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Zeroes of holcmorphic vector fields and
Grothendieck duality theory

(and applications to the holomorphic fixed-point
formula of Atiyah and Bott)
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Summary

The holomorphic fixed-point formula of Atiyah and Bott is discussed

in terms of Grothendieck's theory of duality for algebraic varieties,

‘The treatment is valid for an endomorphism of a compact complex-analytic
manifold with arbitrary isolated fixed points. An expression for the
fixed-point indices is then derived for the case where the endomorphism
belongs to the additive group generated by a holomorphic vector field
with isolated zeroes. An application and some examples are given. Two
generalisations of these results are also proved. The first deals with
holomorphic vector bundles having sufficient homogeneity properties with
respect to the action of the additive group on the base manifold, and

the second with additive group actions on algebraic varieties.
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Notational conventions

Number underlined in square brackets refer to the list of references;
if 0 1is a sheaf of rings, a sheaf of 0-modules will be referred to as
an 0-Module (similarly for an 0-Ideal); the complex numbers are denoted
by €, the real numbers by R, and if 2z = (zl,...,zn) ¢ Cn, then

n
2| will denote { T |z |%}M/2,
i=1

0, Introduction

This paper is concerned with certain problems which arise when the
holomorphic Lefschetz fixed-point formula of Atiyah-Bott (2] is applied
to the one-parameter group of endomorphisms of a compact complex-analytic

manifold generated by a holomorphic vector field with isolated zeroes.



When these zeroes are non-degenerate, i,e, the section of the holomorphic
tangent bundle defined by the vector field intersects the zero section
transversally, then it is easy to calculate the fixed-point indices. 1In
this case the fixed-point formula as it appears in [2] has been used by
Kosniowski [18] and Lusztig [20] to prove several interesting results,

However, it was pointed out [2] that the fixed-point theorem can
be formulated for arbitrary isolated fixed points, i.e, where the graph
does not necessarily intersect the diagonal transversally. The fixed-
point contributions will then involve the Grothendieck residue. Proofs
of the formula in this case have been given by Toledo [25] and Tong [26,
27). This then poses the problem of generalising the above results on
holomorphic vector fields to this situation and studying the case of a
vector field with arbitrary isolated zeroes. However, it is by no means
clear what the fixed-point indices are in this case, The main difficulty
is that an explicit calculation of the appropriate residue at a fixed
point involves the use of the complex-analytic analogue of the Hilbert
Nullstellensatz, a highly non-constructive result. It is easy to show
that the fixed-point indices are meromorphic functions of the parameter
t with a pole at t = 0, but to obtain further information is more
difficult.

This problem was solved in [22], using an integral formula expression
for the residue and a perturbation to reduce to the case of non-degenerate
zeroes, The results obtained there also allowed one to prove an analogue
of a result of Lusztig given in [20]. 1In particular a partially affir-
mative answer was given to a conjecture of Lusztig that if the zero of the
vector field is 'totally degenerate', i.e. all the eigenvalues of the Lie

bracket action of the vector field on the tangent space at the zero (the



characteristic roots) are zero, then the fixed point index is of the form
t-nP(t), where n 1is the dimension of the manifold and P(t) 1is a poly-
nomial of degree < n. This is true except that the bound on the degree of
the polynomial does not hold in the most general situation; see section 6,

The main results presented here are essentially those of [22] but
the method of proof which will be used is superior for several reasons.
Firstly, the basic theorem of [22] is that two local cohomology elements
(see below) have the same image under the Grothendieck residue. Here it
is proved that they are actually the same element -- a considerably stronger
result., Secondly, the present method allows generalisations in two
directions; to more general coefficients for the cohomology groups occurring
in the fixed point formula (5.2), and to algebraic varieties over more
general fields (7).

The Grothendieck residue was introduced as part of Grothendieck's
theory of duality for algebraic varieties [7], and this seems to be the
natural context for some of the results given here. For this reason the
first two sections are given over tc a discussion of the relevant parts
of Grothendieck duality theory and the closely related theory of local
cohomology. This is then applied in later sections in the context of the
holomorphic fixed-point formula.

The material is organised as follows.

Section 1.1 introduces the local cohomology functors and the related
local and global Ext functors. These are defined as the derived functors
of certain functors from sheaves to sheaves and abelian groups, and are
somewhat analogous to the relative cohomology functors of topology. An

interpretation of local cohomology in terms of Cech theory is also discussed.



Section 1.2 goes on to introduce some algebraic machinery, the Koszul
complex, which is used to prove one of the basic results of Grothendieck
duality theory, the fundamental local isomorphism. This gives a particularly
convenient interpretation of the local Ext sheaves in certain special cases,

Section 1.3 apélies the above techniques to analytic sheaves on
complex manifolds, and also shows how the Koszul complex may be used to
relate local Cech cohomology to the local Ext sheaves,

All of the results of section 1 are implicit in the various accounts
algebraic geometry,

Section 2 uses the above machinery to introduce certain constructions
relevant to the holomorphic fixed-point formula. This approach was dis-
covered in the course of several interesting conversations with Professor
M. S. Narasimhan, and is rather different from the methods used in other
bublished versions {2,25,26,27]. 1t appears that these ideas are essentially
already known, but the description given here serves to place some of the
concepts involved in their natural setting., A similar approach has been
used recently by D. Toledo and Y. L. L. Tong in the context of a holo-
.morphic Lefschetz formula for non-isolated fixed points,

As in the topological Lefschetz fixed-point theorem, the idea is to
construct a cohomology class in the product of the manifold with itself
which is represented by a '"delta-function on the diagonal." This is done
here by using the fundamental local isomorphism, and the resulting class
can be identified with the delta-function via a construction of Harvey [14]
involving the Cauchy kernel, the Bochner-Martinelli kernel and Dolbeault's
isomorphism. The usefulness of Harvey's construction in this context has

already been shown in [25,27].



Section 3 deals with the situation in which the fixed-point formula
can be formulated and section 4 introduces the Grothendieck residue and
shows how the fixed point indices can be calculated by applying the residue
to elements of a certain Ext group which occurs at an isolated fixed poipt.
The remaining sections consist of new results concerning the nature
of the fixed-point indices when the endomorphism of the manifold belongs
to the one-parameter group generated by a holomorphic vector field with
isolated zeroes, Section 5.1 contains the main theorem which gives an
expression for the fixed-point index as a meromorphic function of the para-

meter, again in terms of the Grothendieck residue, This expression involves

the Todd polynomials in '"Chern classes" associated to the zero of the

vector field and has a much more explicit dependance on the parameter than
the "ordinary" formula. The method of proof involves the use, in the
context of Grothendieck duality theory, of a standard iterative procedure
‘often employed in proving the existence of integral curves of a vector field.

Section 5.2 generalises these results to calculate the fixed-point
indices for the case of coefficients in any bundle which satisfies certain
homogeneity conditions with respect to the action of the additive group
on the base manifold. The results obtained are similar to those of section
5.1; the formula for the fixed-point index being modified by a factor
analogous to the Chern character in '"Chern classes'" associated to the
bundle at a zero of the vector field.

In section 6 the fixed point indices are shown to be rational functions
in t and certain exponentials in t, and therefore have analytic contin-
uvations as entire meromorphic functions. The form of these meromorphic
functions then allows one to prove an analogue of a theorem of Lusztig [20]

by comparing the two sides of the fixed-point formula and concluding that



both must be constant. This section also contains some examples,

In section 7 it is shown that similar results hold for additive group
actions on algebraic varieties defined over an algebraically closed field
of characteristic zero. This is done by replacing the analytic criteria
for convergence used in the preceding work by convergence arguments in

the m-adic topology of the local ring at a fixed point,

1.1 Local cohomology

The purpose of this section is to set out the basic concepts of
the theory of local cohomology as developed, for example, in [3,10].
The groups and sheaves of local cohomology are defined as derived
functors, and some of the basic properties are given, Full details
and proofs can be found in [loc. cit.]. In the next paragraph it will
be shown how the theory can be expressed in terms of local Cech
cohomology, but only the simple case which will be useful later is
treated here,

In practice the local cohomology groups are difficult to work
with, and it will be convenient to use related concepts involving the
functors 'local Ext' and 'global Ext' introduced in [7] and studied
in detail in [9,10]. The final paragraph in this section briefly

explains the connection of these functors with local cohomology.

l.1.1. Derived functors

Let X be a topological space, and 0O, a sheaf of rings on X,

X
Given any left-exact functor T from the category of gx-Modules to
some other abelian category, its right derived functors R'T may be

defined as in [6;ch.7]. We recall the procedure,



Given an QX-Module F, construct a resolution of F by 0~

Modules {lk}:

o—>g-—>;o—>_1_1—->---

where each lk is injective in the category of QX-Modules. We then

define RlT(E) to be the ith cohomology group of the complex
0 1
0= T@) —>T@A) —>
Since T is left-exact it is immediate that ROT = T.

Consider the following examples of functors from the category of

QX-Modules to the category of abelian groups.

1,1.1,1. The left-exact functor F > I'(X,F) which assigns to a sheaf

F the group of its global sections. Its derived functors give the

cohomology groups of X with coefficients in the sheaf F, which are

denoted as usual by Hl(X,E).

1.1.1.2. Let Z\ be a locally closed subspace of X, i.e. Z 1is closed
in some open subspace U of X. Then the functor F t> TZ(X,E)
which assigns to F the subgroup of F(U,E]U) consisting of those
sections which are zero on the complement of Z in U, 1i.e. sections
with support in Z, 1is left-exact. This definition is easily shown
to be independant of the choice of U, and the derived functors are

the local cohomology groups of X with coefficients in F and

support in Z, written as H;(X,E).

1.1.1.3. Once can also define a left-exact functor from the category of

Qx-Modules to itself,



F > _I_‘Z(E)
by taking EZ(E) to be the sheaf associated to the presheaf

U+—T,__ (UElD

Znu

for U open in X, The derived functors of ZZ are written g;(g)

and are the local cohomology sheaves with coefficients in F and

support in 2.
Using the exactness of the functor which assigns to a presheaf
the corresponding sheaf, it is easy to show [10; prop. 1.2] that

_}_l_;(_E:) is the sheaf associated to the presheaf

i
v
U > HzﬂU(U,L|U).

1.1.2 Properties of the local cohomology functors

1.1.2.1 Excision [10; prop. 1.3]

If Z 1is locally closed in X, and V is an open subset of

X containing 2Z, then
i ']
H,(X,F) = H;(V,EIV)
for any gx-Module F.

