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Abstract

Transformations on a cellular level caused by changes in gene expression, pro-
tein abundance, or epigenetic features present in cells play a key role in di↵erentiation,
reprogramming and disease. Such transformations are frequently stochastic on a single-
cell level. The result is a heterogeneous cell population with an ever-changing mixture.
Often cells undergo transformation via intermediate stages, which further convolute the
transformation process. Reliable high-throughput data is commonly obtained on a cell
population level therefore elucidating the underlying single-cell process is challenging.
In this thesis we present and analyse models that probe population level data to answer
questions about the transformation process and to distinguish between states.

We investigate a recently proposed stochastic model for transition processes called
STAMM, which is based on a latent Markov chain at the single-cell level. We present a
computationally e�cient unbiased approach to estimation, model selection and setting
of tuning parameters. To complement our understanding of properties and behaviour of
the model we implement a single-cell simulation setup. This not only allows us to inves-
tigate parameter estimation but we can also explore behaviour under violations of model
assumptions. We also empirically investigate identifiability of the model. We apply the
model to oncogenic transformation where the data time-course consists of genome-wide
RNA-seq measurements. We also compare results from application of STAMM to a
stem cell reprogramming microarray time-course to single-cell measurements carried out
independently. Results show that not only is the model robust under mild violations
of assumptions but state specific results can be compared to single-cell measurements.
Under stronger violation of assumptions transitions between states are not estimated
well. The model is therefore especially useful to steer further experiments in the right
direction.

We then present a model that examines the response of cells in the cell cycle to
incident radiation at di↵erent doses. Cells can either undergo programmed cell death
or re-enter the cell cycle after an interruption. A genome-wide RNA-seq measurement
is made at the initial time point and subsequently fractions of cells with contrasting
cell-fates can be distinguished and counted. The model assigns a score to each gene
corresponding to its importance in determining cell fate. We implement a single-cell
level simulation procedure and carry out illustrative simulations for one gene and for
four genes. Parameter estimation in this model allows distinguishing genes that are
important from genes that are not. This is only possible as long as the noise level is not
too high.

ix



Chapter 1

Introduction

Biological systems have been studied for centuries, motivated by both fundamental ques-

tions concerning living systems, and by medical applications. Mathematical and physical

principles have long been understood to underpin biological phenomena [Lotka, 1925;

Rashevsky, 1935]. In recent years, widespread use of mathematical, computational and

physical approaches for biological investigation has gathered pace, partly due to tech-

nological advances that permit quantitative study of biomolecular systems. Moreover,

computational advances allow for more e�cient modelling and simulation of such sys-

tems. Possibly one of the most successful application of mathematical and physical ideas

to a biological problem can be found in neuroscience, starting from basic principles of

current flow in axons to the propagation of action potentials in neurons first studied in

a squid axon by Hodgkin & Huxley [1952]. After this remarkable breakthrough, further

development in the field included increased involvement of mathematical ideas. A num-

ber of advancements have been made which would have been unthinkable without the

influence of mathematics in the field [Amari, 2013].

The last two decades have seen an increase in the availability of high through-

put data driven by technological advancements and the decrease in cost [Schadt et al.,

2010]. This in turn has lead to the increased need of mathematical techniques to fully

understand phenomena underlying observed data. Simply observing and analysing the

abundant data available is not an e↵ective method, as even measuring a single sam-

ple can include data with thousands of components and comparing them manually is

unreasonable. Additionally it has been determined that an approach of studying each

component of the system independently is not su�cient for detailed understanding. The

cell contains many regulatory components most important are genes and proteins. In-

teractions exist between components of the same type as well as between components
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of di↵erent types. This leads to a tremendous number of interactions that needs to be

understood, increasing the need for an approach including biological experiments as well

as expertise in mathematics, statistics, physics and engineering.

In physics, the use of mathematics alongside experiments has allowed for a more

profound understanding of physical phenomena. As an example, classical mechanics

allows a relatively simple description of macro phenomena, even though we know that

some of the assumptions do not always hold we can still make accurate predictions.

On the other hand, we have the description of micro phenomena described by quantum

mechanics. However, even though it is possible to describe macro phenomena using

quantum mechanics there is no need to include that detail. Analogous to physics, in

biology intracellular and intercellular interactions that lead to disease can be deduced

without a full understanding of all the elements involved in its description. Approaching

this problem from the other direction, it is possible to study interactions of simple genes

and proteins, as these interactions are not yet fully understood. It is therefore not

possible to say if such an approach will eventually allow the description of cell level

behaviour. Unlike physics, in biological systems there is still work needed for both

approaches.

An extremely important process universal in many areas of biology is the trans-

formation of cells from one type to another: cell di↵erentiation [Tang et al., 2010; Vier-

buchen et al., 2010], stem cell reprogramming [Takahashi & Yamanaka, 2006; Hanna

et al., 2010], and disease formation [Hanahan & Weinberg, 2000; Vogel, 2010] to name

but a few. These changes can be on the genetic level, on a protein level, or even on an

epigenetic1 level. The transitions can be driven or initiated by very small perturbations

in the form of induced genes. For such a system single-cell stochasticity is a very power-

ful concept and has been observed in a variety of experimental settings, such as E. coli

[Elowitz et al., 2002] and stem cell reprogramming [Hanna et al., 2009]. Since stochastic

transitions, occur on a single-cell level, at any time during a transition the cell popula-

tion as a whole exists in a mixture of states. Moreover, the exact composition of this

mixture changes over time. Any measurements performed on homogenates2 from this

population results in population averages with unknown composition. Trivially the best

strategy would be to measure at the single-cell level. Despite advancements in genome-

wide single-cell measurements [de Souza, 2012; Tang et al., 2011] there remain challenges

including limited availability of such data and limits to the number of genes that can be

measured. Furthermore, such measurements do not allow live tracking of cells and in fact

1
see Section 2.2.1 for a more detailed discussion on epigenetics

2
mixture obtained from mechanically broken down cells
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the measurement process itself destroys cells thereby breaking continuity (i.e. the next

measurement is on a di↵erent set of cells). These are the reasons for an incomplete un-

derstanding of transition processes. Therefore understanding transformation processes

from aggregated data is important.

Inevitably, an important question arises here about our definition of states in

the transformation. There are many ways to approach this and an obvious way is to

define states in a biological sense, but there is no consensus on a biologically motivated

definition of a state. In a biological sense a complete definition of a state would include

all possible information regarding the state, if we don’t include the di↵erent stages of

the cell cycle as distinct states we have to define an area in this complex space as some

changes in the cell will be due to inherent noise or the cell cycle. In most cases, not all

information is available or is limited due to cost. In this work when we talk about states,

we are referring to changes in gene expression to a number of genes across the genome.

The study of stem cell reprogramming plays an important role in the development

of personalised medicine, which in its extreme would allow the regrowth of whole organs

to replace damaged ones. This could circumvent any issues arising from treatments

derived using foreign cells, as treatments would originate from the patients own cells.

Work carried out in this field has yielded the development of techniques that allow the

development of neurons from embryonic stem cells [Vierbuchen et al., 2010; Pang et al.,

2011] or creating muscle cells [Ieda et al., 2010; Efe et al., 2011]. These processes could

become even more powerful when the starting point is a di↵erentiated cell harvested

from the patient [Takahashi & Yamanaka, 2006]. There are still unanswered questions

in this field about the di↵erences of cells derived from di↵erentiated cells to cells derived

directly from embryonic stem cells [Carey et al., 2011; Bock et al., 2011]. A better

understanding of the transformation process would help in identifying issues and could

propose potential ways of improving the transformation process.

Cancer is a disease so prevalent in modern society that in the UK the lifetime

chance of contracting cancer is more than one in three [Sasieni et al., 2011]. The disease

has its source in multiple genetic mutations causing changes to natural cell functions

such as cell proliferation and apoptosis3, which transforms cells from a healthy state to

a cancerous state. These mutations code for proteins that are implicated in the eight

hallmarks of cancer [Hanahan & Weinberg, 2011]. The hallmarks are the circumvention

for the need of external growth signals; cells are una↵ected by external growth-inhibition

signals; evasion of apoptosis; unlimited replication; the potential to create additional

blood vessels from existing ones; invasion of other tissue types; energy management of the

3
programmed cell-death
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cell and avoiding the bodies immune response. Understanding the transformation process

that changes a healthy cell population to a cancerous one would allow intervention target

at specific genes and proteins.

The cell cycle is central to the proliferation of cells and hence plays a key role in

both transformations mentioned above. In fact mutations that can lead to cancer can be

acquired during the cell cycle as this is the process during which DNA is replicated and

the replication process can at times lead to errors. In a normal cell there are multiple

checks that prevent such errors from propagating, but in an unhealthy cell genes central

to these processes are mutated leading to malfunctions. Radiation plays an important

role in the cell as it can be a cause of mutations and is also used as treatment to kill

unhealthy cells; damage to DNA can lead to apoptosis during the cell cycle. Radiation

e↵ects on the cell include changes in gene expression and are also related to radiation

strength [Gentile et al., 2003]. Some cells will arrest in the cell cycle after radiation

damage either leading to apoptosis or a brief pause in the cell cycle followed by a re-

entry to the cell cycle [Pawlik & Keyomarsi, 2004]. Understanding the mechanism that

leads to the di↵erent responses is key in treatment as well as prevention of cancer.

In this thesis we attempt to learn single-cell level information from homogenate

population averaged data of various types. We especially focus on gene expression and

the role of genes in transformation. We take a data driven approach where model pa-

rameters are estimated by comparison to data. The first model we use is based on latent

Markov processes aggregated over cells using a least squares estimation; it takes inspi-

ration from the success in application of latent variable models such as hidden Markov

models (HMMs) to hidden transitions in biology and genomics [Yoon, 2009; Ernst &

Kellis, 2012]. The second model uses simple statistical principles for the derivation of

the model and Monte Carlo integration to approximate an integral. These are simple

models that allow investigation of complicated biological processes.

HMM’s have been successfully applied to study a variety of biological phenomena

such as gene prediction, sequence alignment and RNA folding among many others [Yoon,

2009, and references therein]. One of the most successful applications in recent times

has been ChromeHMM [Ernst & Kellis, 2012].4 The model is focused on understanding

epigenetic modification and their e↵ect on gene expression. As we know DNA encodes

genes, but epigenetic modifications enable interpretation of the information contained on

DNA. It is responsible for huge diversity found in cells across the human body. Histones

are proteins found in cells that order and package DNA and more than 100 distinct

4
In this and the following paragraphs some biological vocabulary will be used which is explained in

Section 2.2.1
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types of modifications to these proteins have been described. The modifications often

are a variety of proteins binding to histone. It has been suggested that studying com-

binations of these modifications is of values as they encode biological functions [Strahl

& Allis, 2000]. An alternative suggestion is that the modifications are only additive and

combinations have no e↵ect Schreiber & Bernstein [2002].

Ernst & Kellis [2010] outline a method to distinguish between these two possi-

bilities. The input data they have available is the reads for binding of proteins along

chromatin which they convert to a binary of bound or unbound signal for each protein.

They employ a multivariate HMM with which they capture two types of frequencies:

the frequency of combinations of proteins found together on the genome and the fre-

quency of the spatial relationship of states across the genome. The resulting output is

a state assignment along the chromatin. Applying this model to human T cells5 they

identify 51 distinct states which they are able to link to distinct experimentally observed

characteristics as well as functional groups. The genomic locations also correspond well

to transcription start sites, transcription enhancing sites as well as active and repressed

genes. The most useful results from the analysis is a predictive model for states based on

histone modifications which is tested on independent measurements on di↵erent systems.

The kind of problem we wish to address in this thesis is to identify individual state

parameters when measurements are only made on population averages. Methods that

have a similar goal have been studied before with a variety of models and methods. These

methods take very di↵erent approaches to address this question varying from simple

deconvolution algorithm to more involved models based on HMM. We will examine a

few of the suggested models here.

Bar-Joseph et al. [2004] presents a deconvolution algorithm for cells that are

initially synchronised by stopping them in the cell cycle. In biological systems the syn-

chronisation is not perfect and eventually cells fall out of synchronisation over time.

It is developed to clean up the signal for yeast cells undergoing the cell cycle. The

method presented is a deconvolution based on a cubic spline interpolation as an initial

step to deal with missing data. The parameters for the spline are estimated using an

expectation-maximisation (EM) algorithm, which is an iterative method for finding the

maximum likelihood in models with latent variables. As an input the method requires

gene expression data for the cell cycle (a microarray time course is used in the applica-

tion) as well as the budding6 index. The budding index measures when the cell splits in

two which allows this to act as a measure for the cells temporal position in the cell cycle.

5
a type of white blood cell

6
a form of asexual reproduction found in yeast
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The problem studied here is somewhat simpler than a cellular transformation as yeast

cells are relatively synchronised across two cell cycles and the genes considered follow a

cyclic process.

Roy et al. [2006] propose an approach that is based on a multinomial HMM

(MHMM) which has distinct advantages to the previously used simple deconvolution

approaches [Bar-Joseph et al., 2004; Lähdesmäki et al., 2005], it does not require specific

prior information about individual states such as the gene expression of each cell or the

distribution of cells in individual states. In this approach the hidden state represents

the distribution of cells across all possible populations. The observed states represent

measured gene expression in time. Parameter estimation is performed using an EM

algorithm and the posterior distribution is estimated using a sequential Monte Carlo

(SMC) approach7. The model is applied to cell cycle data as well as simulation data.

Since the latent state is in discrete time and assumes even distribution of time-points.

Existing models to study individual state parameters from population averaged

data present some promising results. The approaches taken are often limited as the

method is either tailored for a very specific application or it requires information in

addition to the gene expression time course that allows for further knowledge about the

states in the system. Roy et al. [2006] present a model that does not have these short

comings, it in fact aims to estimate a similar parameter as the one discussed in 3. It does

not provide information about the gene expression of individual states in the population

and it imposes restrictions on the temporal distribution of data though it can handle

missing data.

Chapter 3 starts with the description of a model called State Transitions using

Aggregated Markov Models (STAMM) based on previous work by Armond et al. [2014];

a latent stochastic process that obtains state-specific gene expression data as well as

number of intermediate states from homogenate population time courses. As discussed

above there exist models with similar aims such as deconvolving the cell cycle by Bar-

Joseph et al. [2004]; dissecting expression data with known mixtures [Lähdesmäki et al.,

2005]; or a hidden Markov model to determine expression levels and fractions of cells

in each population [Roy et al., 2006]. Even though all such methods have strengths,

they also contain weaknesses addressed by STAMM. Firstly, it provides single-cell level

description of the transformations process and just like in the real system, this process

is hidden from observation due to averaging over multiple realisations (or cells). Second,

in our model the latent process is in continuous time and therefore there is no need for

7
A SMC implements Bayesian recursion equations and is used when we wish to estimate posterior

densities of the state variables from known observation variables.
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special techniques to deal with missing data and unevenly distributed measurements.

Third, the model relies on very few assumptions such as fractions of mixtures; it estimates

all parameters from data. We also discuss in this Chapter a single-cell level simulation

process, which is used to test the model properties and assumptions. Then we also

outline a computationally e�cient model selection procedure following and expanding

on previous work by Armond et al. [2014]. Results show that parameter estimation

works well even when violating assumptions. Only strong violations make estimations

di�cult and in this setting, transition rates in particular are not estimated well.

Chapter 4 describes an application of STAMM to RNA-seq time course data of

an oncogenic transformation using a healthy breast cell line (MCF-10A) as the initial

population. We outline the pre-processing steps needed to apply the model to RNA-seq

data. Since observations are made as counts, it is often considered that a Poisson distri-

bution or a negative binomial distribution is the most fitting to such data. However, we

argue that once data has been pre-processed to allow for comparison between indepen-

dent samples the data are no longer integer counts, but rather can be usefully treated

as continuous. Then we show application of STAMM and show that it can be applied

to large data sets in a relatively short computational time.

Chapter 5 briefly discusses results from applying STAMM to a microarray time

course. This is obtained by reprogramming of secondary Mouse embryonic fibroblast

(MEF) cells to induced pluripotent stem cells. Then we show a possible next step once

parameters have been obtained by STAMM. This step includes comparison of estimated

parameters to new single-cell measurements, which in this case were carried out on

a di↵erent reprogramming system [Buganim et al., 2012]. We show that results are

comparable despite measurements being made on di↵erent systems and using di↵erent

methods.

Chapter 6 derives a model to investigate a slightly di↵erent system where less data

is available and serves as a proof of concept since data was not available in time for this

thesis. The gene expression is measured at the initial time point and the cell population

is subject to a stimulus of various strengths. At a later time, fractions of cells in two

distinct states are obtained by counting individual cells. An example of such a system is

a population of cells radiated during the cell cycle upon which some go into arrest leading

to apoptosis and some re-enter the cell cycle at a later time. This process is believed to

be dependant on heterogeneity at the initial time point. This model attempts to assign

a weight to each gene signifying its importance to the transformation process. Then we

outline a single-cell simulation procedure and apply the model to a single gene simulation

and a four gene simulation. Results show that a high noise level makes it di�cult to
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estimate parameters but at low noise levels, parameters are estimated reasonably well

allowing us to at least distinguish between genes that are important for transformation

to ones that are not.

Novel contributions of this thesis are listed below:

⌅ Chapter 3

– Single-cell simulation study. We present a simulation framework imitating the

biological single-cell processes; single-cells undergo transitions between states

sampled from a statistical distribution and observed expressions are an aver-

age over cells. The strength of this approach is that single-cell state specific

parameters for data generation are known. Therefore, we can empirically test

estimation of parameters as well as the selection of correct number of states.

It also allows us to check estimation under violation of model assumptions

and additionally we can empirically investigate identifiability of the model.

– Full investigation of estimation, including tuning parameters. We discuss and

verify with simulations parameter estimation including setting tuning param-

eters using an unbiased approach. This is followed by sensitivity analysis

performed for tuning parameters.

– Computationally e�cient model selection. For STAMM to be useful, an un-

biased estimation of model parameters, especially the number of states, is

important. We put forward a simple approach which uses a form of cross-

validation to determine number of states and other model parameters. We

show that this method is e↵ective during simulation and computationally

e�cient.

– Implementation in R. We wrote a package for the STAMM model in R in-

cluding a simulated data set, published at https://github.com/anasrana/

stamm.

⌅ Chapter 4

– Application of STAMM to RNA-seq time-course data. We show, using an

example, how STAMM is able to analyse sequencing time-course data. The

example we chose is using RNA-seq data from an in vitro study of oncogenic

8
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transformation of a healthy breast cancer cell line (MCF-10A) under induction

of the oncogene src.

⌅ Chapter 5

– Comparing estimation to single-cell measurements for stem cell reprogram-

ming. In this Chapter the main contribution is firstly, computational i.e.

ensuring that estimation was reproducible as well as determining sensitivity

of Bayesian model selection to the choice of hyper-parameters. Secondly, a

comparison of estimated parameters from STAMM to single-cell level mea-

surements taken at di↵erent time points.

⌅ Chapter 6

– Proof of concept of a novel model. Here, we introduce a new model to under-

stand the importance of genes for radiation response. The gene expression is

only measured for the initial population subsequent measurements are frac-

tions of cells transforming at di↵erent radiation doses. We also outline a

single-cell simulation set-up and a brief application of the model to simulated

data.
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Chapter 2

Background

This thesis is multidisciplinary and as such requires an introduction to multiple distinct

areas. In this Chapter, we set out a description of background material, which should

prove useful to a reader with expertise in only one of the areas. The current Chapter is

therefore also split into three self-contained sections covering the individual areas. First,

Section 2.1 includes mathematical background for the main techniques used in the thesis

and introduces additional ideas that might place the work in broader context. Then,

Section 2.2 contains some background to the main biological ideas discussed. Finally, in

Section 2.3 the experimental techniques to obtain the data used in this work are outlined.

