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Summary

The holomorphic fixed-point formula of Atiyah and Bott is discussed

in terms of Grothendieck's theory of duality for algebraic varieties.

~he treatment is valid for an endomorphism of a compact complex-analytic

manifold with arbitrary isolated fixed points. An expression for the

fixed-point indices is then derived for the case where the endomorphism

belongs to the additive group generated by a holomorphic vector field

with isolated zeroes. An application and some examples are given. Two

generalisations of these results are also proved. The first deals with

holomorphic vector bundles having sufficient homogeneity properties \.ith

respect to the action of the additive group on the base manifold, and

the second with additive group actions on algebraic varieties.
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Notational conventions

Number underlined in square brackets refer to the list of references;

if 0 is a sheaf of rings, a sheaf of Q-modules will be referred to as

an Q-Module (similarly for an Q-Ideal); the complex numbers are denoted

by C, the real numbers by lR, and if then
n

Izl will denote (~ IZiI2}1/2.
i=l

O. Introduction

This paper is concerned with certain problems which arise when the

holomorphic Lefschetz fixed-point formula of Atiyah-Bott [2] is applied

to the one-parameter group of endomorph isms of a compact complex-analytic

manifold generated by a holomorphic vector field with isolated zeroes.
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When these zeroes are non-degenerate, i.e. the section of the holomorphic

tangent bundle defined by the vector field intersects the zero section

transversally, then it is easy to calculate the fixed-point indices. In

this case the fixed-point formula as it appears in [1] has been used by

Kosniowski [~] and Lusztig [20] to prove several interesting results.

However, it was pointed out [2] that the fixed-point theorem can

be formulated for arbitrary isolated fixed points, i.e. where the graph

does not necessarily intersect the diagonal transversally. The fixed-

point contributions will then involve the Grothendieck residue. Proofs

of the formula in this case have been given by Toledo [25) and Tong [~,

12]. This then poses the problem of generalising the above results on

holomorphic vector fields to this situation and studying the case of a

vector field with arbitrary isolated zeroes. However, it is by no means

clear what the fixed-point indices are in this case. The main difficulty

is that an explicit calculation of the appropriate residue at a fixed

point involves the use of the complex-analytic analogue of the Hilbert

Nullstellensatz, a highly non-constructive result. It is easy to show

that the fixed-point indices are meromorphic functions of the parameter

t with a pole at t = 0, but to obtain further information is more

difficult.

This problem was solved in [22], using an integral formula expression

for the residue and a perturbation to reduce to the case of non-degenerate

zeroes. The results obtained there also allowed one to prove an analogue

of a result of Lusztig given in [20]. In particular a partially affir-

mative answer was given to a conjecture of Lusztig that if the zero of the

vector field is 'totally degenerate', i.e. all the eigenvalues of the Lie

bracket action of the vector field on the tangent space at the zero (the
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characteristic roots) are zero, then the fixed point index is of the form

t-~(t), where n is the dimension of the manifold and P(t) is a poly-

nomial of degree < n. This is true except that the bound on the degree of

the polynomial does not hold in the most general situation; see section 6.

The main results presented here are essentially those of [22] but

the method of proof which will be used is superior for several reasons.

Firstly, the basic theorem of [22] is that two local cohomology elements

(see below) have the same image under the Grothendicck residue. Here it

is proved that they are actually the same element -- a considerably stronger

result. Secondly, the present method allows generalisations in two

directions; to more general coefficients for the cohomology groups occurring

in the fixed point formula (5.2), and to algebraic varieties over more

general fields (7).

The Grothendieck residue was introduced as part of Grothendieck's

theory of duality for algebraic varieties [1], and this seems to be the

natural context for some of the results given here. For this reason the

first two sections are given over te a discussion of the relevant parts

of Grothendieck duality theory and the closely related theory of local

cohomology. This is then applied in later sections in the context of the

holomorphic fixed-point formula.

The material is organised as follows.

Section 1.1 introduces the local cohomology functors and the related

local and global Ext functors. These are defined as the derived functors

of certain functors from sheaves to sheaves and abelian groups, and are

somewhat analogous to the relative cohomology functors of topology. An

interpretation of local cohomology in terms of ~ech theory is also discussed.
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Section 1.2 goes on to introduce some algebraic machinery, the Koszul

complex, which is used to prove one of the basic results of Grothendieck

duality theory, the fundamental local isomorphism. This gives a particularly

convenient interpretation of the local Ext sheaves in certain special cases.

Section 1.3 applies the above techniques to analytic ~heaves on

complex manifolds, and also shows how the Koszul complex may be used to

relate local Cech cohomology to the local Ext sheaves.

All of the results of section l are implicit in the various accounts

[1,1,2,10,11,11] where they are discussed mainly in the context of schematic

algebraic geometry.

Section 2 uses the above machinery to introduce certain constructions

relevant to the holomorphic fixed-point formula. This approach was dis-

covered in the course of several interesting conversations with Professor

M. S. Narasimhan, and is rather different from the methods used in other

published versions [I,25,~,11]. It appears that these ideas are essentially

already known, but the description given here serves to place some of the

concepts involved in their natural setting. A similar approach has been

used recently by D. Toledo and Y. L. L. Tong in the context of a holo-

morphic Lefschetz formula for non-isolated fixed points.

As in the topological Lefschetz fixed-point theorem, the idea is to

construct a cohomology class in the product of the manifold with itself

which is represented by a "delta-function on the diagona1." This is done

here by using the fundamental local isomorphism, and the resulting class

can be identified with the delta-function via a construction of Harvey [14]

involving the Cauchy kernel, the Bochner-Martinelli kernel and Dolbeault's

isomorphism. The usefulness of Harvey's construction in this context has

already been shown in [25,11].
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Section 3 deals with the situation in which the fixed-point formula

can be formulated and section 4 introduces the Grothendieck residue and

shows how the fixed point indices can be calculated by applying the residue

to elements of a certain Ext group which occurs at an isolated fixed point.