1,1.2.2 Long exact sequence [10; cor. 1.9]

If Z 1is closed in X, and F 1is an Qx-Module, there is an

exact sequence:

0 —>T,(X,B) —> T(X,) —> [(X-2,F) —> H.(X,F)

— 1'(x,p) —> B (x-2,D) —> HXD —> -
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The fundamental concept relating the local cohomology functors is:

1.1,2.3 The local cohomology spectral sequence

Since T(X,QZ(E)) = TZ(X,E), and zz(g) has trivial cohomology
when F 1is injective, there is a spectral sequence of composition of

functors, as in [8; Th., 2.4.1].
1.1.2.4 P9 - WP ui @) = BT, D).

For further details, see [10; prop. l.4]. We shall be particularly

interested in the edge-homomorphisms, for q >0

1.1.2.5 Hix,p 22 @),

This map can be made explicit by the following argument. If I
is an injective O -Module and U is open in X, then 1|U is an
injective QX!U-Module (8; prop. 3.1.3], and so it is easy to see that

if U cV are open in X, then the restriction map induces a trans-

formation of spectral sequences:

w1l @) = B v,p

v \’

w5l (@) = P w,p

and a corresponding commutative diagram involving the edge-homomorphisms,
(For brevity I have written HE(U,E) instead of HgﬂU(U’E|U) etc.)
Furthermore, one can take the direct limit of the spectral sequences
over all U containing some x e¢ X, The limit spectral sequence then

degenerates and the edge-homomorphism 1.1.2.5 is simply the identity map

on gg(g)x. Thus for each q > 0 there is a commutative diagram:
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d 0
Hy(G,E) —ESs 1O(x,H3(F))

\ /

q
EZ(E)x
in which the lower two maps are the natural ones.

1,1.2.7 Behaviour under morphisms of ringed spaces

Let f : (Y,0,) — (X’QX) be a morphism of ringed spaces. (For
definitions and notation, see {11l; ch, 0] or [12; 0.4].) Then if F
is an gx-Module, there we induced homomorphisms of abelian groups,

for all p > 0:
P Pey £°
HY'(X,F) — H'(Y,f F).
In an analogous way, one obtains homomorphisms

HE(X,F) —> ®P_| (Y,f E)
f 2

and for U open in X:
-1 *
w(u,;) — 8P . (£ U, £ F).
Z f-lZ s =

This latter defines a homomorphism of presheaves to which there
corresponds a homomorphism of gx-Modules:
%
Ho(E) — £8P . (£ F).
=7 \= *= -1 =
£z
Using the property 1,1.2.6. of the edge-homomorphisms it is then

easy to check that the following diagram commutes:
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P —28 s 1%, 10(p))
0 J' P *
1.1.2.8 HO(X, 68 (£ D)

II £f 2z

* *
_, (L,fP Ldge HO(Y,ﬂp_l (£ F))
£z £z

1,1.3 Some local Sech cohomology

Suppose now Z 1is a closed subspace of X, and let
o

ZL: v }. be an open cover of U = X-Z, Then ZL can be

i- 1=1,...,n
extended to an open cover of X by adding the set X itself. Let
W = UV (X}, For E an Q,-Module, let C*(Z,E[U), C°(U',E) be
the corresponding cochain complexes (for precise definitions of these
objects see [6; ch. 5]).

Define CP(2',F) c CP(Y',F) to be the subgroup consisting of

Z PR ) o

those cochains which are zero on the simplices U, N ««+ N Ui , all

i
0 p
of whose vertices lie in ZL.

There is an obvious split short exact sequence for each p > O:
0 — cX(U',D = cPWU',B — PALEW — 0.

Furthermore, this sequence is compatible with the boundary operators
(the splitting is not compatible) and the resulting short exact sequence
of cochain complexes gives a long exact cohomology sequence in the usual
way. Note that since the trivial cover {X} is a refinement of QL',
then C*(Ql',F) 1is acyclic except in dimension zero [6; foot of p. 222].
Therefore, if H;(ZL',E) is the cohomology of CE(?L',E), we have the

following:
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There is an exact sequence
1,1.3.1 0 —> Hg(u',g) —> T(X,F) —> T(U,F) -—>H;('LL',§_) — 0
and for p > 0 there are isomorphisms
1.1.3.2 B (UED - BN, D).

In particular 1.1,3.1 implies that Hg(QL',E)

T,(X,E).

1,1.3.3 Lemma. If F 1is injective, Hg(?L',E)

]

0 for all p >0,

Proof. Any injective sheaf is flasque [10; lemma 1.5] and the result

for p >1 follows from 1.1.3.2 and [6; Th. 5.2.3]. For p =1

H

the result follows from 1.1.3.1 since the restriction map

T'(X,F) —> T(U,F) 1is surjective for F flasque,

These concepts are easily related to the definitions of section

1.1.1 as follows,

1.1.3.4 Proposition.

There exists a natural homomorphism
Hg(ﬂ' ,E) —_— Hg(X,E) .

Proof. Let I® be an injective resolution of F as in 1.1.1, Form

the bicomplex
cp (U1

with its Eech boundary operator and the boundary operator of the

complex I®. Then there are canonical inclusions for p,q > O:
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i ]
1.1.3.5 P (U',D) SN o', 1h % T,x,19

which become, on passing to cohomology

* *

3 3
RO (U, B) > WP 1) <2 WP, ,1%).

* . P,g;r 14
But j2 is now an isomorphism since by 1.1.3.3. HZ(?! ,1) = 0 for
*- *
all p >0, and all q. The composition j2 1 o jl is the required

homomorphism,

1,1.3.6 As before, we can consider the corresponding local situation.
Thus, if V 1is an open set in X, there are induced, by restriction,
open covers UNV, L' NV of V, and we can form the cochain

complex of presheaves:

V — Cva

(W' nv, F|lV).

The corresponding complex of sheaves will be denoted by g;(?L',g),
and passing to cohomology at either the presheaf or sheaf level gives
sheaves which we shall write as ﬂg(ﬁi',z).

Then by analogy with proposition 1,1.3.4 there is a natural

homomorphism of gx-Modules for p > 0:

P ' )%
BB — B®.

1.1.4 Global Ext and local Ext

There is a third approach to local cohomology, involving the
functor 'Ext', The great advantage of this approach is that there are
two distinct methods of calculating the Ext groups, i.e. by means

of either injective or free resolutions, 1In certain cases this will
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allow the introduction of an important computational device, the Koszul
complex (see [1]). A more detailed treatment of the material in this

section can be found in {1] or [7].

1.1.4.1 Let E be a fixed QO

X-Module, and let

F +—> Hom(X,E,F)
be the left-exact functor which takes an 0O, -Module F into the group

=X

of Qx-homomorphisms of E into F. 1Its derived functors are the

global Ext groups

F r—> Ext’ (X,E,F).
1.1.4.2 Similarly, we can consider the functor

E +—> Hom  (E,F)
=X

which associates to F the sheaf of germs of Qx-homomorphisms from

E to F

-

i.e, the sheaf associated to the presheaf
U +—> Hom(U,E|U,F|U).

Its derived functors are the local Ext sheaves

F > Ext] (E,B).
=X

Note that Exti (E,F) 1is also the sheaf associated to the presheaf

R
U — Ext (U,E|U,F|U).

1.1.4.3 Since Hom(X,E,F) = T'(X,Hom  (E,F)) there is a spectral sequence
=X
of composition of functors, as in 1.1.2.3,
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gPq _

P - WP Exe? (8,0) = ExeP Uk, D).
o E

=X
The relationship with the groups and sheaves of local cohomology

lies in the following constructions.

1.1,4.4 Let I be an QX-Ideal, and let 0O, be the quotient Module

Z

gx/;, with

Z = supp QZ = {x ¢ X!lx # QX,x}'

Then, if Z 1is closed in X, there are natural transformations
of functors induced by the quotient map gx —> gz which for any

O,-Module F form a commutative diagram:

~X
Hom(X,Qx,E) —> I'(X,F)
Hom(X,gZ,g) — TZ(X,E)
and

Homy (©,8) —> L, (®

where the horizontal morphisms are defined by 'evaluation on the unit
section.'
There are then induced natural transformations of the derived

functors [10; p. 30],

Exci(x,gx,g) — H'(X,F)

s 1 1

Ext'(X,0,,F) —> H,(X,E)



i i
1.1.4.6 Ext_:x(gz,_E) —> H,(E)

and a morphism of spectral sequences.

P (X, Exed (0,,B)) = ExtPi(x,0,,0)

L1.6.7 j/—x I .

HP (X, B3 () ==——> uDT9(X, F)

1.2 The Koszul complex

This section is given over to a description of some algebraic

apparatus which will be useful in dealing with the local Ext sheaves.

1.,2,1 Definition of the Koszul complex

Let A be a ring (commutative with 1, as always) and let
X = [xl,...,xm] be any m-tuple of elementsof A. Let A.(Am) be
the exterior algebra on the free A-module A" A8 - @ A, so that
for 1 <k <m, Ak(Am) is a free A-module with generators
ei1A ---Aeik for 1< i <eee < ik <m, and A°™ = A. We can

then define A-module homomorphisms

i Ka™ — Nl

given on generators by

3

i.x(ei Accrae, )= T (-l)jx,ei /\-”/\Qi /\—~-Aei .
=N kK j=1 I h j k
It is easily checked that ii = 0 and the resulting chain

complex is the Koszul complex K.(g).
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1.2,2 Regular A-sequences

With the same notation, Xx = [xl,...,xm] is said to be a regular
A-sequence if it has the following properties:
(i) X, is not a zero divisor in A

(i1) For 1 <1i < m, X, is not a zero divisor in A/(xl""’xi-l)’

where (xl""’xi-l) is the ideal xlA + o0 4 xi-lA'

The importance of these conditions lies in the following result,

the proof of which is given in [11; III.1].

1.2.2.1 Proposition

Let x = [xl,...,xm] be a regular A-sequence; let (xl,...,xm) = I,
Then the Koszul complex Ko(g) is a resolution of A/I by free A-
modules; i.e. the chain complex

m, . m ix 13_ l..m 1X
0 > N@QA) == ¢ > A"(A7) —> A —> A/ — 0

is exact.
1.2.2.2 If M 1is an A-module, define a cochain complex K'(i,M) by:
i
K (x,M) = HomA(Ki(g),M)

with corresponding coboundary operators i;. Let H.(E,M) be the

cohomology of this complex. By the definition of the functors Ext by

projective resolutions [6; ch. 5] we have that
i i
ExtA(A/I,M) = H (x,M).