2.1 Mathematical background

This section contains the important basic principles we use to investigate biological

systems. We start o↵ by examining Markov chains and introduce basic principles for

discrete time and continuous time Markov chains. They are an essential part of the

model introduced in Chapter 3 and applied in later chapters. Then in Section 2.1.2 we

introduce the slightly more involved hidden Markov models, which are often applied to

biological systems and have similarities to the aggregate Markov chains introduced in

Chapter 3. Section 2.1.3 contains a brief presentation of the estimation procedure used

in our investigation. This is followed in Section 2.1.4 by a discussion on regularisation

during estimation in which two procedures penalizing for large parameter values and

overfitting commonly used to regularise estimated parameters are outlined. The con-

cept of identifiability, which can be of importance in estimation is defined in Section

2.1.5. Then we move on to a discussion on model selection in Section 2.1.6 and various

techniques for distinguishing between models. Finally, in Section 2.1.7 a very useful
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numerical tool is presented for integrating functions where a closed form solution is not

possible. This method is employed in the second model put forward in Chapter 6 of this

thesis.

2.1.1 Markov chains

In physics prior to the advent of statistical physics and quantum mechanics in the early

20th century, the world was modelled as deterministic. Of course, we now know that de-

spite many aspects of the observable world being deterministic there is an even larger set

of objects which does not lend itself to a deterministic description. Objects or ideas that

can be described using deterministic principles do at times derive from non-deterministic

e↵ects cancelling out or being only important at a di↵erent scale. Stochastic processes

are used to describe systems where deterministic principles fail. A concept shared by

many such systems is that they are evolving with a time dependent stochastic part. One

of the first attempts to describe such a system was the modelling of Brownian motion

by Einstein [1905], which paved the way for further research on this topic. Here we start

by defining some variables and simple principles governing one simple model that has

found widespread application, the Markov chain model.

Discrete time

Let X(t) be a time dependent continuous random variable and x(t1), x(t2) . . . are obser-

vations at discrete t1, t2, . . .. We write probability densities as p and the joint probability

density is written as p(X(t1) = x(t1), X(t2) = x(t2) . . .). In addition we can also write

the probability density of a set of observations at t1, t2, . . . conditional on observations

at ⌧1, ⌧2, . . . as:

p(X(t1) = x1, X(t2) = x2 . . . |X(⌧1) = x0
1, X(⌧2) = x0

2 . . .). (2.1)

where x0
1 6= x1 and is used to distinguish the two. The model we wish to consider is

a special case of a stochastic process: a Markov chain. The most important principle

underlying a Markov chain is the Markov assumption and it can be written in terms of

the conditional probability density. We introduce the notation of the current state at

t
n

of a system as x
n

with a continuous state space and discrete time; if we now write

the probability density of this measurement conditional on all preceding measurements

x
n�1, xn�2, . . . x1 the following principle must hold:
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p(X(t
n

) = x
n

|X(t
n�1) = x

n�1, X(t
n�2) = x

n�2, . . . X(t1) = x1 . . .) =

p(X(t
n

) = x
n

|X
n�1 = x

n�1), (2.2)

this is also known as the Markov property and it states, an observation is only condi-

tionally dependent on the observation immediately preceding it. Further, the Markov

property eqn. (2.2) and an initial distribution p(1) = p(X(t1) = x1) uniquely determines

a Markov chain in discrete time and with a discrete state space. This only holds because

any joint probability can be written as a product of subsequent transition probabilities

starting from the initial distribution. If we now write the transition probability as p
ij

as the transition from state i to state j (or as P in matrix notation) we can write the

distribution of a Markov chain at time t, p(t) where t 2 N as:

p(t) = p(1)P t. (2.3)

Continuous time

If we extend the Markov chain to continuous time but keep the state space discrete, we

have to introduce the generator matrix G. It uniquely defines a continuous time Markov

chain together with the initial distribution similar to a discrete time Markov chain. The

entries in the generator matrix are the transition rates from state i to state j satisfying

g
i,j

� 0. Diagonal entries of the matrix are g
i,i

= �
P

j 6=i

g
i,j

. We can now write the

time evolution as

d

dt
P (t) = G P (t) = P (t) G, (2.4)

which are known as the backward and forward equation respectively, where P (t) is a

matrix with the entries p
ij

(t). If we are now interested in the state occupation as a

function of time p(t) and define p(t = 0) as the initial state distribution we can use eqn.

(2.4) and write

d

dt
p(t) = p(0)

d

dt
P (t) = p(0)P (t)G = p(t)G. (2.5)
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hidden state

observed state

emission probabilities
state transition probabilities

Figure 2.1: Schematic HMM. This diagram shows the general structure of an HMM.
The hidden state at time t is S

t

= k, where k 2 {1, . . . , K}. The white
arrows represent transitions between hidden states. Observed state at time
t is characterised by X

t

= m for m 2 {1, . . . , M}. Discrete emissions
probabilities from hidden states to observed states are shown as black
arrows.

It is often useful to rewrite eqn. (2.5) element wise form using the definition of the

generator matrix such that

d

dt
p(t) =

X

j 6=i

(p
j

(t)g
j,i

� p
i

(t)g
i,j

) , (2.6)

which is known as the Master equation and is useful in allowing us to derive many results

for Markov chains.

2.1.2 HMM

An extension to Markov chains that has found widespread application in biological sys-

tems is the Hidden Markov Model (HMM) initially developed by Baum & Petrie [1966].
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The big di↵erence to a classical Markov chain is that in an HMM the states of the Markov

chain are not directly observed. Instead, observations are made on outputs dependent

on the hidden states. The possible observable outputs can be discrete or continuous

while the hidden Markov chain has a discrete state space.

More specifically the hidden Markov chain has transition probabilities (as de-

scribed above) as well as emission probabilities, see Figure 2.1 for a schematic of an

HMM. We can write the hidden state process at time t as S
t

in discrete time and with

a discrete state space i.e. S
t

2 {1, . . . , K} with transition probabilities p
i,j

= Pr(S
t+1 =

j|S
t

= i) and initial probability distribution p1 = Pr(S1 = k). Now we write the observa-

tion from this hidden Markov chain at time t as X
t

; here we have to distinguish between

two types of outputs that can either be discrete or continuous. If the observation is dis-

crete i.e. X
t

2 {1, . . . , M} we have emission probabilities b
k

(m) = Pr(X
t

= m|S
t

= k)

with j = 1, . . . M . If the observation is continuous i.e. X
t

2 RM we have to use a

continuous probability density function which is usually a weighted sum of Gaussian

distributions b
j

(X
t

) =
P

M

m=1 c
jm

N (µ
jm

, ⌃
jm

), where c
jm

is a weighting coe�cient.

More information on HMMs can be found in MacDonald & Zucchini [1997] and

in Zucchini & MacDonald [2009] including sample applications.

2.1.3 Maximum likelihood

Once the model to be used to analyse data is established the question of parameter

estimation arises. The most widely used method in statistics for such a parameter

estimation from data is to write down and maximise the likelihood function

L(✓) = p(X = x|✓), (2.7)

where X and x are as defined above and ✓ is a set of parameters. This likelihood function

p(X = x|✓), is a joint probability density function over all observations x conditional on

the parameters ✓. Often it is more convenient to work with the log-likelihood function

with l(✓) = logL(✓). Since the logarithm is a monotone function the maximum of l(✓)

is the same as the maximum of L(✓). The advantage of the log-likelihood is that it can

be easier to work with as the log transformation can simplify the likelihood. In some

cases it is possible to obtain the maximum likelihood estimator (MLE) ✓̂ that maximises

L(✓) and `(✓) in closed form. Especially in real world applications, this can be di�cult

or there might not exist a closed form solution; in such cases we need to use a more

numerical approach.

To show one such approach we present a simple application of the principles and
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choose a common statistical model to illustrate the idea. Say there exists a model which

predicts the response variable y from a set of input variables x1 . . . x
p

. The illustrative

model we choose as an example system is the simple linear regression:

y
i

= �0 + �1 x
i,1 + . . . + �

p

x
i,p

+ ✏
i

, (2.8)

where ✏
i

⇠ N (0, �2
i

) is independent of observations, �
j

are unknown parameters, y
i

is

the response variable for the ith sample and x
i,1, . . . xi,p

are the predictor variables for

the ith sample. It is often beneficial to write eqn. (2.8) in vector form and include a 1

in the xi = [1, x
i1, . . . , xip

] vector and the �0 in the � vector to write y
i

= xT

i

�. The

maximum likelihood solution can be found by minimising the following equation, which

is equivalent to the least squares

RSS(�) = ky � x�k22, (2.9)

where y is now a vector over all responses and has length n and x is now a matrix with

dimensions n⇥ (p+1). It is also known as the residual sum of squares (RSS) and is fact

sums RSS values for all input variables. This is a very simple way of finding parameters

of a model that best describes observations.

2.1.4 Regularisation

It can be of benefit to penalise complex models that contain too many parameters,

this will also prevent over-fitting and can help in interpretation of results. One way

of achieving this regularisation is to minimise the log-likelihood subject to a constraint

on model parameters. An analogous but easier to implement solution is to minimise

the log-likelihood with an additive penalty term on parameters. Choosing the example

mentioned in Section 2.1.3 we write

�̂ = argmin
�

�
ky � x�k22+� g(�)

 
, (2.10)

where k·k2 denotes the `2 norm, g(�) is the penalty function on � parameters and is

chosen depending on application and � is a parameter controlling the strength of the

penalty; a larger value corresponds to a stronger penalty. The strength parameter �

is generally set by cross-validation, or any other model selection criteria (see below for

a discussion of model selection). The penalty term itself can take several forms each

favourable in di↵erent applications, with the same primary aim of reducing model com-

plexity but with di↵erent properties. Here we present two possibilities, ridge regression
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and Lasso.

In ridge regression the added penalty term takes the form of a `2 norm over the

parameters g(�) = k�k22. It penalises the magnitude of parameters and also shrinks them

towards zero but they are never exactly zero. Another method is least absolute shrinkage

and selection operator (Lasso), which has been used before but was reintroduced to the

statistics community by Tibshirani [1996]. It uses a `1 penalty i.e. g(�) = k�k1. Just

like ridge regression Lasso penalises the magnitude of model parameters and therefore

the magnitude of larger positive or negative numbers are shrunk down. The advantage of

Lasso over ridge regression is that in addition to penalising higher values of parameters

increasing the strength of the penalty forces more and more parameters to be exactly

zero reducing model complexity, see Hastie et al. [2001] for more details.

2.1.5 Identifiability

For models where parameters are of physical importance, identifiability plays a crucial

role. It is important to remember that the concept of identifiability is a theoretical

concept. It does not relate to application of the model to real data but rather refers

to the model itself and an application to idealised potentially infinite amount of data

which is also noise free. Stating the definition formally, let M(✓) be a model with a set

of parameters ✓ from the parameter space ⇥. Then we say a model M(✓) is identifiable

when M(✓1) = M(✓2) holds if and only if ✓1 = ✓2 for all possible ✓1, ✓2 2 ⇥. In

other words if the model returns the same output for two di↵erent parameters it is not

identifiable.

More information on identifiability and some applications can be found in Sac-

comani et al. [2003], Saccomani et al. [2010] and Jacquez & Greif [1985]. It is a widely

studied subject especially in the context of linear models, but results for nonlinear models

are more di�cult to obtain.

2.1.6 Model selection

The aim of a model is to enable description of a complex (sometimes not even fully

understood) phenomenon in a way that they are tractable by mathematics. Statistical

or even mechanistic models include in their core assumptions and simplifications of

the real world problem they are attempting to describe. In some cases, this can be

the only way to describe properties of the system. Often experiments are su�cient

to distinguish between models and identify the one closest to the real world problem.

There are also cases where due to insu�cient data or the type of data available two
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distinct models appear feasible. This problem is encountered especially when employing

statistical models and comparing observed data with predictions from such models. The

universal problem then becomes the comparison of model predictions to a set of noisy

data. Even in cases where the model itself is identifiable (see discussion above), the

existence of noise in observations poses a real di�culty. In such cases the question that

one is really trying to answer is one of prediction. Model fit to data is not a su�cient

measure. After all, the error between model prediction and a specific data set will not

carry over to a di↵erent data set; but it is still an important indicator and cannot be

discarded. One wishes to avoid over-fitting as this ensures that prediction not only works

for the fitted data but also can be applied more generally.

Cross-validation

One method that uses this idea in a data driven fashion is cross-validation. The basic

principle is quite simple, data is split into two independent subsets (the training set

and the validation set) and model parameters are estimated on the training set. Then,

predictions using these parameters are compared with the validation set resulting in a

performance score. A practical approach is called k-fold cross-validation. Here the data

set is split into k randomly chosen equally sized subsets, one subset is retained as the

validation set and the remaining k � 1 subsets are used as training data. This step is

repeated for each of the k subsets and the performance score is combined giving one

score for each model. In some applications such as the ones discussed in later chapters

of this work, due to limitations in data it is only feasible to leave out one data point

at a time, also called leave-one-out cross-validation. This procedure is then repeated

for every model that is considered and the optimal model is chosen based on the best

score. It is clear that such an approach has drawbacks; when dealing with large data

sets computation times can quickly become infeasible since estimation is repeated for

k subsets, for all data and for all possible models. An additional problem can be that

due to the random splits in data the choice of the split influences results significantly.

Therefore, it is often advisable to try multiple splits and compare results.

AIC and BIC

To avoid lengthy computation time there are many methods to approximate model

selection results based on information obtained when estimating parameters, reducing

the number of computations to one per model and data. This is an obvious advantage

but it is a further approximation hence one has to be careful interpreting results and the

17



choice of approximation used. In all such approaches the goodness of fit is juxtaposed

to model complexity i.e. since more complicated models will perform better during

estimation for a given data set we want to penalise models dependent on the complexity

of the model. Such methods due to historical naming convention are referred to as

information criteria. Here we will briefly introduce two such models. One of the most

widespread is the Akaike information criterion (AIC) formulated by Akaike [1974] and

the other is the Bayesian information criterion (BIC) presented by Schwarz [1978]. AIC

is computed using the log-likelihood l(✓) for model parameters ✓ and the degrees of

freedom d:

AIC = �2 l(✓) + 2d. (2.11)

It is derived using ideas in information theory namely the Kullback-Leibler divergence

between the true model for a data set and the used model. When dealing with small

sample sizes this measure is not satisfactory and is replaced by the corrected version the

AICc. It adds an additional term dependent on sample size n

AICc = �2 l(✓) + 2d + (2 ⇤ d(d + 1))/(n� d� 1). (2.12)

The other information criterion, the BIC is derived using a Bayesian approach.

It is also applied for a log-likelihood approach just like AIC. The derivation of BIC

starts with the assumption that there exists a posterior distribution for models M
i

given

some data y written P (M
i

|y). Here we introduce a subscript for models to easily label

di↵erent models as the di↵erence will not only be the parameters. Using Bayes’ theorem

we can write the odds of two models as:

P (M
i

|y)

P (M
j

|y)
=

P (M
i

)

P (M
j

)
· P (y|M

i

)

P (y|M
j

)
. (2.13)

The final term in eqn. (2.13), the ratio of marginal likelihoods, is also known as the Bayes

factor. The prior over models is typically assumed to be flat, then P (M
i

) = P (M
j

) for all

i, j the right-hand side of eqn. (2.13) just reduces to the Bayes factor. To approximate

the marginal likelihood P (y|M) we use the Laplace approximation which is a method

to approximate integrals. It yields the BIC score for a given model with parameters ✓:

BIC = �2 l(✓) + log(n) d. (2.14)

The penalty for complex models in BIC is larger than in AIC hence it will select for
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simpler models. Additionally as sample size n ! 1 and the model space includes the

true model BIC will select the correct model, i.e. it is asymptotically consistent unlike

AIC. However, AIC will sometimes perform better for smaller sample sizes [Hastie et al.,

2001]. Hence the decision of information criterion will be application dependent.

2.1.7 Monte Carlo integration

In many applications of mathematical models to real world problems one encounters

integrals without closed form solutions. For such cases numerical methods, which have

become particularly wide spread since advancements in computational power, allow for

large-scale computations in relatively short time. Monte Carlo integration is one such

example. Generally, Monte Carlo techniques are ubiquitous for classes of problems which

include random numbers.

If we have a function f(X) of a random variable X which is uniformly distributed

between a and b, we can write the expectation of f(X) as the integral

E(f(X)) =
1

b� a

Z
b

a

f(x)dx, (2.15)

The law of large numbers states that the sum of n random variables divided by

n converges to the expected value of the random variable as n ! 1. This is a very

powerful idea and since we know that the function of a random variable is also a random

variable we can extend this to the function of a random variable f(X). As the number

of samples n taken from random variable X approaches infinity

1

n

nX

i=1

f(X
i

)! 1

b� a

Z
b

a

f(x)dx as n!1. (2.16)

The left hand side of eqn. (2.16) is therefore an asymptotically consistent estimator of

the expectation of f(X) i.e. it converges to the right hand side as n!1. Eqn. (2.16) is

the Monte Carlo estimate of an integral and an important issue to always bear in mind

for this method is convergence, as without the result having converged su�ciently, they

are meaningless. Therefore, in applications the shape of the probability distribution of

X plays a central role in determining how well the Monte Carlo integral will converge.

This means if function f(X) has a large weight for a value of X which is unlikely to be

sampled then for finite n the estimate will be bad. In general for finite n the solution will

only be approximate as proper convergence is not possible for finite n. More information

on Monte Carlo integration can be found in the review article by James [1980] and in
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Norris [1998, Chapter 5].

2.2 Biological background

In biological systems, distinct states and especially states that are indicative of disease

can often be characterised by changes in gene expression levels [DeRisi et al., 1997;

Spellman et al., 1998; Eisen & Brown, 1999; Brown & Botstein, 1999]. It is important

to first understand the role played by genes in cells and also what it is we mean by

expression of a gene, therefore below we present a brief introduction to these topics as

well as specific examples where changes in gene expression have been found to play a

central role in changes of cell states.

2.2.1 The cell

If we define reproduction as a basic principle of life, the cell is the smallest unit that

autonomously allows for this process. Independent of the process of reproduction, to

ensure a faithful reproduction of organisms, information is passed on from one generation

to the next. This information takes the form of a molecule, Deoxyribonucleic acid (DNA),

organised in a double helix structure made up of two DNA strands. Information on such

a strand is stored as a sequence of four distinguishable subunits. These four subunits

are adenine (A), guanine (G), cytosine (C) and thymine (T), where C-G and A-T base

pairs held together by hydrogen bonds make up the DNA double helix. Some sequences

of the DNA code for proteins (coding region) and are known as genes. There is still

debate about the extent to which DNA is made up of coding regions and noncoding

regions; the di↵erence between organisms can be very large. In humans only about 2%

of DNA is considered to specifically contain genes [Elgar & Vavouri, 2008]. The initial

idea that a major part of noncoding DNA is junk has been refuted recently as part of

the international project of the ENCODE consortium [Pennisi, 2012]. Some of these

areas have been shown to contain areas for proteins to bind and influence gene activity,

or stretches where chemical modifications can switch o↵ part of the DNA. It has also

been established that regulation of genes is much more involved than previously thought

and areas of DNA far away from a given position can influence gene expression at that

position. The first step of converting coding regions of the DNA to proteins is known

as transcription. In this process, information from the DNA is read o↵ and converted

into a single stranded molecule of ribonucleic acid (RNA); more specifically, the type of

RNA used is known as messenger RNA (mRNA). The following step involves some post-
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Figure 2.2: Gene expression. The central dogma of molecular biology states that genes
on DNA are transcribed to mRNA, which is transformed to mature mRNA
by post-transcriptional modifications such as splicing. The mature mRNA
is then translated to proteins. This final product, which plays a central
role in the functions of cells in turn also influences the transcription step
as well as the post-transcriptional modification step.

transcriptional modifications, where the mRNA is modified to mature mRNA. There

are many such modifications the cell performs, but an important one is splicing. This

process removes regions of mRNA called introns1 that do not code for proteins after

which the remaining exons2 are spliced together. There are multiple ways to splice a set

of exons, which can lead to many di↵erent proteins being read from the same sequence on

DNA. Finally, proteins are synthesised from mature mRNA during the process known as

translation. During translation, mRNA information is read in groups of three subunits

called codons, hence there are 43 = 64 codons which are mapped to 20 amino acids

used to make proteins. These final DNA products then perform numerous functions in

the cell including steps in their own synthesis. These three steps together are known

as gene expression and form the central dogma of molecular biology, for a Summary

see Figure 2.2. The DNA molecules contained in cells are more than two metres long

and to economically pack them inside cells, which also contain vast amounts of other

material, they are normally in packed structures known as chromatin. This is quite

simply a combination of proteins with a special a�nity to bind DNA allowing DNA to

be wrapped and packed very tightly in the nucleus of the cell. In addition to packing

DNA, it also serves a functional purpose in that the topology of the packing hides and

exposes certain genes on DNA. In a system where gene expression occurs via several

protein dependant steps hidden genes cannot be expressed since regulatory proteins

cannot interact with them.
1
a region inside a gene sequence that binds together the gene and is subsequently removed

2
a region on the DNA that codes for proteins
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Each step during gene expression outlined above happens at a di↵erent time

scale therefore when interpreting biological data it is important to keep in mind that the

e↵ect one sees on gene expression at a given time might be due to a protein interaction

process, which took place at an earlier time point. The time scale can vary from seconds

for proteins [Herce et al., 2013] up to 16 hours for the largest gene [Tennyson et al., 1995].