The remaining sections consist of new results concer~ing the nature

of the fixed-point indices when the endomorphism of the manifold belongs

to the one-parameter group generated by a holomorphic vector field with

isolated zeroes. Section 5.1 contains the main theorem which gives an

expression for the fixed-point index as a meromorphic function of the para-

meter, again in terms of the Grothendieck residue. This expression involves
the Todd polynomials in "Chern classes" associated to the zero of the

vector field and has a much more explicit dependance on the parameter than

the "ordinary" formula. The method of proof involves the use, in the

context of Grothendieck duality theory, of a standard iterative procedure

often employed in proving the existence of integral curves of a vector field.

Section 5.2 generalises these results to calculate the fixed-point

indices for the case of coefficients in any bundle which satisfies certain

homogeneity conditions with respect to the action of the additive group

on the base manifold. The results obtained are similar to those of section

5.1; the formula for the fixed-point index being modified by a factor

analogous to the Chern character in "Chern classes" associated to the

bundle at a zero of the vector field.

In section 6 the fixed point indices are shown to be rational functions

in t and certain exponentials in t, and therefore have analytic contin-

uations as entire meromorphic functions. The form of these meromorphic

functions then allows one to prove an analogue of a theorem of Lusztig [20]

by comparing the two sides of the fixed-point formula and concluding that
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both must be constant. This section also contains some examples.

In section 7 it is shown that similar results hold for additive group

actions on algebraic varieties defined over an algebraically closed field

of characteristic zero. This is done by replacing the analytic criteria

for convergence used in the preceding work by convergence arguments in

the m-adic topology of the local ring at a fixed point.

1.1 Local cohomology

The purpose of this section is to set out the basic concepts of

the theory of local cohomology as developed, for example, in [2,lQ].

The groups and sheaves of local cohomology are defined as derived

functors, and some of the basic properties are given. Full details

and proofs can be found in [loco cit.]. In th~ next paragraph it will
vbe shown how the theory can be expressed in terms of local Cech

cohomology, but only the simple case which will be useful later is

treated here.

In practice the local cohomology groups are difficult to work

with, and it will be convenient to use related concepts involving the

functors 'local Ext' and 'global Ext' introduced in [1] and studied

in detail in [2,10]. The final paragraph in this section briefly

explains the connection of these functors with local cohomology.

1.1.1. Derived functors

Let X be a topological space, and QX a sheaf of rings on X.

Given any left-exact functor T from the category of QX-Modules to

some other abelian category, its right derived functors RiT may be

defined as in [6;ch.7]. We recall the procedure.
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Given an QX-Module !,

Modules lik}:
construct a resolution of F by o --x

where each lk is injective in the category of QX-Modules. We then

define RiT(I) to be the ith cohomology group of the complex

Since T is left-exact it is immediate that ROT = T.

Consider the following examples of functors from the category of

QX-Modules to the category of abelian groups.

1.1.1.1. The left-exact functor I ~ r(X,I) which assigns to a sheaf

E the group of its global sections. Its derived functors give the

cohomology groups of X with coefficients in the sheaf I, which are

denoted as usual by i
H (X,D.

1.1.1.2. Let Z be a locally closed subspace of X, i.e, Z is closed

in some open subspace U of X. Then the functor I ~ rz(X,I)

which assigns to I the subgroup of r(U,IIU) consisting of those

sections which are zero on the complement of Z in U, i.e. sections

with support in Z, is left-exact. This definition is easily shown

to be independant of the choice of U, and the derived functors are

the local cohomology groups of X with coefficients in F and

support in Z, written as

1.1.1.3. Once can also define a left-exact functor from the category of

QX-Modules to itself,
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by taking IZ(E) to be the sheaf associated to the presheaf

for U open in X. The derived functors of are written

and are the local cohomology sheaves with coefficients in F and

suppor t in Z.

Using the exactness of the functor which assigns to a presheaf

the corresponding sheaf, it is easy to show [lQ; prop. 1.2] that

Ei(E) is the sheaf associated to the presheaf

1.1. 2 Proper ties of the loca1 cohomology functors

1.1.2.1 Excision [10; prop. 1.3]

If Z is locally closed in X, and V is an open subset of

X containing Z, then

for any Qx-Modu1e E.

1.1.2.2 Long exact sequence [10; cor. 1.9]

If Z is closed in X, and E is an QX-Module, there is an

exact sequence:

o ~ T Z(X,E) ~ r(X,E) ~ r(X-Z,E) ~ H~(X,E)
~ Hl(X,E) ~ Hl(X-Z,E) ~ H~(X,E) ~ ...
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The fundamental concept relating the local cohomology functors is:

1.1.2.3 The local cohomology spectral sequence

Since r(X'[Z(K» = rZ(X,K), and [Z(K) has trivial cohomology

when I is injective, there is a spectral sequence of composition of

functors, as in [8; Th. 2.4.1].

1.1.2.4

For further details, see [la; prop. 1.4]. We shall be particularly

interested in the edge-homomorphisms, for q ~ 0

1.1.2.5

This map can be made explicit by the following argument. If I

is an injective o -Module and-x U is open in x, then IIU is an

injective QX!U-Module [~; prop. 3.1.3], and so it is easy to see that

if U c V are open in X, then the restriction map induces a trans-

formation of spectral sequences:

HP (V ,HiCK»
-l,

HP (U ,Hi(K»

and a corresponding commutative diagram involving the edge-homomorphisms.

(For brevity I have written H~(U,I) instead of H~nu(U,Klu) etc.)

Furthermore, one can take the direct limit of the spectral sequences

over all U containing some x ~ X. The limit spectral sequence then

degenerates and the edge-homomorphism 1.1.2.5 is simply the identity map

on Hi(I)x' Thus for each q ~ 0 there is a commutative diagram:
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in which the lower two maps are the natural ones.

