beyond a range of controlled 

radical polymerization. Finally, the decrease in onset crystallization temperatures as evaluated by 

DSC, increase in mass to charge ratio in MALDI-ToF mass spectroscopic analyses, and visible 

decrease in crystallinity of the copolymers with increasing acrylic block length confirm the 

preparation of block copolymer architecture. 

 

3.2.2.2 Fuels Testing 

3.2.2.2.1 Wax Anti-Settling and Crystal Morphology 

Stock solutions of the block copolymers (Tables 3.4-3.7) were prepared in Solvesso 150, 

an aromatic distillate, and left overnight. All of the 1:1 PPDL-b-poly(acrylate) copolymers 

appeared hazy at room temperature and exhibited settling from solution overnight, indicating that 

the 1:1 PPDL-b-poly(acrylate) copolymers are not very soluble in fuel. All other PPDL-b-

poly(acrylate) copolymers, however, remained in solution overnight. This observation, in 

combination with UV-GPC data obtained for the block copolymers (Figure 3.15) suggests that the 

1:1 copolymers likely contain PPDL homopolymer, which is not soluble in fuel. Therefore, it can 

be concluded that the acrylic block ratio must be greater than 2 to prepare block copolymers of 

DP 19 PPDL that are sufficiently large to purify the block copolymer from residual PPDL.  

The stock solutions were used to treat a variety of fuels, which were cooled to -18 ⁰C in a 

Clive Hurley Cold Room in order to evaluate wax settling and crystal morphology by optical 

microscopy. A selection of the PPDL-b-poly(acrylate) copolymers were used to treat B0 Fuel C 

(Figure 3.25) with up to 400 ppm of the block copolymers in the absence and presence of 

additional additives in order to investigate their effect as wax crystal modifiers. B0 Fuel C does 

not contain any biodiesel, however, contains two distributions of n-alkanes with C11-12 and C17 

averages. First, B0 Fuel C was treated with 200 ppm of copolymer and the percent wax settling 

was noted (Table 3.8). In general, all of the polymers, with the exception of the polymers 

containing stearyl acrylate, exhibited 10% wax settling. 
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Figure 3.25: Distribution of n-alkanes separating from B0 Fuel C. 
 

Table 3.8: Percent wax dispersed in B0 Fuel C treated with 200 ppm of PPDL-b-P(acrylates).  

Polymer Percent Wax Fuel Appearance 

1:1 PEHA 90 Hazy 

1:13 PEHA 90 Hazy 

1:1 PIDA 90 Hazy 

1:6 PIDA 90 Hazy 

1:1 PLA 90 Hazy 

1:12 PLA 90 Hazy 

1:1 PSA 100 Hazy 

1:10.6 PSA 100 Hazy 

 

The wax crystals were then visualized using an optical microscope. It was determined 

that, in general, the block copolymers did not decrease the size or morphology of wax crystals 

obtained – the wax crystals appeared similar to those observed in the base or untreated fuel 

(Figure 3.26). The copolymers 1:12 PPDL-b-PLA and 1:1 PPDL-b-PSA, however, appeared to 

reduce the size of the wax crystals obtained relative to the untreated base fuel (Figures 3.27 and 
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3.28). Interestingly, needle-like wax crystals were obtained using 1:1 PPDL-b-PSA in this fuel at 

this treat rate. Therefore, although most of the copolymers did not have a positive or negative 

effect on wax crystallization in this fuel at this treat rate, it can be concluded that 1:12 PPDL-b-

PLA and 1:1 PPDL-b-PSA did have a positive effect on wax crystal morphology, reducing wax 

crystal size to less than 25 µm and 50 µm, respectively, with 1:1 PPDL-b-PSA additionally 

positively modifying the shape of the wax crystals formed. 

 

 

Figure 3.26: Wax crystals observed in untreated B0 Fuel C. 
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Figure 3.27: Wax crystals observed in B0 Fuel C treated with 200 ppm of 1:12 PPDL-b-PLA 

copolymer. 

 

 

Figure 3.28: Wax crystals observed in B0 Fuel C treated with 200 ppm of 1:1 PPDL-b-PSA 

copolymer. 
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 Thereafter the same fuel was treated with both the selected copolymers and a commercial 

wax crystal modifier to investigate the performance of the copolymers in combination with other 

additives since many WCMs exhibit enhanced performance in the presence of other additives. 

The percent wax settling was noted (Table 3.9) and the wax crystals were visualized using an 

optical microscope. It was determined that the commercial wax crystal modifier reduces the size 

of the wax crystals to below 50 µm and yields needle-like morphologies (Figure 3.29). 

Furthermore, some of the copolymers appeared to further reduce the size of the wax crystals to 

below 25 µm (Figures 3.30 and 3.31). 

 

Table 3.9: Percent wax dispersed in B0 Fuel C treated with 190 ppm of PPDL copolymer and 10 

ppm of a commercial wax crystal modifier. 

Polymer Percent Wax Fuel Appearance 

WCM A 20-30 Hazy 

1:1 PEHA 20 Hazy 

1:13 PEHA 20 Hazy 

1:1 PIDA 20 Hazy 

1:6 PIDA 20 Hazy 

1:1 PLA 20-30 Hazy 

1:12 PLA 20-30 Hazy 

1:1 PSA 20-30 Hazy 

1:10.6 PSA 20-30 Hazy 
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Figure 3.29: Wax crystals observed in B0 Fuel C treated with 200 ppm of commercial wax 

crystal modifier A. 

 

 

 

Figure 3.30: Wax crystals observed in B0 Fuel C treated with 190 ppm of 1:12 PPDL-b-PLA and 

10 ppm of commercial wax crystal modifier A. 
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Figure 3.31: Wax crystals observed in B0 Fuel C treated with 190 ppm of 1:1 PPDL-b-PSA and 

10 ppm of commercial wax crystal modifier A. 

 

 
Finally, B0 Fuel C was treated with the selected block copolymers, commercial wax 

crystal modifier A, and a commercial WASA. Although large wax crystals were observed with 

most of the block copolymers tested, with the exception of 1:10.6 PPDL-b-PSA, 1:12 PPDL-b-

PLA, and 1:4 PPDL-b-PLA, a difference in percent wax settling was noted (Table 3.10). The 1:12 

and 1:4 PPDL-b-PLA copolymers dispersed wax through 90% of the fuel sample, which is 

superior to many observed commercial diesel additive packages. Significant wax dispersion (50-

60%) was also observed with 1:1 PPDL-b-PLA, however this sample exhibited large crystals. All 

other block copolymers tested exhibited inferior wax dispersion relative to the commercial wax 

crystal modifier, and interestingly, very compact wax settling was observed with 1:10.6 PPDL-b-

PSA. 
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Table 3.10: Percent wax dispersed in B0 Fuel C treated with 100 ppm of PPDL copolymer, and 

300 ppm of a commercial wax crystal modifier and WASA. 

Polymer Percent Wax Fuel Appearance 

WCM A + WASA 100 No Wax Settling 

1:1 PEHA 20-30 Hazy 

1:4 PEHA 20-30 Hazy 

1:13 PEHA 20-30 Hazy 

1:1 PIDA 20-30 Hazy 

1:4.3 PIDA 10-20 Hazy 

1:6 PIDA 10 Hazy 

1:1 PLA 50-60 Hazy 

1:4 PLA 5 Hazy 

1:12 PLA 5-10 Hazy 

1:1 PSA 30 Hazy 

1:4 PSA 20-30 Hazy 

1:10.6 PSA 5-10 Hazy 

 

Ultimately, it was determined that the PPDL-b-poly(acrylate) copolymers, with the 

exception of 1:12 PPDL-b-PLA and 1:1 PPDL-b-PSA, did not have a significant positive or 

negative effect on wax crystal morphology or wax dispersion. This is not necessary a negative 

finding since many commercial WCMs similarly do not influence wax crystal morphology or 

dispersion when used in the absence of other commercial fuel additives. Interestingly, varied wax 

dispersion was noted using the copolymers in combination with both a commercial wax crystal 

modifier and WASA. In order to evaluate the performance of the copolymers across multiple 

fuels with different n-alkane distribution and base CFPP performance, a number of fuels were 

treated with selected PPDL-b-poly(acrylate) polymers for  CFPP testing.  

 

3.2.2.2.2 CFPP Testing 

PPDL-b-poly(acrylate) copolymers underwent CFPP testing at Infineum UK Ltd. Initial 

tests determined the CFPP of a selection of the copolymers in B0 Fuel C at various treat rates 

(Figure 3.32). It was determined that 300 ppm is a good treat rate to screen PPDL-b-

poly(acrylate) copolymers since, although better performance is observed with some of the 

copolymers using higher treat rates, others exhibit reduced performance at 400 ppm. In general, 
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none of the copolymers hindered CFPP performance, with the exception of 1:1 PPDL-b-PLA, 

which increased the CFPP by 0.5 ⁰C relative to the base fuel, except at a treat rate of 400 ppm, 

where the CFPP was decreased by 3 ⁰C. Furthermore, it was determined that PPDL-b-

poly(acrylate) copolymers maintaining branched acrylates generally exhibit superior CFPP 

performance in this fuel, specifically improving the CFPP by up to 7 ⁰C. 

 

Figure 3.32: CFPP performance of selected PPDL-b-poly(acrylate) copolymers in B0 Fuel C at 

various treat rates. 

 
The CFPP performance of selected copolymers was further evaluated in additional fuels, 

specifically B0 Fuel D, B0 Fuel E, and B0 Fuel B (Table 3.11). Fuel D does not contain any 

biodiesel and maintains significant C16-17 n-alkane content (Figure 3.33). Fuel E also does not 

contain any biodiesel and maintains a C17 average n-alkane content, although with a significant 

amount of C13 n-alkane (Figure 3.34). Finally, Fuel B does not contain any biodiesel and 

maintains a broad distribution of lower molecular weight n-alkanes, with the predominant n-

alkane being C10 (Figure 3.9). At a treat rate of 300 ppm, the block copolymers did not improve 

the performance of B0 Fuel D. The copolymers did, however, exhibit a moderate (up to 4 ⁰C) and 

significant (up to 11 ⁰C) improvement in the CFPP performance in B0 Fuel E and B0 Fuel B, 

respectively, and importantly did not hinder the performance of the fuels, unlike with B0 Fuel D. 

It is possible that the copolymers did not significantly alter the CFPP performance of Fuel D since 

this fuel maintains a much lower CFPP relative to other fuels tested. 
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Figure 3.33: Distribution of n-alkanes separating from B0 Fuel D. 

 

 

Figure 3.34: Distribution of n-alkanes separating from B0 Fuel E. 
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Table 3.11: CFPP performance of selected PPDL-b-poly(acrylate) block copolymers in various 

fuels at a treat rate of 300 ppm. 

Polymer 
CFPP (⁰C) 

B0 Fuel D B0 Fuel E B0 Fuel B 

Basefuel -15 -3.5 -7.5 

1:1 PEHA -15 -7.5 -16 

1:13 PEHA -14.5 -3.5 -18.5 

1:1 PIDA -14 -6.5 -16.5 

1:6 PIDA -15 -5 -18 

1:1 PLA -14 -5 -9 

1:12 PLA -13 -6 -13.5 

1:1 PSA -14.5 -5 -9 

1:10.6 PSA -14 -5.5 -8 

CFPP Δmax 0 4 11 

 

B0 Fuel B was therefore selected to perform CFPP testing with all 18 of block copolymer 

samples and it was determined that all polymers had a positive impact on the CFPP performance 

of this fuel at this treat rate (Table 3.12). Furthermore, copolymers maintaining branched 

acrylates, namely PPDL-b-PEHAs and PPDL-b-PIDAs, exhibited superior performance relative 

to copolymers maintaining linear acrylates, with PPDL-b-PSAs exhibiting the poorest 

performance. 
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Table 3.12: CFPP performance of PPDL-b-poly(acrylate) block copolymers in B0 Fuel B at a 

treat rate of 300 ppm. 

Polymer 
CFPP (⁰C) 

B0 Fuel B 

Basefuel -7.5 

1:1 PEHA -19 

1:2 PEHA -16 

1:4 PEHA -16.5 

1:7.5 PEHA -16.5 

1:13 PEHA -15.5 

1:1 PIDA -16 

1:2 PIDA -16 

1:4.3 PIDA -17.5 

1:6 PIDA -17 

1:1 PLA -16 

1:2.4 PLA -15.5 

1:4 PLA -14 

1:9.6 PLA -14.5 

1:12 PLA -14.25 

1:1 PSA -10 

1:2.5 PSA -9 

1:4 PSA -8.5 

1:10.6 PSA -9.5 

CFPP Δmax 11.5 

 

The CFPP performance was thereafter evaluated in B10 Fuel F, which contains 10% 

biodiesel with high C10-13 n-alkane content (Figure 3.35). The CFPP performance was measured 

at various treat rates and all polymers, except 1:1 PPDL-b-PSA at a treat rate of 100 ppm, had a 

positive impact on the CFPP performance in this fuel (Figure 3.36). In general, significant 

improvements were observed with treat rates up to 300 ppm, after which only marginal 

improvements were observed. Furthermore, copolymers maintaining branched acrylates exhibited 

a superior performance relative to copolymers maintaining linear acrylates. 
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Figure 3.35: Distribution of n-alkanes separating from B10 Fuel F. 