This of course becomes even more complicated once interactions between the di↵erent

components involved are accounted for.

The control of gene expression is responsible for characteristics of a cell. As in-

deed a lung cell and a brain cell have identical genetic information, but gene expression

is responsible for defining a cells purpose. This is in part controlled by material outside

of the coding region. Daughter cells in addition to inheriting genetic information from

parent cells, also inherit information that determines the characteristics of the cell unre-

lated to DNA, i.e. daughter cells of a cell in lungs will remain lung cells. The umbrella

term often used to describe all types of material that could pass on this information

not directly part of DNA is epigenetic material. The final word on epigenetics has yet

to be spoken but two types of information passed on in this manner are: Firstly, the

chromatin structure which determines active and inactive genes and to some extent the

way they are read o↵. Active sections of chromatin are called euchromatin and inactive

parts are called heterochromatin. Secondly, DNA methylation that is the addition of a

methyl group to certain bases in DNA, altering expression of genes.

Biological changes in state, which are the focus of this work, can be described

in many di↵erent ways. Some changes in state are due to changes in gene expression.

Other changes in state can also be epigenetic without direct changes in gene expression.

Although both of these types of state changes are deeply interlinked, they can occur

at vastly di↵erent time scales. Here we will focus on state changes directly, due to

changes in gene expression. Such changes in state have been investigated experimentally

in various settings such as cancer [Lee et al., 2010; Gupta et al., 2011] and stem cells

[Ohgushi & Sasai, 2011; Plath & Lowry, 2011] among others.

Further information on the cells in general as well as epigenetics can be found in

Alberts et al. [2007, Chapters 1,7]. A specific overview of epigenetics has been attempted

in Goldberg et al. [2007] and its e↵ect on gene expression in Gibney & Nolan [2010].

2.2.2 Cancer biology

An area of biology that is of great importance due to its impact on large populations and

where state changes play a critical role is the study of cancer. Cancer is an extremely
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complex disease and attempts have been made to determine basic underlying principles,

which is referred to as the ’Hallmarks of cancer’ [Hanahan & Weinberg, 2000, 2011].

Genetic aberrations play a central role in this disease as many carcinogens (agents that

can cause cancers) directly influence DNA sequences or are themselves mutations of

genes naturally occurring in the cell. These defects range from point mutations on

single base pairs all the way to deletions of large sections of DNA. Especially the process

of cell division is highly susceptible to such attacks; in healthy cells there is a DNA

repair mechanism in place that prevents changes from becoming permanent or leads to

apoptosis (programmed cell death) if repair is impossible.

One important principle shared among cancer types is the unbound proliferation

of cells leading to the build up of concentrated cell masses, also known as tumours. Note

that many such tumours are benign since they do not transform into cancers. The bod-

ies defence mechanisms against such unchecked proliferation are circumvented either by

introduction of oncogenes or mutations in tumour suppressor genes. Oncogenes are mu-

tations in genes that result in a protein, which drives uncontrolled cellular proliferation,

resulting in a tumour. These proteins do not respond to the natural signals that inhibit

cell division, hence the proliferation is uncontrolled and cannot be kept in check by the

cells defence mechanisms against such growth. Alternatively, mutations can occur in

genes responsible for onset of apoptosis or DNA repair (also known as anti-oncogenes).

Genetic mutations are especially problematic if they occur in the germline3, as exempli-

fied by LiFraumeni syndrome [Li & Fraumeni, 1969], where the mutation in an essential

tumour suppressor gene is passed on to o↵spring and leads to a hereditary predisposition

to a large number of cancer types.

It is important to note that one mutation or defect is not su�cient to lead to

the development of cancers; in fact several processes need to be a↵ected. Additional

processes developed by cells to defend against invading cancers include a limit on the

number of times a cell can divide. Cells also rely on external growth signals to start

division as well as external growth inhibition signals to stop division. Cancers are known

for uninhibited expansion, for which they need nutrients and therefore develop the ability

to initiate the deployment of additional blood vessels; a process known as angiogenesis.

Tumorous cells can become metastatic this is especially dangerous. It is the stage when

they develop the ability to break o↵ from the main tumour and invade surrounding

organs, tissues or even distant parts of the body.

As mentioned above an oncogene is a gene that can cause cancer and the first

such oncogene (v-Src) was discovered in the late 1970s and early 1980s (Martin [2001]

3
cells from which egg or sperm cells are derived
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and references therein) after the initial discovery almost 70 years earlier; hinting at the

possibility to induce solid tumours in chicken using a filtered agent by Rous [1911]. Inves-

tigating the Rous sarcoma virus in chicken the v-Src was discovered. Further research

determined that a variant of v-Src, called c-Src is also contained in normal chicken.

This discovery fundamentally changed the understanding of cancer which until then had

been ascribed to viral causes. Later this gene was also found in humans and since this

discovery, it is probably the most widely studied oncogene; despite this there remain

many unknowns. The protein from this oncogene has many downstream interactions

with numerous other proteins. Hence, it is not surprising that in almost 50% of tumours

originating in breast, colon, liver, lung and the pancreas the c-Src interaction pathway is

activated Dehm & Bonham [2013]. Due to mutations, c-Src is overexpressed4 and acti-

vated leading to the constant activation of downstream signalling pathways that ensure

survival, proliferation and invasion, and therefore to development of cancers.

Further details on cancer biology and the role of genes can be found in Weinberg

[2013].

2.2.3 Stem cells

Central to cellular development is the creation of distinct di↵erentiated cell types from

a small collection of undi↵erentiated cells in the embryo referred to as embryonic stem

cells. Clearly, this transformation involves state changes on the genetic and epigenetic

level. In recent years there has been an increase in research in these areas, especially

due to its potential in applications to personalised medicine; the next big frontier in

medicine. The idea is to enable induction of alternative cell fates from embryonic cells

or to enable development of cells that allow for a change in cell fates of tissues or blood

samples. Examples include the development of neurons from cells that are responsible for

creating extra cellular matrix known as fibroblasts [Vierbuchen et al., 2010; Pang et al.,

2011] or the development of muscle cells from fibroblasts [Ieda et al., 2010; Efe et al.,

2011]. All types of undi↵erentiated cells that can produce di↵erentiated cell types are

comprehensively known as stem cells (SC). Another property shared by all stem cells is

that they can di↵erentiate to produce more stem cells multiple times. Broadly speaking

there are two types of stem cells. Embryonic stem cells (ES cells) are cells derived from

an embryo in its early development and adult (or somatic) stem cells, which are found in

fully developed organs. The main di↵erence between the two types is how many types of

cells they can di↵erentiate into. ES cells are pluripotent i.e. they can di↵erentiate into

4
expression is higher than normal
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many possible cell types. Adult SCs, also known as multi-potent stem cells, can only

di↵erentiate into limited cell types often serving the function of replenishing damaged

cells of a single organ. For medical applications of course ES cells are more useful, but for

some people there are ethical concerns associated with their usage and their harvesting;

independently of the rationale behind these concerns, it does create issues in research if

such cells are used.

A new approach, proposed by Takahashi & Yamanaka [2006], is to use di↵eren-

tiated somatic cells and derive induced pluripotent stem cells (iPS cells), which have

distinct advantages if successful. These iPS cells are able to di↵erentiate to various cell

types and could in future allow for personalised medicine. The process in creating iPS

cells involves artificially inducing 4 genes (reprogramming factors) for several days and

indeed cells have been found experimentally, which have properties comparable to ES

cells. More detailed studies show that iPS cells are influenced by the used reprogram-

ming factors and there are epigenetic di↵erences between ES cells and iPS cells [Carey

et al., 2011; Bock et al., 2011]. One important concern is the di↵erence in DNA methy-

lation of iPS cells and ES cells in terms of epigenetic material that would make their use

di�cult, this problem is now being addressed [Bagci & Fisher, 2013] along with other

safety concerns.

Further information on stem cells, ES cells, somatic cells as well as iPS cells, can

be found in Lanza et al. [2009] and in Lanza & Atala [2013].

2.2.4 Cell cycle

An essential step governing the division, di↵erentiation and maturation of all cells is the

cell cycle. In simple terms it is the process by which two daughter cells are produced

from one mother cell by duplication of the cell contents; most importantly the DNA.

Details of the process can vary between organisms as well as between di↵erent stages of

development. Most cells in the human body are not taking part in the cell cycle, but

are in a resting phase. The most basic principles of the mammalian cell cycle can be

summarised into four phases:

⌅ G1 phase The first gap phase during which cells increase in size. The G1 phase

includes a restriction point up to which the cell is driven by external stimuli. Once

the cell has passed the restriction point it can progress through G1 independently.

⌅ S phase The transition from the G1 to the S (Synthesis) phase contains a powerful

checkpoint after which the cell is committed to duplication. During the S phase

itself DNA is replicated.
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⌅ G2 phase The second gap phase is not present in all organisms. In short, the cell

keeps increasing in size, synthesises proteins and prepares for mitosis. It contains

a checkpoint to determine DNA damage and stops the process.

⌅ M phase The final step in the cell cycle is the mitotic (M) phase. The duplicated

chromosomes are separated into two cells and a new nucleus is created. The M

phase also contains a checkpoint to ensure the cell is ready for division.

Despite all these checks and balances in place during the cell cycle, uncontrolled

cell division still occurs in tumourigenesis as mentioned above. Intervention on the cell

cycle plays a central role in unbound growth of cells. In many cases proteins essential

during check points are mutated, inhibited or overexpressed [Williams & Stoeber, 2012].

Understanding and perturbing elements in the cell cycle could be a good approach for

potential cancer treatments since the mammalian cell cycle is conserved across a variety

of cell types; at the same time it plays a central role in cancers.

The cell cycle is also sensitive to UV radiation, which is a well known carcinogen.

UV radiation incident on a cell can lead to DNA damage, and if the damage is too

extensive, cells can undergo apoptosis. If the damage is not too widespread, some cells

will arrest and re-enter the cell cycle at a later time. Radiation has an e↵ect on gene

expression, which is also related to the intensity of the radiation as di↵erent genes become

active to respond to the stimulus, but more importantly the type of response is driven

by expression of certain genes. [Gentile et al., 2003].

More information about the cell cycle can be found in Alberts et al. [2007, Chap-

ter 17] and its relationship to cancer in Weinberg [2013, Chapter 8].

2.3 Experimental background

In this section we explore two techniques to obtaining time-course assays for genome

wide gene expression data. Current techniques for such measurements are very limiting

as the the required experiments can only be carried out on a population level. There

exist techniques for single cell measurements [Buganim et al., 2012], but these techniques

are not yet fully developed and only allow measurement of a limited number of genes.

Initially to be able to obtain these measurements it is necessary to create a homogenate

from the sample, which is done by mechanically breaking down cells using a variety

of di↵erent procedures. After which di↵erent subsets are filtered out of the mixture to

perform microarray or sequencing experiments. For instance to perform RNA sequencing

(RNA-seq) experiment mRNA are filtered out of the homogenate.
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2.3.1 Microarray

Di↵erent stages of gene expression can be measured using microarrays. Here we present

the one most commonly used for expression profiling, the DNA microarray, with the aim

to measure mRNA levels after reverse transcription to cDNA5. Many types of microar-

rays exist to measure cDNA but broadly they can be sorted into two groups: the high

density chip based microarrays, such as the high density oligonucleotide chips [Lockhart

et al., 1996]; and the alternative bead array chips, such as described in [Kuhn et al.,

2004]. Below we will outline the former method corresponding to the type of data used

in Chapter 5, only the initial description is di↵erent, normalisation steps will be the

same. The basic principle of cDNA microarrays is based on high-density array with

DNA sequences printed on them. The sample mRNA reverse-transcribed to cDNA la-

belled in two di↵erent colours (red and green). Equal proportions of the labelled colours

are mixed together and hybridised to the array and using a scanner, fluorescence mea-

surements are made for each colour. The resulting expression is obtained by the ratio of

the measurements in each colour, see Phimister [1999] for further information. To ensure

measurements are comparable between di↵erent samples and even di↵erent experiments

it is important to normalise each sample. The quantity measured initially is the inten-

sity of fluorescent light emitted, but the exact value of the intensity measurements is not

reproducible. The most robust normalisation method is based on subtracting a position

and intensity (A) dependant constant from the log ratios of the intensity measurements

of emission in the colour green, labelled G, and emission in the colour red, labelled

R. The fluorescence emission in di↵erent colours are achieved by staining two cDNA

populations with di↵erent substances:

log2
R

G
� l(A, j), (2.17)

where l(A, j) is the lowess fit [Cleveland, 1979] to the plot of log2 R against log2 G

rotated counterclockwise by 45�. More detail on normalisation and cDNA microarray

measurements can also be found in Dudoit et al. [2002].

2.3.2 RNA sequencing

Until recently the most prevalent method for obtaining gene expression data, which is

essential to understanding disease states, has been DNA microarray measurement. One

drawback is that observations are relative and indirect i.e. measurements via fluores-
5
Complementary DNA, DNA reverse-transcribed from mRNA
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cence intensity and ratio of two colours. The approach outlined above, of tagging with

two distinct fluorescent colours, is useful for normalising measurements. Additionally,

microarray measurements are limited by prior knowledge of genes, since arrays can only

be constructed to include sequences of known genes. A new contender that attempts to

address some of the shortcomings of previous methods is RNA-seq, developed roughly

5 years ago [Mortazavi et al., 2008; Nagalakshmi et al., 2008]. RNA-seq measurements

are integer count data and measurements cover the whole genome independent of prior

knowledge. The unit of measurement is either counts per gene (cpg) or counts per base

pair (cpb) if we normalise for gene length.

Experimental protocol

RNA-seq experiments also attempt to measure mRNA obtained from homogenate, just

like microarrays. The first step is a random fragmentation of the sample mRNA. The

next step is a reverse-transcription of the fragmented samples to cDNA. Next comes

a polymerase chain reaction (PCR) step which is a method of amplification to obtain

more copies of DNA from a few copies of a slice of DNA and is performed multiple times.

This step is the source of one type of systematic error since di↵erent sections of DNA

have di↵erent susceptibilities to PCR amplification. In the next step each fragment is

sequenced in a high throughput machine; resulting sequences are referred to as reads.

These reads can now be mapped to a known genome or transcriptome6 resulting for one

count for each fragment of gene found. Alternatively, reads can also be used to construct

a transcriptome without mapping it to a known genome (de novo assembly). Figure 2.3

from Li et al. [2012] summarises this protocol.

Normalisation

Though RNA-seq avoids some of the issues associated with microarray measurements,

it still has its own di�culties that need to be overcome before analysing any type of

data. The first, as already mentioned above, is the systematic error due to the PCR

step. Another is due to the random fragmentation step; since larger genes will have more

fragments resulting in a higher per gene count. Due to these reasons the total number

of counts is also not conserved across di↵erent samples.

Therefore there is a real need for a normalisation step prior to comparison of data,

to ensure the e↵ect of these problems are minimised. The issue of di↵erent gene lengths

can be removed by simply normalising for gene length, which is a known quantity when

6
collection of all RNA
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Figure 2.3: RNA-sequencing (RNA-seq). The most commonly used modern genome
wide assay. From a homogenate cell sample, mRNA is filtered out and
passed through this pipeline to give integer count expression values for
genes. Figure from Li et al., Normalization, testing, and false discovery
rate estimation for RNA-sequencing data, Biostatistics, 2012, 13(3), by
permission of Oxford University Press.

mapping counts to a genome. Additionally, this is only an issue when comparing genes

in the same sample. For comparisons between samples, this step is unnecessary since

gene length is constant across samples. However, normalisation is also an important step

comparing di↵erent samples, it arises most notably in di↵erential expression and is also

addressed in this context. In RNA-seq data, unlike for microarray data, the question of

normalisation has yet to be settled. The method most commonly used, is to normalise

all samples to a fixed number of reads, but this leads to issues as can be illustrated using

a simple example.

Say N
i,j

is the total number of reads in experiment i for gene j with the units [cpg].

In a simple case N1,j ' 2 N2,j for all genes and hence sequencing depth of experiment 1

is twice the sequencing depth of experiment 2. In a slightly more complex example, the

issue becomes clear. If we now consider j = 1, . . . , 100 to have N1,j = 1 and N2,j = 2

and for j = 101 N1,j = 100 and N2,j = 0 both experiments have the same sequencing

depth which would suggest all genes are di↵erentially expressed. However, it would be

more realistic to consider that the sequencing depth of experiment 2 is twice that of

experiment 1 and that only gene j = 101 is di↵erentially expressed. Therefore, a good

strategy would be to identify genes that are not di↵erentially expressed and calculate

a sequencing depth just for those and use it for the whole sample. One idea would be
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Figure 2.4: Example. The top panel shows a scatter plot of arcsinh transformed gene
expression measured at 0 hr and 48 hr. For details on the experimental
measurements and the reason for the transformation see Chapter 4. The
bottom panel shows the same data transformed as described in eqn. (2.18)
to perform a normalisation. The horizontal red lines represent a possible
cut-o↵ for M -values and the vertical green line represents a possible cut-o↵
for A-values.
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to identify housekeeping genes7 for the particular application at hand and calculate a

sequencing depth, but this is an unsatisfactory solution since it does not generalise (each

application would have di↵erent housekeeping genes) and requires further experiments or

prior knowledge. Bullard et al. [2010] propose a method using quantiles instead of total

counts. Robinson & Oshlack [2010] propose a method based on total count normalisation

called trimmed mean of M values (TMM). The idea is to impose a cut-o↵ on log-fold

change M -value and the absolute expression level A-value and calculate the sequencing

depth using what remains. The M -value and A-value is calculated using the definition

N
i

=
P

j

N
i,j

(where N
i

has the units [cpg]) as follows:

M i

0
i,j

= log2
N

i,j

/N
i

N
i

0
,j

/N
i

0

Ai

0
i,j

=
1

2
log2

�
N

i,j

/N
i

· N
i

0
,j

/N
i

0
�
.

(2.18)

The bottom panel of Figure 2.4 shows the transformation eqn. (2.18) applied to

two RNA-seq measurements8. The red lines shows a possible cut-o↵ on the M -value and

the vertical green line shows a possible cut-o↵ imposed on the A-value, where both M

and A are dimensionless. Table B.1 shows raw count data as well as normalised data for

20 genes and 7 time points.

In the R package edgeR the method normalisation method outlined above as well

as a few others have been implemented for application to RNA-seq data [Robinson et al.,

2010]. A summary comparing di↵erent normalisation methods can be found in Oshlack

et al. [2010].

7
genes that are supposed to remain constant

8
see Chapter 4 for details on the measurements
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Chapter 3

State transitions using aggregated

Markov models

3.1 Introduction

Diverse biological processes have been observed to undergo transitions under influence of

a stimulus. These transitions lead to changes on a cellular level between distinct pheno-

typic states. The source of these phenotypic changes can be morphological, epigenetic,

or even at a protein interaction level.