1.1.2.7 Behaviour under morphisms of ringed spaces

Let f: (Y,Qy) ~ (X,QX) be a morphism of ringed spaces. (For

definitions and notation, see [11; ch. 0] or []1; 0.4].) Then if E
is an QX-Module, there we induced homomorphisms of abelian groups,

for all p ~ 0:

p p *H (X,I) ~ H (Y,f I).

In an analogous way, one obtains homomorphisms

H~(X,I) ~ HP_l (Y,f*I)
f z

and for U open in X:

p p -1 *Hz(U,K) ~ H -1 (f U, f K).
f z

This latter defines a homomorphism of presheaves to which there

corresponds a homomorphism of QX-Modules:

p p *gz(E) ~ f~ -1 (f I)·
f z

Using the property 1.1.2.6. of the edge-homomorphisms it is then

easy to check that the following diagram commutes:
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H~(X,I) edge :;. HO (X,!!~<I»

1 J,
1.1.2.8 o P *H (X,f~ -1 (f r»

II f Z
p * ed~e :;. HO (Y HP (f*F»H -1 (Y,f I) ,- -1 -f Z f Z

1.1.3 Some 10ca1 Cech cohomology

Suppose now Z is a closed subspace of X, and let

U ('T 1= t"'i . 11.= , ••• ,n be an open cover of U = X-Z. Then U can be

extended to an open cover of X by adding the set X itself. Let

the corresponding cochain complexes (for precise definitions of these

objects see [6; ch. 5]).

Define C~(~',I) c CP(~',I) to be the subgroup consisting of

those cochains which are zero on the simplices all

of whose vertices lie in £le

There is an obvious split short exact sequence for each p > 0:

Furthermore, this sequence is compatible with the boundary operators

(the splitting is not compatible) and the resulting short exact sequence

of cochain complexes gives a long exact cohomology sequence in the usual

way. Note that since the trivial cover tx1 is a refinement of u' ,
then c·(U' F),- is acyclic except in dimension zero [6; foot of p. 222].

Therefore, if H'(ql' F)Z lA. rs: is the cohomology of C~(~' ,I), we have the

following:
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There is an exact sequence

1.1.3.1

and for p > 0 there are isomorphisms

1.1.3.2

In particular 1.1.3.1 implies that H~(~' ,f) = rz(X,f).

1. 1.3•3 Lemma • If K is injective, o for all p > O.

Proof. Any injective sheaf is flasque [10; lemma 1.5] and the result

for p > 1 follows from 1.1.3.2 and [.§.; Th. 5.2.3]. For p = 1, the

the result follows from 1.1.3.1 since the restriction map

f(X,K) ~ L(U,f) is surjective for F flasque.

These concepts are easily related to the definitions of section

1.1.1 as follows.

1.1.3.4 Proposition.

There exists a natural homomorphism

Proof. Let 1- be an injective resolution of f as in 1.1.1. Form

the bicomplex

with its ~ech boundary operator and the boundary operator of the

complex 1-. Then there are canonical inclusions for p,q ~ 0:



15

1.1.3.5

which become, on passing to cohomology

* *j j2
H~(U' ,I) ~ HP(C;<U' ,le» ~ HP(I'z(X,le».

*But j2 is now an isomorphism since by 1.1.3.3. HP(~' ,Iq) = ° forZ -
all p > 0, and all q. The composition is the required

homomorphism.

1.1.3.6 As before, we can consider the corresponding local situation.

Thus, if V is an open set in X, there are induced, by restriction,

open covers U n V, ~, n V of V, and we can form the cochain

complex of presheaves:

The corresponding complex of sheaves will be denoted by £;(~',I),
and passing to cohomology at either the presheaf or sheaf level gives

sheaves which we shall write as li~<~' ,I).

Then by analogy with proposition 1.1.3.4 there is a natural

homomorphism of QX-Modules for p ~ 0:

1.1.4 Global ~ and local ~

There is a third approach to local cohomology, involving the

functor 'Ext'. The great advantage of this approach is that there are

two distinct methods of calculating the Ext groups, i.e. by means

of either injective or free resolutions. In certain cases this will
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allow the introduction of an important computational device, the Koszul

complex (see [1]). A more detailed treatment of the material in this

section can be found in [1] or [2].

1.1.4.1 Let E be a fixed QX-Module, and let

E ~ Hom(X,~,K)

be the left-exact functor which takes an Qx-Module I into the group

of QX-homomorphisms of E into E. Its derived functors are the

global Ext groups

iI ~ Ext (X,~,K).

1.1.4.2 Similarly, we can consider the functor

which associates to F the sheaf of germs of o -homomorphisms from-x
E to I, i.e. the sheaf associated to the presheaf

Its derived functors are the local Ext sheaves

iI ~ Exto (~,E)·-x
iNote that ~ (~,I) is also the sheaf associated to the presheaf. -x

u ~ Ext1(U,~IU,!IU).

1.1.4.3 Since Hom(X,~,E) = f(X,HomO (~,E» there is a spectral sequence
-X

of composition of functors, as in 1.1.2.3,
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= HP(X,Ext~ (f,K» ~ Extp+q(X,f,K).
-x

The relationship with the groups and sheaves of local cohomology

lies in the following constructions.

1.1.4.4 Let I be an QX-Ideal, and let Qz be the quotient Module

QX'I, with

Then, if Z is closed in X, there are natural transformations

of functors induced by the quotient map QX ~ QZ which for any

QX-Module F form a commutative diagram:

~ f(X,!)

t
and

where the horizontal morphisms are defined by 'evaluation on the unit

section.'

There are then induced natural transformations of the derived

functors [10; p. 30].

1.1.4.5
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1.1.4.6

and a morphism of spectral sequences.

1.1.4.7

1.2 The Koszul complex

This section is given over to a description of some algebraic

apparatus which will be useful in dealing with the local Ext sheaves.