1,2.2.3 Proposition

Suppose M is a flat A-module. Then
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Proof (see [1; III.3.8]. 1In fact the Koszul complex shows that
Ext:(A/I,M) E'Tor:_i(A/I,M) and the result follows from the flatness
of M,

Note, however, that the isomorphism is non-canonical and depends
on the particular set of generators chosen for I.

For 1i=m, the isomorphism is constructed explicitly by first

defining

© @ K (x,M) —> M

cpz'(-(a) = a(elA Aem).

Then the induced map

9, * H (x,4) —> M/IM

is the required isomorphism.

The following result is central for the applications of the

theory given in later sectionms.

1,2,3 The fundamental local isomorphism

For x e I, let x be its class mod 12. Then under the

conditions of proposition 1.2.2.3, we have:

(i) I/I2 is a free A/I-module with generators X peeesX o

In particular, this implies that AP(I/IZ) is a free A/I-module with

generator ;1/\ e A ;m'
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(ii) There is a canonical isomorphism

(VI Ext;:(A/I,M) -~ Ho (Am(I/IZ),M/IM)

Ta/1
which is independant of the choice of generators for I and for
a e H(x,M) = EXt:(A/I,M) is given by

P(a)(x A rAX ) = wz(a).
Proof., For (i) see [1l; I.4.5 and I11.3.4]). For (ii), let

V. : M/IM —> HomA/IU\mI/IZ,M/IM)

be the isomorphism resulting from the (non-canonical)isomorphism

A/l Q'A?(I/Iz) given by y v—> y; A '--As;m. Then it is easily checked

1
that wx ° is independant of the regular A-sequence x. See [13;

ch. II, §7] or [1; ch. I, §4].

The next section will give concrete applications of the above

theory to analytic sheaves on complex manifolds.

1.3 Application to complex manifolds

Let M be a complex analytic manifold of complex dimension n,

and let QM be the sheaf of germs of holomorphic functions on M. The

results of the previous section are going to be used to calculate the

sheaves Exti(gz,g) for certain analytic subspaces (Z,QZ) of (M,QM)

and any locally free QM-Module F.

1,3.1 Local complete intersections

1,3.1.1 Let (Z,QZ) be an analytic subspace of (M,0,.). We say that

9

(Z,QZ) is locally a complete intersection of codimension m 1if
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QZ = QM/l for some QM-Ideal I, and for each 2z ¢ Z there exists a
neighbourhood U of 2z in M, and fl""’fm e T(U,QM) such that at

each point x e UN Z the germs fl,x""’fm,x form a regular QM,x-

sequence generating the ideal lx.

The inclusion (Z,0,) —> (M,0,,) 1is then sometimes called a

9
regular immersion. (C.f. [11; 0.15.2].)

1.3.1.2 Examples: (1) Any non-singular complex submanifold Z of M

with its usual structure sheaf is locally a complete intersection in M.

Simply choose local holomorphic coordinates £ fn for M at each

CARRE,

f

1,..-, m.

(2) Note that (Z,QZ) is not required to be reduced; its

point of Z, so that Z is defined by the vanishing of f

structure sheaf may contain nilpotent elements. For example, let
fl""’f be holomorphic functions defined on a neighbourhood U of

n
0 ¢ @n , such that 0 1is the only common zero of the fi in U. Let
1 be the 0 -Ideal generated by f;,...,f . Then ({o},gU,O/_I_O) is
a local complete intersection in (U,Q ). 1In fact the f1 form a

regular sequence in U. For a proof see [28; p. 194] and the references

given there,

1.3.1.3 1In the situation of 1.3.1.1 we see that in the neighbourhood of

each point 2z ¢ Z there is a resolution of the sheaf QZ by free QM-

Modules; namely, the Koszul complex 5.(£), constructed precisely as
in 1.2.2.1, with g'(g)z = K.(ﬁz).

Let 1 : (Z,Qz) - (M ) be the inclusion, with

% 142, = 9y/1

and regard l/;z as an Q,-Module, Then, by 1.2.2.3 and the funda-

mental local isomorphism, there is a canonical isomorphism of QM-Modules,

for any locally free QM-Module E:
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2 *
i, Hom (A"I/1°,i F) = Ext_ (0,,F)
9, — Oy
k
and Ext_M(gZ,E) =0 for k # m.

Note that since the isomorphisms are independant of any generating
sequence for I, this is a global isomorphism.

The above can be applied immediately to the spectral sequence of
1.1.4.3 to deduce from the vanishing of the Ext sheaves that this

spectral sequence degenerates to give an isomorphism:

T(M, 1, Hom_ "1/12,i"p) = Ext"(M,0,,F).

1.3.2 Local Eech cohomology and the Koszul complex

It is very illuminating to see how the results of the preceding
section are related to the local a;ch cohomology of 1.1.3., By analogy
with 1,.2.2.2 there is a cochain complex of sheaves in a neighbourhood

U of each point z e Z:

K*(£,F) = Hom. (K (£),E)
= ———QM [

with f = (fl""’fn) € T(U,E)n. Let 2L be the cover of U - Z

formed by the open sets
U, = {x e U[£,(x) £ 0}

and let ' be the cover of U obtained by adding the open set U, = U,

0=

Then there is a canonical morphism of cochain complexes

¢ : K*(§,D) —> Co(U',E)

defined, for ip<iy<eee < ip by
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c(a)< i0°°-ip > =a(e, A ---A‘ei )/fi ---fi if iO =0

h P 1 P

= 0 otherwise,

It is straightforward to check that this defines a cochain map,

and by passing to cohomology we obtain homomorphisms over the set U;

- . ] .
¢t Bty (00 —> B (ULD).

It is easy to check that this is compatible with the mappings
of both sides into the local cohomology sheaves. The proof is given

in the following lemma.

1,3.2.2 Lemma.

There is a computative diagram, for all k >0

k T . . k.oa,,
Ext) (Q,,0) —> 1, (U',B)
M
(1;1.4.6)\, . \/(1.1.3.6)

Hy(E)

Proof. Let L. be an injective resolution of F over the open set

U. Then there is a commutative diagram for p,q > O;

Hom, (X (£,B) —> cy(U',D)
- P
AR q
Hom, (K (£),1%) <> cH(U',1%
™ /N T

q q

The right column consists of 1.1.3.5 and the left column is the

usual construction used to relate the definitions of the functor Ext




by projectives and injectives [6; ch. 5]. The required result follows

immediately by passing to cohomology.

2.1 The holomorphic Lefschetz class

If M is a smooth compact oriented manifold of real dimension n,
then it is well known [21; p. 124] that there is a canonically defined
cohomology class in Hn(M XM, MXM- A, Z) whose image in Hn(M XM, Z)
is the Poincaré dual of the homology class defined by the diagonal,
and which under the Kiinneth formula and Poincaré duality gives the
"alternating sum of the identities" in the endomorphism groups of the
Hi(M,Z). This is the basic fact needed to prove the classical Lefschetz
fixed-point formula.

The techniques of local cohomology developed in the preceding
sections will now be used to show the existence, for any compact
complex-analytic manifold of complex dimension n, of a canonical
element in HZ(M X M, thn) which will play the same role as the
topological class mentioned above. The Kiinneth formula for sheaf
cohomology and Serre duality replace the analogous constructions for
integer cohomology. 1In fact the construction will allow for cohomology
with coefficients in any locally free QM-Module and it is this general

case which is treated below.

2,1.1 Let M be a compact complex-analytic manifold with dimc:M = n;
let QM be the sheaf of germs of holomorphic functions and Qp the
sheaf of germs of holomorphic p-forms on M,

If E is a holomorphic vector bundle on M, let E* be the
hologorphic dual bundle. The corresponding QM-Modules will be denoted

*
by E and E respectively.
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* n
Also we define E' = E Gb ', and let
__M
Tr : E' @% E ——>.Qn
-M

be the natural pairing,
We may also form the product M x M with structure sheaf QMXM’

and there are holomorphic maps

P.
MAs MM —su  (i=1,2)
with A(x) = (x,x) and pi(xl’XZ) = X
If E and F are locally free sheaves on M, we use the
notation
* *
ERE =pE p,E.
1 GbeM 2

It is easily checked that (E')' = E and (ERE")' =E'®

|tz
|3

2.1,2 Serre Duality

For further details of the following constructions the reader
is referred to the original paper [23].

First we recall the following consequence of the Kinneth formula
for sheaves, With the notation of the preceding paragraph, there is
a natural isomorphism of finite-dimensional vector spaces

n
n-k , k n '
X*: TH ME)Y@HME) —mHMxM E'RE).
k=0 :
*

(In fact A o n gives the cup-product pairing.) The element
no @ B) will also be written as a x B.

Then (Serre duality) there are perfect (i.e. non-singular)

bilinear pairings
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< >
k -k ?
H (M,Q) X Hn (M;E') ._._._P.d__;, C

n n < >M M
HMxM, ERE') x i'(M x M, E' QE) ————> C

which can be explicitly described (in the first example) by

%
<, >, = jﬁ oTr oA oOox
M
M
where ./.: Hn(M,Qn) —> € 1is defined by representing the cohomology
M
class by a form (resp. current) of type (n,n) and integrating (resp.

evaluating on 1),

2.1.2.2 1f a,d ¢ Hk(M,Q) and b,c e Hn-k(M,Q') we obtain immediately

from the definition of the Serre duality pairing:

k .
<axb,cxd >MXM = (-1) < a,c >M < b,d >M'

If we let & ¢ H'(M x M, E' @E) be the element defined uniquely by:

<axb, b >M =< a,b >M

M

then it follows by elementary linear algebra that under the identification

n n
S,Hn'k(M,El) ® Hk(M’E_) = End@ Hk(MJ.E_)

k=0 k=0
we have:
-1 n k k
2.1,2.3 X (8 = I (-1) x identity on H (M,E)
k=0

so that, for example

n
f Tr 0 A7(8) = T (-l)kdimc 1 QLE).
M k=0
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It is easy to represent the cohomology class & as a current on
M x M. 1In fact, suppose that u is a c® formon M Xx M of type
(O,n) with coefficients in E [ME'. The topological dual of the space

of such forms is the space Dn(M x M, E' E) of currents of type

(0,n) with coefficients in E' WE, so that the linear form

*
2,1,2.3 i, u'—>fTr ol (u)
- b .
M
defines such a current, which is evidently 3-closed., Comparison with

2.1.2.1 shows that the cohomology class defined by this current is .

2,1.2.4 1t can now be shown that & actually lies in the local cohomology
group HZ(M Xx M, E' E). If we write D" for the sheaf of germs of

currents of type (O,m) with coefficients in E' WE, there is a

fine resolution (see [23]):

OQEIEEQDOB 218\...