One big obstacle in understanding the source of such phenotypic changes at a

single-cell level is that observations are generally not at the single-cell level since it is only

possible to perform observations on a population level. This restriction is experimental

in nature and although sometimes it is possible to make observations on a single-cell

level there are often limitations on the amount of information that can be obtained as

discussed in detail in Chapter 1.

The model we explore is called State Transitions using Aggregated Markov Mod-

els (STAMM) initially proposed by Armond et al. [2014]. This is a stochastic model

identifying state level information for single-cell transformations using population level

data. Single-cell level dynamics, latent in the model, are described by a Markov chain,

which is then aggregated over multiple cells. This model has been applied to cancer

cell lines [Casale et al., 2013] and stem cell reprogramming (see Chapter 5) there still

remains work to be done in obtaining a better understanding of this model. We use

single-cell level simulations to probe model properties and model assumptions.

A type of model that has found widespread application in the description of

such systems and shares certain characteristics with STAMM, is the Hidden Markov
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model (HMM). Many examples of real world applications of HMMs exist including the

deconvolution of population level microarray data [Roy et al., 2006]. Other types of

models that attempt to study population level heterogeneity exist. Some of these models

use deconvolution algorithms for the description of the cell cycle and for microarray

data where additional information is required for the models [Bar-Joseph et al., 2004,

2008]. The main advantage of STAMM is that the latent model is in continuous time

and therefore application to time-course data with uneven time-points is built into the

model. This is discussed in more detail in Chapter 1. Another type of model that is even

closer to STAMM was studied by Kalbfleisch et al. [1983] but this model investigates

panel data, often near or at equilibrium.

In this Chapter we follow and expand on previous work done starting with a

detailed description of STAMM in Section 3.2 including a detailed description of model

assumptions. In Section 3.3 we outline parameter estimation including a way to perform

model selection as well as an e�cient and unbiased estimation pipeline. Then we specify

the single-cell simulation setup (Section 3.4) before moving on to the results from single-

cell simulation data in Section 3.5. These are split up into results from performing a

small-scale simulation to probe the model and test sensitivity to breaking assumptions;

and large scale simulation results to demonstrate the whole pipeline.

3.2 Model outline

3.2.1 The STAMM model

STAMM defines a latent stochastic process on the single-cell level that isn’t directly

observed. Using the latent stochastic processes and aggregating across cells, we can

obtain a cell-population level likelihood. The latent single-cell process is described using

a Markov chain with a discrete and finite state space but it is continuous in time.

Biological states in the system are identified with the state space of the underlying

biological system, indexed by k 2 {1, ..., K}. Transitions between states k and k0 are

determined by transition rates between these states denoted by w = {w
k,k

0}. It is

important to note that state changes are only defined for the whole entity of a cell and

not over single genes or proteins. Assuming that cell death and cell doubling compensate

each other, i.e. the number of cells is conserved at all time t, the probability for any cell

to be in state k at any given time t can be obtained by solving the master equation of

the Markov chain. The resulting state occupation probability for the population given

the transition rates p
k

(t|w) is a function of time and also the state transitions.
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Figure 3.1: Model description. (a) In any biological system undergoing transitions

between multiple states where the time of transition is stochastic, cells
states are heterogeneous in the population at any given time. (b) Assays
performed on homogenates of that cell population will only yield data
averaged over sampled sub-populations. (c) We describe this system with
State Transitions using Aggregated Markov Models (STAMM) where single-
cell level processes are described by a latent continuous-time Markov chain
which is aggregated over cells to give a likelihood (see Section 3.2.1). The
Markov chain has a discrete state space which corresponds to biological
states of the system (shown in di↵erent colours). Estimation of parameters
in STAMM is performed using population level data. (Figure adapted from
Armond et al. [2014].)

This model can be applied to any type of time-course data, including transcript

or protein abundance. Here unless otherwise stated we will focus the description, with-

out loss of generality, on gene expression data. Let x
j

(t) be the cell-population-averaged
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gene expression of gene j at time t, obtained from a homogenate assay such as RNA-seq

or microarray expression. The units of x
j

(t) and t will depend on the application, for

RNA-seq the units of gene expression are [cpg] for microarrays the units are intensity. In

simulation the time t is in arbitrary units. When investigating transitions it is prudent

to design experiments with an initial state that is reasonably homogeneous, therefore

our model assumes that initially all cells in the population occupy the same state. This

is often part of the experimental design when investigating changes from an initial ho-

mogeneous starting population. At any subsequent time point, cells exist in a mixture of

states, hence measurement x
j

(t) made on a population level is an average over multiple

states. We further assume that there is a mean expression level per gene constant across

a state. This is denoted by �
kj

, the gene expression level for gene j 2 {1, . . . , p} in state

k which has the same units as the gene expression.

In the limit of large numbers of cells the fraction of cells in any state k is given by

the state occupation probability p
k

(t|w). We can now write the observed average gene

expression, x
j

(t) for gene j at time t, as the sum of all occupation probabilities weighted

by their respective gene expression signatures. The resulting model for the average gene

expression from a latent Markov chain model is written as:

x
j

(t) =
X

k

p
k

(t|w)�
kj

= p(t|w)�
j

, (3.1)

where the right hand side is the vectorised form of the model, with the row vector

p(t|w) = [p1(t,w), . . . , p
K

(t,w)] and column vector �
j

= [�1j , . . . , �Kj

]T . Assuming

an additive Gaussian noise model with gene-specific noise variance �2
j

we arrive at the

likelihood:

L
�
w,�

j

, �
j

| {x
j

(t)}
�

=
TY

t=1

N
�
g(x

j

(t))|g
�
p(t|w)�

j

�
, �2

j

�
, (3.2)

where N (·|µ, �2) denotes a Normal density with mean µ and variance �2 and the function

g denotes a transformation whose choice depends on the data type under investigation.

The transition rates in the likelihood enter via the state occupation probability (see eqn.

(3.5) for an example) and the product on the right-hand side of eqn. (3.2) is taken

over the discrete time points t = {1, . . . , T} at which experimental measurements are

available, this only serves to label time points and does not assign a value. The transition

rates in the expression of p(t|w) connects estimation for di↵erent genes, later we discuss

a procedure which fixes transition rates, thereby allowing independent estimation for

genes. The number of genes p will typically be larger than the number of states K but
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it is not a requirement for the model.

Applied to microarray experiments which use ratios of fluorescence intensities be-

tween measurements in the red spectrum R and green spectrum G, the transformation g

used is log2 [Dudoit et al., 2002], for further details see Section 2.3.1. When investigat-

ing RNA-seq data we use arcsinh as the transformation [Ho↵man et al., 2012; Johnson,

1949], defined as arcsinh(x) = ln(x+
p

(x2 + 1)) (for more details see Section 4.3). RNA-

seq data cannot be normalised in the same way as microarray data, most importantly

because it contains measurements which are exactly zero. The arcsinh normalisation is

useful here, because unlike the log transformation it does not have a singularity at zero

while having the same variance-normalisation properties.

To use the likelihood it is necessary to compute the state occupation probabilities

at any time t observations are made, which we cover below.

Markov chain and the master equation

Until now we have not placed any restrictions on the latent Markov process in this

model and we have formulated the likelihood eqn. (3.2) for a general case. To classify

the Markov chain we first clarify some notation: recall the states of the latent process

are labelled as k 2 {1, . . . , K} and denote transition rates between states k and k0 as

w = {w
k,k

0}, when the rate of the transition is equal to zero for a givent k the transition

does not exist for that model. Using these parameters we can record the structure of

any Markov chain, the topology of which has implication on identifiability of the model

(for further discussion see Section 3.2.2). In this discussion we limit ourselves to a pure

birth process where w
k,k+1 6= 0 for all k and zero otherwise including w

k,k+1 for k = 0

and k = K. This means that the Markov chain excludes branches, starts at k = 1 with

a final absorbing state. The resulting master equation is written as:

dp
k

(t)

dt
= w

k�1,k p
k�1(t)� w

k,k+1 p
k

(t). (3.3)

We can write the master equation in matrix notation using the generator matrix

G(w). It is a K ⇥ K matrix where the only non-zero entries are on the diagonal,

g
kk

= �w
k,k+1, and the subdiagonal g

k k�1 = w
k�1,k. This allows us to write the master

equation using vectors and matrices:

dp(t|w)

dt
= G(w)p(t) (3.4)

In investigating transition processes (such as Chapters 4, 5) generally an experimental
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design is chosen such that the initial cell population is in the same state. Therefore we

can set the initial conditions for the state occupation probability, p(0) = (1, 0, 0, . . .).

This means all cells are in state k = 1 at t = 0 just before the cell population is perturbed.

This allows us to write the closed form solution for the state occupation probability as:

p(t|w) = exp (G(w) t)p(0). (3.5)

This expression is also used to evaluate the likelihood (eqn. (3.2)) of the model for

di↵erent parameters.

Model Assumptions

We make a number of assumptions in the above model derivation. Here, we focus on some

of the key assumptions made regarding the transition process on a single-cell level and

investigate them further. Ensuring an analytically tractable latent state change model

makes these assumptions necessary. In the discussion below we discuss how appropriate

these assumptions are, if and how they can be relaxed, and if and under what conditions

they can be justified.

First, we assume expression of a gene remains constant while it remains inside

a given state. The single-cell expression of each gene is modelled by a piecewise flat

trajectory where expression changes are instantaneous due to a change in state. It

also has the e↵ect that the only time-dependence in the likelihood is due to the state

occupation probabilities of the Markov chain. In this simple approximation interactions

between genes are largely ignored and not modelled explicitly; allowing us to formulate

a computationally e�cient pipeline to estimate parameters for time courses with many

genes, see Section 3.3.3 for further details. It is a very strong assumption and apart

from the noise that is prevalent in most biological systems gene expression also changes

within a state due to cell internal mechanisms e.g. the cell cycle. The slightly more

relaxed but su�cient assumption here is: Temporal changes within a state should be

much smaller than the di↵erence between biologically distinct states for genes influential

in such a transition. This case is illustrated in Figure 3.2(a) and 3.2(b). Therefore, this

is still a good first approximation in the case of transition processes.

A second assumption relates to the topology of the Markov chain. To ensure

parameter identifiability (see Discussion Section 3.2.2) we have to restrict the latent

process to a linear pure birth process. This restricts the topology of the Markov chain

quite drastically, but is arguably defensible when applied to externally driven transition

processes such as the ones discussed in this thesis. The external drive can take many
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(b) Influential gene gradual change
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Figure 3.2: The gene expression and time here are on an arbitrary scale as these plots
just serve as an illustration, to further simplify the point we only visualise
one gene. These are not actual measurements but rather constructed by
the author. The first assumption made is that gene expression remains
constant for a gene while the cell remains inside a state. The model in
Section 3.2.1 describes the single-cell measurements of cells transitioning
between states as an instantaneous step change (red line). In reality, the
measurement will at least fluctuate and transition won’t be instantaneous.
For influential genes illustrated in (a) - (b), this assumptions is reasonable
whether or not the transition is instantaneous, the points here are meant
to represent single measurements of genes. For genes where within a state
temporal changes are comparable to changes between states, (c) - (d),
the approximation is not good. These genes are not influential for the
transition process as their expression does not change therefore this is not
problematic.
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di↵erent forms; in the two examples we investigate the system is driven by genetic

induction. Of course back transitions are likely, for such cases our model is mis-specified

and the forward transitions rates are only e↵ective values where the back transition rates

have been absorbed into the model. Consequently, estimated forward transition rates

are lower than the real values. On occasion back transitions or topologies of the latent

process are of interest. The likelihood eqn. (3.2) is general and does not make any

assumptions about the topology of the Markov chain, but additional data or constraints

would be required for identifiability of more complex transition topologies. Often the

limiting factor is available data hence we focus here on the more useful but special case

where only time-course data is available and the latent stochastic process is a linear birth

process. In Section 3.4 we include a detailed investigation into the impact of breaking

this assumption in a simulation.

Finally, we assume rates of cell death and cell duplication cancel each other

out and the population therefore remains roughly constant in time. Consequently, the

fraction of cells in a given state only depends on the transition rates between the states.

Especially in the case of oncogenic transformation (Chapter 4) this is clearly not the

case since tumorous cells in general have a much higher proliferation rate. In Section

3.4 we test how well parameters are estimated when this assumption is violated.

3.2.2 Identifiability

Parameter identifiability is a very important concept in STAMM since parameters rep-

resent physical properties of cells. A result for the identifiability of such a model with a

discrete time latent process was presented by Cli↵ord [1977]. Unfortunately, there does

not exist a conclusive result on identifiability for latent stochastic model with a contin-

uous time latent process. To establish if STAMM is identifiable analytically is highly

non-trivial, therefore we perform tests for empirical identifiability using single-cell sim-

ulations in Section 3.5.1.

3.3 Estimation

The discussion in this section is motivated by work published in Armond et al. [2014], but

the model selection procedure does not follow the same heuristic or Bayesian approach

but has been updated. Additionally some of the details of parameter estimation have

also been changed to streamline the procedure and make it computationally e�cient.
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3.3.1 Parameter estimation

We begin by stating the maximum likelihood estimates (MLEs) based on the likelihood

eqn. (3.2)

({�̂
j

}, ŵ) = argmin
{�j},w

pX

j=1

TX

t=1

kg(x
j

(t))� g
�
p(t|w)�

j

�
k22, (3.6)

where k·k
q

denotes the `
q

norm with respect to its argument. The transformation g is in

general non-linear as discussed above (e.g. log in microarrays or arcsinh in RNA-seq), for

such transformations the MLE (3.6) cannot be obtained in closed form. Genome wide

measurements yield readings with number of genes, p, of up to 104. Directly optimising

eqn. (3.6) is not practical for a problem with large p as the parameter space is a function

of the number of states and p. We adopt a two-step estimation procedure proposed by

Armond et al. [2014]. The first step is based on the observation that many genes have

similarities in their measured time-courses; this allows us to cluster genes obtaining m

clusters describing typical temporal patterns. Details for choosing the parameter m are

discussed in Section 3.3.3. The m cluster centroids are used to estimate the transition

rates w via eqn. (3.6), instead of all genes. This approach reduces computation time

significantly when m << p. The transition rates estimated using cluster centroids, ŵ,

are fixed and the � values for all remaining genes are estimated. The MLE is now written

as:

�̂
j

= argmin
�j

TX

t=1

kg(x
j

(t))� g
�
p(t|ŵ)�

j

�
k22 + �k�

j

k1 (3.7)

where the final term is an (optional) `1 penalty with tuning parameter �. It is invoked

when potential over-fitting needs to be counteracted (choice of � is discussed in Section

3.3.3).

The optimisation eqn. (3.7) greatly simplifies estimation (compared to eqn.

(3.6)), since estimation for individual �
j

for gene j can be performed independently.

This is possible because time-courses between individual genes are only coupled by

transition rates w; once they are fixed, individual gene trajectories can be examined

independently.

3.3.2 Model selection

The estimation steps described in Section 3.3.1 apply to a model with a fixed number

of states K. Here we present a procedure to determine the number of states K that
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best represent a data set under investigation. Depending on the application K itself

can be of scientific interest. In general estimated state-specific expression signatures, �,

are influenced by the number of states. Underestimating in number of states results in

distinct states being merged. Overestimating the number of states introduces artificial

states in the transformation. Both scenarios lead to poor estimation of parameters.

In general model selection can be performed using a form of cross-validation (CV)

by leaving out part of the data as a validation set. In the applications we consider usually

there is only one sample therefore we have to perform CV by leaving out time points.

In some cases it is also possible to use BIC e.g. when the number of genes is small,

but this quickly breaks down as the number of genes p increases, as can be seen in eqn.

(2.14). For large p the second term would completely dominate the BIC term; therefore

we restrict ourselves to CV. In applications to time-series, cross-validation is often non-

trivial due to discrete and irregularly spaced observations. The STAMM model has an

underlying continuous-time latent process, which allows for prediction of any time points

from estimated parameters; therefore comparison between predicted time-points, from

estimated parameters, and the corresponding held-out data can be performed without

any problems. In this application due to poor time resolution it is often not possible to

include more than one time point in the validation data; this variant is called leave-one-

out cross-validation (LOOCV). In this LOOCV we do not use the first time point in the

validation set as the model assumes that initially all cells occupy the same state which

is only assured at the first time point. If t is the held-out time point let the estimated

parameters for the remaining subset be rates ŵ�t, state specific expression {�̂�t

j

} and

gene-specific standard deviation {�̂�t

j

}. State occupation probabilities at the held-out

time point p(t|ŵ(�t)) are obtained by solving the master equation using estimates derived

from the training data. There we can now write a prediction for the expression of gene

j at the held-out time point x̂CV
j

(t) = p(t|ŵ(�t)) �̂
(�t)
j

and the cross-validation mean

squared error (MSECV the units of which are dependent on the transformation g(x
j

(t))

and the units of x
j

(t)) is simply

MSECV =
TX

t=2

pX

j=1

1

�̂(�t)
j

�
g(x̂CV

j

(t))� g(x
j

(t))
�2

. (3.8)

The strength of this type of model selection in comparison to the Bayesian ap-

proach presented in Armond et al. [2014] is twofold. Firstly application of the com-

putationally e�cient estimation procedure outlined in Section 3.3.1, allows this cross-

validation procedure to be applied to the whole data set e�ciently. Secondly, it doesn’t
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stability check for m

k-means clusteringtime course 
data

normalisation

test need for penalty

gridsearch over 
number of states and 

penalty find:!
min(MSECV)

YES NO

search over number 
of states find:!
min(MSECV)

K̂ K̂

Figure 3.3: Schematic of estimation pipeline. Clustering of normalised gene trajecto-
ries provides an optimum number of clusters m̂, the centroids of the clusters
summarise typical trajectories contained in data. Fitting the model to cen-
troids we can find transition rates w. Stability of estimate test is performed
to determine the need for penalisation of model parameters with strength
�. State-specific gene expression signatures �

kj

are estimated by varying
the number of states in the model K and � (if applicable). Optimum
number of states are determined by performing a form of cross-validation.
Finally sensitivity of estimation to change in m̂ is performed. If necessary
the pipeline is rerun with a better choice of m̂.

require parameters to be set by the user except those required for estimation. The

Bayesian approach requires a computationally demanding Monte Carlo estimation and

has several hyper-parameters, which have to be set by the user.

3.3.3 Estimation pipeline

We now present a computationally e�cient pipeline for setting tuning parameters re-

quired for estimation. The pipeline is also summarised in Figure 3.3. The required

tuning parameters are:

⌅ The number of clusters: m, used in the first step of the two-step estimation.
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⌅ The strength of the penalty term, �, applied in eqn. (3.7), where � = 0 is equivalent

to no penalty.

⌅ The number of states in the latent Markov chain, K.

Number of cluster: In the initial estimation step we cluster gene expression tra-

jectories which results in cluster centroids describing typical trajectories; these permit

estimation of transition rates. In empirical results (see Section 3.5.2) we see; if the num-

ber of clusters is large enough to capture most of the information in typical trajectories

changing m does not have a significant impact on parameter estimation. Therefore, we

set m using a simple k-means algorithm and inspecting the relative decrease of within-

cluster sum of squares objective J(m) as a function of m:

�J(m) =
J(m� 1)� J(m)

J(m� 1)

We select m̂ such that m̂ = min{m : �J(m�1) < 0.1}, i.e. if the relative decrease

in the objective function is smaller than 0.1 for m � 1 we choose m as the number of

clusters. Small fluctuations in the objective function for higher m lead to instabilities in

the relative decrease. Once m̂ is set we include a post-estimation sensitivity test for the

choice of m. In section 3.5.2 we demonstrate with the help of empirical results, how well

behaved and computationally e�cient this model is. Though it should be noted that the

choice of m can be made with any clustering method and the corresponding objective

function.