1.2.1 Definition of the Koszul complex

Let A be a ring (commutative with 1, as always) and let

[ ] b t 1 f I t f A Let ~·(Am) beX = xl' ••.,xm e any m- up e 0 e emen so. H

th . 1 b h fAd 1 Am = A "" ••• ""A,e exter10r a ge ra on L e ree -mo u e w w so that

f 1 k ~k(Am)or s s m, j\ is a free A-module with generators

for We can

then define A-module homomorphisms

given on generators by

It is easily checked that .2 0
1 =
X

and the resulting chain

complex is the Koszul complex K (x)..-
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1.2.2 Regular A-seguences

With the same notation, ~ = [xl,•••,xm] is said to be a regular

A-seguence if it has the following properties:

(i) xl is not a zero divisor in A

(ii) For 1 < i ~ m, xi is not a zero divisor in A/(x1, .•.,x
i
_1),

where is the ideal x
1
A + ... + x A.i-l

The importance of these co~~~tions lies in the following result,

the proof of which is given in [11; 111.1].

1.2.2.1 Proposition

Then the Koszul complex K (x)0- is a resolution of All by free A-

modules; i.e. the chain complex

is exact.

1.2.2.2 If M is an A-module, define a cochain complex •K (~,M) by:

with corresponding coboundary operators • I
1 •
X

Let •H (~,M) be the

cohomology of this complex. By the definition of the functors Ext by

projective resolutions [6; ch. 5] we have that

i iExtA(A/I,M) = H (~,M).

1.2.2.3 Proposition

Suppose M is a flat A-module. Then
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-,

i -:>0'_ {Mo/IMExtA(A/1,M)
i = m

i + m

Proof (see [1; 111.3.8]. In fact the Koszul complex shows that
i AExtA(A/I,M) ~ Tor .(A/I,M) and the result follows from the flatness

m-l.

of M.

Note, however, that the isomorphism is non-canonical and depends

on the particular set of generators chosen for I.

For i= m, the isomorphism is constructed explicitly by first

defining

m
CP~ : K (~,M) ~ M

Then the induced map

mcp~ : H (~,M) ~ M/IM

is the required isomorphism.

The following result is central for the applications of the

theory given in later sections.

1.2.3 The fundamental local isomorphism

For x ~ I, let x be its class mod 12. Then under the

conditions of proposition 1.2.2.3, we have:

(i) 1/12 is a free A/I-module with generators xl, •••,xm'

In particular, this implies that Am(I/I2) is a free A/I-module with

genera tor Xl'" •• " xm'
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(i1) There is a canonical isomorphism

which is independant of the choice of generators for I and for
m ma ~ H (~,M) = ExtA(A/1,M) is given by

Proof. For (i) see [1; 1.4.5 and 111.3.4]. For (ii), let

be the isomorphism resulting from the (non-canonical)isomorphism

A/I";;"l\m(1/12) given by y ~ YXl" ••." xm' Then it is easily checked

that W~ 0 ~~ is independant of the regular A-sequence ~. See [13;

eh, II, §7] or [!; ch, I, §4].

The next section will give concrete applications of the above

theory to analytic sheaves on complex manifolds.

1.3 Application to complex manifolds

Let M be a complex analytic manifold of complex dimension n,

and let ~ be the sheaf of germs of holomorphic functions on M. The

results of the previous section are going to be used to calculate the

sheaves i analytic subspaces (Z,QZ) of (M,~)Ext (QZ,r) for certain

and any locally free ~-Module .E.

1.3.1 Local complete intersections

1.3.1.1 Let (Z,Qz) be an analytic subspace of (M,2r.f)'We say that

(Z,QZ) is locally ~ complete intersection of codi~ension m if
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2z = 2M!1 for some 2M-Ideal 1, and for each z £ Z there exists a

neighbourhood U of z in M, and fl,•••,fm g f(U,2M) such that at
each point x ~ U n Z the germs fl '••.,f,x m,x form a regular o --M,x
sequence generating the ideal I •-x

The inclusion (Z,QZ) ~ (M,~) is then sometimes called a

regular immersion. (C.L [.!l; 0.15.2].)

1.3.1.2 Examples: (1) Any non-singular complex submanifold Z of M

with its usual structure sheaf is locally a complete intersection in M.

Simply choose local holomorphic coordinates fl,•.•,fn for M at each

point of Z, so that Z is defined by the vanishing of fl,.•.,fm.

(2) Note that (Z,Qz) is not required to be reduced; its

structure sheaf may contain nilpotent elements. For example, let

fl,•••,fn be holomorphic functions defined on a neighbourhood U of

such that 0 is the only common zero of the f.
1

in U. Let

is

a local complete intersection in (U,QU). In fact the fi form a

regular sequence in U. For a proof see [28; p. 194] and the references

given there.

1.3.1.3 In the situation of 1.3.1.1 we see that in the neighbourhood of

each point z t Z there is a resolution of the sheaf Qz by free o --M

Modules; namely, the Koszul complex K.(l), constructed precisely as

in 1.2.2.1, with K (f) = K (f ).-. - z • -z

Let i : (Z,2z) ~ (M,~)

1/12 0 M d 1as an -Z- 0 u e.

be the inclusion, with i~Z = 2M/I,
Then, by 1.2.2.3 and the funda-and regard

mental local isomorphism, there is a canonical isomorphism of ~-Modules,

for any locally free ~-Module I:
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and kExtO (2z,I) = 0
~

Note that since the isomorphisms are independant of any generating

for k " m.

sequence for I, this is a global isomorphism.

The above can be applied immediately to the spectral sequence of

1.1.4.3 to deduce from the vanishing of the Ext sheaves that this

spectral sequence degenerates to gjv~ an isomorphism:

m 2 * m
f(M, i*HomO (/\III ,i f» ~ Ext (M,Qz'!':)'-z

1.3.2 Local ~ech cohomology and the Koszul complex

It is very illuminating to see how the results of the preceding

section are related to the local ~ech cohomology of 1.1.3. By analogy

with 1.2.2.2 there is a cochain complex of sheaves in a neighbourhood

U of each point z ~ Z:

with ! = (£1"'" fn) e rtu ,I) ". Let U be the cover of U - Z

formed by the open sets

and let ~' be the cover of U obtained by adding the open set Uo U.