 

 

 

Figure 3.36: CFPP performance of selected PPDL-b-poly(acrylate) copolymers in B10 Fuel F at 

various treat rates. 
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The CFPP performance of the block copolymers was further evaluated in the narrow 

distillate B2 Fuel A (Figure 3.7). It was determined that all polymers had a positive impact on the 

CFPP performance in this fuel at this treat rate (Table 3.13). Exhibiting up to a 9.5 ⁰C 

improvement in CFPP performance, it was similarly determined that copolymers maintaining 

branched acrylates exhibit superior CFPP performance relative to copolymers maintaining linear 

acrylates. The CFPP performance of the copolymers was thereafter evaluated in combination with 

commercial wax crystal modifier A in B0 Fuel C. The commercial wax crystal modifier improved 

the CFPP performance of this fuel by 14 ⁰C (Table 3.14), however, it was determined that the 

polymers did not significantly alter the CFPP performance of this fuel at that treat rate relative to 

the commercial wax crystal modifier. 

 

Table 3.13: CFPP performance of selected PPDL-b-poly(acrylate) block copolymers in B2 Fuel 

A at a treat rate of 100 ppm. 

Polymer 
CFPP (⁰C) 

B2 Fuel A 

Basefuel -9 

1:1 PEHA -18.5 

1:13 PEHA -16 

1:1 PIDA -17.5 

1:6 PIDA -17 

1:1 PLA -11 

1:12 PLA -13 

1:1 PSA -10 

1:10.6 PSA -12 

CFPP Δmax 9.5 
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Table 3.14: CFPP performance of selected PPDL-b-poly(acrylate) block copolymers (20 ppm) in 

combination with commercial wax crystal modifier A (180 ppm) in B0 Fuel C. 

Polymer 
CFPP (⁰C) 

B0 Fuel C 

Basefuel -8 

Basefuel + WCM A (200 ppm) -22 

1:1 PEHA -20 

1:13 PEHA -23 

1:1 PIDA -22 

1:6 PIDA -23 

1:1 PLA -21.5 

1:12 PLA -20.5 

1:1 PSA -23 

1:10.6 PSA -23.5 

CFPP Δmax 1.5 

 

The CFPP performance of selected copolymers was similarly evaluated in combination 

with commercial wax crystal modifier B in B0 Fuel C, although at different treat rates. It was 

determined that, in combination with commercial wax crystal modifier B, the copolymers 

generally improved the CFPP performance of this fuel relative to commercial wax crystal 

modifier B alone at these treat rates (Table 3.15). Since 1:6 PPDL-b-PIDA in combination with 

commercial wax crystal modifier B significantly improved CFPP performance by 11 ⁰C, fuel 

samples treated with 1) commercial wax crystal modifier B, 2) 1:6 PPDL-b-PIDA and 

commercial wax crystal modifier B, and 3) 1:1 PPDL-b-PIDA and commercial wax crystal 

modifier B, which did not improve CFPP performance relative to commercial wax crystal 

modifier B alone, were visualized by optical microscopy (Figures 3.37 - 3.39). These images 

reveal that 1:6 PPDL-b-PIDA in combination with commercial wax crystal modifier B yielded 

smaller (<25 µm), more dispersed wax crystals than obtained with commercial wax crystal 

modifier B (<50 µm). Interestingly, 1:1 PPDL-b-PIDA in combination with commercial wax 

crystal modifier B yielded a mixture of large and small wax crystals, accounting for its poor CFPP 

performance. Therefore, it can be concluded that the poly(isodecyl acrylate) block length 

significantly influences the CFPP performance in combination with commercial wax crystal 

modifier B in this fuel, however this trend cannot be extended to all of the copolymers. For 
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example, 1:1 PPDL-b-PSA in combination with commercial wax crystal modifier B exhibits good 

CFPP performance, which is similar to that achieved in combination with 1:10.6 PPDL-b-PSA. 

 

Table 3.15: CFPP performance of selected PPDL-b-poly(acrylate) block copolymers (150 ppm) 

in combination with commercial wax crystal modifier A (150 ppm) in B0 Fuel C. 

Polymer 
CFPP (⁰C) 

B0 Fuel C 

Basefuel -8.5 

Basefuel + WCM B (300 ppm) -12 

1:1 PEHA -17 

1:13 PEHA -21 

1:1 PIDA -11 

1:6 PIDA -23 

1:1 PLA -12 

1:12 PLA -11 

1:1 PSA -20 

1:10.6 PSA -19 

CFPP Δmax 11 

 

 

Figure 3.37: Wax crystals observed in B0 Fuel C treated with 300 ppm of commercial wax 

crystal modifier B (CFPP = -12 °C). 
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Figure 3.38: Wax crystals observed in B0 Fuel C treated with 150 ppm of commercial wax 

crystal modifier B and 150 ppm of 1:6 PPDL-b-PIDA (CFPP = -23 °C). 

 

 

 

 

Figure 3.39: Wax crystals observed in B0 Fuel C treated with 150 ppm of commercial wax 

crystal modifier B and 150 ppm of 1:1 PPDL-b-PIDA (CFPP = -11 °C). 
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Finally, the CFPP performance of selected copolymers was evaluated in combination with 

commercial wax crystal modifier B in B10 Fuel F. In general, it was determined that all 

copolymers significantly improved CFPP performance, with the exception of 1:12 PPDL-b-PLA 

(Table 3.16). 

Table 3.16: CFPP performance of selected PPDL-b-poly(acrylate) block copolymers (150 ppm) 

in combination with commercial wax crystal modifier B (150 ppm) in B10 Fuel F. 

Polymer 
CFPP (⁰C) 

B10 Fuel F 

Basefuel -7 

Basefuel + WCM B (300 ppm) -13 

1:1 PEHA -19.5 

1:13 PEHA -20 

1:1 PIDA -20 

1:6 PIDA -19 

1:1 PLA -20 

1:12 PLA -13.5 

1:1 PSA -19 

1:10.6 PSA -19 

CFPP Δmax 7 

 

Comparing crystal morphology, wax settling, and CFPP data obtained in B0 Fuel C, it 

can be concluded that good CFPP results can be achieved with wax crystal modifiers that do not 

exhibit dramatic wax crystal modification or wax anti-settling. Overall, it was determined that 

PPDL-b-poly(acrylate) copolymers exhibit promising CFPP performance that merits further 

investigation. PPDL-b-poly(acrylate) copolymers maintaining branched rather than linear 

acrylates generally exhibited superior CFPP, likely following their ability to disrupt the order of 

the acrylic backbone. Interestingly, CFPP results from a range of different fuels suggest that 

PPDL is more effective at improving the CFPP performance of fuels with significant <C12 n-

alkane content, supported by a recent report that effective wax crystal modifiers maintain a 

similar melting point to the precipitated paraffins, which is approximately two carbons chain 

lengths longer than the average carbon number.
21

 Finally, it was determined that, in combination 

with commercial wax crystal modifier B, PPDL-b-poly(acrylate) copolymers improve the CFPP 

performance relative to that observed with the commercial wax crystal modifier B alone.  
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3.3 Conclusions 

A selection of acrylic block copolymers of DP 19 PPDL were prepared for fuels testing. 

Good control of the RAFT chain extension polymerization process used to prepare the acrylic 

block was achieved as indicated by the good correlation between an increase in Mn and Mp and 

increasing acrylic block length, and a decrease in polymer dispersity with increasing in acrylic 

block length. UV-GPC analysis indicated that the copolymers exhibited good end-group fidelity 

where the acrylic block length was between a ratio of 2 and 10. Below 2, a significant amount of 

high molecular weight PPDL homopolymer exists, which is not readily removed by precipitation. 

Furthermore, some higher acrylic ratio copolymers exhibited bimodal UV-GPC chromatograms, 

indicating significant branching since polymerizations were conducted to monomer conversions 

beyond a region of controlled radical polymerization. Finally, the physical appearance, DSC onset 

crystallization temperature data, and MALDI-ToF mass spectrometric analysis of the copolymers 

confirm block copolymer architecture. 

It was determined that the PPDL-b-poly(acrylate) copolymers, with the exception of 1:12 

PPDL-b-PLA and 1:1 PPDL-b-PSA, did not have any significant effect on wax crystal 

morphology or wax dispersion. Comparing crystal morphology, wax settling, and CFPP data 

obtained in B0 Fuel C revealed that good CFPP results can be achieved with wax crystal 

modifiers that do not dramatically alter wax crystal morphology or wax settling. Overall, it was 

determined that PPDL-b-poly(acrylate) copolymers, particularly those featuring branched rather 

than linear side chain acrylates exhibit promising CFPP performance that merits further 

investigation. Future investigations could include the preparation and fuels testing of PPDL-b-

poly(methacrylate) copolymers in order to further disrupt the backbone of the solubilising block, 

in addition to block copolymers of varied PPDL molecular weights and/or mixed poly(ester)s, and 

alternate architectures of related polymers. 
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4.1 Introduction 

Development of F-RAFT agents in an attempt to control the radical polymerization of 

ethylene determined that the RAFT agent Z group must destabilize the polyethylene adduct by 

strongly withdrawing electrons along the thiocarbonyl carbon-Z group sigma bond. Furthermore, 

it was determined that this bond must not be able to form a pi bond, eliminating the possibility of 

forming the zwitterion form of the RAFT agent that stabilizes the radical adduct.
1-3

 Although the 

RAFT process was developed predominantly to perform CRP in the absence of metals, 

complementing ATRP, we envisaged that RAFT agent reactivity could be significantly altered 

through the incorporation of metals into RAFT agent design. Considering numerous applications 

in which the presence of metals in the polymer product is acceptable, the development of metallo-

RAFT chemistry is appropriate where novel functionality is demonstrated.   

Many potential strategies to incorporate metals into RAFT agent design were considered, 

however, we envisaged that metallo-RAFT agents bearing a metal in the α-position of the 

thiocarbonyl could potentially dramatically modify the reactivity of RAFT agents towards 

ethylene, and that the reactivity could be further tuned by varying coordinated ligands. 

Furthermore, metals are unlikely to form a pi bond with the thiocarbonyl carbon or undergo a 

change in oxidation state upon addition of a radical to the thiocarbonyl. To our knowledge, 

triarylstannane dithioesters
4-13

 (Figure 4.1) are the only reported examples of dithioalkylesters 

bearing a metal in the α-position relative to the thiocarbonyl carbon, with the exception of 

Fe(CO)2(C5Me5)(CS2CH3), which we suspect could rearrange in solution to adopt bidentate 

instead of monodentate coordination of the dithiomethylester (Figure 4.2).
14

  

 

Figure 4.1: Structure of reported triarylstannane dithioesters. 

 
Figure 4.2: Structure of Fe(CO)2(C5Me5)(CS2CH3) with a) monodentate, and b) bidentate 

coordination of the dithiomethylester. 
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In pursuit of novel ligand systems for the preparation of dithiocarboxylato complexes, in 

particular ones incorporating main group elements, Bolz and co-workers
4
 considered the addition 

of strong group 14 nucleophiles, namely Ph3X
-
 where X = Si, Ge, Sn, or Pb, to heteroallenes 

including carbon dioxide, carbonyl sulfide, carbon disulfide, isocyanates, and isothiocyanates to 

form a metal-carbon bond which can be stabilized by the addition of a Lewis acid (Scheme 4.1). 

Almost all previous attempts to prepare such compounds, however, failed since formation of the 

stable di-element compounds (R3X-XR3) predominates.
15

  

 

Scheme 4.1: Nucleophilic addition of group 14 nucleophiles to heteroallenes. Scheme reproduced 

from Bolz et al.
4
   

Interestingly, known nucleophilic additions of group 14 nucleophiles to heteroallenes is 

limited. For example, organo-silicon and -germanium anions are known to react with carbon 

dioxide,
16-22

 however, the analogous organo-tin and -lead compounds do not undergo addition to 

carbon dioxide or isocyanates,
15,23,24

 and subsequent alkylation yields a mixture of tetraorganotin 

compounds.
10

 Furthermore, the addition of organotin anions to carbon disulfide and sulfur dioxide 

often results in the formation of distannanes.
14,15,23,25

 Despite the high nucleophilicity of organotin 

anions, the addition of organotin anions to heteroallenes to form a stable tin-carbon bond thus far 

appears to be limited to carbon disulfide (Figure 4.3). Of the reported triarylstannane dithioesters, 

triphenylstannane dithiobenzyl- and -dithioisopropylesters maintain suitable R groups for RAFT 

polymerization. Therefore, these compounds are explored herein as a potential novel class of 

RAFT agents. Interestingly, it has been reported that triphenylstannane dithioesters can undergo 

aminolysis (Scheme 4.2).
9
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Figure 4.3: Nucleophilic addition of the triphenyltin anion to heteroallenes. Figure adapted from 

Kunze.
10

  

 

 

 

Scheme 4.2: Aminolysis of dithioesters to yield stannyl thioformamides.  