Penalisation: The penalty term introduced in eqn. (3.7) is useful in high dimensional

models; even though the data investigated using this model will often be high dimen-

sional, estimation is carried out separately for each gene. Therefore, penalisation may

not be required unless the number of time points is large. Consequently, we introduce

an additional step to test the need for penalisation by comparing estimated expression

signatures � with estimates obtained from leaving out individual time points. We specify

stability as a Pearson correlation between estimated � values greater than 0.8. The Pear-

son correlation (a dimensionless quantity) between two populations a and b is calculated

as

⇢(a, b) =
cov(a, b)

�
a

�
b

=
E[(a� µ

a

)(b� µ
b

)]

�
a

�
b

If we deem a data set stable under such a test there is no need for penalisation

and we choose � = 0. If the Pearson correlation is smaller than 0.8 a penalty term
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is required (setting the penalty strength is discussed below). In both the simulated

data sets and application to oncogenic transformation penalisation was not required and

� = 0 in Sections 3.5 and 4.

Number of states: The final parameter to be set is the number of states in the latent

Markov chain. This parameter is set by minimising the CV score (MSECV) for a range

of di↵erent K. If penalisation is required MSECV is minimised by performing a grid

search over both � and K.

All three parameters (m, �, K) can in principle be set by performing a grid search

with respect to MSECV, but this is computationally very challenging and would make

estimation impractical. Our pipeline makes use of heuristic observations to reduce the

grid search to one dimension. The observation that estimates are robust to changing

the number of clusters used in the first step, allows us to remove m from the grid

search. Observing that the penalty term is not always needed enables us to exclude

� from the grid search. When choosing m using a clustering method it could be that

transition rates haven’t converged. Therefore, we carry out an additional diagnostic

post estimation. The issue we are trying to address is that an increase in m corresponds

to an increase in information; this can lead to changes in estimated parameters. If

the choice of parameters is appropriate increasing the number of clusters should not

significantly impact estimated parameters. To this end we compute Pearson correlation

values between expression levels � estimated using m̂ clusters and estimated using larger

values m0 > m̂. Provided results have Pearson correlation above 0.8, the choice of m̂ was

appropriate, if the Pearson correlation is below 0.8 we repeat the pipeline with larger m.

3.4 Simulation setup

To test the validity of the model we need to test it with simulated data where true

parameters are known. This will allow both evaluation of strengths and weaknesses

in parameter estimation and model selection (choosing number of states). Simulations

are performed not at the cell population level of the likelihood eqn. (3.2) but at the

single-cell level; allowing for extensive testing of model assumptions. The single-cell

trajectories are then averaged to obtain homogeneity data analogous to RNA-seq data.

Here we describe the step-by-step simulation procedure for a K state model

independent of the number of genes simulated:
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Figure 3.4: Simulation study. State occupation probabilities for a four state model
with transition rates [1/5, 1/8, 1/15]. The transition rates are set to these
values for all simulations, the values are chosen to allow k = 4 to have a
high occupation probability at the final time-point of the simulation.
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State transitions. When setting transition rates between discrete states of the Markov

chain we need to keep a few things in mind. Firstly, the smallest sampled (observed in

real data) time step needs to be smaller than the transition time between states. Just like

in typical experimental designs for transition processes. Additionally the model, won’t

be able to extract information about a process taking place on a time-scale smaller than

gaps between observations. Secondly, we are considering transitions processes driven

towards an established final state (e.g. oncogenic transformation, pluripotency); so to

mimic this behaviour in simulated data we need to insure the occupation probability for

the final state is higher than for other states at the final time point. Of course in realistic

experiments even at the final time point the cell population will still be heterogeneous In

the discussion that follows in Section 3.5 we use the three transition rates [1/5, 1/8, 1/15]

for four state model. In Figure 3.4 we show the state occupation probabilities for these

parameters and k = 4 has an occupation probability of ⇡ 0.89 at the final time point.

For every cell in the simulation, state transitions are simulated by drawing jump-times

from an exponential distribution with parameters given by transition rates as defined

for a continuous-time Markov chain.

State-specific expression levels. For all cells, each gene j and state k we set gene

expression levels �
kj

. For each gene we set expression levels to zero with probability

1/K, otherwise they are sampled uniformly from (0, �
j

]. Parameter �
j

, chosen from the

range [1, . . . , 12000], e↵ectively sets the scale of gene j 1. This method ensures simu-

lated trajectories for genes on di↵erent scales (see Figure 3.5(a) and the corresponding

gene expression signatures Figure 3.5(b)), to emulate real RNA-seq data where a range

of five order of magnitude was observed [Wang et al., 2009; Mortazavi et al., 2008].

Gene expression trajectories for single-cells are piecewise flat for each gene once � val-

ues are sampled. Changes in trajectories only occur at jumps between states and are

instantaneous.

Aggregation and time-sampling. For each gene j each cell has an associated gene

expression trajectory. Similar to RNA-seq experiments where observations are averages

of gene expressions over many cells; these trajectories are averaged over a large number

of cells to give an average gene expression trajectory. The occupation probability in the

model outlined in Section 3.2.1 is derived in the limit of number of cells !1, of course

in practice the number of cells is finite. We set the number of cells to 1000 which serves

1
It is always chosen from the following �j = {1 , 10 , 50 , 100 , 200 , 500 , 1000 , 2000 , 4000 , 7000 ,

10000 , 12000}
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as a good test of the limiting assumption.

The simulated time-course is obtained by sampling the simulated trajectories

at discrete unevenly distributed time points. Finally Gaussian noise is added to the

transformed data (see Section 3.2.1 for details, for RNA-seq arcsinh) with mean zero

and standard deviation �; which we set to � = 0.2 unless states otherwise, this pro-

vides a reasonable signal to noise ratio for all observations. Similar to the RNA-

seq data discussed in Chapter 4 we choose 15 unevenly spaced time points at t =

{0, 2, 4, 7, 8, 11, 14, 20, 24, 29, 32, 35, 40, 44, 48}. The simulation setup is summarised in

pseudocode in Algorithm 1.

Algorithm 1 Pseudocode for single-cell simulations

procedure Simulation(n.states, n.genes, n.cells, r, p,w, dt, �)
�  unif(0, �)
jump.t Exp(w

k�1,k)
for all genes, cells do

for t 0, T do
for states 1, K do

while t < jump.t
states

do
sim.traject(t) �

j,k

end while
end for

end for
end for
average sim.traject per gene for all cells
sim.data sim.traject (sampled at discrete time)
sim.data sim.data + N (0, �)

end procedure

3.5 Simulation results

We present results from simulations in two separate phases. For both simulation setup

the transition rates are fixed at [1/5, 1/8, 1/15] and we simulate from a model with four

states in latent Markov chain. First in a small-scale simulation with p = 9 genes we

perform multiple rounds of direct estimation of the whole data without the need for

the initial clustering step. This simpler simulation allows investigation of identifiability

and an investigation for model selection without considering the two-step estimation

procedure outlined above.

Then we consider a larger scale simulation with p = 120 genes, where we put the
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full two-step estimation procedure to the test— including clustering, setting of tuning

parameters and finally model selection.

3.5.1 Small-scale simulation

Using the small-scale simulation we perform three separate tests. One in which we only

estimate transition rates and state-specific expression levels; we consider the number

of states to be known. Then we consider the model selection problem and finally we

investigate estimation under breaking model assumptions.

Number of states known

We simulated 9 genes from a 4 state model as described in Section 3.4. In this small

simulation we do not use a penalisation term, i.e. � = 0. In Figure 3.5(a) we show

trajectories for one such realisation, here the thicker line represents trajectories from

averaging 1000 cells. The green dots show sampled data with the addition of Gaussian

noise to transformed data. The gene expression is labelled as counts per gene [cpg]

since the simulation is modelled after RNA-seq measurements, but since it is only a

simulation this a choice. The time is arbitrary as the simulation does not depend on the

unit of time. In Figure 3.5(b) we show state-specific gene expression signatures for all

9 simulations. The values are shown in pairs of true and estimated. The value on the

right is in each case the true value used in simulating the trajectories. The left-hand

value is the parameter estimated by fitting the 15 time points from the simulation time

course. The corresponding estimated and true transition rates for this realisation can

be seen in Table 3.1. Using the estimated transition rates and the expression signatures

we can obtain an estimated trajectory, seen as a blue line in Figure 3.5(a).

Transition rates w1,2 w2,3 w3,4

true mean 0.200 0.125 0.067
estimated 0.236 0.114 0.068

Table 3.1: Transition rates used in the simulation and the estimated values

We repeat fifty such independent simulations at four di↵erent noise levels 2, each

time �
kj

are resampled as described above (Section 3.4) while transition rates are shared

across simulations. We compute the Pearson correlation between estimated and true

gene expression signatures for each simulation run ⇢(�, �̂). The Pearson correlation co-

e�cients for all simulations are summarised in a boxplot, Figure 3.6(a). For all tested

2� = {0.05, 0.1, 0.15, 0.2}d
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(a) Simulated Trajectories for p = 9
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(b) Expression signatures for p = 9 simulation

Figure 3.5: Simulation study. Small scale simulation for p = 9 genes. (a) shows the
trajectories for these simulations, the gene expression is plotted as counts
per gene [cpg] and the time is in arbitrary units. The thick red line shows
the averaged trajectories over 1000 cells. The green dots show 15 sampled
data points with normal noise (N (0, �), with � = 0.2) added to the average
data. The blue thin line shows the trajectory from estimated parameters.
(b) shows state-specific gene expression signatures as counts per gene [cpg]
for all 9 simulated genes. The true and estimated parameter values are
shown next to each other. The lighter colour on the left shows estimated
parameter values, the solid colours show true parameter values.
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(b) Transition rates

Figure 3.6: Simulation study. Small scale simulation using p = 9 genes with 50 inde-
pendent repeats. Boxplots show results over all repeated simulations at
four di↵erent noise level � = {0.05, 0.1, 0.15, 0.2}. (a) Boxplots for Pear-
son correlations between estimated and true gene expression signatures
(⇢(�true, �̂) a dimensionless quantity) at four di↵erent noise levels. (b)
Boxplots for the mean of absolute di↵erences between the estimated and
true transition rates s̄ (with units 1 / time which in this simulation can be
anything) for each simulation at four di↵erent noise levels.

noise levels we compute a mean and standard deviation of the Pearson correlation coef-

ficient across all fifty runs in Table 3.2; The mean is above 0.9 for all simulations and

the highest level for the variance is 0.13. Therefore, we can conclude that state-specific

gene expression signatures are recovered well in the simulation. We also introduce a new

measure, s
k

= |ŵ
k,k+1�w

k,k+1| to test recovery of transition rates. For each simulation

we use the mean s̄ over the three transition rates as measure for how well transition

rates are recovered. In Figure 3.6(b) we show boxplots for the fifty simulations for each

of the four noise levels. We find that transition rates are also recovered well, though as

expected the estimates become worse with increasing noise levels.

� 0.05 0.1 0.15 0.2
mean 0.95 0.93 0.94 0.91

std. dev. 0.07 0.09 0.08 0.13

Table 3.2: Pearson correlation between true and estimated gene expression signatures.
Mean and standard deviation are estimated across 50 independent simula-
tions.
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Determine number of states

Next, we consider the problem of model selection in this small simulation setup. We

simulate data as described above for p = 9 genes. In such a model with a latent stochas-

tic process, model selection is a challenging problem especially using noisy data sets.

Therefore to test model selection we perform fifty independent simulations for the fol-

lowing noise regimes: � = {0.05, 0.1, 0.15, 0.2}. We compare models with K = 1, . . . , 5

and perform model selection using leave-one-out cross-validation (see Section 3.3.2), for

each of the fifty simulations. We determine the minimal MSECV scores (eqn. (3.8)) for

di↵erent models and juxtapose a comparison between the di↵erent models using a simple

normalised MSE score for model fit without held-out time points. In each simulation and

for each noise regime we determine the model with lowest MSECV score and lowest MSE

score. Then we show the distribution of these minimal scores over the selected number

of states in Figure 3.7; the top row shows the distribution for MSECV and bottom row

show the distribution for MSE in di↵erent noise regimes.

Here number of parameters increase with number of states, and as a result model

fit improves; therefore as expected at all noise levels the maximum number of states

(K = 5) results in the best fit.

Violating model assumptions

Until now, we have considered simulations with a correctly specified model where as-

sumptions underlying the model are not violated. Breaking these assumptions is es-

pecially easy in the single-cell simulation. We investigate consequences on parameter

estimation under violation of a subset of these assumptions. We use three types of plots

to investigate parameter estimation for these simulations.

⌅ Correlation. For state specific gene expression signatures �
kj

we compute the

Pearson correlation coe�cient between true parameters and estimated parameters,

⇢(�true, �̂).

⌅ Transition times. We show boxplots of estimated average transition times for

10 simulations and a horizontal dashed line to represent the true value used in the

forward simulation.

⌅ Probability In the model itself the transition times do not enter directly they

are used to calculate probabilities. We compare the values by calculating a mean
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Figure 3.7: Simulation study. We perform fifty independent small-scale simulation
with p = 9 at four di↵erent noise levels � = {0.05, 0.1, 0.15, 0.2} for K = 4.
We perform model selection using a form of cross-validation and find the
state K that minimises the MSE

CV

score, top row. As a comparison we
also show fit to data and find the state K that minimises MSE. We find
that even at very high noise levels using MSE

CV

it is possible to identify
the right model. An example trajectory and parameters can be seen in
Figure 3.5.
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di↵erence between probabilities:

h|p̂
k

(t)� p
k

(t)|i
k,t

, (3.9)

where k is the number of states, p̂
k

(t) is the probability calculated from estimated

parameters and p
k

(t) is the probability calculated from true values. The average

is taken over both the states and time.

Cell death and cell doubling An assumption implicit in STAMM is that cell death

and cell duplication happens at a constant rate across all states in the transformation

process. This is of course not the case in the discussed example of oncogenic transfor-

mation, since transformed tumorous cells have a much higher proliferation rate than the

initially healthy cells. In the single-cell simulation setup we sample a time of death, td
i

,

and a time for cell doubling, tdup
i

, from an exponential distribution. If sampled rates

for a cell are outside of the time range of the simulation, the cell remains unchanged.

If they are both in the range, there are two possible scenarios. Firstly if the death

rate is the smaller of the two, cell i is taken out of the simulation t > td
i

. Secondly if

tdup
i

< td
i

, cell i is taken out of the simulation at t > tdup
i

and two new cells are simulated

with new sampled state transitions. The simulation and estimate is performed 10 times.

Investigating the oncogenic transformation discussed in the paper it was observed that

generally cells have a doubling rate of close to 0.05 i.e. doubling of cells occurs roughly

every 20 hours. In Figure 3.8 we fix the doubling rate and since cells in this experiment

rarely die, we choose very small death rates. 3.8a) shows the average as a dark line

and the shaded area represents the standard deviation for the 10 repeated simulations.

3.8b) shows boxplots for the estimated average transition times. 3.8c) shows the mean

di↵erences between estimated and true probabilities averaged over 10 trajectories as a

solid line and the shaded area represents the standard deviation.

In Figure A.1 we include additional cell doubling rates. In general, gene expres-

sion signatures are estimated well, but the transition rates are not. During estimation,

transition rates only enter as probabilities hence badly estimated transition rates don’t

have a significant negative e↵ect on the estimation of expression signatures. To see what

e↵ect the di↵erent parameters have on the number of cells simulated at any given time

Figure 3.9 shows the number of cells as a function of time for di↵erent cell death and

cell doubling rates.
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Figure 3.8: Simulation study. Testing assumption about cell death and cell doubling.
For each cell a time of death, td

i

, and a time for cell doubling, tdup
i

, is
sampled from an exponential distribution with varying average rates. If
the sampled rates for a cell are outside of the time range of the simulation,
the cell remains unchanged. If they are both in the range there are two
options. The first option is that the death rate is the smaller of the two in
that case the cell i is taken out of the simulation t > td

i

. If tdup
i

< td
i

, cell i

is taken out of the simulation at t > tdup
i

and two new cells are simulated
with new state transitions. The simulation and fit is performed 10 times.
In experiments, we observe cell doubling time to be roughly 20 hours and
very few dead cells. Therefore the simulation is performed with a cell
doubling rate of 0.05 and a variety of death rates. a) shows the average
as a dark line and the shaded area represents the standard deviation for
the 10 repeated simulations. b) shows box plots for the estimated average
transition times. c) shows the mean di↵erences between estimated and true
probabilities averaged over 10 trajectories as a solid line and the shaded
area represents the standard deviation.
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Figure 3.9: Simulation study. Testing assumptions about cell death and cell doubling.
Plots show number of cells at di↵erent time during the simulation for one
of the 10 simulations as a function of time which is shown in arbitrary
units. Each panel represents di↵erent death rates and each colour di↵erent
doubling rates.
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Figure 3.10: Simulation study. To test the a↵ect of back transition on the estima-
tion, we simulate trajectories with back transition at k = 4 with di↵erent
transition times. a) we plot the average Pearson correlation for 10 inde-
pendent runs, between true and estimated �

kj

parameters for di↵erent
average time for the back transition as a solid line. The shaded area
shows the standard deviation. The vertical dashed red line shows the
average forward transition time for k = 3. b) shows boxplots for the av-
erage transition rate estimated from the model for a system with K = 4
and only forward transitions. c) shows the mean di↵erences between esti-
mated and true probabilities averaged over 10 trajectories as a solid line
and the shaded area represents the standard deviation.
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Back transitions The second assumption we test is the inclusion of back transitions

in the single-cell. We simulate trajectories with back transition from k = 4 to k = 3;

they are sampled from exponential distributions with di↵erent means. In Figure 3.10

we show comparisons between estimated and true values of parameters as a function of

the average back transition time from state k = 4. 3.10a) we plot the average Pearson

correlation for 10 independent runs, between true and estimated �
kj

parameters as a

solid line. The shaded area shows the standard deviation. The vertical dashed red

line shows the average forward transition time for k = 3. 3.10b) shows boxplots for

the average transition rate estimated from the model for a system with K = 4 and

only forward transitions. 3.10c) shows the mean di↵erences between estimated and true

probabilities averaged over 10 trajectories as a solid line and the shaded area represents

the standard deviation.

Markovian assumption Finally, in this section we investigate the latent Markov

process and consider a case where jumps are non-Markovian. We want to consider the

more realistic case that the transition time is fat tailed; therefore we choose a truncated

Student t-distribution with a variety since transition rates are positive. We sample using

the tmvtnorm package in R with degrees of freedom, df , as the varied parameter. We

perform the simulation as before, but sample transition rates from the t-distribution

with means (1/5, 1/8, 1/15) and consider a range of df parameters in tmvtnorm. The

results are shown in Figure 3.11; 3.11a) shows the mean Pearson correlation between true

and estimated �
kj

as a solid line and the shaded area constrains the standard deviation.

3.11b) shows boxplots for the average transition rate estimated from the model for a

system with K = 4 and only forward transitions. 3.11c) shows the mean di↵erences

between estimated and true probabilities averaged over 10 trajectories as a solid line

and the shaded area represents the standard deviation.

3.5.2 Large-scale simulation

Lastly we want to check how well the two-step estimation pipeline outlined in Section

3.3.3 works applied to simulated data. We simulate p = 120 genes as described above

with K = 4 states. To mirror real data where genes are on di↵erent scales, we sample

12 scale parameters �. To get to p = 120 genes for each scale parameter, we sample

10 sets of � values. All other parameters are as set out in Section 3.4. We follow the

procedure set out above and start by clustering simulated trajectories into m clusters.