Then there is a canonical morphism of cochain complexes

defined, for iO < i < ...< i by1 p
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c(a)< iO"'ip > = a(e " •••A e. )/f. ···f. if iO = 0
il 1p 11 1p

o otherwise.

It is straightforward to check that this defines a cochain map,

and by passing to cohomology we obtain homomorphisms over the set U·,

It is easy to check that this is compatible with the mappings

of both sides into the local cohomology sheaves. The proof is given

in the following lemma.

1.3 • 2 • 2 Lemma •

There is a computative diagram, for all k ~ 0

Proof. Let I· be an injective resolution of lover the open set

U. Then there is a commutative diagram for p,q 2 0;

The right column consists of 1.1.3.5 and the left column is the

usual construction used to relate the definitions uf the functor Ext
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by projectives and injectives [6; ch. 5). The required result follows

immediately by passing to cohomology.

2.1 The holomorphic Lefschetz class

If M is a smooth compact oriented manifold of real dimension n,

then it is well known [11; p. 124) that there is a canonically defined

cohomology class in n
H (M X M, M X M - s, Z) whose image in

is the Poincar~ dual of the homology class defined by the diagonal,

and which under the Kunneth formula and Poincar~ duality gives the

"alternating sum of the identities" in the endomorphism groups of the
iH (M,Z). This is the basic fact needed to prove the classical Lefsche tz

fixed-point formula.

The techniques of local cohomology develop~d in the preceding

sections will now be used to show the existence, for any compact

complex-analytic manifold of complex dimension n, of a canonical

element in which will play the same role as the

topological class mentioned above. The KUnneth formula for sheaf

cohomology and Serre duality replace the analogous constructions for

integer cohomology. In fact the construction will allow for cohomology

with coefficients in any locally free QM-Module and it is this general

case which is treated below.

2.1.1 Let M be a compact complex-analytic manifold with dima::M = n;

let ~ be the sheaf of germs of holomorphic functions and d' the

sheaf of germs of holomorphic p-forms on M.

*If E is a holomorphic vector bundle on M, let E be the

holomorphic dual bundle. The corresponding ~-Modules will be denoted

*by ~ and E respectively.
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Also we define * nE' = E % g ,
~

and let

Tr E' ~ ~ ---;..rl
-M

be the natural pairing.

We may also form the product M X M with structu~e sheaf ~XM'
and there are holomorphic maps

(i = 1,2)

with ~(x) = (x,x) and Pi(xl,x2) = xi'
If E and F are locally free sheaves on M, we use the

notation

It is easily checked that (~')' = E and (~~~')' E' ~~.

2.1.2 Serre Duality

For further details of the following constructions the reader

is referred to the original paper [23].

First we recall the following consequence of the Kunneth formula

for sheaves. With the notation of the preceding paragraph, there is

a natural isomorphism of finite-dimensional vector spaces

n
X. L Hn-k(M,~') ~Hk(M,~) ---;..Hn(M X M, ~' eJD.

k=O
*(In fact ~ 0 X. gives the cup-product pairing.) The element

x.(~ 3 e) will also be written as ~ X e.
Then (Serre duality) there are perfect (i.e. non-singular)

bilinear pairings
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k k < , >M
H (M,~) x a'" (M,~') C

< , >
Hn(M X M, ~ OO~') X Hn(M X M, E' ~~) MXM a::

which can be explicitly described (in the first example) by

where

< , >M = f 0 Tr 0 t::.* 0 x.
M

~ Hn(M,Qn) ~ C is defined by representing the cohomology

class by a form (resp. current) of type (n,n) and integrating (resp.

evaluating on 1).

2.1.2.2 kIf a,d t H (M,~) and n-k
b ;c t: H (M,§.') we obtain i~~ediately

from the definition of the Serre duality pairing:

k .
< a X b, c X d >MXM = (-1) < a,c >M < b,d >M'

If we let ()~ Hn(M X M, ~'~~) be the element defined uniquely by:

then it follows by elementary linear algebra that under the identification

n l<
L Endcc:H (M,D

k=O

we have:

2.1.2.3
n

= L (_l)k X identity on
k=O

so that, for example

*Tr 0 t:. (f) =
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It is easy to represent the cohomology class & as a current on

M X M. In fact, suppose that u is a COO form on M X M of type

(O,n) with coefficients in ~ oo~'. The topological dual of the space

of such forms is the space n
D (M )( M, E' 00£) of currents of type

(O,n) with coefficients in ~' OO~, so that the linear form

2.1.2.3 *Tr 0 6 (u)

defines such a current, which is evidently a-closed. Comparison with

2.1.2.1 shows that the cohomology class defined by this current is c.
2.1.2.4 It can now be shown that 0 actually lies in the local cohomology

group H~(M)( M, E' ~~). If . Dm f h h f f fu ~ we wrlte or t e s ea 0 germs 0

currents of type (O,m) with coefficients in ~'~~, there is a

fine resolution (see [23]):

If now 1· is an injective resolution of ~' ~~, then by a

standard property of injective resolutions the identity map on E' GOE

can be lifted to a cochain map between the two complexes:

2.1".2.5 -----~ 1·.

Moreover, if we apply the functor reM X M,.) to the two

complexes then it is well-known that this cochain map induces isomor-

phisms on the cohomology [2; tho 4.7.1]. However, it is more interesting

to apply the functor r6(M)( M, .). The section of Dn defined by the

current iA clearly has support in the diagonal 6 and so its image

lies in rt::.(MX H, In) and therefore represents an element of

H~(M X M, ~'OO~) which we denote by 56'
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In a similar way i~ defines an element of nExt (M X M, Q~,

E' Jgl~), where Qt. = ~~. To see this let 1 be the ~XM-Ideal

defined by the diagonal, so that Q~ = ~XM/l. Then 1 is contained

in the Annihilator of the section i~ and so i~ can be regarded as

an element of Hom(M X M, Q~, Qn). Now use 2.1.2.5 to obtain the

required element of the Ext group.