If now g’ is an injective resolution of E' ®E, then by a
standard property of injective resolutions the identity map on E' WE

can be lifted to a cochain map between the two complexes:
° °
2.1,2.5 D —>J.

Moreover, if we apply the functor T(M x M,e) to the two
complexes then it is well-known that this cochain map induces isomor-
phisms on the cohomology [6; th. 4.7.1]. However, it is more interesting
to apply the functor TA(M x M, o). The section of Qn defined by the
current iA clearly has support in the diagonal A and so its image

lies in I‘A(M X M, g“) and therefore represents an element of

HZ(M XM, E' RE) which ve denote by &,.
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In a similar way iA defines an element of Extn(M x M, O,,
E' ME), where -QA = A,O“. To see this let I be the 0,  -Ideal

defined by the diagonal, so that 9, = QMXM/l' Then I is contained
in the Annihilator of the section i, and so i can be regarded as

b A
an element of Hom(M x M, QA’ Qn). Now use 2.1.2.5 to obtain the

required element of the Ext group.
Alternatively we could carry out all these constructions at the

sheaf level and obtain sections of Hn(E' K E) and Exth (0 , E' ®E).

All four of these interpretations are then mapped to each other in the

commutative diagram obtained from 1.1.4.5,

n . edge 0 n '
Ext (M x M, 0,, E' @E) —£°5 5'(M x M, Ext (Q, E' ®E))

! |

d 0
HZ(M x M, E' WE) £08% S H(M x M, EZ(E_' E))

in which the upper horizontal morphism is an isomorphism since the
diagonal is a local complete intersection of codimension n 1in the
product (1.3.1.4). In fact the lower horizontal morphism is also an
isomorphism, (although we do not need this), This follows from the

fact that the sheaves g‘g(g' ®E) wvanish for k <n [24; th, 3.3].

2.1.3 The class & and the fundamental local isomorphism

b

The principal objection to the methods of representing the

cohomology class éA described above is that it is not clear how the
class behaves under mappings. To be more precise, it is necessary in
order to prove the fixed point formula for a holomorphic map
f:M—>M to be able to construct the class Tr o T*(éA) € H;(M,Qn),

where F 1is the set of fixed points of f and T 1is the graph
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morphism x k> (x,f(x)). However, there is no natural way to pull back

currents, and so we adopt the following alternative description of &.

2.1.3.1 1In the notation of section 2.1 there is a canonical isomorphism

as in 1.3.1.3

n n 2
Ext (0,, E' ®E) = AHom, (MNL/1°, E' @ E)
T O T

where ;/12 is now regardad as an 0 -Module.
Now if N is the locally free sheaf associated to the (holomorphic)

*
normal bundle of the diagonal in M x M, with dual N we have:

b

. *
U1t - x

- the isomorphism being given by mapping the class of a germ £ mod Lz,

which we denote by [f], to its differential df. However, we also have:
*
ol - x
since both appear as the kernel in the short exact sequence
* * 1 1
0 —>N _>AQ‘1XM-—>9 —> 0
(dx,dy) > dx+dy
or
1 *.1 1
—_
00— N éAQMxM g —o
dx +—> (dx,-dx).

Thus we have the canonical isomorphism

2.1,3.2 Ext" 0 . E' ME Q° Dok
gbim(_A} -— m_) = A*MQ_M(— ® _E.) 9 @ _)o
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Claim: The global section of Ext’ (0,, E' RE) obtained by taking
— g = B2

the identity section of the right-hand side of 2.1.3.2 is the same as

that defined by the current i (2.1.2.5).

A
In fact it will be shown that the following four constructions
are essentially identical. For the sake of brevity the discussion will

be limited to the case where E is the trivial line bundle, and the

modifications needed in the general case will be indicated later.

(1). The identity section in 4, Hom (Q“,Q“).
-M

(2). If U 1is an open subset of M, on which there exist local

coordinates z,,...,z , let (zl,...,z , Cl,...,Qn) be local coordinates

n
* *

for U x U, where 2, = P12y and Qi = Pyz,. Let Ui be the open

subset of U x U on which 2z, - ( is non-zero, and let U be the

open cover given by U x U 1itself and the Ui' Then as in 1.1.3 the

Cauchy kernel

dzlA see Adz *

(ZI'C.I) *

n n
Teey e T xuNT N nu_, p,a"

*
defines a local Cech cohomology class in HZ(?M!,pIEf), or alternatively

*
a section of the sheaf ﬂZ(?L',pIQn).

(3). If U 1is as in (2) then the Bochner-Martinelli kernel

n z -C _ ~N\ o
k(z,0) = angl(_l)k-i-l .lfcﬁ; d(2-C)) -+ +d(z - )+ +d(z -C )dz +--dz

(where Cn = (-]_)n(n.]')/2 X M—;—)
(2ri)
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is a 3-closed C®-form in U x U - A, of type (O,n-1) with coefficients
in p:Qn. Moreover k can be regarded as a current on U x U, in which
case Sk is a g-closed current with support on the diagonal. It is

a basic property of k that Sk is precisely the restriction of the
current i

[}
*
of the sheaf Hn(EAQ.(pIEf)) may be obtained by sheafifying and passing

of 2.1.2.3 to the open set U x U, A corresponding section

to cohomology.

(4). As we have already seen the "alternating sum of the identities'
*

defines a class in HX(M X M, plg“) which by the edge homomorphism

1.1.2.5 of the local cohomology spectral sequence gives a section of

*
the sheaf Hn(p Qn).
The claim will be put into the form of the following proposition.

2.1.3.2 Proposition

There is a (naturally defined) commutative diagram of QMxM-Modules:
n ~n %2 n *.n
b Hom  (Q°,Q0) ——=—— H (W' ,p,0)
*=0 =b Pl
-
%14 %23

/

n, *.n n o, *.n
EA(P]_Q ) <—-&3—4'— H (LD (PIQ ))

in which the sections (1) to (4) are mapped to each other.

*
Proof. Let 7* be an injective resolution of plﬂn. There is

commutative diagram obtained from 1.3.2.2 and 2.1.2.5;
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* *
(20,20 — By, pdM = AU ,pEH

"l J J

Hom) (K (2-0),3%) —= cP(U',1h) < cr(U',0%

——0 _p

) 7 Te
Hom . (0,,J%) ——s T, () «— 1,0
= Quym B 8

Passing to cohomology and using the fundamental local isomorphism 2.1.3.2
we obtain the required commutative diagram. However, in order that the
four sections should correspond in this diagram, we make the minor modi-

fication of replacing the boundary operator 9 of the complex Q. by

A -1-
3 = (2mi) 3.

Then Q) is the composition of the fundamental local isomorphism
and the map ¢ of 1.3.2.1 and it is easy to check that (1) and (2)
correspond under this map.

Also a is the composition of the fundamental local isomorphism

14
and 1.1.4.6. The only non-trivial part of the proof is to define the

map o and show that the Cauchy kernel and the Bochner-Martinelli

23
kernel correspond under this map. This is essentially proved by
F. R. Harvey in [14] using an analogue of the Dolbeault isomorphism.
To make clear how this construction fits into the present situation
the method used by Harvey is described below,

First recall that since Qq is a fine sheaf, gg(?L',gq) =0
for all q and all p >0 [6; th., 5.2.3]., Thus the map § induces
an isomorphism on cohomology. The problem is to make explicit the

inverse of this isomorphism. This will be done in the usual way by

constructing a homotopy operator in the complex QZ(ZL',QS).
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n .
The result is local, so we work in c” x € with coordinates

(zl,...,z , Ql,...,cn) and open cover ‘' consisting of the sets

n

Ui = {(z,0) ¢ c” x Cn]zi } Ci} and U0 = c” X ¢”. For a multi-index

I-= (il""’ip) we use the following notation

I . I — ® e 0 .
(z-0)" = (Zil‘Cil) (Zi -Ci )y; dzo = dzi dzi :
P P 1 p
U, =U, N+ NU
i i
1 P

and if f ¢ cz(‘u',_nq) then

fI = f < o,il,.oo,ip > € T(UI’Qq).

Define gi(z,g) = Zi-Ei/Iz-glz. Then the required homotopy

operator is given by
. P 1 nd p-1 1 nd
eg.cA(ﬂ D) —> ¢} (2',DYH

n n
where eg(f)l = i‘:Ll(zi-gi)gi(z,g)fﬂ. Since 1‘iil(zi-ci)gi(z,g) =1,
it is easy to check that

2.1.3.3 boe +e o = identity.
§4 )4 y

Now the Cauchy kernel is given by f0 e CZ(?L',QO) where

0
f = dzl---dzn/(zl-gl)--'(zn-gn). Thus if we define a sequence of

laoon
elements fk € Cz-k(72',2k) by fk+1

k

Q k
=30 eg(f ), then by property
2.1.3.3 of the map eg each £~ will be § +‘S cohomologous to fo.
A
Therefore the Q3d-cohomology class of £ will be the image of the Cauchy

kernel under the isomorphism

8™t wh(e 0% = W@, E” x €%, %)

induced by 8.
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2.1.3.4 Lemma. Let J be the multi-index (il""’in-p)' Then

P
fJ

A p. .0
o eg) (f )J
- ((PPD2050P 3 (Sg)IdzIdzJ/(z-g)J.
|1]=p
Proof by induction (p = 0 trivial),
G e e (P, = (-n)PP D 2050y PL 5 ZSg.(Sg)IdzIdz.de/(z-g)K
2 K II|=p i 1 1

= (PP 200y D) o Syt X -0k

(by putting L = Ii),

2.1.3.5 Corollary

- ' —-— -—
O (_l)n(n 1)/2 o —n — X 3g,++ 3y dz e rdz
. n 1 n
(2mi)
= ak(z,)
say where
-1)/2 -1)! - FAN -
k(z,Q) = (-1)"(m )2 (n L,z (-1)k+18k381'"agk"'agndzl'"dzn
(2m7i) k

and k is in fact the Bochner-Martinelli kermnel [l4; p. 87]. Note

that k 1is S-closed on any point not on the diagonal since there

agl...ggn = -a-(gl + LI + gn)ggzooo.a_gn = -a—lggzccoggn = 0.