Then we estimate transition rates w from cluster centroids and keep them fixed for the
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Figure 3.11: Simulation study. We simulate from a non-Markovian system, one where
average transition rates are heavy tailed. Here we sample from a trun-
cated Student t-distribution using the tmvtnorm package in R. It is trun-
cated at zero since transition rates are always positive. The transition
rates are sampled to have means (1/5, 1/8, 1/15) and we vary the degrees
of freedom df parameter in the package used. a) we show the average
Pearson correlation between true and estimated �

kj

, the mean is shown
as a solid line and the standard deviation as a shaded area. b) shows box-
plots for the for the average transition time estimated from the model for
a system with K = 4 states. c) shows the mean di↵erences between esti-
mated and true state occupation probabilities averaged over 10 trajecto-
ries as a solid line and the shaded area represents the standard deviation.
We only simulate a very small number of repeats for each parameter set
therefore the non-monotone behaviour of the error is not surprising.
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Figure 3.12: Large-scale simulation study. Results from clustering. (a) Initial step
in the estimation pipeline is use k-means clustering for p = 120 genes.
The plot shows relative change in the k-means objective function as a
function of the number of clusters: �J(m) = 1 � J(m)/J(m � 1). We
choose the optimum number of clusters m̂ such that �J(m � 1) < 0.1;
here m̂ = 13. For larger m, J(m) is small therefore relative changes have
large fluctuations. (b) Estimated transition rates as a function of the
number of cluster. Horizontal dashed lines show true values. After large
initial fluctuations, the transition rates fluctuate around the true value.
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Figure 3.13: Large-scale simulation. Stability of estimated expression signatures under
time point deletion to determine need for `1 penalization. We conclude
that estimated parameters are stable with a Pearson correlation > 0.8,
therefore there is no need for a penalty.

second step. Next we use these transition rates and estimate expression signatures �
j

independently for each gene j.

Number of states

Applying the first step, we cluster the simulated data using a k-means clustering algo-

rithm. We use the relative decrease in the objective function �J(m) to determine the

number of clusters and vary m in the range [2, 30], see Figure 3.12. The relative decrease

is smaller than 0.1 for m = 12 therefore we choose m̂ = 13. Note that for larger m the

objective function J(m) is small and we observe that �J(m) has large fluctuations due

to slight deviations in the objective function. Then we test if for this set of data penali-

sation is necessary using stability of estimated gene expression signatures under deletion

of time points. Figure 3.13 shows that for all deletions estimated parameters are stable,

therefore we conclude that there is no need for a penalty term. Then we perform a

model selection step to determine the number of states K of the latent Markov chain.

We compute the MSECV score for K = {2, . . . , 5} states, see Figure 3.14(a); we see a
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(b) Stability number of clusters
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(c) Permuted time points

Figure 3.14: Large-scale simulation. Simulation performed for p = 150 genes, 15 time
points and K = 4. Figures summarise results obtained from applying the
estimation pipeline (see Section 3.3.3) to the simulated data. (a) MSECV

score to determine optimal number of states in the model, the minimum is
at K = 4. (b) Test to determine stability under perturbation of number of
clusters m̂ is performed by examining the Pearson correlation. Estimation
is stable therefore the choice of parameters is reasonable. (c) To determine
dependence on structure of data we perform a permutation test, first by
permuting time-points of all trajectories in a coordinated fashion and then
by permuting trajectories independently. The MSECV score for permuted
data is significantly higher for all K other than K = 1 and data permuted
in a coordinated fashion perform better than independently permuted
data.
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clear minimum for K = 4 which is also the correct number of states. In the final step of

the pipeline we perform a post-estimation stability test to ensure the number of clusters

chosen is not too small (see Section 3.3.3). We compute the Pearson correlation for

expression parameters estimated with increasing number of clusters, see Figure 3.14(b).

We carry out this test for all models K = {2, . . . , 5} and the estimated parameters are

stable therefore we conclude that the choice of m̂ was a reasonable choice.

A question that arises from these results is to what extent they are indicative of

estimation if states are only estimated because the model assumes there are states in

data. One good way of addressing this question is to permute data and compare MSECV

estimated for permuted data and the original data. Here we distinguish between two

ways of permuting data: first, we perform a coordinated permutation where all simulated

trajectories are permuted in the same way. Then we perform a permutation for each

trajectory independently. In Figure 3.14(c) we show the results and we can see that with

both types of permutations the MSECV values are significantly larger than the original

data set.

Estimated parameters

One of the strengths of using simulated data is that we can compare estimated and true

parameters. Figure 3.15 shows a scatter plot of estimated � parameters against their

true values used in the simulation. The parameters are in general well estimated with a

Pearson correlation of 0.95; as the plot (Figure 3.15) shows in certain cases, despite the

large Pearson correlation, the true value of � is exactly zero but estimates are non-zero.

The first clustering step we take is crucial and has a considerable e↵ect on pa-

rameter estimation of transition rates. Hence, it is valuable to delve a bit deeper into the

first estimation step and its sensitivity to the number of clusters. Figure 3.14(b) shows

that estimated expression signatures are very stable when increasing number of clusters,

which is an important indicator of how well the the number of clusters is chosen. Figure

3.12(b) shows the three transition rates for a model with K = 4 as a function of m. The

horizontal dashed lines in the plot show true transition rates. We observe that estimated

transition rates strongly fluctuate for small m and with increasing number of clusters

amplitude of fluctuations decrease.
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Figure 3.15: Large scale simulation. Estimated gene expression signatures scattered
against their true values. To distinguish gene expression signatures for
120 di↵erent genes we represent them in di↵erent colours. Each distinct
colour represents parameters for one gene.

3.6 Discussion

We present an extension to previous work with a detailed description of the model in-

cluding its assumptions, an unbiased estimation pipeline and simulation based tests to

investigate STAMM recently proposed in Armond et al. [2014]. To address concerns

about practical application we have made computation more e�cient including the use

of parallelisation which due the two-step estimation process allows for much higher ef-

ficiency; the exploration of model behaviour under violation of underlying assumptions;

and an extension to allow for application to RNA-seq data though more on that in

Chapter 4.

Establishing and investigating identifiability in a latent stochastic model aggre-

gate over single-cells is highly non-trivial. Some relevant literature exists [Kalbfleisch

et al., 1983; Kalbfleisch & Lawless, 1984, 1985], but it is applied to panel data or the

latent stochastic model is in discrete time. Identifiability results that can directly be

applied to STAMM do not exist yet. Therefore, we present empirical results using single-

63



cell simulations and show that true parameters used during simulation can be identified.

However, it is important to understand and explore restrictions on Markov chain topol-

ogy; especially if there is potential for allowing more complex topology (e.g. including

branches or back transitions) by including additional single-cell data. This would allow

for precise experimental design in applications to ensure more details can be determined

about transformation processes.

To allow for e�cient estimation and to ensure identifiability of model parameters

a number of simplifying assumptions are made in STAMM. Of course, these assumptions

do not hold in real biological systems. To investigate capabilities and limits of STAMM

we simulated data by breaking these assumptions in turn. In summary, we find the model

relatively robust under violations of underlying assumptions, but especially transition

rates under strong violations of the assumptions are estimated badly. This leads to

the conclusion that even though state-specific gene expression signatures are often well

estimated they should serve only as hypothesis to be confirmed by experiment.

STAMM is versatile in its application as it can be used for a broad range of

transition processes and data types. Two data types we investigate in this thesis are

microarray data and RNA-seq data but it can also be applied to transcript, protein

and epigenetic time course assays. New development of cheaper bulk assays means it

is a feasible first step to study a transforming biological system. In future STAMM

could be used to identify a subset of genes important in transformation; to pinpoint cell

surface markers that distinguish states facilitating a single-cell separation; or discovery

of transition to allow for targeted single-cell experiments. Using multiple types of data

in iterative stages would allow for a step-by-step improvement in information gathered

about the system. For instance once transition rates are known estimation of expression

signatures is much more precise and vice versa. In future it would also be interesting to

relax some of the assumptions made and extend the model to allow for back transitions

using experimentally verified forward transition rates.
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Chapter 4

Oncogenic transformation

4.1 Introduction

There are a variety of possible applications for the model outlined in Chapter 3; examples

include stem cell reprogramming [Armond et al., 2014] (contributions to which are dis-

cussed in Section 5) and estrogen response of breast cancer cell lines [Casale et al., 2013].

Another example is oncogenic transformation, which is the transition from healthy cells

to cancer cells, which we discuss in this Chapter. We consider a derivative of the hu-

man epithelial MCF10A cell line where the v-Src and estrogen receptor (ER) fusion is

integrated; the new cell line is called MCF10A-Er-Src [Hirsch et al., 2010] (for brevity

in the discussion that follows we will refere to these as MCF10A). The Src oncogene is

activated by addition of tamoxifen resulting in a rapid transformation of this system.

Morphological changes on a cellular level are observed as early as t = 24h (between

t = 24h � 36h) they show the ability to form colonies in soft agar in the final trans-

formed state [Hirsch et al., 2010]. Figure 4.1 shows images taken of one realisation of the

experiment using a camera attached to a microscope; they are taken at t = {0, 24, 48}
hours at two di↵erent magnification levels (10x and 20x as indicated on the figure). The

top rows show images taken after induction of tamoxifen and morphological changes in

the cells can be observed. The bottom row shows images where no tamoxifen is added,

and as expected we don’t see any morphological changes just an increase in population

density. A comparison between the final two images of the two sets is especially revealing

as we can see cells elongated and overlapping cells in the induced system compared to

tightly packed smaller cells.

This is a very interesting system mainly because it consists of only a single per-

turbation, i.e. induction of the classical oncogene v-Src; leading to tumorigenesis and as
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Figure 4.1: During the in vitro oncogenic transformation of an MCF10A-Er-Src cell
line, morphological transformations can be observed between 24�36 hours
[Hirsch et al., 2010]. Here we show images taken of the experiment at
three di↵erent time points using a microscope without staining of cells.
The initial measurement at t = 0 hours and two subsequent measurements
at t = 24 and t = 48 hours. The magnification level for each image is
indicated in the figure. The top row shows images of the experiment where
Src is induced by addition of Tamoxifen at t = 0; the bottom row shows
images taken at the same time points without addition of Tamoxifen. It is
possible to see morphological changes at the final time point t = 48 where
after addition of Tamoxifen cells are elongated and overlapping compared
to the tightly packed structure in the system without induction. Sandra de
Vries in the Van Steensel Lab at the NKI, Amsterdam, took these images.
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such is a relatively clean setup to understand the process. Additionally it is an exception-

ally fast transformation (between t = 24 � 36 hours), which makes repeat experiments

to probe further properties of the systems for the verification of estimated parameters

easy to implement. The transformation also leads to morphological changes, which can

be observed under a microscope. Moreover, the initial state is a stable cell-line and

therefore tests or follow up experiments are easy to carry out.

In this Chapter we discuss one application of the two-step estimation pipeline of

STAMM (see Section 3.3.3). We investigate the oncogenic transformation of an MCF10A

cell line using data obtained by performing RNA-seq measurements. This experiment

was carried out especially for this work and the experimental design is summarised in

Section 4.2. In Section 4.3 we discuss pre-processing for RNA-seq starting from integer

count data to a time course to be used with STAMM. Then we present results obtained

from STAMM applied to the pre-processed data, in Section 4.4.

4.2 Experimental design

The data we analyse here was obtained by Sandra de Vries in the division of gene

regulation lead by Bas can Steensel at the Netherlands Cancer Institute (NKI). The

choice of time points was made taking the following criteria into account:

⌅ to facilitate a better understanding of the system using results from previous work

in Hirsch et al. [2010]

⌅ to have su�cient data points to work well with STAMM

⌅ the cost of each RNA-seq measurement

The experiments were performed in MCF10A-Er-Src cells, a derivative of mam-

mary epithelial cell line MCF10A containing an integrated fusion of the v-Src oncoprotein

with the ligand binding domain of ER [Hirsch et al., 2010; Iliopoulos et al., 2009]. The

cells were cultured in DMEM/F12 medium supplemented as described in Debnath et al.

[2003]. There are two starting points and for both the medium is refreshed, then a

medium containing 1µM activating tamoxifen is added and the mixture is grown to a

80 � 85% confluency population, and induced and uninduced samples were harvested

at the time points 0h, 0.5h, 1h, 2h, 4h, 6h, 8h, 10h, 12h, 24h, 28h, 32h and 48h for

RNA isolation. The second series is started when the first one is at 8h and samples

are collected at 0h, 2h, 4h, 16h, 18h, 20h, 24h, and 40h. Time points are collected as

follows: wash with PBS; add 2ml Trizol resuspend thoroughly and store at �80�C. The
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tamoxifen stock was made by dissolving 5mg in 12.9ml 96%EtOH, to make 1mM stock.

We did not send all the samples to the microarray facility, only the following (due to

cost considerations):

1st series: 0h, 0.5h, 1h, 2h, 4h, 6h, 8h, 12h, 16h, 20h and 24h

2nd series: 0h, 24h, 32h, 40h and 48h

The RNA was isolated by the Trizol method, and prepared for sequencing by the Illumina

RNA TruSeq sample protocol.

4.3 Pre-processing data

As described in Section 2.3.2, RNAseq data obtained from samples results in integer

counts for genes corresponding to the number of times a sequenced strip belongs to

a particular gene. To ensure that we are able to compare samples from di↵erent ex-

periments in di↵erent setting the first step is normalisation. Many methods exist to

normalise sequencing experiments. We pre-process the data using the edgeR package

in R [McCarthy et al., 2012; Robinson et al., 2010]. One important assumption is that

most genes are not di↵erentially expressed between samples. To determine genes that are

not di↵erentially expressed the procedure uses a robust estimate for the ratio of RNA

between samples: the weighted trimmed mean of M values (TMM). Two parameters

are employed to filter out genes that are di↵erentially expressed namely: the M-values

(log-fold-changes) and the A-value (absolute expression levels). The cut-o↵ for both the

M-value and the A-value is tuneable and the best way to set the tuning parameters is to

select a range of cut-o↵ parameters and determine when they stabilise (see Appendix B).

It is important to remember that edgeR was developed to analyse di↵erential expression

[Robinson & Oshlack, 2010], still the assumptions are also applicable to time course data

such as the data set for the oncogenic transformation. Note without this step it is not

possible to compare data from di↵erent samples.

After the first pre-processing step we still can’t use the data in our model because

the likelihood is based on an additive Gaussian noise model (eqn. (3.2)). For RNA-seq

data, once it has been normalised, the next pre-processing step is to transform the data

such that distorting e↵ects at high expression values are reduced. We use a nonlinear

transform proposed by Ho↵man et al. [2012] the arcsinh x = ln(x +
p

(x2 + 1)). The

advantage of using this transformation over the more regularly used ln x is that it has

the same e↵ect of reducing variance at higher values but a much smaller e↵ect at lower

values. After applying these two pre-processing steps, we can use this data in our model.
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4.4 Results

The data obtained uses RNA-seq to examine changes in gene expression during this

transformation time-course with T = 13 time points1. According to the assumption in

our model all cells are in the initial state at t = 0. Here, by experimental design, the

initial state consists of the derivative MCF-10A-Er-Src cell line. More specifically the

time point t = 0 corresponds to the initial treatment with tamoxifen an anti-oestrogen

drug that binds to ER activating v-Src. Of course, this is only the case excluding any

unidentified epigenetic heterogeneity in the initial cell culture. Therefore, it is reasonable

to assume that the cell population is approximately homogeneous and comprised mainly

of untransformed MCF-10A cells.

We want to focus our investigation only on genes that change during the exper-

iment. To that end we define �
j

as the standard deviation of the time course for gene

j. We filter out all genes j where the standard deviation �
j

is too small, setting the

threshold at �
j

> 20 (on the linear scale, over time). We remain with p = 2809 gene

expression trajectories to which we apply STAMM. We carried out parameter estimation

as described in Section 3.3.3 using a two-step process. The initial step is to perform a

stability test, determining the need for a penalty term by comparing estimated expres-

sion signatures from the whole data set and one with left out time points. We conclude

from the results in Figure 4.2 that there is no need for a penalisation. The next step is

to cluster the data using k-means clustering where we want to use cluster centroids to

estimate transition rates in the next step. We conclude from Figure 4.3 that the optimal

number of cluster m̂ is 13. We use this result to perform model selection using cross-

validation for k = {1, . . . , 5}. We find that the MSECV score shows a minimum at K = 4

states (see Figure 4.4(a)). This would suggest two distinct intermediate states in the

oncogenic transformation of MCF-10A cells. Figure 4.5(a) shows a representative set of

trajectories from RNA-seq data in green and the blue lines shows predicted trajectories

using estimated parameters. Overall, we find that the model performed well and fits

even diverse trajectories well. State-specific gene expression signatures corresponding to

these trajectories are shown in Figure 4.5(b). These values show distinct patterns that

would allow for filtering out surface markers distinguishing states. The final step of the

estimation pipeline is to check sensitivity of estimation due to an increase in the number

of clusters m. This test is performed by computing the Pearson correlation between

expression signatures estimated using m̂ clusters and higher numbers of clusters. Figure

4.4(b) shows the Pearson correlations as a function of m for K = 3 and K = 4 and we

1t = {0, 0.5, 2, 4, 6, 8, 12, 16, 20, 24, 32, 40, 48h}, at t = 0 and t = 20 we have a repeated measurements
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Figure 4.2: The RNA-seq measurements are filtered with respect to standard deviation
(we filter out genes with �

j

> 20 before transformation) because we are
interested in genes that change significantly in time. This plot scatters es-
timated expression signatures using all time points against estimates where
one time point is dropped. This tests stability of estimates to determine
need for `1 penalisation under deletion of time points. The estimates are
stable (Pearson correlations is > 0.8 therefore we conclude that there is no
need for a penalty term.
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Figure 4.3: K-means clustering of in vitro data for the transformation of an MCF10A
cell line. Initial k-means clustering is performed to identify representative
trajectories. As described in Section 3.3.3 we choose the optimal num-
ber of clusters m̂ by considering relative changes in the objective func-
tion �J(m) = (J(m � 1) � J(m))/J(m � 1); we choose the first m with
�J(m�1) < 0.1. The plot shows �J as a function of m and the horizontal
dashed line represents our threshold at 0.1. For this example we can see
that the m̂ = 13. Note that fluctuations in the value of �J at higher m
are due to small values of J(m).
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(b) Stability of number of cluster

Figure 4.4: MCF-10A data. (a) MSECV score as a function of K. The minimum at
K = 4 shows the optimal number of states for this oncogenic transfor-
mation. (b) To determine if the choice of m̂ in the k-means clustering
algorithm was chosen correctly a stability test is performed. Pearson cor-
relations are calculated between expression signatures estimated between
the m̂ used and larger m. Here we find the clustering is close to one for
K = 3 and K = 4 therefore the choice is reasonable.

find that the estimates are stable and therefore m̂ was chosen well.

This concludes the application of STAMM to the RNA-seq time course for an

oncogenic transformation. The example illustrates that the application of the model to

novel RNA-seq data can be carried out e�ciently. However to investigate and validate

of the intermediate states further experiments are needed since the current time-course

is biologically not viable for further study (see discussion below) this has to be left as

future work.

4.5 Discussion

We applied our estimation pipeline (see Section 3.3.3) to time course data obtained by in

vitro experiments for oncogenic transformation of a MCF-10A cell line. The system has

many fascinating properties, the fact that it undergoes a rapid state transition between

phenotypically distinct states makes it a very useful system to study. Even though the

driver for the transformation is one of the most well studied oncogenes, there are still

many open questions about epigenetic and genetic changes during this process as well

as general oncogenic transformations. Note that due to a mycoplasm infection in the

cells used for the in vitro study substantive biological conclusions can be drawn only
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(a) Gene trajectories
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Figure 4.5: MCF-10A data. (a) The green line connects data points from measure-
ments on the oncogenic transformation of MCF-10A cell-line. The blue
line shows predicted trajectories from the model using estimated parame-
ters. We can see that the model fits the trajectories well since the data is
a single realisation of a noisy measurement. (b) The estimated �

kj

values
for the trajectories are plotted here as bar charts. We can see that there
are diverse expression signatures present in the data.
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with extreme caution. Additional experiments are needed to verify the validity of this

time-course data set.

The main goal of this application was to illustrate that STAMM can be applied

to RNA-seq data and can potentially provide useful results. However, in future due

to the clean and relatively rapid transformation in the system, it will very useful in

validating some claims from the model. It would also serve well as an example system,

to extend the model to include verification steps after an initial application followed

by application of a more detailed model. If it is possible to find surface markers that

allow us to distinguish specific states, it should also be possible to obtain more detailed

information on the latent process i.e. measure transition rates between states and maybe

include backward transition to obtain more precise estimates for state-specific expression

signatures.