  



Chapter 4 

130 

 

4.2 Results and Discussion 

4.2.1 Synthesis of Triphenylstannane dithioesters 

 Triphenylstannane dithioesters were prepared according to literature methods (Scheme 

4.3).
7,9,26

 Specifically, all in one pot, three equivalents of phenyllithium was added to stannous(II) 

chloride in anhydrous tetrahydrofuran. Thereafter, triphenyltin lithium underwent a nucleophilic 

addition to an excess of carbon disulfide. The resulting dithiocarboxylate anion, which was 

stabilized with dioxane, was reacted with an excess of either benzyl bromide or 2-iodopropane to 

yield triphenylstannane dithiobenzylester (5) (32%) and triphenylstannane dithioisopropylester (6) 

(13%), respectively. The 
1
H and 

13
C DEPT NMR spectra (Figure 4.4 and Figure 4.5), along with 

infra-red (IR), melting point (m.p.), and ultraviolet-visible (UV-vis) spectroscopy data are 

consistent with reported values.
7,9

 The expected chemical shift for the quaternary carbon for 5 (δ = 

264.6 ppm) is exceptionally downfield and was not observed in the 
13

C DEPT NMR spectroscopy 

experiment performed.
27

 Furthermore, thermal gravimetric analysis confirmed that the compounds 

are thermally stable up to approximately 220 ⁰C.  

 

Scheme 4.3: Synthesis of triphenylstannane dithiobenzylester (5) and triphenylstannane 

dithioisopropylester (6). 
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Figure 4.4: 
1
H and 

13
C DEPT NMR spectra of triphenylstannane dithiobenzylester (5) (400 MHz, 

CDCl3). 
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Figure 4.5: 
1
H and 

13
C DEPT NMR spectra of triphenylstannane dithioisopropyl (6) (300 and 500 

MHz, CDCl3). 
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4.2.2 Sn-RAFT Polymerization 

4.2.2.1 Polymerizations using Triphenylstannane dithiobenzylester (5) as a CTA 

Styrene was polymerized in bulk conditions using triphenylstannane dithiobenzylester (5) 

as a CTA and AIBN as a radical initiator at 60 ⁰C (Scheme 4.4). The polymerization was 

monitored by comparing the integral of the vinylic methyne proton in the monomer (δ = 6.69-6.50 

ppm) and the methyne proton in the polymer backbone (δ = 2.20-1.85 ppm) (Figure 4.6). 

Furthermore, the degree of polymerization was evaluated by comparing the integral of the 

polymer methyne proton adjacent to the dithioester (δ = 3.10-2.96 ppm) to that of the methyne 

proton in the polymer backbone (δ = 2.20-1.85 ppm). Good control was demonstrated as 

evidenced by a linear semi-logarithmic plot (Figure 4.7), indicating a constant concentration of 

propagating radicals, a linear correlation between the Mn and monomer conversion, and a narrow 

ÐM of the polymer product (Figure 4.8).  

 

Scheme 4.4: Polymerization of styrene using 5 as a CTA and AIBN as an initiator. 

 

Figure 4.6: 
1
H NMR spectrum of poly(styrene) (DP 6, [M]0/[M]t = 0.04) prepared using 5 as a 

CTA and AIBN as a radical initiator at 60 ºC in bulk conditions ([M]:[CTA]:[I] = 100:1:0.1) (300 

MHz; CDCl3). 
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Figure 4.7: Semi-logarithmic plot for the bulk polymerization of styrene using 5 as a CTA and 

AIBN as a radical initiator at 60 ºC ([M]:[CTA]:[I] = 100:1:0.1). 

 

 
Figure 4.8: Plot of Mn and ÐM versus monomer conversion for the bulk polymerization of styrene 

using 5 as a CTA and AIBN as a radical initiator at 60 ºC ([M]:[CTA]:[I] = 100:1:0.1). 



Chapter 4 

135 

 

Furthermore, methyl acrylate was polymerized in bulk conditions using 5 as a CTA and 

AIBN as a radical initiator at 60 ⁰C (Scheme 4.5). The polymerization was monitored by 

comparing the integral of the methyl protons in the monomer (δ = 3.72 ppm) and polymer (δ = 

3.66 ppm) (Figure 4.9). Furthermore, the degree of polymerization was evaluated by comparing 

the integral of the polymer methyne proton adjacent to the dithioester (δ = 3.22-3.02 ppm) to that 

of the methyl ester protons in the polymer (δ = 3.95-3.35 ppm). Good control was demonstrated 

as evidenced by a linear semi-logarithmic plot (Figure 4.10), indicating a constant concentration 

of propagating radicals, a linear correlation between the Mn and monomer conversion, and a 

narrow dispersity of the polymer product (Figure 4.11). An induction period was observed, as 

frequently reported in low temperature RAFT polymerizations of methyl acrylate, particularly 

with non-aliphatic CTAs. This induction period is attributed to slow consumption of the RAFT 

agent and therefore can be eliminated by performing the reaction at a higher temperature.
28

  

 

Scheme 4.5: Polymerization of methyl acrylate using 5 as a CTA and AIBN as an initiator. 

 

Figure 4.9: 
1
H NMR spectrum of poly(methyl acrylate) (DP 11, [M]0/[M]t = 0.13) prepared using 

5 as a CTA and AIBN as a radical initiator at 60 ºC in bulk conditions ([M]:[CTA]:[I] = 

100:1:0.1) (300 MHz; CDCl3). 
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Figure 4.10: Semi-logarithmic plot for the bulk polymerization of methyl acrylate using 5 as a 

CTA and AIBN as a radical initiator at 60 ºC ([M]:[CTA]:[I] = 100:1:0.1). 

 

Figure 4.11: Plot of Mn and ÐM versus monomer conversion for the bulk polymerization of 

methyl acrylate using 5 as a CTA and AIBN as a radical initiator at 60 ºC ([M]:[CTA]:[I] = 

100:1:0.1). 
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Data obtained for the polymerization of styrene and methyl acrylate using 

triphenylstannane dithiobenzylester (5) as a CTA indicate that triphenylstannane dithioesters may 

constitute a novel class of RAFT agents. Direct comparisons with other conventional RAFT 

agents were not completed, however, Chong and co-workers
29

 report the bulk polymerizations of 

both styrene and methyl acrylate at 60 ºC using benzyl benzenecarbodithioate (Figure 4.12) and 

AIBN. Although their ratio of monomer to CTA to AIBN (1:0.00107:0.00019, respectively) was 

significantly different than that reported herein and consequently, rates cannot be compared, 

promising similarities in data obtained are observed, indicating that 5 may perform as a RAFT 

agent. For example, at t = 4 hours, an Mn 3630 polystyrene was obtained at 3.5% monomer 

conversion, and the dispersity of the polymerization was ≤ 1.36 throughout, which is similar to 

the Mn 1387 polystyrene obtained at 6.5% monomer conversion via Sn-RAFT polymerization (ÐM 

≤ 1.26). Direct comparison of conventional CTAs, such as benzyl benzenecarbodithioate, and 5 

under identical reaction conditions is required in order to evaluate the performance of triphenyltin 

as a Z group. It is anticipated that the reactivity of the thiocarbonyl is high in 5 relative to other 

CTAs following increased bond polarity, as evidenced by a significant downfield chemical shift 

for the thiocarbonyl carbon (δ ~ 265 ppm). Comparison of rates of polymerization between CTAs 

will elucidate this alongside additional information, including the stability of the Sn-RAFT agent 

adduct radical generated. Finally, in additon to comparison with conventional RAFT agents, the 

end-group fidelity of polymerizations performed using 5 as a CTA must be evaluated. 

Considering that triphenylstannane dithioesters are highly coloured, UV-active compounds, end-

group analysis should be performed via UV-GPC. Furthermore, 
119

Sn NMR spectroscopy could 

be performed. 

 

 

Figure 4.12: Structure of benzyl benzenecarbodithioate. 
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4.2.2.2 Polymerizations using Triphenylstannane dithioisopropylester (6) as a CTA 

In order to explore the Sn-RAFT polymerization of primary radicals on a laboratory scale, 

the ketene acetal 2-methylene-1,3-dioxepane (MDO) was considered a potentially suitable 

monomer since it undergoes radical ring-opening to generate a primary radical, identical to that 

generated by ε-caprolactone, which propagates to yield a poly(ester) (Scheme 4.6).
30,31

 MDO was 

synthesized in two steps according to literature methods (Scheme 4.7).
32

 Specifically, 1,4-butane 

diol undergoes an acid catalysed condensation reaction with chloroacetaldehyde dimethyl acetal 

to yield  2-methylene-1,3-dioxepane (78%), which when treated with base generates the desired 

ketene acetal (7) (82%). The 
1
H and 

13
C DEPT NMR spectroscopy data match reported values 

(Figure 4.13).
31,32

  

 

Scheme 4.6: Radical ring-opening mechanism of 2-methylene-1,3-dioxepane (MDO). 

 

 

Scheme 4.7: Synthesis of 2-methylene-1,3-dioxepane (MDO) (7).  

 

 



Chapter 4 

139 

 

 

Figure 4.13: 
1
H and 

13
C DEPT NMR spectra of 2-methylene-1,3-dioxepane (MDO) (7) (400 

MHz; CDCl3). 
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MDO was polymerized in bulk, free radical conditions using AIBN as a radical initiator, 

and in bulk conditions using 6 as a CTA and AIBN as a radical initiator (Scheme 4.8). Various 

reaction temperatures were selected according to a previous report of MDO polymerization
33

 in 

order to ensure high monomer conversion in the free radical case and highlight potential 

differences in polymerizations performed in the presence and absence of 6. In the free radical 

polymerizations performed, an increase in the Mn and dispersity of the polymer product was 

observed with increasing reaction temperatures (Table 4.1). At increased temperatures, less 

control of the polymerization was achieved following decreased initiator half-lives and therefore 

shorter periods of radical flux. Although the monomer conversions obtained in the free radical 

polymerizations were not as high as those previously reported, predominantly linear polymer was 

obtained, with 8.5-12.8% branched product observed. Interestingly, Plikk et al.
33

 report that the 

five-membered cyclic ester 3-vinyl-1,4-butyrolactone predominates at 150 ºC, however this 

product was not observed. Since minimal monomer conversion was observed where MDO was 

polymerized in the presence of 6, an inhibiting effect of the CTA was noted and therefore further 

kinetic studies were not undertaken. The triphenylstannane dithioester presumably inhibits the 

polymerization of MDO since the monomer adduct does not readily fragment from the chain 

transfer adduct radical following the poor homolytic leaving group ability of the primary radical. 

 
Scheme 4.8: Polymerization of MDO (7) using triphenylstannane dithioisopropylester (6) as a 

CTA and AIBN as an initiator. 

 

Table 4.1: Comparison of free radical (FR) and Sn-RAFT polymerizations of MDO (7) at 60, 

100, and 150 ºC using 6 as a CTA and AIBN as a radical initiator. 

Entry Technique T ºC 
Time  

(hours) 
[M]0/[I]0 [M]t/[M]0

a
 

Mn 

(g mol
-1

)
b ÐM

b 

1 FR 60 78 100 0.78 15900 4.80 

2 Sn-RAFT 60 78 100 0.01 400 1.23 

3 FR 100 48 100 0.66 18000 2.50 

4 Sn-RAFT 100 48 100 0.02 500 1.26 

5 FR 150 24 100 0.42 8500 1.90 

6 Sn-RAFT 150 24 100 0.05 600 2.60 

a
Determined by 

1
H NMR  spectroscopic analysis in CDCl3; 

b
Determined by GPC analysis in 

CHCl3. 
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Beyond the CRP of monomers generating primary radicals, controlled radical 

polymerization of isoprene is also challenging, however, has been reported, including via the 

RAFT process.
34-48

 Isoprene was polymerized in bulk conditions using 6 as a CTA and AIBN as a 

radical initiator at 60 ⁰C (Scheme 4.9). The polymerization was monitored by gravimetry and the 

degree of polymerization was evaluated by comparing the integral of the polymer alkyne protons 

(δ = 6.00-4.50 ppm) to that of the aromatic protons of 6 (δ = 7.70-7.10 ppm) (Figure 4.14). 