2.1.3.6 Proposition. The kernel k has the following properties

(a) k is g-closed on € xc"-a

(b) Let ig c” — ¢" x ¢" be the inclusion

1g(z) = (E,z + &)
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and for € > 0 let EE be the ellipsoid in i§CP given by ( = §

and |z-C| = €. Then

(¢) Let u be a form of type (O,n) with compact support in
*
" x €", and with coefficients in plﬂn. Then
- *
~/‘ k A Bu = U[ A u.
c"xc” v
Proof. (a) follows from the above remark. For (b) put

h,(z) = gi(§,2+§) and obtain

A
%* - - ! — — —

f ik = (-2 ﬁ—l)—n xf Z(-l)k+1hkah1°--ahk"-ahndzl--

Ee (2mi) EE k .

The integrand is S- and hence d-closed on C" - {0} so the
surface of integration can be deformed into the unit 2n - 1 sphere

S about the origin and the integral becomes

VA

const. X f 2(-1)k+1; dz,+*+dz, +++dz dz
S Kk k1 k n

lonodzn

n(n-1)/2

= const. ¥ (-1) X (Zi)n x-% X f N Jdv
S

where N 1is the unit normal on § and dV = dxldyl-“dxndyn is the
volume form for the canonical orientation on €. The symbol |
denotes interior product. But this is just 1 since the volume of
the unit 2n - 1 sphere is 2ﬂn/(n-1)l.

For part (c) we have

f k /\gu = f d(kau) lim j k Au
A c” ot e—>0 V |z-(|=¢
*
./-A u,

c"

+dz ,
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The first equality follows from (a) and considerations of type.
The second follows from Stokes' theorem. For the third, integrate first

over the fibre { = constant and use (b),

This also completes the proof of proposition 2.1.3.2.

2.1.4 Generalisation to arbitrary holomorphic vector bundles

The discussion in the preceding section was of a local nature,
so if E is a holomorphic vector bundle over M we may locally choose

*
generating sections SpseeesSy of E, and let s cesSo be the

1’
* .
corresponding dual sections in E . We can then tensor everything by
* *
the section T si(z) 8 si((,) of ERE and obtain the required

i
generalisation.

3.1 Holomorphic geometrical endomorphisms

We now discuss the situation in which the holomorphic fixed
point theorem of Atiyah-Bott can be formulated. As before M 1is a
compact complex manifold of complex dimension n, and E is a locally

free QM-Module. Then a holomorphic geometrical endomorphism of E

consists of a pair (f,) where f : M —> M 1is a holomorphic map
*
and ¢ : f E —> E is a homomorphism of QM-Modules.
Under these circumstances there are induced homomorphisms of

cohomology groups

*
HM,E) ——> 10, £'E) 2> 1, E)

where the first map is the standard pull-back, and the second is induced,

by functionality, by ¢. The composition gives a C-linear endomorphism
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of the finite-dimensional complex vector space Hk(M,E) which we

denote by Hk(f,cp) .

Examples. (1) If E = QM’ then fE = E and so ¢ can be taken to
be the identity.

(2) If E 1is the sheaf of germs of holomorphic é-forms gf
then ¢ can be taken to be the pth exterior power of the natural

bundle map
* %k *
df : £(TM) —TM
*
where T M is the holomorphic cotangent bundle of M.

3.1.1 The Lefschetz number of a geometrical endomorphism

With the notation of the preceding paragraph, one obtains a
geometrical endomorphism (1 x £, 1 @) of the quM-Module E' QE,
and it is a standard property of the Kiinneth decomposition 2.1.2.1

that the induced endomorphism H"(l x f, 1 @) of H'(M x M, E' RE)

is given by:

n
w1 o H'(1 x £, 1® ) o x = T {identity on H' k(M,g')} ®Hk(f,cp)

k=0
and by elementary linear algebra one obtains, by analogy with 2.1,2.3,
n

* n k k
fTr oh oH (1l xf, LRY(Y T (-1) trace H (£,0)
M k=0

X(£,9) say.

However we may also write:

* n * *
Trobh oH (1 xf, 1RY =Tr 0o (1Q@®) b o (1 x £)

T o (1@® o
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where T : M — M X M is the graph morphism T(x) = (x,f(x)).

¥(f,9) will be called the holomorphic Lefschetz number of the

geometrical endomorphism (f,). In the case where f has isolated
fixed points it was proved in [2] that x(f,tp) 1is determined completely
by the behaviour of f and ¢ 1in the neighbourhood of the fixed points.
But this now follows immediately from the preceding work, since if F
is the set of fixed points of £, then F-IA = F and so T*GA lies
in H;(M,g' QDf*E). Applying the map Tr o (1 x ¢) we obtain an
element of H;(MLQP) which by the excision formula 1.1.2.1 is the same as:
D H?p}(vp’gf)
peF
where Vp is a small open set containing P

To complete the proof of the fixed-point formula as it appears in

*
[25], [26]) it is only necessary to determine the element T §, of

b
H;(M,Qn) and to make explicit the maps Resp for which the follcwing

diagram commutes:

H?p}(vp’rp)

Res
\\\\i P

c .
B (0, 0%) /-L
(The vertical map is the natural one from H?p}(M,Qn) to Hn(M,Qn)).

In this situation it is known that Resp can be described purely

algebraically and is in fact the Grothendieck residue of [13]. The

next section briefly describes the concepts involved,
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4.1 Local cohomology and the Grothendieck residue

Let hl,...,hn be holomorphic functions defined in a neighbourhood
V of pe M, such that p is the only common zero of the hi in V.
If J is the QM-Ideal generated by the hi in V, then as in 1.2
any holomorphic n-form w on V defines a section of §§£§M(QM/Q,Qn)

which under the fundamental local isomorphism is given by the section

of HoyiM/i(Ang/gz,Qn/g.Qn) which takes the generator [hl]/\"' A[hn]

n
of A Q/QZ to the class of w mod Q.Qn. The corresponding section of

Ext) (Q,/3,Q") will be denoted by

_o
[ . J
hl""’hn )

—M
Note that in terms of local Cech cohomology (1.3.2), if Vi cv
is the open set on which hi # 0, then this cohomology element is also

represented by the section w/hl-“'nn € I‘(V1 N N Vn,Qn).

In the above notation, the Cauchy kernel can be expressed locally

as the section

D ox
dzlf--dzdgzglsi(zxgsi(g)

Zi'cl,...,zn'gn

of Ext| (QA’ E' E). Then, just as the Cauchy kernel can be repre-
=MxM

sented by a current with support on the diagonal so it is also easy to
represent this class by a current of type (n,n) with support at p
by means of the method of proposition 2.1.3.2, In fact, let
0:U—Cc" X ' be defined by a(z) = (z,z+h(z)). Then it is clear

from the description of the class in terms of Cech cohomology that it
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is obtained by pulling back the Cauchy kernel along a. By the
functoriality of the Dolbeault construction the S-cohomology class
of the required current is determined by the pull-back a*k of the
Bochner-Martinelli kernel. Thus if w = ¢ dzlA ‘-~/\dzn and

gM,p’ the map
f — ~f fp a*k
S

defines the appropriate class, where S is a small, smooth 2n-1
sphere around p. Hence we recover the integral formula of [25],

[26]:
Res [__y___] ) f —
P hl,...,hn S

4,2 The fixed point contributions in the holomorphic Lefschetz formula

Since F 1is discrete, the sheaf g;(g“) has discrete support

and so the edge-homomorphism of the local cohomology spectral sequence, i.e.
Hp(M,0") —> HO(M,E';(Q“))

is essentially just the identity map in this case. Now using the
behaviour of local cohomology under mappings (1.1.2.7) we can determine
the element Tr o (L®®) o T*(éA) explicitly as follows,

Let fi(z) be the local coordinates of £f(z) 1in a neighbourhood
Vp of the point p ¢ F, and let % be the open cover of Vp - {p}
consisting of the set Vi ={ze Vp[fi(z) i zi}. Since the pull-back

of fech cohomology is compatible with the pull-back of cohomology defined
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by injective resolutions, it is possible to conclude that
*
Tr el xopoT (6A) is given in the neighbourhood of p by the section

of EEP}(Q/',QD) corresponding to

trace w(z)dzIA--- Adz

n n
zl-fl(z),...,zn-fn(z) € T(Vl n n Vn’9 )

m
Here trace (z) = T < s:(z),w(si(f(z))) > .
i=1

*
Thus, in terms of the Ext functors, the class Tr e 1@ e T (6A)
can be expressed a direct sum of elements Qp € Extn(M,Q{p},Qn) where
g{p} is the quotient of QM by the ideal generated by the germs of

the functions z, - fi(z), and

[ trace w(z)dzlA -~-Adzn
P zl-fl(z),...,zn-fn(z) J

Thus we obtain the Atiyah-Bott formula for a holomorphic geometrical
endomorphism with arbitrary isolated fixed points:
X(£,9) = L Res (a).
peF P P
Note that the elements ap are independant of choices of coordinates
and generating sections since they are essentially just the restriction

to the graph of the canonically defined Cauchy kernel.

4,3,1 An algorithm for calculating Resp(ab)
For the sake of completeness the method described in [3] by
which the Grothendieck residue can be calculated algebraically is given
below. The relation of this algorithm to the integral formula for the

residue (4.1.1) is discussed in [27]. The following applies to the
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situation of paragraph 4.1, We wish to calculate the composition:

J,

Ext“(M,QM/g,g“) — 1M, —> ¢

where the first map is obtained from the natural transformation of

functors Hom(M,OM/J,o) —>T(M,9).

By the Nullstellensatz for germs of analytic functions [see
R. C. Gunning and H, Rossi, Analytic Functions of Several Complex
Variables, Prentice-Hall 1965, p. 97], there exist positive integers
m, for 0 < i <n and analytic functions cij for 0<1i, j<n,

defined on some neighbourhood W < V of p, such that for

0<ic<n,

m, n

z, = ¢, (2, (2).

A TS T
w(z)dzlA s+ Adz
Then Res o is equal to the coefficient of
hpyeee

ml-l m -1
z, '”znn in the power series expansion of w(z)det(cij(z)).

We note that the analytic Nullstellensatz is a highly non-
constructive result, and in general it is impossible to determine the

multipliers ¢ explicitly. However in many special cases which are

i]

of interest the situation is simple enough to allow the c, to be

ij

found by trial and error.

In the case where the hi form local coordinates in a neighbour-

hood of p the situation is particularly simple. Then all the m,
can be taken to be 1 and if

n

zi = jElcij(Z)hj(z)
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then the residue is simply w(p)det(cij(p)) = w(p)det(ahi/azj(p))’l.
This is the situation which arises in the fixed point formula at a
transversal fixed point.
Thus the formula can be written
X(f,9) = T trace o(p)/det(I-df( p))
peF
provided that all the fixed points are transversal, Here df(p) denotes

the endomorphism of the holomorphic tangent space at p induced by f.