Model selection for k = {2 . . . 5} and estimation for all parameters for the RNA-

seq dataset was performed after applying threshold on the expression count leaving us

with p = 2809 genes. Computation took 3.8 hours on 50 cores each with an AMD

2600MHz cpu.
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Chapter 5

Stem cell reprogramming

5.1 Introduction

Another application of the STAMM model is the description of reprogramming of so-

matic cells to a pluripotent state as investigated in Armond et al. [2014]. In the experi-

mental setup a secondary mouse embryonic fibroblasts (MEFs) is used and transformed

to a state of pluripotency [Takahashi & Yamanaka, 2006; Jaenisch & Young, 2008].

More specifically we apply the model to genome-wide microarray gene expression time-

course data obtained by Samavarchi-Tehrani et al. [2010]. This transformation system

has received a lot of attention and has been extensively studied in recent years; it has

been suggested that the reprogramming process is inherently stochastic [Hanna et al.,

2009]. Progress has also been made on single-cell investigations of the biological sys-

tem [Buganim et al., 2012]. Questions still remain on genome-wide level, including the

number of intermediate states between the initial MEF state and the final pluripotent

state.

In this Chapter we start by briefly outlining results obtained by Armond et al.

[2014] when applying STAMM to a microarray data set in Section 5.2. Then (in Section

5.3) we discuss the main contribution in detail which is a comparative study of param-

eters obtained from STAMM and single-cell experiments performed by Buganim et al.

[2012]. The single-cell data was obtained by a new kind of experimental technique called

a Fluidigm assay. This also illustrates an example of a possible next step in investigat-

ing a biological system once parameters from STAMM have been obtained. The main

contributions to this work are:

⌅ Computational including verifying model selection results for both approaches

(see below), comparison of multiple hyperparameters for Bayesian model selection
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and testing underlying structure of data.

⌅ Comparison where estimated parameters from the model are compared to single-

cell measurement.

5.2 Results from STAMM

5.2.1 Di↵erences in estimation

The initial step before we can make a comparison to single-cell results is to apply STAMM

to the microarray time-course; obtaining single-cell level parameters and the number

of states K. In Armond et al. [2014] there are di↵erences in the estimation pipeline

compared to the one outlined in Section 3.3.3, here we highlight the main di↵erences

during which we try to stay faithful to the notation used in Armond et al. [2014] for ease

of comparison.

The most important idea of a two-step estimation process is shared in both setups.

The first di↵erence is that the optimal number of clusters m̂ is chosen by observing a

plot of the k-means objective function; m̂ is selected when an increase in the number of

clusters does not significantly improve the objective function. The penalty for estimation

used to regularise estimation in eqn. (3.7) is set to a small positive number (in this

application set to � = 0.1). Estimation of transition rates {w} is performed on genes

closest to cluster centroids, instead of the cluster centroids themselves; then transition

rates are fixed and estimation of expression signatures �
kj

is performed in the same

way. Finally estimation of the number of states K̂ is approached in two separate ways.

The heuristic approach is to look at two quantities the model fit, i.e. the residual sum-

of-squares (RSS), and the distinctness for individual state signatures quantified by the

condition number C = max(s
i

)/min(s
i

); where s
i

are the singular values of a matrix

made up of the expression signatures. To find the singular values of a matrix A we need

to compute the orthogonal matrices U and V and the matrix D such that A = V D UT ,

where D is a diagonal matrix with its entries corresponding to the singular values. The

other approach for finding an optimum number of states is employed for genes closest

to centroids using ideas from Bayesian model selection. Let y = {y
j

} denote observed

data and M
K

the model with K states, we use this notation to distinguish models as

the number of states describes the latent process which is an important distinction in

the mathematical description between models. The posterior probability is P (M
K

|y) /
p(y|M

K

) with a flat prior distribution over models. The marginal likelihood p(y|M
K

)

accounts for the fit-to-data and model complexity. Writing all model parameters as
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✓ = (�
kj

, {w}, {�
j

}) the marginal likelihood is:

p(y|M
K

) =

Z
p(y|✓,M

K

) p(✓|M
K

)d✓. (5.1)

The marginal likelihood of the model eqn. (5.1) is computed using annealed

importance sampling (AIS) [Neal, 2001]. Hyperparameters for this model are set by

hand to reasonable values, see Supplement of Armond et al. [2014] for details. The

normalised score obtained for the marginal likelihood is the posterior probability for the

number of states.

5.2.2 Estimation results

The primary data used in Armond et al. [2014] is obtained by reprogramming of a

secondary mouse embryonic fibroblast (MEF) where Oct4, Sox2, Klf4, and cMyc are

expressed under induction in the system for 30 days [Samavarchi-Tehrani et al., 2010].

Microarray measurements were made at t = {0, 2, 5, 8, 11, 16, 21, 30} days after induction

of expression factors. The microarray data is standardised per gene such that y
j

(t) =

(z
j

(t)� µ
j

) /�
j

, where z
j

(t) is original log2 transformed data, µ
j

is the mean and �
j

is the standard deviation of the time course data for gene j. A total of 4383 genes are

retained out of the whole gene list after filtering out genes with small mean and standard

deviation in their expression over time, as a way of removing uninformative genes. First

we rank genes in order of their mean value and remove genes in the bottom quartile

the remaining set we order by their standard deviation and remove genes in the bottom

quartile of standard deviation.

The number of clusters chosen for this data set of 8 time points is m̂ = 7. As

mentioned above, the penalty used in this application is � = 0.1. With these parameters

set, the transition rates are estimated from cluster representative genes. Once transition

rates are fixed, the expression signatures for the remaining genes are estimated. The

analysis is carried out for K = {2, . . . , 5} and results for model selection are summarised

in Figure 5.1. Unsurprisingly the RSS keeps decreasing for increasing K (Figure 5.2(a))

since numbers of model parameters increase. To determine optimal number of states

heuristically, we compare these results with the condition number (Figure 5.2(b)). We

find that the di↵erence in condition number from K = 4 to K = 5 is larger than the

preceding changes. This suggests that decrease in RSS from 4 to 5 states is mostly due

to overfitting and the additional state is not distinct. The posterior probabilities form

Bayesian model selection for 7 genes closest to the centroid (see above for details), are

shown in Figure 5.2(c). Combined, these results indicate that a K̂ = 4 since it strikes a

77



●

●

●

●

150

200

250

2 3 4 5
No. of States, K

R
SS

(a) RSS

2

3

4

5

6

7

2 3 4 5
No. of States, K

C
on

di
tio

n 
nu

m
be

r, 
C

(b) Condition number

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5
No. of States, K

Po
st

er
io

r p
ro

ba
bi

lit
y

(c) Posterior probability

Figure 5.1: Application of STAMM to a microarray time-course (a) Plot of the model
fit residual sum of squares (RSS). (b) Plot of the condition number for esti-
mated expression signatures quantifying linear dependence between states.
A larger number corresponds to more dependence. (c) Posterior probabili-
ties obtained from Bayesian model selection (see Section 5.2.1 for details).

good balance between model fit and distinct expression signatures for states as well as

having the highest posterior probability.

5.3 Testing against single-cell data

5.3.1 Single-cell experiment

Results in Section 5.2.2 are obtained analysing homogenate time-course data; but the

transformation process itself takes place on a single-cell level therefore obtaining data

single-cell level and studying the behaviour is tremendously valuable. Comparing results

from STAMM to single-cell observations also indicates how well the underlying single-cell

process is modelled. For this purpose we investigate the mRNA single-cell expression

performed by Buganim et al. [2012]. They also investigate a secondary MEF system

reprogrammed by transduction of Oct4, Sox2, Klf4, and cMyc; obtaining data with the

Fluidigm assay, resulting in 96 single-cell measurements with gene expression from 48

genes. Observations are made in populations, starting with MEFs, over cells at 2 � 6

days during reprogramming, to the final reprogrammed cells.

5.3.2 Comparing results

The single-cell measurements [Buganim et al., 2012] allow for analysis that has not

been possible for population average data. Although important questions about the
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(c) Bayesian model selection

Figure 5.2: Random permutation of time points. The time points of data are randomly
permuted ten times and parameter estimation is carried out for each case.
(a) shows the RSS as a function of the number of states. (b) shows the con-
dition number a measure for the independence of state-specific expression
signatures. In (a) and (b) the solid red line show parameters for the original
data and the dashed line represents the average of ten estimates and the
dashed area represents a standard deviation. (c) shows posterior probabil-
ities as a function of number of states calculated using Bayesian methods
(see Section 5.2.1 for details), results from ten estimations are summarised
as box plots. For both RSS and condition numbers randomised data per-
forms worse for all states. Bayesian model selection for the permuted data
shows no indication that there are intermediate states. The data-set we
use is obtained from [Samavarchi-Tehrani et al., 2010].

79



●

●

● ● ●

−117500

−115000

−112500

−110000

1 2 3 4 5
states

B
IC

Figure 5.3: Single-cell expression levels in di↵erent experimental settings from
Buganim et al. [2012] are clustering using a standard clustering proce-
dure in R called mclust. We use the Baysian Information Criterion (BIC)
to score di↵erent cluster sizes. We find the optimal number of clusters to
be 3 since the BIC score decreases for larger cluster sizes. This is di↵erent
from the results presented in the paper which suggests 4 states using a less
robust clustering algorithm. This test was performed to check how reliable
the results are using di↵erent methods for clustering.

transformation process such as the number of states and transition rates still remain

di�cult to track down (due to the fact that each time a single-cell measurement is made

the cell has to be destroyed and additional work is necessary to determine distinctive

markers for known states for purification) it builds a solid point of comparison for results

estimated using STAMM.

Given available data we can address interesting questions on expression patterns;

since we assume that cells belonging to the same states would have a comparable expres-

sion patterns across observed genes. This is especially the case since measured genes are

deemed important for reprogramming. To this end we cluster the data for all cells in a 48

dimensional gene expression space. To perform the clustering we use a widely available

clustering tool in R mclust; it employs a variety of multi-variate clustering methods

and scores them using the Bayesian Information Criterion (BIC). The best performing

method is shown in Figure 5.3. We find that optimal number of clusters is 3 since the

BIC score starts decreasing for larger cluster sizes. Buganim et al. [2012] suggest four

clusters which they obtain using principle component analysis, which depends heavily

on initial normalisation between samples.

Next, we try to determine if state specific expression signatures, estimated from
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microarray data, can be compared with this new single-cell data. Disregarding conditions

for each cells measurement we assign each of the single-cell measurements to each of the

states in the K = 4 model. Since measurements are performed on di↵erent systems as

well as a using di↵erent procedures we scale pre-processed data to be in the interval

[0, 1] by dividing the expression for a gene by its maximum expression over time. Then

we compute the euclidean distance between gene expression on a single-cell level and

estimated gene expression signatures and assign each cell to a specific state. The heatmap

in Figure 5.4 shows fractions of cells that are assigned to each state. All MEF conditions

have a peak at K = 1. Measurements obtained between t = 2 and t = 44 days are spread

over state K = 1 and K = 3 with very few cells also in the second state. We do not

find any cells, which have measurements close to the final state. Measurements for dox-

independent and iPS cells occupy only the final two states. These results clearly show

a transformation starting with MEF state and undergoing changes across intermediate

states before reaching the final reprogrammed state. Of course, this is a very small study

and studies made on a slightly di↵erent system under di↵erent conditions, therefore even

the approximate similarities we find to our estimated parameters are promising.

5.4 Discussion

We showed how STAMM can be applied to the transformation of di↵erentiated cells from

MEF to iPS cells with the help of reprogramming factors. The data used for the first

part of the analysis was a population averaged microarray time-course. We outlined the

procedure used in Armond et al. [2014] highlighting di↵erences to the estimation pipeline

introduced in Section 3. We present results from fitting STAMM to the data and we

find that a four state model best describes stem-cell reprogramming, which has also been

corroborated by previous experiments [Samavarchi-Tehrani et al., 2010]. Additionally

we showed that data indeed has underlying structure that can be described by STAMM.

To test this we performed estimation for ten samples with randomly permuted time

points and compare RSS scores, condition number and Bayesian model selection. We

found that RSS and condition number are always lower for the original data than the

permuted data. The Bayesian model selection result show a very high concentration at

K = 1 states for the permuted data compared to a high concentration at K = 4 for the

original data. Both results hint that the model is approximating an underlying structure

in the data, as fits with permuted data are systematically worse.

We also compared model predictions from STAMM to the single-cell data, ob-

tained in a di↵erent secondary MEF experiment measuring 48 genes for 96 single-cells
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Figure 5.4: Estimated gene expression signatures using STAMM are compared with
single-cell measurements, performed by Buganim et al. [2012]. Each single-
cell is assigned to a state by finding minimum euclidean distance. The
heatmap summarises the fraction of cells from each experimental condition,
assigned to specific states. Di↵erent conditions show a clear preference for
specific states. Predictions from our model are in line with this observation
where initial MEF states undergo a transformation via intermediate states
to a final reprogrammed state. As an example all MEF populations (top
three entries) have a significantly higher fraction of cells in K = 1. Cells
measured between t = 2 and t = 44 days have cells that spread across the
first and third state, with very few cells occupying the second state. None
of these cells are close to the final state. The two measurements which are
reprogrammed cells (iPS cells and Dox. indep.) show similarities to K = 3
and K = 4, but none of these cells are close to the first two states.
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[Buganim et al., 2012]. We used a standard clustering tool and determined only 3 states

in the data which can either mean that there is not su�cient information available or

that intermediate states are characterised by genes not measured in this experiment. If

we map single-cell measurements at di↵erent time points to gene expression signatures

we find that single-cells measured at di↵erent times are close to the states predicted by

our model at those times. These results are encouraging but for them to be conclusive,

as mentioned above, we would need to carry out further experiments.
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Chapter 6

Cell cycle

6.1 Introduction

In STAMM an important assumption is that the initial cell population is homogeneous.

For the applications we discussed in previous Chapters, this assumption is likely to be

fulfilled as experiments are designed to ensure initial homogeneity. In the case of the

oncogenic transformation, a cell line is used as the initial cell population. In the case of

stem cell reprogramming the technique outlined by Hanna et al. [2009] tries to ensure

initial homogeneity by using a secondary MEF cells.

Recently it has been shown that even seemingly homogeneous cell populations

exist in inherent mixtures, be it at an epigenetic level [Heng et al., 2009; Gerlinger et al.,

2012]. Without knowing the distribution of the initial population it is not possible to

apply STAMM to determine individual states as the solution to the master equation

would be incomplete (see eqn. 3.4 and eqn. 3.5). In this Chapter, we outline a model

that answers the question: What e↵ect does the initial cell population have on cell fate?

An example of such a biological system is one with an initial heterogeneous cell

population made up of two types of cells, with an indistinguishable phenotype. At time

t = 0 the cells receive a stimulus leading to a transformation such that at t = T it is

possible to distinguish cells in their final cell fate. It is possible to count the fraction of

cells that reach each of those final cell fates. The question of interest here is whether the

strength of the stimulus has an e↵ect on the fraction of cells in each cell fate and how cell

fate is related to the expression level of individual genes. A schematic of such a system

is shown in Figure 6.1. As the two cell populations have a di↵erent stimulus response

and we are interested in the influence of gene expression on the response, individual

genes influential in determining cell fate are deemed important if their expression level
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Stimulus 
strength, 

Figure 6.1: Schematic of model. A heterogeneous cell population (the source of het-
erogeneity is unknown) is at rest at t = 0, at which point it is perturbed
by an external stimulus of strength r; evoking a transformation such that
two distinct populations form at a later time t = T . At t = T it is possible
to count the number of cells in di↵erent states.

is significantly di↵erent between cell populations at t = 0.

The idea for this model arose from discussions with the Medema lab at the

NKI and was originally motivated by their interest in cell cycle biology. The possible

experimental application for this model was not ready in time for this thesis therefore

all simulation parameters are merely chosen to ensure a full range of stimulus response

starting from very few cells responding to a weak stimulus, after which the stimulus

is increased until all cells respond and share the same cell fate at t = T . The chosen

parameter might not bear resemblance to their counterparts in a real biological system;

but this model serves as a proof of concept and as long as the basic principles hold, it

can be applied to a real system.

We start this Chapter in Section 6.2 with the basic concepts, introducing variables

and deriving behaviour of such a system followed by the derivation of a model that can

be used to estimate parameters given possible measurements on the system. After that

we set up a simulation procedure in Section 6.3. Finally in Section 6.4 we present results

using simulated data, first with only one gene and then with four genes.

6.2 Formal system description

6.2.1 Setup

Suppose at time t cell i (out of N cells) occupies state X(i)
t

; where state here broadly

refers to any aspect of the cell’s physical configuration. This can include protein profile,
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transcription, or its chromatin state. Denote ultimate cell fate at t = T for cell i by Z
i

.

Cell fate Z
i

is determined experimentally by enumerating cells in distinguishable states at

t = T . In the simplest case cells can have two distinct final states; we label the two states

Z
i

= 0 and Z
i

= 1. We expect the process that determines cell fate to have a stochastic

component such that two cells that appear identical under simple measurements at t = 0

can end up in distinct final states. Hence we assume the probability that cell i is in state

Z
i

= 1 at t = T depends on two things:

⌅ The physical state of cell i at t = 0, X(i)
0 .

⌅ The dose of the stimulus, r.

We assume that the fraction of cells that reach the arrested state changes with

the strength of the stimulus. The fraction of cells that reach cell fate Z
i

= 1 is dose

dependant and the measured fraction at t = T is denoted by ⇡(r).

6.2.2 Model

First, we will set up the model in a general sense to give a birds-eye view of the system

we are attempting to study. After that, we will derive from this picture the specific

model, which is applicable to data that can be realistically observed. In this Chapter,

focused on concepts, it is important to first outline overall ideas to ensure the actual

model can be fully explained.

We start with formalising the variables. Set the expression of gene j in cell i

measured at time t under stimulus strength r to X(i)
jt

(r). In the first instance we are

only going to consider one gene therefore we initially drop the subscript j to make the

derivation clearer. When we are referring to measurements at t = 0 they are independent

of the stimulus, therefore we write X(i)
0 (r) = X(i)

0 . The probability of observing a gene

expression conditional on the strength of the stimulus can be written as a combination

of distinct populations present:

p(X(i)
t

|r) = p(X(i)
t

, Z
i

= 1|r) + p(X(i)
t

, Z
i

= 0|r) (6.1)

= p(X(i)
t

|Z
i

= 1, r) p(Z
i

= 1|r) + p(X(i)
t

|Z
i

= 0, r) p(Z
i

= 0|r). (6.2)

Now the expected value for the expression, conditional on the strength of the stimulus,

can be calculated using the results of eqn. (6.2) as:
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E[X(i)
t

|r] =

Z
X(i)

t

p(X(i)
t

|r)dX(i)
t

(6.3)

= p(Z
i

= 1|r)
Z

X(i)
t

p(X(i)
t

|Z
i

= 1, r)dX(i)
t

+

+ p(Z
i

= 0|r)
Z

X(i)
t

p(X(i)
t

|Z
i

= 0, r)dX(i)
t

.
(6.4)

Introducing the new variable ⇡(r) = p(Z
i

= 1|r), and for a two state system naturally

1� ⇡(r) = p(Z
i

= 0|r) we rewrite eqn. (6.4)

E[X(i)
t

|r] = ⇡(r) E[X(i)
t

|Z
i

= 1, r] + (1� ⇡(r)) E[X(i)
t

|Z
i

= 0, r]. (6.5)

To simplify the notation and write a general equation for a system of this type we rewrite

the expected value of the gene expression level for cells in state Z
i

= 1 and Z
i

= 0 as

↵(r) = E[X(i)
t

|Z
i

= 1, r] and �(r) = E[X(i)
t

|Z
i

= 0, r] respectively and write:

E[X(i)
t

|r] = ⇡(r) ↵(r) + (1� ⇡(r)) �(r). (6.6)

In the biological system described above gene expression is measured at t = 0 and is

independent of the applied stimulus since it is only applied at the initial time point.