Moderate control was demonstrated as evidenced by a linear semi-logarithmic plot (Figure 4.15), 

indicating a constant concentration of propagating radicals, a linear correlation between the Mn 

and monomer conversion, and a narrow dispersity of the polymer product (Figure 4.16). 

Importantly, very low molecular weights and dispersities were observed relative to the free radical 

case (ÐM ≥ 8.7). Interestingly, a high proportion of 1,4-cis polymer was obtained early on in the 

reaction, however, the 1,4-trans product predominated at later stages of the polymerization 

(Figure 4.17). Under all Sn-RAFT reaction conditions attempted, including reactions times of up 

to 96 hours, however, monomer conversion beyond approximately 50% was not observed.  

 

Scheme 4.9: Polymerization of isoprene at using triphenylstannane dithioisopropylester (6) as a 

CTA and AIBN as an initiator. 

 
 

Figure 4.14: 
1
H NMR spectrum of poly(isoprene) (DP 6, [M]0/[M]t = 0.21) prepared using 6 as a 

CTA and AIBN as a radical initiator at 60 ºC in bulk conditions ([M]:[CTA]:[I] = 100:1:0.1) (300 

MHz; CDCl3). 
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Figure 4.15: Semi-logarithmic plot for the bulk polymerization of isoprene using 6 as a CTA and 

AIBN as a radical initiator at 60 ºC ([M]:[CTA]:[I] = 100:1:0.1). 

 

 
Figure 4.16: Plot of Mn and ÐM versus monomer conversion for the bulk polymerization of 

isoprene using 6 as a CTA and AIBN as a radical initiator at 60 ºC ([M]:[CTA]:[I] = 100:1:0.1). 
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Figure 4.17: Overlay of 
1
H NMR spectra of isoprene obtained at various kinetic points 

throughout a bulk polymerization using 6 as a CTA and AIBN as an initiator at 60 ºC, illustrating 

how the 1,4-cis product predominates during the initial stages of the polymerization and the 1,4-

trans product predominates throughout the later stages of the polymerization ([M]:[CTA]:[I] = 

100:1:0.1) (300 MHz; CDCl3). 

 

In order to ensure that triphenylstannane dithioester mediated polymerizations proceed 

via a chain-transfer process and not coordination insertion via the tin centre, a control 

polymerization was performed in the absence of a radical source (Scheme 4.10). Importantly, no 

polymer product was obtained in this control experiment, suggesting that triphenylstannane 

dithioester mediated polymerizations proceed via the RAFT process. 

 

Scheme 4.10: Polymerization of isoprene at 60 ºC using triphenylstannane dithioisopropylester 

(6) as a CTA. 
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4.3 Conclusions 

Triphenylstannane dithioesters were synthesized according to literature methods and 

tested as CTAs in the polymerization of styrene, methyl acrylate, and isoprene. It was determined 

that triphenylstannane dithiobenzylester controlled the polymerization of styrene and methyl 

acrylate, however the end-group fidelity of the polymer products was not evaluated. Furthermore, 

triphenylstannane dithioisopropylester mediated the polymerization of isoprene. These results 

alongside the observation that triphenylstannane dithioisopropylester (6) did not polymerize 

isoprene in the absence of a radical initiator, suggesting that 6 acts as a chain-transfer agent, 

encourage further development of Sn-RAFT agents. Future work on the development of Sn-

RAFT agents must include analysis of end-group fidelity and direct performance comparisons 

with conventional CTAs. If end-group fidelity is confirmed and triphenylstannane dithioesters are 

determined to proceed via the RAFT mechanism, then future research could be expanded to 

include novel stannane dithioesters maintaining alternate substituents on the metal. Furthermore, 

the performance of triarylstannane dithioisopropylesters could be compared with that of the F-

RAFT agent isopropylfluorodithioformate (IFDF) in the polymerization of ethylene. Ultimately, 

however, the toxicity of tin will significantly limit potential end-uses of polymers prepared via 

this method, and in many instances require removal of the tin end-group via post-polymerization 

modification of the polymer product. 
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Poly(ω-pentadecalactone) was prepared via eROP, initiating from benzyl alcohol and the 

bifunctional initiator dodecyl 4-(hydroxymethyl) benzyl carbonotrithioate. Using both initiators, 

good control of the polymerization process was observed, however, the presence of cyclic PPDL 

oligomers was noted alongside the desired linear polymer product as a consequence of chain 

scission and cyclisation reactions catalysed by indiscriminate transesterification reactions by the 

lipase catalyst. This observation, however, is consistent with literature reports. Good end-group 

fidelity was achieved, enabling controlled chain extension of crude PPDL macro-CTA via the 

RAFT process using a selection of acrylic monomers, in particular those relevant to fuels 

applications, namely 2-ethylhexyl acrylate, isodecyl acrylate, lauryl acrylate, and stearyl acrylate, 

in addition to styrene, methyl acrylate, and N-isopropylacrylamide. To our knowledge, this is the 

first preparation of block copolymers of the “green” polyethylene-like material PPDL via a 

combination of eROP and RAFT polymerization techniques. Considering the potential for the 

preparation of novel materials via this technique, future studies could include the preparation of 

RAFT-functional PPDL from bifunctional initiators maintaining different Z and/or R groups or 

via convergent synthetic strategies, the preparation of higher architectures of PPDL and 

copolymers thereof, and the investigation of high molecular weight material. Additional 

investigations could include the development of non-enzymatic catalysts capable of polymerizing 

macrocyclic lactones in the absence of both significant chain scission reactions and initiation from 

water. 

A selection of acrylic block copolymers of DP 19 PPDL were prepared on a large scale 

via a combination of eROP and RAFT polymerization techniques, characterized, and 

subsequently tested in various diesel fuels for cold-flow applications. Good control of the chain 

extension of the PPDL macro-CTA was demonstrated by the preparation of a selection of defined 

copolymers with good end-group fidelity, as evidenced by analysis of MALDI-ToF mass spectra 

for PPDL-b-poly(lauryl acrylate) copolymers and UV-GPC chromatograms. It was determined 

that all PPDL-b-poly(acrylate) copolymers tested, with the exception of 1:12 PPDL-b-poly(lauryl 

acrylate) and 1:1 PPDL-b-poly(stearyl acrylate), did not have any significant effect on wax crystal 

morphology or wax dispersion in diesel fuel. However, all PPDL-b-poly(acrylate) copolymers, 

particularly those featuring branched rather than linear side chains, improved the Cold Filter 

Plugging Point (CFPP) of most diesel fuels tested. Therefore, copolymers of PPDL merit further 

investigation as a novel class of cold-flow additives, and future investigations could include the 

preparation and fuels testing of PPDL-b-poly(methacrylate) copolymers in order to further disrupt 

the backbone of the solubilising block, in addition to block copolymers of varied PPDL molecular 

weights and/or mixed poly(ester)s, and finally alternate architectures of related polymers. 
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Finally, triphenylstannane dithioesters were prepared and explored as a novel class of 

RAFT agents. Although the toxicity of tin significantly limits potential end-uses of polymers 

prepared via this method, it was determined that triphenylstannane dithioisopropylester afforded 

moderate control of the polymerization of isoprene, comparable to that reported in the literature. 

Furthermore, triphenylstannane dithiobenzylester was shown to control the polymerization of 

methyl acrylate and styrene, however, end-group fidelity was not evaluated. Future work on the 

development of Sn-RAFT agents should include analysis of end-group fidelity and direct 

comparisons with conventional CTAs, including the F-RAFT agent isopropylfluorodithioformate 

(IFDF). If triphenylstannane dithioesters are confirmed to proceed via the RAFT mechanism, then 

future research could be expanded to include novel stannane dithioesters maintaining alternate 

substituents on the metal in order to tune the reactivity of the thiocarbonyl. 
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6.1 Materials 

Chemicals were used as received from Alfa Aesar, SAFC, and Sigma-Aldrich, and 

solvents were purchased from Fisher Scientific. Anhydrous stannous chloride and Novozyme 435 

were dried over P2O5 and stored in a nitrogen filled glovebox, with the lipase being stored at -20 

ºC. Phenyllithium in dibutyl ether was titrated thrice against sublimed diphenylacetic acid to 

evaluate its molarity and 2,2′-Azobis(2-methylpropionitrile) and 1,1′-

azobis(cyclohexanecarbonitrile) were recrystallized twice from methanol. Carbon disulfide, 

benzyl alcohol, 2-iodopropane, styrene, and isoprene were distilled from CaH2 and stored in an 

ampoule under an inert atmosphere. Benzyl bromide was dried over 3 Å molecular sieves. Stock 

solutions of ω-pentadecalatone in anhydrous toluene were dried over 4 Å molecular sieves at 40 

ºC and filtered prior to use. Anhydrous 1,4-dioxane was obtained by refluxing 1,4-dioxane over 

stannous chloride, followed by CaH2, and storing the distilled solvent over 4 Å molecular sieves. 

Methyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, isodecyl acrylate, and stearyl acrylate were 

passed through a column of basic alumina prior to use. Anhydrous tetrahydrofuran and toluene 

were obtained by passing the solvent through a column of activated alumina using an Innovative 

Technologies Inc. Pure Solv MD-4-EN solvent purification system. 

 

6.2 General Considerations 

All moisture and oxygen sensitive manipulations were performed in either a nitrogen-

filled glovebox or by standard Schlenk techniques.  

NMR Spectroscopy: 
1
H NMR and 

13
C DEPT NMR spectra were recorded on a Bruker DPX-

400, DPX 300, AC-400, or AV-250 spectrometer in CDCl3 at 293 K unless otherwise stated. 

Chemical shifts are reported as δ in parts per million (ppm) and referenced to the chemical shift of 

residual solvent resonances (CDCl3 
1
H: δ = 7.26 ppm; 

13
C: δ = 77.16 ppm, or trimethylsilane 

1
H: δ 

= 0.0 ppm). Data are presented as follows: chemical shift, integration, peak multiplicity (s = 

singlet, d = doublet, dd = doublet of doublets, t = triplet, q = quartet, sept = septet, m = multiplet, 

dm = doublet of multiplets, bs = broad singlet), coupling constants (J/Hz), and assignment. 

Assignments were determined either on the basis of unambiguous chemical shift or coupling 

patterns, by analysis of 2D NMR spectroscopy (COSY, HMQC, HMBC), or by analogy to fully 

interpreted spectra for structurally related compounds. 
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Size exclusion chromatography (SEC)/Gel Permeation chromatography (GPC): 

Measurements in THF were conducted on a system comprised of a Varian 390-LC-Multi detector 

suite fitted with differential refractive index (DRI), light scattering (LS) and ultra-violet (UV) 

detectors equipped with a guard column (Varian Polymer Laboratories PLGel 5 μM, 50 × 7.5 

mm) and two mixed D columns (Varian Polymer Laboratories PLGel 5 μM, 300 × 7.5 mm). The 

mobile phase was tetrahydrofuran with 5% triethylamine at a flow rate of 1.0 mL min
-1

, and 

samples were calibrated against Varian Polymer Laboratories Easi-Vials linear poly(styrene) 

standards (162 - 240,000 g mol
-1

) using Cirrus v3.3 software.  

Measurements in CHCl3 were performed on a Polymer Laboratories modular GPC system 

comprising of a Polymer Laboratories Midas autosampler and LC1120 HPLC pump equipped 

with a guard column (Polymer Laboratories PLGel 5 mM, 50-7.5 mm), two mixed D columns 

(Polymer Laboratories PLGel 5 mM, 300-7.5 mm) and a Polymer Laboratories ERC-7515A 

differential refractive index (DRI) detector. The mobile phase was chloroform with 5% 

triethylamine at a flow rate of 1.0 mL min
-1

, and samples were calibrated against linear 

poly(styrene) standards obtained from Polymer Laboratories using Cirrus v3.0 software; elution 

time was standardized against that for toluene. 

Measurements in CHCl3 for UV detection were conducted on a system composed of a 

Varian 390-LC-Multi detector suite fitted with differential refractive index, light scattering, and 

ultraviolet detectors equipped with a guard column (Varian Polymer Laboratories PLGel 5 μM, 

50 × 7.5 mm) and two mixed D columns (Varian Polymer Laboratories PLGel 5 μM, 300 × 7.5 

mm). The mobile phase was chloroform with 2% triethylamine at a flow rate of 1.0 mL min
-1

, and 

samples were calibrated against Varian Polymer Laboratories Easi-Vials linear poly(styrene) 

standards (162 - 240,000 g mol
-1

) using Cirrus v3.2 software.  

MALDI-ToF Mass Spectrometry: Spectra were acquired by matrix-assisted laser desorption 

and ionisation time-of-flight (MALDI ToF) mass spectrometry using a Bruker Daltonics Ultraflex 

II MALDI ToF mass spectrometer equipped with a nitrogen laser delivering 2 ns laser pulses at 

337 nm, and with positive ion detection performed using an accelerating voltage of 25 kV. 