Finally we remark that in the case n = 1 the Grothendieck
residue coincides with the classical Cauchy residue, 1In fact, from

the integral formula expression for the residue 4,1,1 it can be seen that

w(z)dz | _1 w(z)dz
Resp[ h ]' 2ﬂig6 h(z) °

5,1 The fixed-point formula and holomorphic vector fields

The techniques developed in the preceding sections will now be

applied to the following situation.

As before, let M be a compact, complex-analytic manifold of
complex dimension n, and let X be a holomorphic vector field on M;
i.e. a holomorphic section of the holomorphic tangent bundle TM of M.

Then X generates a one-parameter group of endomorphisms of M,

f: MxC—>M

such that for z ¢ M, and s,te C,

f(f(z,s),t) = f(z,s+t).
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In fact, if t = uv with u in the unit circle in the complex
plane and v real, then f£(z,t) = fu(z,v), where f is the one-
parameter group generated by the real vector field uX + uX on M.

A method often used to demonstrate the existence of such a flow
is the iterative procedure found, for example, in [19]. This device
will be applied in the context of the fixed-point formula in order to
calculate the fixed-point index at an isolated zero of the vector
field, as a function on the complex plane.

It is not difficult to show that this index is a meromorphic
function of t in the neighbourhood of t = 0, with a pole at the
origin, This can be done as follows (this proof was shown to me by
G. Lusztig):

Let ZyseeesZy be local holomorphic coordinates centred at the
isolated zero p of X. Since f£(z,0) = z it makes sense to consider
the coordinates fi(z,t) for small t, and =z near p.

We make the abbreviation fi(z,t) = zz and note that on a small
neighbourhood of (p,0) in M x € the only common zeroes of the
functions z, - zz are the union of the set z = 0, and the set t = 0,
Then we can apply the analytic Nullstellensatz to obtain analytic
functions Cij(z’t) on a neighbourhood of (p,0), and positive integers

m such that for 1 <1 <n

i}
m m n .
t "z, = .E cij(z,t)(zj-zj).
j=1
Then by properties of the residue [3], the fixed-point index is
dzlA v Adzn 1 det cij(z,t)dzll\ soe /\dzn
Res = — Res
P -2t 2z -2t tM P ™ “n
i U EAREELS I

2 cee,y2
> 3
1 n
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m, -1 m -1

1 . n . .
= —- X coefficient of =z ez in the expansion of det ci

tM 1 j

as a power series in 2z, with coefficients analytic functions of ¢t

(z,t)

(where M = L mi).
i
However, since the Nullstellensatz is a nonconstructive result,
it is very difficult to obtain further information about the resulting

meromorphic function of t by this method and so we adopt instead the

following approach,

With the above notation, let gp be the local ring at p ¢ M,
and let Q' be the local ring at (p,0) e M x €. Then O may be
P P

identified with a subring of g; via the projection (z,t) > z.
Similarly an element of g; may be regarded as a family of elements
of gp parametrized by t, for t sufficiently small.

Then X may be expressed in a neighbourhood of p by:

n
5.1.1 X(z) = T a.(z)3/dz,
jo1 & i

with each a, holomorphic, 1In the following, holomorphic functions
will be identified with their germs whenever this is convenient. The
following theorem holds for an arbitrary holomorphic vector field (not

necessarily with isolated zeroes), and all p e M.

3.1,2 Theorem. Let lp(z-zt) c Q; be the ideal generated by the germs

of the functions z, - z- for l<i < n, and let I (a) €0 be
it i -7 P P
the ideal generated by the germs of the ai(z). Then

t
lp(z z) = t.lp(a).

Before stating the next theorem we introduce the following
notation. Let A(z) be the n x n matrix over the ring gp given

by the partial derivatives of the a:
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5.1.3 A2 = aai/azj(z).
We note that
™
5.1.4 T- T A%/ g
k=0
is an invertible element in the ring of n x n matrices over 0Q'.

Formally we may write

1

T = t:A/(I-etA

).

Then we can define an element T(z,t) ¢ Q; by:

5.1.5 - T(z,t) = det(tA/(I-etA)).

Theorem 5,1,2 is of course trivial at any point where the vecter
field does not vanish., 1In order to apply the theorem, we again make
the restriction that p is an isclated zero of X. We then obtain the

following:

5.1.6 Theorem., Let [f be the sheaf of germs of holomorphic k-forms

on M, and let dz be the element dz A*'+Adz_ of 9; Then (see
4.1 for notation) for t ¢ € - {0} sufficiently small, the following

. n n, .
equality holds in Ezggp(;p(a),g%).

dz %1z, 0)dz
21‘25:---’Zn'2§ a),000,8,

Note that if we apply the residue to the left side we obtain the fixed-

point index at p 1in the Atiyah-Bott formula for the sheaf QM’ and

the right side gives an alternative expression for this index. Note

also that the right side has a much more explicit dependance on ¢t
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than does the left side. This fact will be exploited in section 6 in
order to investigate the properties of the meromorphic function of t

obtained by applying the residue map.

We shall first prove these two theorems, and then show how the
results may be generalized to prove a fixed-point formula for cohomology
with values in the sheaf of germs of holomorphic sections of any vector
bundle which satisfies certain homogeneity properties compatible with

the action of X on M,

Proof of theorems 5.1.2 and 5.1.6. Let U be an open neighbourhood

of pe M on which the vector field has the form 5.1l.1. Then the

resulting flow f 1is characterized by the conditions, for 1 < i < n,

Bfi/at(z,t) = ai(f(z’t))

and

£,(2,0) = z_.

Let Vc U be open and let W be a disc centred on the origin
in €. Then if V and W are chosen to be sufficiently small [19;

IV.1] we may inductively define functions f(n) : VXW —U by:

f(o)(z,t) =z

and for m > 0

t
f(m)(z,t) =z +-~[ a(f(m-l)(z,s))ds
0

where a : U —> Cn is the function a(z) = (al(z),...,an(z)). Note

(m)

that each f is holomorphic so that the integral may be taken along

any smooth path from 0 to t in W,
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Again, as in [19; IV.1], if V and W are small enough, the
g(m)

sequence converges uniformly on V x W and the limit f is

the local flow associated to the vector field. This also shows that
f 1is holomorphic, being the uniform limit of holomorphic mappings

[16; 2.2.4]}.

The elements of g; can be expressed as convergent power series,

-

and ﬁﬁ will be given the topology of simple convergence of the

f(m)
(m)

coefficients [16; 2.2.4]. Thus —> f 1if each coefficient in

the power series expansion of f converges to the corresponding

coefficient in the expansion of f£.
We first prove the following lemma.

5.1,7 Lemma. Let A be the matrix of partial derivatives 5.1.3. Then

in matrix notation, the following holds in Qén for m > O;

k
k-1
T WA .a(z)

(ag

f(m)(z,t) -z =

i

" e™e
=

1

mod(t.lp(a))z.g;)n )

Proof. The proof is a simple induction, The result is trivially true
for m =1, and if true for m = N then, if lp(z-f(N)) is the ideal

generated by the germs of the functions z, - ng)(z,t) for 1 <1i < n:

a(f(N)(z,t)) = a(z + f(N)(z,t) - z)

a(z) +A(z) e (fN(z,t) - 2)

(N). .2 n
d = . ! .
mod(L (z-£")).0¢
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The congruence follows from the fact that it is true for every finite

M)

partial sum of the Taylor expansion of a(z + f (z,t) - 2z), and the
fact that ideals are closed in Q; for the topology of simple
convergence [16; 6.3.5].

The result for m = N+ 1 then follows from the case m = N

and the definition of f(N+1).

We are now in a position to prove the theorem. Firsli note that

since the functions fgm)

converge uniformly in a neighbourhood of
(p,0) in V x W, they also converge in gé by the Cauchy inequalities
[16; 2.2.7]. The same applies to the partial sums on the right-hand
side of 5.1.8. Then, again using the fact that ideals of g; are

closed, we can let m —> o in 5.1.8 and conclude, with T defined

by 5.1.4, that
) 2 ,n
z=-f(z,t) = T(z,t) e ta(z) mod(t.I (a o' .
(z, (z, ( ( 'p( )) 9
Because T 1is invertible, this means that
€.1 (a) = I (2-2%) + (e.1_(a))°
P P P

and the theorem follows from Nakayama's lemma [see e.g. M. F. Atiyah
and I, G. Macdonald, Introduction to Commutative Algebra, Addison-

Wesley 1969, prop. 2.6].
In order to prove theorem 5.1.6, simply observe that
((T-e®)/ta) o ta  mod 12.0'"
P P

where lp = t.lp(a). The theorem then follows from the definitions

(see 4.1),




51

5.2 A generalisation

We recall that the fixed-point theorem can be proved for cohomology
with coefficients in the sheaf of germs of sections of any holomorphic
vector bundle E for which there exists a suitable geometrical endo-
morphism (see 3.1). In the present situation we require the existence
of a family of geometrical endomorphisms of E corresponding to the
group of endomorphisms of M induced by the vector field. Sufficient
conditions for the existence of such a family are obtained in the
situation discussed below, which will be formulated in the context of
an arbitrary group G acting (on the left) on the complex-analytic
manifold M by holomorphic transformations,

In this case M will be said to be a holomorphic G-space,

and for g ¢ G the corresponding endomorphism of M will also be

denoted by g.

First recall the following definition,

5.2.1 Definition. The holomorphic vector bundle E 1is said to be a

holomorphic G-bundle if:

(i) E 1is a holomorphic G-space.
(ii) The projection E —> M commutes with the action of G.
(iii) For ge¢ G and x ¢ M the map E —> Eg(x) is complex
linear,
For example, any combination of temsor or exterior powers of the
holomorphic tangent bundle of M 1is a holomorphic G-bundle, Other

examples occur on the homogeneous spaces of Lie groups [2,5].
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5.2.2 Remark. If E 1is a holomorphic G-bundle then so is the holo-

* -
morphic dual E . To see this, for x ¢ M let gxl : Eg(x)
-1

be the map induced by the action of g on E, Then the adjoint

—> E
X

*
g(x)

a holomorphic G-bundle. Thus tensor and exterior poweré of the holo-

%* * *
maps Ex —> E give an action of g on E which makes E into

morphic cotangent bundle are holomorphic G-bundles.

The point of this definition is that for G-vector bundles there
always exist geometrical endomorphisms compatible with the action of
G; by definition 5.2.1 and the universal property of the pull-back

there exists a holomorphic bundle map over M for all g e G,
-1.%
E—> (g ) E.