Therefore we define the expected value of measured expression reintroducing gene j,

E[X(i)
t=0|r] = X0, as:

X0j = ⇡(r) ↵
j

(r) + (1� ⇡(r)) �
j

(r). (6.7)

The system is now fully described, potential measurements that can be made here

are the average expression levels of genes at t = 0, X0j and the fraction of cells in state

Z = 1 at time t = T . On account of the lack of information about the variables ↵(r) and

�(r) or their distribution, estimation using eqn. (6.7) is not feasible. Therefore, below

we formulate a procedure to estimate parameters that would allow us to determine genes

that significantly influence the transition between states under a stimulus.

Estimation

We start by defining the fraction of cells in state Z
i

= 1 at t = T , note that the

derivation in the following few lines is equivalent for cells where Z
i

= 0. We will perform

the detailed calculation for only one case. Here it is also easier to use X0 as a vector

notation for X0j
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⇡(r) ⌘ p(Z
i

= 1|r) =

Z
p(Z

i

= 1|X0, r)p(X0|r)dX0 (6.8)

=

Z
f(X0; r, ✓)p(X0|r)dX0, (6.9)

where in eqn. (6.9) we have replaced p(Z
i

= 1|X0, r) by a general parametric function

of the gene expression dependent on the stimulus and a set of parameters ✓, f(X0; r, ✓).

Since p(X0|r) is the probability distribution of gene expression at time t = 0 over all

cells a good approximation to this process is the exponential distribution as genes are

expressed continuously independently from each other at a constant rate. The parameter

�
j

of the exponential distribution can be set to the measured gene expression for gene j

at t = 0 and will be di↵erent for every gene. Therefore we can rewrite eqn. (6.9) as:

p(Z
i

= 1|r) = E[f(X0; r, ✓)]
Exp(�j). (6.10)

The expression in eqn. (6.10) is general and allows for an expression depending on the

problem being investigated. Obtaining a closed form solution of the expectation value

is only possible for special cases. For the biological system we present below there is

no closed form solution. Hence, we propose a numerical approximation using a Monte

Carlo integration. We can therefore write:

⇡(r) ⇡ 1

N

NX

n=1

f(X(n)
0 ; r, ✓), (6.11)

where each component of the vector X
(n)
0 is sampled from the exponential distribution.

In each case, it has to be considered if a simple application is su�cient, or if there is

need for a more involved algorithm. To identify the optimal set of parameters in the

estimation we perform a grid search over all parameters and compare the residual sum

of squares (RSS) between observation and estimation using eqn. (6.11).

Application to the cell cycle

A biological system where the model described above could be applied to is cell cycle

arrest due to radiation. The system is quite simple a population of cells is exposed to

varying levels of radiation starting at t = 0. The expression level of these cells is measured

using RNA-Seq. At a later time t = 2h cells reach two possible states: (i) arrest leading

to cell death, or (ii) the cell still has the ability to enter cell cycle and replicate. The

88



fraction of cells in either state can be counted at t = 2h. In this application, increasing

the dose of radiation of course decreases the number of cells that can re-enter the cell

cycle. It is of interest to distinguish discriminatory factors for both cells that determine

ultimate fate of a cell.

In this application we have a few simple relationships that our choice of f(X(n)
0 ; r, ✓)

has to obey. Below a certain radiation threshold the e↵ect of radiation will be negli-

gible, and above a certain radiation threshold almost all cells will arrest. Under such

constraints, the best choice is a sigmoid of the form:

f(X(n)
0 ; r, ✓) =

1

1 + exp(�r aTX(n)
0 + b)

, (6.12)

where a and b are parameters of the sigmoid to be determined from estimation. A large

negative or positive value in a for a gene means it has a larger influence on transforma-

tion.

6.3 Simulation

The simulation setup we choose for this model is based on a single-cell level approach

which we employ in Section 3.4 obtaining very useful results. The first step is to simulate

gene expression for each gene and a fixed number of cells; this is sampled from an

exponential distribution for each gene Exp(�
j

). Then the probability of being in state

Z
i

= 1 is determined using eqn. (6.12) based on expression levels of all genes involved

and fixed radiation value and parameters a and b. Drawing a value uniformly at random

in the range [0, 1] determines for each cell if it is in the arrest state. Using this final

state vector we can determine ⇡(r). Measurements for such a system will be limited

so we repeat these simulation steps for only 9 values of r. Since in a real experiment

measurements of fraction of cells will be noisy, we add Gaussian noise to the fraction of

cells observed with zero mean N (0, �), .

6.4 Results

6.4.1 Single gene simulation

Initially we perform the simulation and estimation with only a single gene. This is to

determine whether or not it is possible to estimate parameters for the simplest possible

case. We perform simulations for 1000 cells for one gene with Exp(�
j

= 5) at r =

{0, 0.1, 0.5, 1, 2, 3, 5, 6, 10}. The sigmoid parameters are chosen as a = 2 and b = 5. To
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Figure 6.2: Single cell simulation for one gene. Plots show the states of cells at di↵erent
expression levels after exposure to radiation r for t = 2h. Each figure
represents a di↵erent dose of radiation r. The y-axis shows expression
level and the x-axis is just an index over 2000 cells which are used in the
simulation. State Z

i

= 0 is the normal state of the cell and state Z
i

= 1 is
when cells enter the arrest state.

visualise the single cell simulation behaviour Figure 6.2 shows the states occupied at

t = 2h by 1000 cells at di↵erent radiation doses. The y-axis in the plot represents gene

expression transformed for convenience to arcsinh(X0). Once we have obtained values

for ⇡(r) from this setup we add two levels of Gaussian noise � = {0.025, 0.05, 0.1}. Since

the measured quantity is in the range [0, 1] this is a reasonable level of noise, ranging

from 2.5% to 10% of the simulated trajectory. Finally we choose a grid for b over the

interval [0, 10] and a over the interval [0, 4] and find the minimal RSS. The results from

these estimations are summarised in Table 6.1. We see that for � = 0.025 the estimates

are very close to the true values used in simulation. At higher noise, the estimates

become progressively worse, but the parameter order is still preserved.
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true value � = 0.025 � = 0.05 � = 0.1
a 2 1.655 1.124 0.828
b 5 4.483 3.448 2.759

Table 6.1: Estimation of a and b parameters from simulated data. Data is obtained by
adding Gaussian noise to the simulated trajectory with di↵erent � values.

6.4.2 Simulation with multiple genes

Just performing simulation using a single gene only serves to show the simulation pipeline

and as a first test to determine if the model will work. If we wish to determine how

well the proposed model will serve in a realistic application it is necessary to expand

the simulation to include multiple genes, otherwise the model is not useful. To this end

we implement a simulation with 4 genes. Just like above we perform a simulation with

1000 genes measured at r = {0, 0.1, 0.5, 1, 2, 3, 5, 6, 10}. We choose the parameters as

follows b = 5 and a = [1, 5, 10, 0.2] and the mean gene expression for each gene is drawn

uniformly between [0, 20]. To estimate parameters we apply a grid over all parameters

calculating the integral eqn. (6.11) with the Monte carlo approximation and find the

parameter set that minimises RSS. This is of course a very ine�cient method, and with

increase in parameters, the grid search quickly becomes unfeasible. A more sophisticated

implementation of parameter selection is necessary for a realistic application. We repeat

this simulation 10 times with independently drawn over expression and we repeat this

for two di↵erent standard deviations of noise added to the fraction of transformed cells

0.05 and 0.1. Figure 6.3 shows the results for both noise levels and we can see that for

lower noise the estimation works well and parameters are estimated in the right order.

For larger noise, this is already di�cult and some parameters are estimated well and

some are not.

6.5 Discussion

We derived the model starting from general biological principles including a description

of the system. We introduced one possible application for this model in a radiated cell

population either stopping cells in cell cycle or only temporarily halting the cell cycle. In

such an experiment, we wanted to find the importance of genes for the transformation.

In this model, there is one parameter that determines the importance of genes. The

higher the value for a gene the more important that gene is in transformation. We

showed in simulation that we can obtain parameters even when we add large amounts
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Figure 6.3: Simulation study. Ten simulations carried out with four genes. The ex-
pression for genes in each cell are sampled from an exponential distri-
bution with the mean chosen uniformly between [0, 20], stimuli used at
r = {0, 0.1, 0.5, 1, 2, 3, 5, 6, 10}. Parameters for the simulation is chosen as
b = 5 and a = [1, 5, 10, 0.2] for the simulation. (a) is the simulations with
Gaussian noise added at � = 0.05. The estimated parameters are ranked in
the correct order. (b) is the simulation performed where additive Gaussian
noise has � = 0.1. Here parameter estimation is worse, but not unexpected
since the noise added is at 10% of the observed data values.
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of noise to the simulated data in a single gene scenario. With limited observations made

on the system (the initial gene expression and proportions of cells reaching a specific cell

fate for di↵erent stimuli) we are interested in finding out if the level of expression of a

gene influences cell fate. It will not be possible to estimate exact parameter values. We

show that it is possible to obtain ranks of genes using this model.

For a real application, further work is needed. Only with real data comparison

is it possible to determine if the choices made for parameters during simulation are

reasonable and if simulated state fractions are realistic. Further work is also needed to

implement a more useful parameter search instead of the crude one implemented at the

moment. Once it can be compared to data, it will also be possible to refine the model if

needed.
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Chapter 7

Discussion and Outlook

Advancements in measuring population level transcription, proteomic abundance and

epigenetic information cheaply, has led to widespread application of these methods.

Additionally, techniques for measurements on a single-cell level have also been developed

in more recent years [Wheeler et al., 2003; Dalerba et al., 2011; Wang & Bodovitz,

2010], but these techniques have their own shortcomings.They su↵er from a limitation

on the amount of information (e.g. number of genes that can be measured) that can

be obtained. For transforming biological systems, single-cell measurements would be

ideal even if there is a limit on the amount of information available. However, current

techniques require destruction of cells for a measurement of more than a handful of genes

or proteins. Therefore, techniques that attempt to deconvolve information on the single-

cell level from population level data are extremely important for a better understanding

of causes and triggers of transformation.

Chapter 3 is focused on state transitions, using aggregated Markov models (STAMM)

where we expanded on previous work [Armond et al., 2014] and presented a full descrip-

tion of the model including assumptions. We investigated properties of the model such

as (empirical) identifiability, behaviour when assumptions are broken using single-cell

simulations and proposed a computationally e�cient unbiased approach to parameter

estimation and model selection. We showed empirically that the model is identifiable

given that assumptions hold. Under breaking model assumptions, estimations are stable.

However, if model assumptions are strongly violated estimations for transition rates can

be badly estimated despite good estimation of state specific expression. Therefore, all

estimation results should be experimentally verified. Alternatively, estimation results

can be used to determine further directions or research.

In Chapter 4 we applied STAMM to RNA-seq data obtained by in vitro experi-
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ments for oncogenic transformation of a MCF-10A cell line. The system is based on one

of the most well studied oncogenes, but there remain open questions about exact steps

required for the transformation. Due to a mycoplasm infection in the cells used for the

in vitro study, biological conclusions need to be interpreted with caution. Therefore, this

application is useful to illustrate that STAMM can be applied to RNA-seq data with

useful results but biological conclusions require further work. In future, this oncogenic

transformation, due to its rapid transformation and relatively clean induction, can be

used to validate the model in more detail and will also enable the extension of the model.

Finding unique surface marker combinations for individual states it will be possible to

identify those. The next step would be the isolation of single cells, utilising a technique

based on identified surface markers, after which estimated parameters can be verified.

We also showed that this implementation of the model is computationally e�cient and

it takes less than 4 hours to estimate p = 2809 genes on fifty cores.

Chapter 5 contains a concise outline of application of STAMM to a microarray

time-course obtained from reprogramming di↵erentiated cells to iPS cells. We briefly

sketched the procedure used in Armond et al. [2014] and parameters obtained during

estimation. To test if estimation results are accidental or if data indeed has underlying

structure, we also applied STAMM to randomly permuted data. Results show that

there was indeed structure in the data that is modelled by the latent Markov chain.

Then we compare model predictions from STAMM to recent single-cell data from a

di↵erent secondary MEF experiment [Buganim et al., 2012]. We determine that results

are consistent with findings from single-cell measurements in terms of the number of

intermediate states. Single-cells measured at di↵erent time points can be mapped well

to corresponding state specific expression signatures.

We note that though we restrict our investigation to applications of STAMM to

gene expression data, this is just a consequence of the systems being investigated. The

model itself can be applied to any type of data that is considered to be relevant to a

transformation process. The future development of this model could include incorpora-

tion of additional experiments. For instance, once parameters have been estimated from

data, a second round of experiments could verify transition rates by filtering out cells

in a state and determining transition to the next state for those cells. Once transition

rates are fixed, estimation of expression signatures becomes more accurate as well. In

fact, once transition rates and number of states have been experimentally verified the

model could be extended to also probe single state dynamics.

In Chapter 6 we proposed a model for an initially heterogeneous population where

it is possible to observe ultimate cell-fate subject to a stimulus. The gene expression is
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only measured for the initial cell population and subsequent cell-fate is determined for

di↵erent stimulus strengths. Starting from basic principles, we set out a description of

the biological system followed by an outline of the estimation procedure based on data

obtained experimentally. We set out a single-cell simulation procedure for this system.

We use a single gene simulation and a four gene simulation to test the model. We show

in single gene simulations, that it is possible to pick out parameters at a variety of noise

levels. In the four gene, simulation parameters are picked out well at low noise levels.

At higher noise levels, this is more problematic and some parameters are not estimated

well.

Transformation processes in biology are central to understanding many diseases

and potential developments of cures. Therefore, it is important that their study is

actively pursued. Due to single-cell stochasticity, many studies concentrate on final and

initial states of cells because intermediate stages of transformation are more di�cult

to probe. The types of models we outline in this thesis could prove invaluable for

a full understanding of transformation processes. Modern genome-wide experimental

techniques that take measurements for single-cells still destroy the cells, thus still only

giving a snapshot in time [de Souza, 2012]. These measurements in conjunction with

STAMM would allow for a powerful reconstruction of the transformation process. It is

clear, there still remains a lot of work to be done to understand cellular transformations

in biology and we believe that models that take the single-cell level stochasticity into

account could provide crucial assistance in this endeavour.
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Appendix A

Additional results STAMM
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(a) expression signatures

Figure A.1: Figure carried on below.
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Figure A.1: Figure carried on below.
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Figure A.1: Simulation study. This plots extends Figure 3.8 to include addition values
for the doubling rate, plots are divided into panels for each cell doubling
rate. Simulations are independently repeated 10 times. (a) shows corre-
lation between true and estimated �

kj

as a function of death rates. (a)
shows di↵erence between estimated occupation probabilities and true val-
ues (see Section 3.5.1). In (a) and (a) show the mean as a solid line and the
shaded area represents the standard deviation. (b) - (d) shows box plots
for estimated transition rates with the dashed line showing true values.
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Figure A.2: Simulation study. To highlight the e↵ect of badly estimated transition
rates we show state occupation probabilities for each state. The solid
line shows probabilities for transition rates [0.2, 0.1, 0.05] the dashed line
shows occupation probabilities with transition rates [0.4, 0.2, 0.1]. This
shows that estimating transition rates is a more di�cult problem; as even
large deviations in transition rates lead to only small changes in occupation
probability which is the only way transition rates enter the estimation. An
even though the di↵erence is significant overall it has a small e↵ect as the
expression signatures are much larger.
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Appendix B

RNA-seq pre-processing
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Figure B.1: To determine sequencing depth from RNA-seq experiments we pre-process
data using the edgeR package. See package Robinson et al. [2010] for
details of exact usage which briefly outlined in Section 2.3.2. We propose
a strategy of trimming the log ratio eqn. (2.18) at di↵erent values and
identifying the cuto↵ that stabilises sequencing depths for the di↵erent
samples. For this example we chose 0.4.
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0hr 0.5hr 1hr 2hr 4hr 6hr 8hr
MFGE8 62.35 47.88 63.05 53.02 46.26 35.66 46.50
MFGE8 raw count 916.00 874.00 1046.00 774.00 708.00 496.00 654.00
CCDC99 64.19 78.61 65.76 67.81 78.86 78.23 59.65
CCDC99 raw count 943.00 1435.00 1091.00 990.00 1207.00 1088.00 839.00
TAB2 96.59 117.40 105.66 98.64 91.80 95.85 108.64
TAB2 raw count 1419.00 2143.00 1753.00 1440.00 1405.00 1333.00 1528.00
ZSWIM6 19.13 19.12 18.93 20.07 16.66 21.79 24.25
ZSWIM6 raw count 281.00 349.00 314.00 293.00 255.00 303.00 341.00
FLRT3 18.18 22.95 17.42 14.86 24.18 47.53 53.47
FLRT3 raw count 267.00 419.00 289.00 217.00 370.00 661.00 752.00
HTRA1 231.45 211.19 193.78 205.63 207.32 166.74 159.48
HTRA1 raw count 3400.00 3855.00 3215.00 3002.00 3173.00 2319.00 2243.00
NCOA4 232.13 238.91 171.78 238.10 268.28 261.94 214.94
NCOA4 raw count 3410.00 4361.00 2850.00 3476.00 4106.00 3643.00 3023.00
TGIF1 39.75 42.51 47.68 40.55 41.29 50.40 47.21
TGIF1 raw count 584.00 776.00 791.00 592.00 632.00 701.00 664.00
IL1RAP 94.48 90.83 81.37 90.76 153.22 416.82 422.42
IL1RAP raw count 1388.00 1658.00 1350.00 1325.00 2345.00 5797.00 5941.00
CSRNP1 19.20 17.37 37.55 84.80 16.14 40.48 53.04
CSRNP1 raw count 282.00 317.00 623.00 1238.00 247.00 563.00 746.00
SEPT9 337.84 352.21 392.74 348.45 359.88 572.56 647.45
SEPT9 raw count 4963.00 6429.00 6516.00 5087.00 5508.00 7963.00 9106.00
SF3A3 133.83 155.20 113.37 133.43 146.49 148.48 136.66
SF3A3 raw count 1966.00 2833.00 1881.00 1948.00 2242.00 2065.00 1922.00
ESR1 1184.12 1258.93 2332.92 1103.56 845.35 470.68 618.94
ESR1 raw count 17395.00 22980.00 38706.00 16111.00 12938.00 6546.00 8705.00
C1orf43 382.43 383.05 282.08 368.72 344.20 306.09 299.69
C1orf43 raw count 5618.00 6992.00 4680.00 5383.00 5268.00 4257.00 4215.00
STMN1 365.96 368.80 279.54 336.12 329.89 290.49 249.28
STMN1 raw count 5376.00 6732.00 4638.00 4907.00 5049.00 4040.00 3506.00
PFDN5 153.57 116.20 91.80 103.84 116.69 110.37 104.09
PFDN5 raw count 2256.00 2121.00 1523.00 1516.00 1786.00 1535.00 1464.00
LDHB 1280.10 1252.25 913.31 1167.27 1225.75 1222.57 1129.88
LDHB raw count 18805.00 22858.00 15153.00 17041.00 18760.00 17003.00 15891.00
XPO6 169.98 187.91 205.65 182.34 172.10 216.50 218.50
XPO6 raw count 2497.00 3430.00 3412.00 2662.00 2634.00 3011.00 3073.00
RPS25 402.65 299.45 228.43 279.13 287.16 282.79 269.83
RPS25 raw count 5915.00 5466.00 3790.00 4075.00 4395.00 3933.00 3795.00
DYSF 2.04 2.08 1.27 1.16 1.05 1.87 3.06
DYSF raw count 30.00 38.00 21.00 17.00 16.00 26.00 43.00

Table B.1: The table shows a very small sample of data used in Chapter 4 and we show
the e↵ect on the data due to normalisation, see Section 2.3.2 for details of the
normalisation. The white rows show data after normalisation and the blue rows
the corresponding raw counts obtained from RNA-seq
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Einstein, A. (1905). Über die von der molekularkinetischen theorie der wärme gerforderte
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