Solutions of trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propyl-lidene]malonitrile (DCTB) as 

matrix (40 µL of a 40 g L
-1

 solution in THF), sodium trifluoroacetate as cationisation salt (10 µL 

of a 10 g L
-1

 solution in THF) and analyte (10 μL of a 10 g L
-1

 solution in CHCl3) were combined 

and applied to the target, after which the solvent was evaporated to prepare a thin matrix/analyte 

film. The samples were measured in reflectron ion mode, unless otherwise stated, and calibrated 

by comparison to 2000 or 5000 g mol
-1

 monomethylether poly(ethylene oxide) standards. 
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Thermal Analysis: Samples were analysed by DSC on a Mettler Toledo instrument and a TA 

instruments DSC Q20 autosampler. Using the Mettler Toledo instrument and a 40 μL aluminium 

crucible under a nitrogen atmosphere, DSC heating and cooling cycles were run in triplicate in 

series between -70 
o
C and 120 

o
C at a heating rate of +/- 10 

o
C min

-1
. Using the TA instruments 

DSC Q20 autosampler and a 40 μL aluminium crucible under a nitrogen atmosphere, DSC 

heating and cooling cycles were run in triplicate in series between -70 
o
C and 120 

o
C at a heating 

rate of +/- 10 
o
C min

-1
. TGA analysis was conducted on a Universal TA Instruments TGA Q5000 

using a 40 μL aluminium crucible between 50 
o
C and 600

 o
C at a heating rate of 10 

o
C min

-1
. 

Optical Microscopy: Fuel samples were visualized using an Olympus BX51 optical 

microscope and captured using an Olympus DP25 digital camera.  

Infra-red Spectroscopy: FT-IR spectra were recorded on a Perkin Elmer Spectrum 100 FT-IR 

spectrometer using a diamond press.  

UV-vis Spectroscopy: UV-vis spectra were recorded on a PerkinElmer LAMBDA 35 UV/Vis 

spectrometer.  

Melting Point Determinations: Melting points were recorded on a Stanford Research 

Systems MPA100 Optimelt with a heating rate of 1.0 °C min
-1 

and are uncorrected. 

Other Techniques: Reactions were monitored by thin layer chromatography (TLC) conducted 

on pre-coated aluminium-backed plates (Merck Kieselgel 60 with fluorescent indicator UV254). 

Spots were visualized either by quenching of UV fluorescence (254 nm) or by staining with basic 

potassium permanganate dip. Flash column chromatography was performed manually according 

to the method described by Still et al.
1
 with ZEOprep 60 (25-40 μm) silica gel or neutral alumina, 

applying head pressure by means of compressed air. 

 

6.3 Experimental Details for Chapter 2 

Preparation of Dodecyl 4-(hydroxymethyl) benzyl carbonotrithioate (1) 

Dodecane thiol (8.50 mL, 34.77 mmol) was injected into a suspension of potassium 

phosphate (7.53 g, 34.77 mmol) in acetone (600 mL) and permitted to stir at room temperature for 

approximately 20 minutes. Carbon disulfide (5.70 mL, 94.82 mmol) was added to the reaction 

mixture drop wise and the resulting mixture, which slowly turned yellow, was permitted to stir for 

approximately two hours. Thereafter 4-(chloromethyl)benzyl alcohol (5.0 g, 31.61 mmol) was 
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added to the reaction mixture and permitted to stir at room temperature for 8 days. The resulting 

bright yellow mixture was filtered, the filter cake washed with acetone and dichloromethane, and 

the filtrate concentrated by rotoevaporation. The residue was taken up in dichloromethane and 

washed with 500 mL of 0.1M hydrochloric acid, thrice with 500 mL of deionized water, and 

finally 500 mL of brine. The resulting organic layer was dried over magnesium sulfate, filtered, 

and concentrated by rotoevaporation to yield yellow solid, which was washed with chilled 

hexanes and methanol, and dried in vacuo (11.64 g, 94 %). 
1
H and 

13
C DEPT NMR spectroscopy 

data match reported values:
2
 δH (300 MHz, CDCl3) = 7.38-7.28 (4H, m, ArH), 4.68 (2H, d, 

3
JH-H = 

6.0 Hz Ar-CH2OH), 4.61 (2H, s, -SCH2PhCH2OH), 3.36 (2H, t, 
3
JH-H = 6.0 Hz, -

SCH2(CH2)10CH3), 1.75-1.65 (2H, q, 
3
JH-H = 6.0 Hz, -SCH2CH2(CH2)9CH3), 1.64-1.58 (1H, t, 

3
JH-H 

= 6.0 Hz, PhCH2OH), 1.46-1.15 (18H, m, -SCH2CH2(CH2)9CH3), 0.94-0.82 (3H, t, 
3
JH-H = 6.0 Hz, 

-S(CH2)11CH3); δC  (500 MHz, CDCl3) = 223.7, 140.4, 134.6, 129.5, 127.3, 65.0, 41.0, 37.1, 31.9, 

29.6, 29.5, 29.4, 29.3, 29.1, 28.9, 27.9, 22.7, 14.1. 

General Protocol for the eROP of PDL 

Working in a glovebox, lipase (10 mg, 1 wt.%), initiator (0.208 mmol, [M]/[I] = 20), and 

PDL in toluene (4.16 mmol, 4.6 mL of a 25 wt.% PDL stock solution in anhydrous toluene) were 

combined in an ampoule equipped with magnetic stirring. Additional ampoules were similarly 

prepared for individual kinetic points. The ampoules were immersed in a 60 ºC oil bath with 

stirring and stopped at various time intervals. Aliquots were removed for direct 
1
H NMR 

spectroscopy (CDCl3) and GPC (CHCl3) analysis, after which the remainder of the reaction 

mixtures were diluted in cold chloroform, filtered to remove the enzyme, and concentrated in 

vacuo. Crude products were purified via precipitation in methanol from chloroform and further 

analysed by MALDI-ToF mass spectrometry and DSC. Reactions were performed in triplicate 

and varying [M]/[I].  

DP 32 PPDL initiated from BnOH:
 1

H NMR: δH (300 MHz, CDCl3) = 
 1

H NMR: δH (300 MHz, 

CDCl3) = 7.35 (4H, s, ArH), 5.11 (2H, s, ArCH2O-), 4.05 (62H, t, 
3
JH-H = 6.0 Hz, -C(O)OCH2-), 

3.75-3.45 (2H, bs, -CH2CH2OH), 3.35-3.15 (1H, bs, -CH2OH), 2.28 (64H, t, 
3
JH-H = 6.0 Hz, -

CH2C(O)OCH2-), 1.70-1.55 (128H, t, 
3
JH-H = 6.0 Hz, -C(O)OCH2CH2-; -OC(O)CH2CH2-), 1.40-

1.15 (640H, m, -CH2-). 

DP 11 PPDL initiated from 1:
 1

H NMR: δH (300 MHz, CDCl3) = 7.31 (4H, dd, 
3
JH-H = 6.0 Hz, 

ArH), 5.08 (2H, s, ArCH2OC(O)-), 4.60 (2H, s, ArCH2S-), 4.05 (20H, t, 
3
JH-H = 6.0 Hz, -

C(O)OCH2-), 3.64 (2H, t, 
3
JH-H = 6.0 Hz, -CH2CH2OH), 3.36 (2H, t, 

3
JH-H = 6.0 Hz, -SCH2CH2-), 

2.34 (1H, t, 
3
JH-H = 6.0 Hz, -CH2CH2OH), 2.28 (22H, t, 

3
JH-H = 6.0 Hz, -CH2C(O)OCH2-), 1.75-
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1.45 (48H, m, -C(O)OCH2CH2-; -OC(O)CH2CH2-; -SCH2CH2(CH2)9CH3; -

SCH2CH2CH2(CH2)8CH3),), 1.25 (236H, m, -CH2-; -S(CH2)3(CH2)8CH3), 0.95-0.75 (3H, t, 
3
JH-H = 

6.0 Hz, -CH2CH3). 

Preparation of PPDL macro-CTA 2 

Working in a glovebox, lipase (1.21 g, 1 wt.%) and dodecyl 4-(hydroxymethyl) benzyl 

carbonotrithioate (1) (10.0 g, 25.08 mmol, [M]/[I] = 20) were combined in a Schlenk flask 

equipped with magnetic stirring. PDL in toluene (501.64 mmol, 554.69 mL of a 25 wt.% PDL 

stock solution in anhydrous toluene) was transferred into the reaction flask using a cannula, and 

the resulting mixture was stirred until homogeneous. The flask was immersed in a 60 ºC oil bath 

with stirring for 175 minutes and the resulting mixture was diluted with cold chloroform, filtered 

to remove the enzyme, concentrated by rotoevaporation, and dried in vacuo. The product was 

analysed by 
1
H NMR spectroscopy (CDCl3), GPC (CHCl3), MALDI-ToF mass spectrometry, and 

DSC. Although the crude product was utilized for further experiments, it was however purified 

via precipitation in methanol from chloroform for DSC analysis.  

General Protocol for RAFT Polymerizations using Dodecyl 4-(hydroxymethyl) benzyl 

carbonotrithioate (1) as a CTA ([M]:[CTA]:[I] = 100:1:0.1) 

Methyl acrylate (1.14 mL, 12.54 mmol), dodecyl 4-(hydroxymethyl) benzyl 

carbonotrithioate (1) (50 mg, 12.54 x 10
-3

 mmol), and anhydrous toluene (4.70 mL ([M] = 2.55 

M), or as otherwise stated (i.e.: 1.11 mL, 50 wt.%)) were combined in an ampoule equipped with 

magnetic stirring, degassed via three freeze-pump-thaw cycles, and refilled with argon. The 

ampoule was immersed in an 80 ºC oil bath with stirring for approximately 1 hour.  Thereafter 

AIBN (0.212 mL of a degassed 10 mg ml
-1

 AIBN stock solution in toluene, 12.54 x 10
-4

 mmol) 

was injected into the reaction mixture and aliquots removed at regular time intervals for 
1
H NMR 

spectroscopy (CDCl3), GPC (CHCl3/THF), MALDI-ToF mass spectrometry, and DSC analysis. 

Additional polymerizations were similarly performed with other acrylic or styrenic monomers, 

and at varied [M]. 

DP 59 Poly(Methyl acrylate): 
1
H NMR: δH (300 MHz, CDCl3) = 7.36-7.10 (4H, dd, 

3
JH-H = 6.0 

Hz, ArH), 4.95-4.80 (2H, m, HOCH2Ar), 4.65 (2H, s, ArCH2CH2R), 3.66 (177H, s, -OCH3), 3.34 

(1H, t, 
3
JH-H = 6.0 Hz, RSC(S)S-CHRCH2-), 3.25-2.95 (2H, m, CH3(CH2)10CH2SC(S)S-), 2.56 

(2H, t, 
3
JH-H = 6.0 Hz, RSC(S)S-CHRCH2CHR-), 2.30 (58H, m, -CH2CHRCH2-), 2.13 (1H, bs, 

ArCH2OH), 2.05-1.83 (24H, m, -CHRCH2CHR- meso), 1.83-1.60 (58H, m, -CHRCH2CHR- 

racemo), 1.60-1.25 (28H, m, -CHRCH2CHR- meso; -SCH2CH2(CH2)9CH3; -
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SCH2CH2CH2(CH2)8CH3), 1.16 (16H, m, -S(CH2)3(CH2)8CH3), 0.87 (3H, t, 
3
JH-H = 6.0 Hz, -

CH2CH3). 

DP 48 Poly(2-Ethylhexyl acrylate): 
1
H NMR: δH (300 MHz, CDCl3) = 7.36-7.10 (4H, dd, 

3
JH-H = 

6.0 Hz, ArH), 4.90-4.75 (2H, m, HOCH2Ar), 4.65 (2H, s, ArCH2CH2R), 4.4-3.60 (96H, m, -

C(O)OCH2CH2-), 3.34 (1H, t, 
3
JH-H = 6.0 Hz, RSC(S)S-CHRCH2-), 3.20 (2H, t, 

3
JH-H = 6.0 Hz, 

CH3(CH2)10CH2SC(S)S-), 2.55-2.40 (2H, m, RSC(S)S-CHRCH2CHR-), 2.40-2.05 (48H, m, -

CH2CHRCH2-), 2.05-1.78 (23H, m, -CHRCH2CHR- meso), 1.80-1.40 (99H, m, -CHRCH2CHR- 

racemo; -SCH2CH2(CH2)9CH3; -SCH2CH2CH2(CH2)8CH3; -C(O)OCH2CHRCH2-; HOCH2AR), 

1.40-0.98 (423H, m, -CHRCH2CHR- meso; -CH2CH2CH2-; -S(CH2)3(CH2)8CH3), 0.88 (288H, m, 

-CH2CH3), 0.67 (3H, t, 
3
JH-H = 6.0 Hz, -CH2CH3). 