By taking the pull-back relative to the map g : M —> M we

obtain the required endomorphism, which will be denoted by
*
wg : g E —>E,

Note that if E 1is a G-vector bundle this gives a (right)

representation of G on the space COO(M,E) of smooth global sections

of E, which will be written s > s for s COO(M,E), where

sg(x) = wg(s(g(x))). It is easy to check that this defines a representation.
Let x ¢ M be a fixed point for the action of G, i.e. g(x) = x

for all g e G. Then if gx is the space of germs of holomorphic

sections of E at x, there is a (right) representation of G on

this space which will again be denoted by s +> sg, where as before

g
8§ = 08 0g.
g g
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In the case where E 1is the trivial line bundle the resulting
representation on the local ring gx is simply £ +—> £&  where
fg(x) = £f(g(x)). This is therefore compatible with the notation of

section 5.1.

5.2.3 We now return to the case where G = C& and the C+-action on M
is induced by a holomorphic vector field X with isolated zeroes. Let

p be a zero of the vector field aud let be holomorphic

SpsveesS

sections generating the C+-vector bundle E in a neighbourhood of p,

* * *
with corresponding dual sections SpsreesSy of E . Recall that the

expression which enters into the fixed-point index at p is the class

in 0'/1 of
P P

m * t
trace mt(z) = < S HS. > .

i=1 1
As before, it is not clear how this expression depends on t.
This dependance can be clarified as follows. We identify sections of
E with their germs at p whenever this is convenient,
For 1 <i<m we may differentiate st in gp with respect

i

to t and obtain

n
t
3s /3Ll o= T L85
j=1
with Lij ¢ Qp. Since s > st is a representation of C#, this
implies that
t i u u
ST Sty

This is a system of first-order differential equations for the

t .
s, which may be integrated in precisely the same way as the vector field

3
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of 5.1, We write s = (sl,...,sm) and, using matrix notation, define
inductively
st =5
(0)
and

t
t u u
= do
S(k 1) s+fL os(k) u

0
As before the szk) converge in the topology of simple convergence
in E' = E @b 0' to s°. We first prove:
P P _p_P

5.2.4 Lemma. The following holds in E; for k > 0:

k
t 1
s = ¥ =
(k) i= .

(as before I denotes the ideal ¢t.I (a)).
P P

Proof. This is trivially true for k = O, and if true for k = N,

then as in lemma 5.1.7,

2z

t

il

t

S(N+1) Lu(uL)i e s du

s+ T
i-0 YO

Ml i
L 7 (tL) e s mod I_.E'
i=0 1. p _p

as required.

®
Thus if we write formally etl _ z (tL)i/i! and define an

i=0
element ch(E,z,t) ¢ g; by

tL(z)

ch(E,z,t) = trace e

we obtain the following theorem:
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5.2.5 Theorem. Let dz be the element d21/~°-- Adzn of Q;. Then

for t ¢ € - {0} sufficiently small, the following equality holds in

n n
Ext. (0 /I (a),0):
===0 4
0, PP P
trace @ (z) dz t "xch(E,z, t)xT(z,t) dz

al,.'.’an

Z."Z.,000,Z =2
171 ’"n "n

5.2.6 Remark. The expression for the fixed-point index obtained by

applying the Grothendieck residue to the right-hand side of the equality
given by theorem 5.1.6 can also be derived by purely analytic methods,
using the integral formula expression for the residue, and a local
perturbation of the vector field to obtain non-degenerate zeroes;

see [22]. However the generalisation given by the above theorem appears
to be less amenable to this approach, except in the case where E is
some tensor or exterior power of the holomorphic cotangent bundle.

This is because it is not clear in general how to extend the pertur-
bation on M to a compatible perturbation of the c+ action on E,

although this may be possible in particular cases,

5.2.7 Remark. Note that if E = Ql, the sheaf of germs of sections of

holomorphic cotangent bundle of M with the corresponding geometric
endomorphism given by the differential of the endomorphism of M,

then taking the usual generating sections dzl,...,dzn,

2t
=3 zi/atazj = aai/azj =A,..

Lij ij

Therefore if we define elements Tk(z,t) € Qé for 0 <k < n:

Tk(z,t) = trace Ak(etA) X det(tA/(I-etA))




we can calculate the fixed-point indices for the case E = Qk by

using:

k, t i
trace A (azi/azi) dz _ [_t-nka(z,t) dz_]

t a,,¢04,a
21721500052 72 1’ ’“n _

Of course, this result could also be obtained directly from the

work of 5,1, If 5.1.9 is differentiated with respect to =z it gives
t tA
z./3z,) = e mod I
(d2;/32,) L

which immediately implies the above equality.

5.2.9 Remark. One or two observations are in order concerning the matrix
L, which may be regarded as an endomorphism L : Ep —> gp where,
for s ¢ Ep’
L(s) = 3s /3t
t=0 °*

Note that if E 1is the trivial line bundle, the corresponding endo-

morphism of gp is simply
fEr—>Xef

where X o £ 1is the derivative of f along the vector field, i.e.

n
T a, af/3z,. Thus
g-1 1 i

L(fs) = (X e f)s + fL(s).

This implies that L induces a well-defined linear transformation

of the fibre of E at the zero p of X, which with respect to the

)

basis {si(p)} of the fibre is given by the matrix L;;(P). In case
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1
E =Q", then L is essentially the Lie bracket action and the eigen-

values of the matrix Aij(o) are the characteristic roots of the

vector field at p.
Compare the situation with that of [4], where closely related

results on zeroes of holomorphic vector fields are given,

5.2,10 Remark. The explanation for the notation T and ch is as

follows,

Define elements ¢, ¢ 0 for 1 <i <m by
1 P - -

m
det(I + xL(z)) =1+ T xici(z)
i=1

where x 1is an indeterminate. In fact the c; depend on the parti-
cular coordinates chosen around p, but it is not difficult to check

that their classes mod lp(a) are in fact independant of the coordinates,
In any case when L = A, then T(z,t) 1is essentially the (dual)

Todd class in the "Chern classes" ci(z) and when L 1is the matrix
associated to the (IS+ - vector bundle E, then ch(E, z,t)

is the Chern character in the classes ci(z)' See [15].

jon

Properties of the fixed point index at a zero of the vector field

We now investigate more closely the form of the fixed-point
contributions in the Atiyah-Bott formula for a one parameter group,

i.e, the functions

v (E,t) = 1 Res ch(E,z, t)T(z,t) dz )
P n p

t al’cot,an
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k . ; .
In case E = (1" with the usual geometrical endomorphisms induced by
the kth exterior power of the derivative we write
k

v (Qk t) = v (t).

QP ) p( )
We prove the following results,

6.1 Theorem. Let xi for 1 < i <n be the characteristic roots of

the vector field at p, i.e. the eigenvalues of the matrix aai/azj(p),
ALt

and let Y (t) = (1-e ")™' if % $0, and Y (t) = 0 otherwise.

Similarly, for 1 <1i <m, let My be the eigenvalues of the matrix

L(p). Then for t sufficiently small and non-zero:

-n a2 uit
(1) Vp(E,t) =t i§1e Qp,i(t,Yl(t),...,Yn(t))
for certain polynomials Qp i in n + 1 variables with coefficients
b
in €.
k -n_k .
(i1) vp(t) =t Qp(t,&l(t),...,Yn(t))

for certain polynomials QE in n 4+ 1 variables with coefficients in @ .

Proof. For a multi-index I = (il,...,in) let di denote al/azl.
In view of the algorithm 4.3 for calculating the residue it is

sufficient to prove that for each 1I:

m Ut
(a) d] ch(E,p,t) = Te ' P (c)

i=1
for certain polynomials Pi in one variable, and for 0 < k < n:

(b) diTk(p,t) is a polynomial in t and the Yi(t)'

We first prove (a); the proof of (b) will be similar. As in 5.2.10

we write
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m
6.2.1 det(I + tL(z)) = 1 + T ci(z)ti
i=1

and then ch(E,z,t) can be expressed in terms of the c, as
ch(E,z,t) = F(c(2),t)
where ¢ = (cl,...,cn). Then we can write also

6.2.2 F(c,t) = S(x,t)

m X,t

where S(x,t) = T e i and ck is regarded as the kth elementary
i=1

symmetric function in the X,

Now differentiation by the chain rule shows that it is sufficient
to show that all the dZF(c(p),t) are of the required form. The
purpose of the following lemmas is to show that we can go further and

. 1
consider only de(x,t)Ixzu.

6.2 Lemma. Let D(x;,...,x ) = det(aci/axj). Then

D(xl’.oo,xn) = l l (xi-xj).
i<j
Proof. Let c; be the jth elementary symmetric function in the

i .
n-1 variables XyseoesX i 1% qoeeesXs and let o = 1 for all i.

j

Then aci/axj =cj1° We first prove that' D(x1+t,...,xn+t) = D(xl,...,xn).

. 1

To see this note that cJ(x+t) = c?(x) + T B c? (x)tk for certain
i i k=1 k" i-k

integers Bk depending only on k, and then use standard properties

of determinants,
n-1
Thus D(xl,...,xn) = D(xl-xn,...,xn_l-xn,o) = k—l(xk-xn)

X l I (x.-xj) by induction, assuming the result true for n - 1,
0<i<j<n

This is the required result,
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Let us say an analytic function defined on the open neighbourhood
U X W of the origin in c” x € has property (M,N) if it can be
expressed as
D(X)'M X z PI(x)diS(x,t)
|1]<¥
with each PI(x)a polynomial in Xyseee, X, OD the open dense subset
of U X W where D(x) + 0. The proof of the following lemma is

immediate,

6.3 Lemma. If w(x,t) has property (M,N) in U x W, then aw/axk

has property (M+l1,NM+1) in U xW for 1 <k <n.

6.4 Lemma, If F and S are related by 6.2.2, then for each I,

diF(c,t) has property (2|I|,|I|).

Proof. The proof is by induction on |I|. The case |I| =0 is
simply F(c,t) = S(x,t), so suppose the lemma holds for |I| < N.

Then by lemma 6.3, for 0 <k < n,

1 n
a/ax [ Fle, )] = 5 3/3c, (alF(e, ) Jae, /ax
jt e I Tk
3=1
has property (2N+1,N+1) if |I| = N. Therefore by solving for
B/acj[sz(c,t)] we see that for each j this function has property
(2M+2,M+1). This completes the induction step and the proof of the

lemma.