Alternatively we could carry out all these constructions at the

sheaf level and obtain sections of !!~(~I m~)

All four of these interpretations are then mapped to each other in the

commutative diagram obtained from 1.1.4.5,

n E' 00 ~) edge
!) HO (M n E' 00 ~»Ext (M X M, Q~, X M, ExtO (Q6'

1 1 ~XM
n E' [XI ~)

edge ) HO(M !!~(~I oo~»H~(M X M, X M,

in which the upper horizontal morphism is an isomorphism since the

diagonal is a local complete intersection of codimension n in the

product (1.3.1.4). In fact the lower horizontal morphism is also an

isomorphism, (although we do not need this). This follows from the

fact that the sheaves vanish for k < n [24; th, 3.3].

2.1.3 The class c~ and the fundamental local isomorphism

The principal objection to the methods of representing the

cohomology class o~ described above is that it is not clear how the

class behaves under mappings. To be more precise, it is necessary in

order to prove the fixed point formula for a holomorphic map
~* n nTr 0 1 ( 66) e HF (M,D ),

where F is the set of fixed points of f and r is the graph

f : M ~ M to be able to construct the class
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morphism x ~ (x,f(x». However, there is no natural way to pull back

currents, and so we adopt the following alternative description of D.

2.1.3.1 In the notation of section 2.1 there is a canonical isomorphism

as in 1.3.1.3

Ext~ (Q6' ~I ril~) = 6~HomO (t..nI/12, E I ~ P
~XM ~

where _1'112 i d d 0 M d lesnow regar ~ as an ~- au.

Now if N is the locally free sheaf associated to the (holomorphic)

*normal bundle of the diagonal in M X M, with dual ~, we have:

*li

- the isomorphism being given by mapping the class of a germ f mod 12- ,
which we denote by [f], to its differential df. However, we also have:

since both appear as the kernel in the short exact sequence

(dx,dy) ~ dx+dy

or

dx ~ (dx,-dx).

Thus we have the canonical isomorphism

2.1.3.2 nExt ( El )
~xM Q6' 12l~ =
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Claim: The global section of Ext~ (Q~,~I OO~) obtained by taking
~xM

the identity section of the right-hand side of 2.1.3.2 is the same as

that defined by the current i~ (2.1.2.5).

In fact it will be shown that the following four constructions

are essentially identical. For the sake of brevity the discussion will

be limited to the case where E is the trivial line bundle, and the

modifications needed in the general case will be indicated later.

n f"'In
(1). The identity section in ~*HomO (Q ,~).

-M

(2). If U is an open subset of M, on which there exist local

coord inates zl"",zn' let (zl"",zn' '1' ... ,en) be local coordinates

* *for U X U, where z. = Plzi and Ci = P2zi' Let U. be the open
1. 1.

subset of U X U on which zi - 'i is non- ze'ro, and let t?'Ll' be the

open cover given by U X U itself and the U ..
1.

Then as in 1.1.3 the

Cauchy kernel

defines a local Cech cohomology class in or alternatively

a section of the sheaf

(3). If U is as in (2) then the Bochner-Martinelli kernel

k(z, C)
~

d(z -, ).·.d(z -, )...d(z -, )dz • .. dz11k k n n 1 n

(Where C = (_1)n(n-1)/2 X (n-l)~)
n (2~i)
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is a o-closed COO - form in U x U - 6.,of type (O,n-l) with coefficients
* nin P1D . Moreover k can be regarded as a current on U x U, in which

case ok is a o-closed current with support on the diagonal. It is

a basic property of k that ok is precisely the restriction of the

current i6. of 2.1.2.3 to the open set U)( U. A corresponding section

of the sheaf may be obtained by sheafifying and passing

to cohomology.

(4). As we have already seen the "alternating sum of the identities"

defines a class in which by the edge homomorphism

1.1.2.5 of the local cohomology spectral sequence gives a section of
n * nthe sheaf lit:.(P1D).

The claim will be put into the form of the following proposition.

2.1.3.2 Proposition

There is a (naturally defined) commutative diagram of ~XM-Modules:

0.34

in which the sections (1) to (4) are mapped to each other.

Proof. Let J. be an injective resolution of There is

commutative diagram obtained from 1.3.2.2 and 2.1.2.5;
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Passing to cohomology and using the fundamental local isomorphism 2.1.3.2

we obtain the required commutative diagram. However, in order that the

four sections should correspond in this diagram, we make the minor modi-

fication of replacing the boundary operator 0 of the complex D· by
A -1-o = (2'I'Ti) o.

Then is the composition of the fundamental local isomorphism

and the map c of 1.3.2.1 and it is easy to check that (1) and (2)

correspond under this map.

Also a.14 is the composition of the fundamental local isomorphism

and 1.1.4.6. The only non-trivial part of the proof is to define the

map n23 and show that the Cauchy kernel and the Bochner-Martinelli

kernel correspond under this map. This is essentially proved by

F. R. Harvey in [14] using an analogue of the Dolbeault isomorphism.

To make clear how this construction fits into the present situation

the method used by Harvey is described below.

First recall that since ~q is a fine sheaf,

for all q and all p > 0 [i; tho 5.2.3). Thus the map ~ induces

an isomorphism on cohomology. The problem is to make explicit the

inverse of this isomorphism. This will be done in the usual way by

constructing a homotopy operator in the complex
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The result is local, so we work in en x en with coordinates

(Zl,•••,zn' Cl,··.,Cn) and open cover ~' consisting of the sets
Ui = (z,C) t en x enlzi + Ci3 and Uo = en x en. For a multi-index

1 = (il,•••,ip) we use the following notation

U1 = U. n···11

and if then

Define Then the required homotopy

operator is given by

n
where e (f)1 = ~ (z.-C.)g.(z,C)fi1•8. i=l 1 1 1

it is easy to check that

n
Since ~ (z.-~.)g.(z,,)i=l 1 1 1

1,

2.1.3.3 o 0 e + e 0 ~ = identity.
8. S.