DP 25 Poly(Isodecyl acrylate): 
1
H NMR: δH (300 MHz, CDCl3) = 7.36-7.10 (4H, dd, 

3
JH-H = 6.0 

Hz, ArH), 4.90-4.75 (2H, m, HOCH2Ar), 4.65 (2H, s, ArCH2CH2R), 4.4-3.60 (50H, m, -

C(O)OCH2CH2-), 3.34 (1H, t, 
3
JH-H = 6.0 Hz, RSC(S)S-CHRCH2-), 3.20 (2H, t, 

3
JH-H = 6.0 Hz, 

CH3(CH2)10CH2SC(S)S-), 2.55-2.40 (2H, m, RSC(S)S-CHRCH2CHR-), 2.40-2.05 (24H, m, -

CH2CHRCH2-), 2.05-1.78 (12H, m, -CHRCH2CHR- meso), 1.80-1.40 (103H, m, -CHRCH2CHR-

racemo; -SCH2CH2(CH2)9CH3; -SCH2CH2CH2(CH2)8CH3; -C(O)OCH2CH2CH2-; HOCH2AR), 

1.40-0.98 (228H, m, -CHRCH2CHR- meso; -C(O)OCH2CH2(CH2)4CH2CH(CH3)2; -

S(CH2)3(CH2)8CH3), 0.88 (225H, m, -CH2CH(CH3)2), 0.67 (3H, t, 
3
JH-H = 6.0 Hz, -CH2CH3). 

DP 20 Poly(Lauryl acrylate): 
1
H NMR: δH (300 MHz, CDCl3) = 7.36-7.10 (4H, dd, 

3
JH-H = 6.0 

Hz, ArH), 4.90-4.75 (2H, m, HOCH2Ar), 4.65 (2H, s, ArCH2CH2R), 4.4-3.70 (40H, m, -

C(O)OCH2CH2-), 3.70-3.55 (1H, m, RSC(S)S-CHRCH2-), 3.40-3.20 (2H, m, 

CH3(CH2)10CH2SC(S)S-), 2.55-2.40 (2H, m, RSC(S)S-CHRCH2CHR-), 2.40-2.05 (19H, m, -

CH2CHRCH2-), 2.05-1.78 (9H, m, -CHRCH2CHR- meso), 1.75-1.50 (83H, m, -CHRCH2CHR- 

racemo; -SCH2CH2(CH2)9CH3; -SCH2CH2CH2(CH2)8CH3; -C(O)OCH2CH2CH2-; HOCH2AR), 

1.40-0.98 (386H, m, -CHRCH2CHR- meso; -CH2CH2CH2-; -S(CH2)3(CH2)8CH3), 0.88 (60H, t, 

3
JH-H = 6.0 Hz, -CH2CH3), 0.67 (3H, t, 

3
JH-H = 6.0 Hz, -CH2CH3). 

DP 327 Poly(Stearyl acrylate): 
1
H NMR: δH (300 MHz, CDCl3) = 7.36-7.10 (4H, dd, 

3
JH-H = 6.0 

Hz, ArH), 5.05 (2H, m, HOCH2Ar), 4.90-4.65 (2H, s, ArCH2CH2R), 4.4-3.70 (654H, m, -

C(O)OCH2CH2-), 3.70-3.55 (1H, m, RSC(S)S-CHRCH2-), 3.40-3.20 (2H, m, 

CH3(CH2)10CH2SC(S)S-), 2.55-2.40 (1H, m, RSC(S)S-CHRCH2CHR-), 2.40-2.05 (326H, m, -

CH2CHRCH2-), 2.05-1.78 (163H, m, -CHRCH2CHR- meso), 1.75-1.50 (985H, m, -

CHRCH2CHR- racemo; -SCH2CH2(CH2)9CH3; -SCH2CH2CH2(CH2)8CH3; -C(O)OCH2CH2CH2-; 

HOCH2AR), 1.40-0.98 (9989H, m, -CHRCH2CHR- meso; -C(O)OCH2CH2(CH2)15CH3; -
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S(CH2)3(CH2)8CH3), 0.88 (981H, t, 
3
JH-H = 6.0 Hz, -CH2CH3), 0.67 (3H, t, 

3
JH-H = 6.0 Hz, -

CH2CH3). 

 

General Protocol for the Preparation of Block Copolymers of PPDL via the RAFT Process 

using 2 as a macro-CTA 

Methyl acrylate (1.14 mL, 12.54 mmol), macro-CTA 2 (50 mg, 12.54 x 10
-3

 mmol), and 

anhydrous toluene (1.11 mL, 50 wt.%) were combined in an ampoule equipped with magnetic 

stirring, degassed via three freeze-pump-thaw cycles, and refilled with argon. The ampoule was 

immersed in an 80 ºC oil bath with stirring for approximately 1 hour.  Thereafter AIBN (0.212 

mL of a degassed 10 mg ml
-1

 AIBN stock solution in toluene, 12.54 x 10
-4

 mmol) was injected 

into the reaction mixture and aliquots of the reaction mixture were removed at regular time 

intervals for 
1
H NMR spectroscopy (CDCl3), GPC (CHCl3/THF), MALDI-ToF, and DSC 

analysis. Other acrylic or styrenic monomers were similarly polymerized, with the exception of 

NIPAM, which was polymerization in chloroform at 60 ºC. Furthermore, additional reactions 

were performed varying [M]/[I], [M], temperature, and initiator. 

PPDL-b-(DP 32 PEHA): 
1
H NMR: δH (300 MHz, CDCl3) = 7.28-7.08 (4H, dd, 

3
JH-H = 6.0 Hz, 

ArH), 5.05 (2H, s, RC(O)OCH2Ar), 4.95-4.70 (2H, m, ArCH2CH2R), 4.05 (32H, t, 
3
JH-H = 6.0 Hz, 

-CH2C(O)OCH2-), 4.20-3.68 (64H, m, -HC(O)OCH2CH2-), 3.64 (1H, t, 
3
JH-H = 6.0 Hz, RSC(S)S-

CHRCH2-), 3.40-3.22 (2H, t, 
3
JH-H = 6.0 Hz, CH3(CH2)10CH2SC(S)S-), 2.55-2.45 (2H, m, 

RSC(S)S-CHRCH2CHR-), 2.28 (65H, t, 
3
JH-H = 6.0 Hz, -CH2C(O)OCH2-; -CH2CHRCH2-; 

HOCH2-), 2.05-1.75 (15H, m, -CHRCH2CHR- meso), 1.75-1.50 (131H, m, -CHRCH2CHR- 

racemo; -SCH2CH2(CH2)9CH3; -SCH2CH2CH2(CH2)8CH3; -C(O)OCH2CH2CH2-; -

CH2CH2CH2C(O)O-; -C(O)OCH2CHRCH2-), 1.45-0.97 (608H, m, -CHRCH2CHR- meso; -CH2-; 

-S(CH2)3(CH2)8CH3), 0.97-0.75 (192H, m, CH3CH2-), 0.75-0.54 (3H, m, CH3(CH2)11SC(S)S-). 

PPDL-b-(DP 17 PIDA): 
1
H NMR: δH (300 MHz, CDCl3) = 7.28-7.08 (4H, dd, 

3
JH-H = 6.0 Hz, 

ArH), 5.05 (2H, s, RC(O)OCH2Ar), 4.95-4.70 (2H, m, ArCH2CH2R), 4.05 (32H, t, 
3
JH-H = 6.0 Hz, 

-CH2C(O)OCH2-), 4.20-3.68 (34H, m, -HC(O)OCH2CH2-), 3.64 (1H, t, 
3
JH-H = 6.0 Hz, RSC(S)S-

CHRCH2-), 3.40-3.22 (2H, m, -CH3(CH2)10CH2SC(S)S-), 2.65-2.45 (2H, m, RSC(S)S-

CHRCH2CHR-), 2.28 (49H, t, 
3
JH-H = 6.0 Hz, -CH2C(O)OCH2-; -CH2CHRCH-; HOCH2-), 2.00-

1.80 (8H, m, -CHRCH2CHR- meso), 1.80-1.50 (118H, m, -CHRCH2CHR- racemo; -

SCH2CH2(CH2)9CH3; -SCH2CH2CH2(CH2)8CH3; -C(O)OCH2CH2CH2-; -CH2CH2CH2C(O)O-),  
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1.50-0.97 (480H, m, -CHRCH2CHR- meso, -CH2-; -S(CH2)3(CH2)8CH3), 0.97-0.68 (153H, m, 

CH3CH2-; CH3CH-; CH3CHCH2-), 0.68-0.54 (3H, m, CH3(CH2)11SC(S)S-). 

PPDL-b-(DP 30 PLA):
 1
H NMR: δH (300 MHz, CDCl3) = 7.28-7.08 (4H, dd, 

3
JH-H = 6.0 Hz, ArH), 

5.05 (2H, s, RC(O)OCH2Ar), 4.95-4.70 (2H, m, ArCH2CH2R), 4.05 (32H, t, 
3
JH-H = 6.0 Hz, -

CH2C(O)OCH2-), 4.20-3.68 (60H, m, -HC(O)OCH2CH2-), 3.68-3.59 (1H, m, RSC(S)S-CHRCH2-

), 3.40-3.22 (2H, m, CH3(CH2)10CH2SC(S)S-), 2.65-2.45 (2H, m, RSC(S)S-CHRCH2CHR-), 2.28 

(62H, t, 
3
JH-H = 6.0 Hz, -CH2C(O)OCH2-; -CH2CHRCH-; HOCH2-), 2.15-1.75 (14H, m, -

CHRCH2CHR- meso), 1.75-1.49 (157H, m, -CHRCH2CHR- racemo, -SCH2CH2(CH2)9CH3; -

SCH2CH2CH2(CH2)8CH3; -C(O)OCH2CH2CH2-; -CH2CH2CH2C(O)O-), 1.44-0.98 (891H, m, -

CHRCH2CHR- meso; -CH2-; -S(CH2)3(CH2)8CH3); 0.98-0.75 (90H, m, CH3CH2-), 0.72-0.63 (3H, 

m, CH3(CH2)11SC(S)S-). 

PPDL-b-(DP 47 PSA):
 1
H NMR: δH (300 MHz, CDCl3) = 7.28-7.08 (4H, dd, 

3
JH-H = 6.0 Hz, ArH), 

5.05 (2H, s, RC(O)OCH2Ar), 4.95-4.70 (2H, m, ArCH2CH2R), 4.05 (32H, t, 
3
JH-H = 6.0 Hz, -

CH2C(O)OCH2-), 4.20-3.68 (94H, m, -HC(O)OCH2CH2-), 3.64 (1H, t, 
3
JH-H = 6.0 Hz, RSC(S)S-

CHRCH2-), 3.38-3.22 (2H, m, CH3(CH2)10CH2SC(S)S-), 2.65-2.45 (2H, m, RSC(S)S-

CHRCH2CHR-), 2.28 (79H, t, 
3
JH-H = 6.0 Hz, -CH2C(O)OCH2-; -CH2CHRCH-; HOCH2-), 2.25-

1.75 (23H, m, -CHRCH2CHR- meso), 1.75-1.50 (208H, m, -CHRCH2CHR- racemo, -

SCH2CH2(CH2)9CH3; -SCH2CH2CH2(CH2)8CH3; -C(O)OCH2CH2CH2-; -CH2CH2CH2C(O)O-), 

1.50-0.98 (1769H, m, -CHRCH2CHR- meso; -CH2-;  -S(CH2)3(CH2)8CH3); 0.88 (141H, t, 
3
JH-H = 

6.0 Hz, CH3CH2-), 0.72-0.63 (3H, m, CH3(CH2)11SC(S)S-). 

PPDL-b-(DP 43 PMA):
 1
H NMR: δH (300 MHz, CDCl3) = 7.40-7.10 (4H, m, ArH), 5.06 (2H, s, 

RC(O)OCH2Ar), 4.95-4.70 (2H, m, ArCH2CH2R), 4.05 (32H, t, 
3
JH-H = 6.0 Hz, -CH2C(O)OCH2-), 

3.66 (129H, bs, -C(O)OCH3), 3.58-3.44 (1H, m, RSC(S)S-CHRCH2-), 3.38-3.22 (2H, m, 

CH3(CH2)10CH2SC(S)S-), 2.45-2.35 (2H, m, RSC(S)S-CHRCH2CHR-), 2.28 (75H, t, 
3
JH-H = 6.0 

Hz, -CH2C(O)OCH2-; -CHC(O)OCH3; HOCH2-), 2.05-1.80 (21H, m, -CHRCH2CHR- meso), 

1.75-1.56 (110H, m, -CHRCH2CHR- racemo, -SCH2CH2(CH2)9CH3; -SCH2CH2CH2(CH2)8CH3; -

C(O)OCH2CH2CH2-; -CH2CH2CH2C(O)O-), 1.40-1.20 (357H, m, -CHRCH2CHR- meso, -CH2-; -

S(CH2)3(CH2)8CH3), 0.95-0.80 (3H, m, CH3(CH2)11SC(S)S-). 