6,5 Lemma. Note that ck(p) is the kth elementary symmetric function
of ul,...,un. For all I the function sz(c(p),t) of t 1is a

certain finite linear combination of the functions diS(p,t).
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Proof. If the . are distinct, then D(W) 4 O and the lemma follows
simply by setting x =\ in lemma 6.4, If there exist equalities

between the ui, say ul = uz, then if

dIF(e,0) = D x T PLe0als(x,b)

l3j<n I
we can apply L'Hepital's rule and obtain

—_— M
sz(C(p),t) = Ml. x || (ui-u.)M X b—M o Pﬁ(x)diS(x,t)) xepl
Ti<) T A %=

where the prime indicates that (ul-uz) is omitted in the product.

This expression is still of the required form and we may proceed

similarly if there exist further equalities between the ui.

Result (a) will now follow if each diS(u,t) is of the form

m oyt v
Telrp .(t) for certain polynomials P
i-1 I,i I,i

(t), but this is clearly
true.

The proof of (b) is the same except that we set
k
F(c(2),t) = T (z,t)

where this time the ¢ are defined by setting L = A in 6.2.1.
Then F(c,t) = S(x,t) where, if O, 1is the kth elementary symmetric
function,

x.t

S(x,t) = o,(e ") [ [ (x;e/(1-e

1:1

=]

X. t
1

)).

As before we reduce the problem to the direct differentiation of

S(x,t) where the result is easily checked,
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These results have the following interesting corollary which
generalises the results of [18] and {20] to include the case of

isolated degenerate fixed points.

If £ : M —> M 1is complex analytic we denote the induced endomorphism

of HJ(M,Qk) by Hj’k(f) and write

xF(f) = Z (-1)jt:racec Hj’k(f)

n
j=0

for the corresponding Lefschetz number. If f is the one-parameter
group generated by the holomorphic vector field X with isolated

k
zeroes, we write the Lefschetz number as ¥ (t) for teg C .

6.6 Theorem. For 0 <k <n,

n
Xty = T (-1daimg 1 on, g
§=0

o) = X

for all te C.

Proof. This is a simple extensicn of the proof given in [20] for the

: . , k
non-degenerate case, First note that each fixed point index vp(t)

has an analytic continuation as a meromorphic function on the whole
K M Qt
complex plane, and that Y (t) = %L + e for certain a, € cC.
i=1
By uniqueness of analytic continuation the fixed-point formula

xF(t) =X vk(t)
P P

then holds for all t, except where the right-hand side has poles., Now

v

if te R and s lies on the unit circle in the complex plane, one

observes that each vE(t) has the property that there exists some

integer N such that vz(st)t-N —> 0 as t —>» oo for all but a
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finite number of s, i.e. those 8 such that X\s is purely imaginary
for some characteristic root X\ of the vector field at one of its
zeroes., But this behaviour is incompatible with the behaviour of
x#(t) unless this function is actually constant, as is shown by the
following lemma.
K M ot
6.7 Lemma. In the expression ¥ (t) = T +e the exponentials either
: i=1

cancel in pairs or, with the above aotation, ¥ (st:)t:-N —> o0 as

t —» oo for s running in an open set of the unit circle,

Proof. Suppose there exists an @ of largest modulus among the o,
which cannot be cancelled, Choose 8 such that sa 1is real and
positive., Then as t —> o through positive real values it is

ugt . .
clear that the term e dominates all others for all u 1in an open
neighbourhood of s in the unit circle, and for any N we have that

xk(ut)t-N —> o as required.

6.8.1 Remark. The above argument cannot be applied to the situation

involving more general bundles due to the occurrence of extra factors
in the fixed-point indices, Note however the remark at the end of

the next section which shows that if the situation is wholly algebraic,
i.e, M 1is also an algebraic variety over € and the action of C¢
is rational, then the above argument becomes valid in general since

the eigenvalues of the matrix L(p) will be zero at all the fixed

points,

6.8.2 Remark. If M is Kihler, then theorem 6.6 will follow also from

the fact that the cohomology group Hp(M,gﬁ) is embedded in the
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cohomology group Hp+q(M,cD for all p and q, and these groups are
of course acted on trivially by any connected Lie group operating

continuously on M.

6.9 Examples

By analogy with [15] we may write, using the notation of 5.2.7,
n
k k
T(y;z,t) = T T (z,t)y
k=0

where y 1is an indeterminate. Write also

t-nT(y;z,;l dz

ot =
“p(y’ ) EERRE L
so that
® m-n
a (y;t) =  a (¥t .
P =0 p,m

With this notation, theorem 6.6 may be rewritten as

xy(M) if m=n
T Res (. () =
P p,m
P 0 if m + n

where xy(M) is the xy-genus of M, as defined in [15].

Example 1. Setting y = -1, we see that

[ da,A++- Ada
n

-1 =
O‘p,m( ) al,.oo’an

and it follows from properties of the residue [13; II1I1.9.R6] that

Res (o 1)) = dim (0 /I ). But this is the multiplicity of the zero
p(pn() C~p ~p

b

of X, and since X_I(M) is simply the Euler-Poincaré characteristic,

we recover a special case of the classical Hopf theorem,
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Example 2. 1In the case where dimc M =1, the vector field may be

written locally as a(z)3/3z, and

a,(yit) = [a' (1+ye 'y (1-e%2") " Ldz/a)]

where a' = 3a/a3z. 1In this case the Grothendieck residue coincides

with the classical Cauchy residue and if a'(p) = A\ # 0 then
Resp(ap(y;t)) = (1+yeXt)/(1'GXt)
while if a(z) has a zero of order M >1 at p;
Resp(ap(y;t)) = -(1+y)(2ﬂit)'195dz/a + (l-y)M/2.

In dimension n we recall the following results from the earlier

work of section 6. The first also appears in [20].

a) If the zero of X 1is non-degenerate, i.e. A(p) 1is non-singular,
then Res (ab(y;t)) is a polynomial in y whose coefficients are
P

bounded as t —>» oo radially in all but a finite number of directions,

b) At the other extreme, if the transformation given by A(p) is
nilpotent, then the coefficients of the powers of y in

Resp(ub(y;t)) are of the form

" x polynomial in ¢,

One might then ask if the behaviour of a) occurs in case b)., 1In
other words, are the polynomials in t always of degree < n? The
previous example shows that this is certainly the case in dimension 1,
but the vector field described below gives a counterexample in

dimension 3. However, I know of no counterexample in dimension 2, or
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in the case of a holomorphic vector field which is defined globally

on a compact manifold.

Example 3. Let (x,y,z) be coordinates for CP, and take X to be

the vector field

X(x,y,z) = ad/3x + b3/3y + ca/3z

where
a(x,y,z) = x? + yex
2
b(x,y,z) =y + z
2
c(x,y,z) = z".

This has an isolated zero at the origin, and A(0) 1is clearly nilpotent.
The algorithm described in 4.3 will be used to find the coefficient of

t in Reso(ao(o;t)). First note that

x8 = (x6-x4yex+x2y2e2x 3 3x)a + e (yz-z)b + eaxc
vt = (y2-2)b + ¢

2

z = C.,

Let C(x,y,z) be the determinant of the matrix of multipliers:

C(x,y,z) = (x -xayex+ 2 282x 3 3x)( 2.

Setting a = 2x+yex it is easily checked that

2.2

To(x,y,z,t) = -(l-axt/2+axt /12-ait4/720)

2
X (l-yt+y t2/3) X (l-zt) mod(xs,y4,zz,t5).
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Then, applying the algorithm, the required number is the coefficient
of <x7y3zt4 in C(x,y,z) x To(x,y,z,t), and this may be checked to

be -1/90,

Additive group actions on algebraic varieties

Analogous results to those of section 5 hold in the algebraic
category, provided we stay in zero characteristic. Suppose the additive
group A+ of the algebraically closed field k acts rationally on the

smooth variety M, defined over k, by
£:MxAl — M

Assume that p ¢ M is an isolated fixed point for the action of
A+. Note that it is proved in [17] that {f M 1is complete and
connected then the fixed-point set is connected, so that p will be
the only fixed point. Perhaps the simplest example of this situation
is the action of A+ on Pl(k) = A+ U{o} given by (z,t) —> z+t
with fixed point {ool.

As before let 0p and o; be the local rings at p ¢ M and
(p,0) ¢ M Xx A+, with maximal ideals s and m; respectively. Let

z zZ_ ¢ Op be regular parameters for M at p and let

1,0.0’ n

%*
fi = f z, € Oé. The corresponding ''germ of vector field" can then be
defined by a; = Bfi/at £=0" The problem then comes down to constructing

a solution for the formal differential equations
3f /3t(z,t) = a, (£(z,t))

in the ring 0;, subject to the initial conditions fi(z,O) =z,. It

is then necessary to prove uniqueness in order to identify the solution
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. + ; .
with the given A" action. As in the analytic case this can be done

n

by defining an endomorphism & of the m;—adic completion (0;) of

oH™ b
( p) y
t
a(g) = z + f a(g(z,u)) du
0
A n
for g ¢ mé(oé) . (The formal integration needs the hypothesis that
k is of zero characteristic,) It is then trivial to prove that o
is a '"contraction map' for the m;-adic topology, and the existence
A
and uniqueness of the solution in (OI'J)n follows immediately. However,
it is more convenient to prove the following slightly stronger result.
Let 6; be the completion of O; with respect to the mp-adic
topology (this topology is finer than the mé-adic topology). Then
0. defines an endomorphism of mp(Bg)“ and in order to show that a

solution of the differential equations exists in Oé it is only

necessary to prove the following proposition,

7.1 Proposition

The endomorphism @ 1is a contraction map for the mp-adic

topology.
~ N R k =, 0
Proof. For g,h e mp(Op) with g-h ¢ mp(Op) for k> 1 we have
t
a(g)-a(h) = A e f (g(z,u)-h(z,u)) du
0
mod mZk(ag)n
P P

where as before Aij(z) = aai/azj in the mp-adic completion 6; of
Op. Now A+ has a rational representation on the n-dimensional

2
vector space mp/mp, say t F>1U_. Since At s a unipotent group
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the matrices Ut are unipotent and aUt/at £=0 = A(p) 1is nilpotent,

Thus for sufficiently large N the matrix AN has entries in m 6\ and
P

N N k+l ~ . n
- h ]
a(g) -a(h)e mp (Op)

as required.
Again we obtain the congruence
z-£(z,t) = T(z,t) o ta(z)  mod Ii(B;'))“

where as before Ip = t.Ip(a). Note that for k 1large enough,
mp c Ip(a), since the zero is isolated. Thus no essential information
has been lost by taking the completion.

The generalisation of (5.2) can be carrigd through similarly in
the algebraic case, Note that in all cases the residue at the fixed

point will be of the form e " X polynomial in t.
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