Now the Cauchy kernel is given by fO ~ C~(~' ,QO) where

f~ ••• n = dzl···dzn/(zl-Cl)···(zn-Cn). Thus if we define a sequence of
elements fk € C~-k(~, ,Qk) by fk+l = ~ 0 es.(fk), then by property

2.1.3.3 of the map e each £k will be 0 +~ cohomologous to fOe
S.

Therefore the ~-cohomology class of fn will be the image of the Cauchy

kernel under the isomorphism

induced bye.
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2.1.3.4 Le~~. Let J be the multi-index (il,.•.,i ). Thenn-p

fP = (~ 0 e )P(fO)
J & J

= (_1)P(p-1)/2(2ni)-P ~ (~g)IdzldzJ;I(Z_C)J.
III=p

Proof by induction (p = 0 trivial).

(~ • eg)(fP)K = (_1)P(p-1)/2(2ni)-p-l ~ ~ ag.(ag)Idzldz.dzK/(z-C)K
Q III=p iLL II

= (_1)P(p+1)/2(2ni)-(p+l) ~ (~g)LdzLdzK;I(Z_~)K
ILI=p+l

(by putting L = Ii).

2.1.3.5 Corollary

= ak(z,C)

say where

and k is in fact the Bochner-Martinelli kernel [14; p. 87]. Note

that k is a-closed on any point not on the diagonal since there

-og "'og = 0(8 + ••• + 8 )08 "'08 = olog "'og = 01 n 1 n 2 n 2 n •

2.1.3.6 Proposition. The kernel k has the following properties

(a) k is ~-closed on cP x en - ~

(b) Let i~: en ~ en x CO be the inclusion
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and for E > 0 let E be the ellipsoid in iSr! given by , e;
e:

and Iz-'I = e:. Then

{ *ie;k 1.
E

(c) Let u be a form of type (O,n) with compact support in

ff xff, * nand with coefficients in PlO. Then

Proof. (a) follows from the above remark. For (b) put

h.(z) = g.(e;,z+S) and obtain
1 1

i:k = (_1)n(n-1)/2 X (n-1): X
':> (2TTi)n

k+L -L:(-l) h oh •"oh "'oh dz "'dz .k k 1 k n 1 n

Th i d· ~ d h d-closed on en - fOte ntegran 1S 0- an ence t I so the

surface of integration can be deformed into the unit 2n - 1 sphere

S about the origin and the integral becomes

canst. X1 /'\
~(_l)k+l; d; "'d; "'dz dz "'dz

S k k 1 k n 1 n

= canst. X (_1)n(n-l)/2 X (2i)n X 1X 1li ~dV
S

where N is the unit normal on Sand dV = dX1dY1"'dxndYn is the

volume form for the canonical orientation on en. The symbol J

denotes interior product. But this is just 1 since the volume of

the unit 2n - 1 sphere is 2TTn/(n-l):.

For part (c) we have

lim
E~O

k " u
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The first equality follows from (a) and considerations of type.

The second follows from Stokes' theorem. For the third, integrate first

over the fibre ,= constant and use (b).

This also completes the proof of proposition 2.1.3.2.

2.1.4 Generalisation £2 arbitrary holomorphic ~~ bundles

The discussion in the preceding section was of a local nature,

so if E is a holomorphic vector bundle over M we rilaylocally choose
* *sl,···,smand let be thegenerating sections

*corresponding dual sections in ~. We can then tensor everything by
* *the section z: s.(z) €O s,(C) of ~ r&I ~ and obtain the required

.1.1.
1.

generalisation.

3.1 Holomorphic geometrical endomorphisms

We now discuss the situation in which the holomorphic fixed

point theorem of Atiyah-Bott can be formulated. As before M is a

compact complex manifold of complex dimension n, and E is a locally

free ~-Module. Then a holomorphic geometrical endomorphism of E

consists of a pair (f,~) where f: M ~ M is a holomorphic map

*and ~: f ~ ~ ~ is a homomorphism of 2M-Modules.

Under these circumstances there are induced homomorphisms of

cohomology groups

*Hk(M,~) ~ Hk(M,f*~) ~ Hk(M,~)

where the first map is the standard pull-back, and the second is induced,

by functionality, by ~. The composition gives a C-linear endomorphism
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of the finite-dimensional complex vector space Hk(M,~) which we

denote by kH (f,c.p).

Examples. (1) If E = 0 ,- ,,1 *then f E E and so c.pcan be taken to

be the identity.

(2) If E is the sheaf of germs of holomorphic p-forms £f
then ~ can be taken to be the pth exterior power of the natural

bundle map

* * *df f (T M) ~ T M

*where T M is the holomorphic cotangent bundle of M.

3.1.1 The Lefschetz number of ~ geometrical endomorphism

With the notation of the preceding paragraph, one obtains a

geometrical endomorphism (1 X f, 100 cp) of the ~xM-Module ~'OO~,

and it is a standard property of the Kunneth decomposition 2.1.2.1

that the induced endomorphism Hn(l X r, 1 ~cp) of Hn(M X M, ~' ~~

is given by:

x.-1 0 Hn (1 X f , 1m c.p)0 x.
n
~ (identity on Hn-k(M,~')} ®Hk(f,c.p)

k=O
and by elementary linear algebra one obtains, by analogy with 2.1.2.3,

J * n n k kTr 0 6 0 H (1 X f , 1~ c.p)(5)= ~ (-1) tracea:;H (f,cp)
M k=O

= 'X,(f,cp)say.

However we may also write:

*Tr 0 t::. no H ( 1 X f , 1 00 cp) *= Tr 0 (1 ~ cp) 0 t::.

O r"Tr 0 (1 ® cp)

*o (1 x f)
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where r M ~ M X M is the S!!Eh morphism rex) (x,f(x».