PPDL-b-(DP 27 P(NIPAM)):
 1

H NMR: δH (300 MHz, CDCl3) = 7.40-7.10 (4H, m, ArH), 7.05-

5.70 (27H, bs, -C(O)NHCH(CH3)2), 5.05 (2H, s, RC(O)OCH2Ar), 4.70-4.50 (2H, m, 

ArCH2CH2R), 4.05 (32H, t, 
3
JH-H = 6.0 Hz, -CH2C(O)OCH2-), 4.16-3.88 (27H, -

C(O)NHCH(CH3)2), 3.63 (1H, t, 
3
JH-H = 6.0 Hz, RSC(S)S-CHRCH2-), 3.40-3.20 (2H, m, 

CH3(CH2)10CH2SC(S)S-), 2.50-2.40 (2H, m, RSC(S)S-CHRCH2CHR-), 2.28 (59H, t, 
3
JH-H = 6.0 
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Hz, -CH2C(O)OCH2-; -CHC(O)OCH3; HOCH2-), 2.23-1.98 (13H, m, -CHRCH2CHR- meso), 

1.75-1.50 (94H, m, -CHRCH2CHR- racemo, -SCH2CH2(CH2)9CH3; -SCH2CH2CH2(CH2)8CH3; -

C(O)OCH2CH2CH2-; -CH2CH2CH2C(O)O-), 1.40-1.25 (349H, m, -CHRCH2CHR- meso; -CH2-; -

S(CH2)3(CH2)8CH3), 1.25-1.10 (162H, bs, -CHCH3), 0.80 (3H, t, 
3
JH-H = 6.0 Hz, 

CH3(CH2)11SC(S)S-). 

PPDL-b-(DP 31 PS):
 1

H NMR: δH (300 MHz, CDCl3) = 7.25-6.15 (155H, m, ArH), 5.15-4.95 

(2H, s, RC(O)OCH2Ar), 4.75-4.55 (2H, m, ArCH2CH2R), 4.05 (32H, t, 
3
JH-H = 6.0 Hz, -

CH2C(O)OCH2-), 3.64 (1H, t, 
3
JH-H = 6.0 Hz, RSC(S)S-CHRCH2-), 3.40-3.15 (2H, m, 

CH3(CH2)10CH2SC(S)S-), 2.29 (33H, t, 
3
JH-H = 6.0 Hz, -CH2C(O)OCH2-; HOCH2-), 2.45-1.70 

(30H, m, -CH2CHRCH2-), 1.70-1.50 (144H, m, -CHRCH2CHR-, -SCH2CH2(CH2)9CH3; -

SCH2CH2CH2(CH2)8CH3; -C(O)OCH2CH2CH2-; -CH2CH2CH2C(O)O-), 1.50-1.15 (336H, m, -

CH2-; -S(CH2)3(CH2)8CH3), 0.88 (3H, t, 
3
JH-H = 6.0 Hz, CH3(CH2)11SC(S)S-). 

 

6.4 Experimental Details for Chapter 3 

Preparation of PPDL macro-CTA 3 

Working in a glovebox, lipase (100.0 mg, 1 wt.%), dodecyl 4-(hydroxymethyl) benzyl 

carbonotrithioate (1) (806.0 mg, 0.208 mmol), and PDL in toluene (41.6 mmol, 46 mL of a 25 

wt.% PDL stock solution in anhydrous toluene) were combined in a Schlenk flask equipped with 

magnetic stirring. The flask was immersed in a 60 ºC oil bath with stirring, stopped after 165 

minutes, and an aliquot analysed by 
1
H NMR spectroscopy (CDCl3) to evaluate percent monomer 

conversion. The mixture was quenched with cold chloroform, filtered to remove the enzyme, 

concentrated, recrystallized from ethyl acetate, and dried in vacuo. The resulting polymer was 

analysed by 
1
H NMR spectroscopy (CDCl3) and GPC (CHCl3).  

Preparation of PPDL-b-PEHA Copolymers for Fuels Testing 

DP 19 PPDL macro-CTA 3, AIBN, 2-ethylhexyl acrylate, and anhydrous toluene were 

combined in an ampoule equipped with magnetic stirring according to the quantities outlined in 

Table 6.1, degassed via three freeze-pump-thaw cycles, and refilled with nitrogen. The ampoule 

was immersed in an 80 ºC oil bath with stirring and stopped at the specified time. The reaction 

mixture was precipitated twice in methanol, dried in vacuo, and analysed by 
1
H NMR 

spectroscopy (CDCl3) and GPC (CHCl3). 
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Table 6.1: Reagent quantities for the preparation of PPDL-b-PEHA copolymers. 

Entry Macro-CTA 2-EHA
 

AIBN Toluene 
Time 

(min)
 

1 
0.75 g 

(15.15 x 10
-2

 mmol) 

3.22 mL  

(15.15 mmol) 

2.49 mg  

(15.15 x 10
-3

 mmol) 
12.51 mL 42 

2 
0.75 g 

(15.15 x 10
-2

 mmol) 

3.22 mL  

(15.15 mmol) 

2.49 mg  

(15.15 x 10
-3

 mmol) 
12.51 mL 82 

3 
0.5 g  

(10.1 x 10
-2

 mmol) 

2.15 mL  

(10.1 mmol) 

1.66 mg  

(10.1 x 10
-3

 mmol) 
8.34 mL 162 

4 
0.5 g  

(10.1 x 10
-2

 mmol) 

2.15 mL  

(10.1 mmol) 

1.66 mg  

(10.1 x 10
-3

 mmol) 
8.34 mL 1200 

5 
0.5 g  

(10.1 x 10
-2

 mmol) 

4.29 mL  

(20.19 mmol) 

1.66 mg  

(10.1 x 10
-3

 mmol) 
4.97 mL 75 

6 
0.5 g  

(10.1 x 10
-2

 mmol) 

4.29 mL  

(20.19 mmol) 

1.66 mg  

(10.1 x 10
-3

 mmol) 
4.97 mL 80 

7 
0.5 g  

(10.1 x 10
-2

 mmol) 

4.29 mL  

(20.19 mmol) 

1.66 mg  

(10.1 x 10
-3

 mmol) 
4.97 mL 370 

 

Preparation of PPDL macro-CTA 4 

Working in a glovebox, lipase (1.21 g, 1 wt.%) and dodecyl 4-(hydroxymethyl) benzyl 

carbonotrithioate (1) (10.0 g, 25.08 mmol, [M]/[I] = 20) were combined in a Schlenk flask 

equipped with magnetic stirring. PDL in toluene (501.64 mmol, 554.69 mL of a 25 wt.% PDL 

stock solution in anhydrous toluene) was transferred into the reaction flask using a cannula, and 

the resulting mixture was stirred until homogeneous. The flask was immersed in a 60 ºC oil bath 

with stirring for 175 minutes, after which the resulting mixture was diluted with cold chloroform, 

filtered to remove the enzyme, concentrated by rotoevaporation, and dried in vacuo. The product 

was analysed by 
1
H NMR spectroscopy (CDCl3), GPC (CHCl3), MALDI-ToF mass spectrometry, 

and DSC. Although the crude product was utilized for further experiments, it however was 

purified via precipitation in methanol from chloroform for DSC analysis.  

Preparation of PPDL-b-Poly(acrylate) Copolymers for Fuels Testing 

Acrylate, PPDL macro-CTA 4, and anhydrous toluene (50 wt.%) were combined in a 

Schlenk tube equipped with magnetic stirring according to the quantities outlined in Table 6.2, 

degassed via three freeze-pump-thaw cycles, and refilled with argon. The Schlenk tube was 

immersed in an 80 ºC oil bath with stirring for approximately 1 hour. Thereafter, the required 

amount of degassed AIBN stock solution in anhydrous toluene (10 g L
-1

) was injected, and the 

reaction was permitted to stir for the indicated amount of time. An aliquot was analysed by 
1
H 

NMR spectroscopy (CDCl3), after which the mixture was taken up in cold chloroform, filtered to 

remove the enzyme, concentrated in vacuo, precipitated in methanol, and analysed by 
1
H NMR 

spectroscopy (CDCl3), GPC (CHCl3), DSC, and MALDI-ToF mass spectrometry where indicated.  
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Table 6.2: Reagent quantities for the preparation of PPDL-b-poly(acrylate) copolymers. 

Entry Macro-CTA Acrylate AIBN 
Toluene 

(mL) 

Time 

(min)
 

  2-EHA    

1 
9.0 g  

(1.27 mmol) 

26.96 mL  

(126.86 mmol) 

20.83 mg  

(12.7 x 10
-2

 mmol)  
37.93  8 

2 
9.0 g  

(1.27 mmol) 

26.96 mL  

(126.86 mmol) 

20.83 mg  

(12.7 x 10
-2

 mmol)  
37.93  11 

3 
4.0 g  

(5.64 x 10
-1

 mmol) 

11.98 mL  

(56.4 mmol) 

9.26 mg  

(5.64 x 10
-2

 mmol) 
16.85  28 

4 
2.0 g  

(2.82 x 10
-1

 mmol) 

17.97 mL 

 (84.6 mmol) 

4.63 mg  

(2.82 x 10
-2

 mmol) 
20.66  15 

5 
2.5 g  

(3.52 x 10
-1

 mmol) 

22.46 mL  

(105.72 mmol) 

5.79 mg  

(3.52 x 10
-2

 mmol) 
25.82  29 

  IDA    

6 
6.2 g  

(8.74 x 10
-1

 mmol) 

21.21 mL  

(87.4 mmol) 

14.35 mg  

(8.74 x 10
-2

 mmol) 
28.58  10 

7 
4.2 g  

(5.92 x 10
-1

 mmol) 

14.37 mL  

(59.2 mmol) 

9.72 mg  

(5.92 x 10
-2

 mmol) 
19.36  17 

8 
2.6 g  

(3.67 x 10
-1

 mmol) 

8.90 mL  

(36.7 mmol) 

6.02 mg  

(3.67 x 10
-2

 mmol) 
11.97  31 

9 
1.8 g  

(2.54 x 10
-1

 mmol) 

18.48 mL  

(76.13 mmol) 

4.17 mg  

(2.54 x 10
-2

 mmol) 
20.73 15 

  LA    

10 
6.5 g  

(2.54 x 10
-1

 mmol) 

27.69 mL  

(91.6 mmol) 

15.05 mg  

(9.16 x 10
-2

 mmol) 
35.75  10 

11 
4.5 g  

(63.4 x 10
-1

 mmol) 

19.17 mL  

(63.4 mmol) 

10.42 mg  

(6.34 x 10
-2

 mmol) 
24.79  17 

12 
3.0 g  

(42.3 x 10
-1

 mmol) 

12.78 mL  

(42.3 mmol) 

6.95 mg  

(4.23 x 10
-2

 mmol) 
16.51  31 

13 
2.0 g  

(2.82 x 10
-1

 mmol) 

25.56 mL  

(84.59 mmol) 

4.63 mg  

(2.82 x 10
-2

 mmol) 
28.37 23 

14 
2.0 g  

(2.82 x 10
-1

 mmol) 

25.56 mL  

(84.59 mmol) 

4.63 mg  

(2.82 x 10
-2

 mmol) 
28.37 23 

  SA    

15 
6.0 g  

(8.46 x 10
-1

 mmol) 

35.38 mL  

(84.6 mmol) 

13.9 mg  

(8.46 x 10
-2

 mmol) 
39.57 9 

16 
7.0 g  

(9.87 x 10
-1

 mmol) 

41.28 mL  

(98.7 mmol) 

16.2 mg  

(9.87 x 10
-2

 mmol) 
46.18 17 

17 
4.5 g  

(6.34 x 10
-1

 mmol) 

26.53 mL 

(63.4 mmol) 

10.42 mg  

(6.34 x 10
-2

 mmol) 
29.69 27 

18 
1.5 g  

(2.1 x 10
-1

 mmol) 

26.53 mL  

(63.4 mmol) 

3.47 

(2.1 x 10
-2

 mmol) 
26.22 21 

 

Preparation of Block Copolymer Stock Solutions to Treat Diesel 

 Block copolymer (1 g) was dissolved in Solvesso 150 (100 mL) and held at room 

temperature overnight. The appearance of the solution was noted both upon initial mixing and 

following standing at room temperature overnight. The solutions were used to treat diesel fuel 
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with up to 400 ppm of the block copolymer per fuel sample in order to prepare samples for CFPP 

testing and cold temperature analysis (specifically, to evaluate wax dispersion and visualize wax 

crystal size and morphology via microscopy).  

Cold Temperature Analysis of Diesel Fuel Samples 

 Treated fuel samples (80 g) were cooled in a Clive Hurley Cold Room. The cold room 

was rapidly cooled from ambient temperature to 7 ºC, and cooled 1 ºC per hour thereafter, 

equilibrating at -18 ºC overnight. The percent wax settling was noted for every sample. 

Furthermore, wax crystals were imaged for every sample using an optical microscope, and 

photographs of the wax crystals were taken at different magnifications, as indicated by scale bars. 

Determination of the Cold Filter Plugging Point (CFPP) 

The cold filter plugging point test was carried out at the Analytical Testing Laboratory 

according to Infineum UK Ltd procedures, specifically IP309.  A 40 mL fuel sample was cooled 

at a rate of 1 °C per minute in 1 °C intervals using a cooling bath. At each 1 °C interval, the fuel 

was passed through a 45 µm gauze filter and into a bulb pipette under vacuum. The time taken for 

the pipette to fill with fuel was recorded. The fuel was then passed back through the filter and into 

the fuel reservoir to be further cooled by the cooling bath. This process was repeated until the 

time taken to fill the bulb pipette exceeded 60 seconds or the fuel failed to pass back into the 

reservoir, at which point the test was terminated. The temperature at which the test was 

terminated was taken as the CFPP temperature. CFPP tests were run in duplicate, and where the 

results differed by >2 °C, the samples are tested an additional 2 times. The averages of the 

different runs were calculated and quoted as the CFPP temperature. 

 

6.5 Experimental Details for Chapter 4 

Preparation of Triphenylstannane dithiobenzylester (5) 

Anhydrous stannous chloride (1.0 g, 5.17 mmol) was weighed into a Schlenk flask 

equipped with magnetic stirring under an inert atmosphere. Dry, degassed tetrahydrofuran (100 

mL) was transferred into the Schlenk flask using a cannula. The resulting solution was cooled in a 

dry ice/acetone bath, and a degassed solution of phenyllithium (15.51 mmol) in dibutyl ether was 

added drop wise, turning the mixture yellow, red, and finally purple. The mixture was permitted 

to warm to 0 ºC with stirring over approximately two hours, after which dry, degassed 1,4-

dioxane (1.03 mL, 10.34 mmol) and carbon disulfide (1.27 mL, 10.34 mmol) were added drop 
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wise with cooling in an ice bath. The resulting red mixture was permitted to warm to room 

temperature with stirring over approximately two hours, after which dry, degassed benzyl 

bromide (0.94 mL, 7.75 mmol) was added drop wise. The resulting mixture was permitted to stir 

overnight, after which it was filtered and concentrated in vacuo to yield a dark purple solid. The 

mixture was taken up in petroleum ether, filtered, concentrated, and dried in vacuo, after which it 

was recrystallized repeatedly from acetone to yield purple crystals (0.70 g, 32%):
3-5

 
1
H NMR δH 

(400 MHz, CDCl3) = 7.85-7.00 (20H, m, ArH), 4.68 (2H, s, -CH2Ph); 
13

C NMR  δC  (400 MHz, 

CDCl3) = 137.5, 137.2, 137.2, 129.8, 129.5, 129.3, 129.0, 128.8, 128.6, 127.6, 39.0; m.p.= 94.8 

⁰C; UV (λmax, CHCl3) = 317 nm; IR (neat, νmax cm
-1

) = 1048 (CS2 νassymetric), 809 (CS2 νsymmetric); 

TGA = 229.8 ⁰C (78.9 % total mass loss). 

Preparation of Triphenylstannane dithioisopropylester (6) 

Anhydrous stannous chloride (1.0 g, 5.17 mmol) was weighed into a Schlenk flask 

equipped with magnetic stirring under an inert atmosphere. Dry, degassed tetrahydrofuran (100 

mL) was transferred into the Schlenk flask using a cannula. The resulting solution was cooled in a 

dry ice/acetone bath, after which a degassed solution of phenyllithium (15.51 mmol) in dibutyl 

ether was added drop wise, turning the mixture yellow, red, and finally purple. The mixture was 

permitted to warm to 0 ºC with stirring over approximately two hours, after which dry, degassed 

1,4-dioxane (1.03 mL, 10.34 mmol) and carbon disulfide (1.27 mL, 10.34 mmol) were added drop 

wise with cooling in an ice bath. The resulting red mixture was stirred at room temperature for 

approximately two hours, after which dry, degassed 2-iodopropane (0.77 mL, 7.75 mmol) was 

added drop wise. The resulting mixture was permitted to stir overnight, after which it was filtered, 

concentrated, and dried in vacuo to yield a dark purple solid. The mixture was taken up in 

petroleum ether, filtered, concentrated, and dried in vacuo, after which it was recrystallized 

repeatedly from acetone and petroleum ether to yield purple crystals (0.18 g, 13%):
6,7

  
1
H NMR δH 

(300 MHz, CDCl3) = 7.88-7.28 (15H, m, ArH), 4.58 (1H, sept, 
3
JH-H = 6.0 Hz, -CH(CH3)2), 1.35 

(6H, d, 
3
JH-H = 6.0 Hz, -CH(CH3)2); 

13
C NMR δC  (500 MHz, CDCl3) = 266.0, 137.8, 137.3, 137.2, 

137.0, 136.5, 129.7, 129.6, 129.5, 129.0, 128.8, 128.6, 38.5, 21.3; m.p.= 131.4 ⁰C; UV (λmax, 

CHCl3) = 318 nm; IR (neat, νmax cm
-1

) =  1032 (CS2 νassymetric), 804 (CS2 νsymmetric); TGA = 219.8 ⁰C 

(80.4 % total mass loss). 

Polymerization of Styrene using Triphenylstannane dithiobenzylester (5) as a CTA 

Styrene (2.22mL, 19.3 mmol), triphenylstannane dithiobenzylester (5) (100.0 mg, 0.19 

mmol), and AIBN (3.2 mg, 0.02 mmol) were combined in an ampoule equipped with magnetic 
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stirring, degassed via three freeze-pump-thaw cycles, and refilled with argon. The ampoule was 

immersed in a 60 º C oil bath with stirring and aliquots were taken at regular intervals for 
1
H 

NMR spectroscopy (CDCl3) and GPC (THF) analysis.  

DP 6 Polystyrene: 
1
H NMR: δH (300 MHz, CDCl3) = 8.20-6.20 (50H, m, ArH), 3.10-2.96, (1H, 

dd, 
3
JH-H = 6.0 Hz, Ph3SnC(S)S-CHRCH2-), 2.45-1.75 (5H, m, -CH2CHRCH2-), 1.75-1.00 (12H, -

CHRCH2CHR-), 1.34-1.26 (2H, t, 
3
JH-H = 6.0 Hz, Ar-CH2CH2R). 

Polymerization of Methyl acrylate using Triphenylstannane dithiobenzylester (5) as a CTA 

Methyl acrylate (1.76 mL, 19.3 mmol), triphenylstannane dithiobenzylester (5) (100.0 

mg, 0.19 mmol), and AIBN (3.2 mg, 0.02 mmol) were combined in an ampoule equipped with 

magnetic stirring, degassed via three freeze-pump-thaw cycles, and refilled with argon. The 

ampoule was immersed in a 60 ºC oil bath with stirring and aliquots were taken at regular 

intervals for 
1
H NMR spectroscopy (CDCl3) and GPC (THF) analysis.  

DP 11 Poly(methyl acrylate): 
1
H NMR: δH (300 MHz, CDCl3) = 7.85-6.85 (20H, m, ArH), 3.95-

3.35 (33H, s, -OCH3), 3.22-3.02 (1H, dd, 
3
JH-H = 6.0 Hz, Ph3SnC(S)S-CHCH2-), 2.61-2.52 (2H, m, 

Ph3SnC(S)S-CHRCH2-), 2.47-2.17 (10H, bs, -CH2CHRCH2-), 2.10-1.85 (5H, m, -CHRCH2CHR- 

meso), 1.85-1.55 (10H, m, -CHRCH2CHR- racemo), 1.55-1.38 (5H, m, -CHRCH2CHR- meso), 

1.38-1.28 (2H, t, 
3
JH-H = 6.0 Hz, Ar-CH2CH2-). 

Synthesis of MDO (7) 

Preparation of 2-chloromethyl-1,3-dioxepane 

Chloroacetaldehyde dimethyl acetal (69.90 g, 550.0 mmol), 1,4-butanediol (50.0 g, 550.0 

mmol), and a catalytic amount of p-toluenesulfonic acid were combined in a round bottom flask 

equipped with magnetic stirring, an oil bath, and a distillation apparatus. The mixture was heated 

to 120 
o
C for three hours during which time methanol was distilled from the reaction mixture. The 

resulting clear, yellow mixture was further heated to 140 
o
C for four hours to drive off residual 

methanol. The product was distilled under reduced pressure (1.3 Torr) at 30 
o
C to yield a clear, 

colourless liquid (78 %). 
1
H NMR spectroscopy data matches reported values:

8
 δH (300 MHz, 

CDCl3) = 4.87-4.81 (2H, t, -OCHCH2Cl), 3.98-3.57 (4H, dm, 22-OCH2CH2), 3.46-3.42 (2H, d, -

CH2Cl), 2.82-1.58 (4H, m, 2-OCH2CH2). 

Preparation of 2-methylene-1,3-dioxepane 

Potassium t-butoxide (69.65 g, 620.08 mmol) was degassed via three vacuum/nitrogen 

cycles in a one litre three-necked flask equipped with a heating mantle, magnetic stirring, a 
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condenser, and a Schlenk line. Degassed, anhydrous tetrahydrofuran (450 mL) was transferred 

into the reaction mixture using a cannula, and 2-chloromethyl-1,3-dioxepane (46.74 g, 310.39 

mmol) was injected. The reaction mixture was refluxed at 85 
o
C under N2 (g) for 18 hours, after 

which the resulting tan coloured mixture was filtered and distilled from CaH2 under reduced 

pressure (6.0 Torr) at 30 
o
C to yield a clear, colourless liquid (82 %). NMR spectroscopy data 

match reported values:
8
 δH (400 MHz, CDCl3) = 3.88-3.74 (4H, m, 2 -OCH2CH2-), 3.34 (2H, s, 

C=CH2), 1.75-1.61 (4H, m, 2 -OCH2CH2-); δC (400 MHz, CDCl3) = 163.9, 70.1, 67.1, 28.8.  

Polymerization of MDO (7) using Triphenylstannane dithioisopropylester (6) as a CTA 

 MDO (0.98 mL, 8.76 mmol), triphenylstannane dithioisopropylester (6) (41.1 mg, 8.76 x 

10
-2

 mmol), and AIBN (1.44 mg, 8.76 x 10
-3

 mmol) were combined in an ampoule equipped with 

magnetic stirring, degassed via three freeze-pump-thaw cycles, and refilled with argon. Additional 

ampoules were similarly prepared for individual kinetic points. The ampoules were immersed in 

an oil bath (60, 100, or 150 ºC) with stirring and stopped at different time intervals (72, 48, and 24 

hours, respectively). Aliquots were removed for direct 
1
H NMR spectroscopy (CDCl3) and GPC 

(CHCl3) analysis. Free radical control polymerizations were similarly performed in the absence of 

AIBN. 

Polymerization of Isoprene using Triphenylstannane dithioisopropylester (6) as a CTA 

Working in a glovebox, isoprene (3.67 mL, 36.7 mmol), AIBN (6.0 mg, 0.04 mmol), and 

triphenylstannane dithioisopropylester (6) (172.2 mg, 0.37 mmol) were combined in a vial 

equipped with magnetic stirring until homogenous. Approximately 0.6 mL aliquots were rapidly 

transferred to 5 ampoules equipped with magnetic stirring. The ampoules were degassed via three 

freeze-pump-thaw cycles, refilled with argon, immersed in a 60 ⁰C oil bath, and stopped at regular 

time intervals by freezing in N2 (l). Monomer conversion was analysed by gravimetry. Thereafter, 

the residue was taken up twice in dichloromethane and dried in vacuo to remove isoprene. 

Residual material was analysed by 
1
H NMR spectroscopy (CDCl3) and GPC (THF). Free radical 

control polymerizations were similarly performed in the absence of AIBN. 

DP 6 Poly(isoprene): 
1
H NMR: δH (300 MHz, CDCl3) = 7.85-7.30 (15H, m, ArH), 6.00-4.50 (6H, 

m, -C=CHCCH2-), 3.30-2.95 (2H, m, -SCH2C-), 2.95-2.50 (1H, m, -CH(CH3)2), 2.35-1.65 (12H, 

m, -CCH2C-), 1.65-1.28 (18H, m, -C(CH3)), 1.29-0.80 (6H, m, -CH(CH3)2). 
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