X(f,~) will be called the holomorphic Lefschetz number of the

geometrical endomorphism (f,~). In the case where f has isolated

fixed points it was proved in [2] that X(f,~) is determined completely

by the behaviour of f and ~ in the neighbourhood of the fixed points.

But this now follows immediately from the preceding work, since if F
r-lt. = F *is th~ set of fixed points of f, then and so r Ct. lies

Hn(M El *in @f ~). Applying the map Tr 0 (1 X C+l) we obtain anF ,-
element of Hn(M On) which by the excision formula 1.1.2.1 is the same as:F ,-

fT\ n nW Hr 'l(V ,.0 )ptF tP J P

where V is a small open set containing p.
p

To complete the proof of the fixed-point formula as it appears in

[12], [li] it is only necessary to determine the element *r -, of

Hn(M On) d k 1· hF ,_ an to ma e exp Lcit t e maps Resp
diagram commutes:

for which the follcwing

(The vertical map is the natural one from n nH(p1(M,D ) to

In this situation it is known that Res can be described purely
p

algebraically and is in fact the Grothendieck residue of [13]. The

next section briefly describes the concepts involved.
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4.1 Local cohomology and the Grothendieck residue

Let hl, ..•,hn be holomorphic functions defined in a neighbourhood

V of p.:; M, such that p is the only common zero of the h.
1

in V.

If 1 is the 2M-Ideal generated by the h.
1

in V, then as in 1.2

any holomorphic n-form w on V defines a section of Ext~ (9M/d,Dn)
-=M

which under the fundamental local isomorphism is given by the section
n 2 n nof HomO /J(t>. d/d ,D /l·D) which takes the generator [h11"···,,. [hn]

-M -

of to the class of nw mod d.Q . The corresponding section of
n nExtO (2M/l,Q) will be denoted by
-=ff

Note that in terms of local Cech cohomology (1.3.2), if V. c:v
1

is the open set on which h. + 0,
1

then this cohomology element is also

represented by the section nw/h "'h t rev n ... n Vn,Q).1 n 1

In the above notation, the Cauchy kernel can be expressed locally

as the section

of Ext~ (Qb'~' mI). Then, just as the Cauchy kernel can be repre-
~xM

sented by a current with support on the diagonal so it is also easy to

represent this class by a current of type (n,n) with support at p

by means of the method of proposition 2.1.3.2. In fact, let

~ : U ~ en x ~ be defined by ~(z) = (z,z+h(z». Then it is clear

from the description of the class in terms of Cech cohomology that it
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is obtained by pulling back the Cauchy kernel along Q. By the

functoriality of the Dolbeault construction the o-cohomology class

of the required current is determined by the pull-back Q*k of the

Bochner-Martinelli kernel. Thus if w = ~ dzlA "'Adzn and

f c 2u , the map
1"1, p

f ~ 1 fep a.*k
S

defines the appropriate class, where S is a small, smooth 2n-l

sphere around p. Hence we recover the integral formula of [25],
[26]:

1~a.*k.
S

4.2 The fixed point contributions in the holomorphic Lefschetz formula

Since F is discrete, the sheaf has discrete support

and so the edge-homomorphism of the local cohomology spectral sequence, i.e.

is essentially just the identity map in this case. Now using the

behaviour of local cohomology under mappings (1.1.2.7) we can determine

*the element Tr 0 (1 ®~) 0 r ('6,) explicitly as follows.

Let fi(z) be the local coordinates of fez) in a neighbourhood

v
p

of the point P f.: F, and let ~ be the open cover of v - (p}
p

consisting of the set Vl," = (z ( V If.(z) + z.}.p 1. 1.
Since the pull-back

of ~ech cohomology is compatible with the pull-back of cohomology defined
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by injective resolutions, it is possible to conclude that

*Tr 0 1 X ~ 0 r (OL) is given in the neighbourhood of p by the section
of Hn (Qr, ",n)_[p} U,~ corresponding to

m *Here trace ~(z) = ~ < s.(z),~(si(f(z))) > .
i=l 1

*Thus, in terms of the Ext functors, the class Tr. 1 @ ~ • T (OL)

can be expressed a direct sum of elements where

o-Lp} is the quotient of ~ by the ideal generated by the germs of

the functions z. - f.(z), and
1 1

Thus we obtain the Atiyah-Bott formula for a holomorphic geometrical

endomorphism with arbitrary isolated fixed points:

L
pcF

Res (CL ).p p

Note that the elements are independant of choices of coordinates

and generating sections since they are essentially just the restriction

to the graph of the canonically defined Cauchy kernel.

4.3.1 !n algorithm for calculating Res (a. )
p p

For the sake of completeness the method described in [3] by

which the Grothendieck residue can be calculated algebraically is given

below. The relation of this algorithm to the integral formula for the

residue (4.1.1) is discussed in [27]. The following applies to the
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..
situation of paragraph 4.1. We wish to calculate the composition:

n /,.,n n n L.rExt (M,~ 1,~ ) ~ H (M,D) ~

where the first map is obtained from the natural transformation of

functors Hom(M,OM/J,.) ~r(M,.).

By the Nullstellensatz for germs of analytic functions [see

R. C. Gunning and H. Rossi, Analytic Functions of Several Complex

Variables, Prentice-Hall 1965, p. 97], there exist positive integers

mi for 0 ~ i ~ n and analytic functions cij for 0 ~ i, j ~ n,

defined on some neighbourhood W c V of p, such that for

o ~ i $ n,

Then is equal to the coefficient of

m -1 m -1
1 n

zl .. ·zn in the power series expansion of w(z)det(c ..(z».
1J

We note that the analytic Nullstellensatz is a highly non-

constructive result, and in general it is impossible to determine the

multipliers cij explicitly. However in many special cases which are

of interest the situation is simple enough to allow the cij
found by trial and error.

to be

In the case where the hi form local coordinates in a neighbour-

hood of p the situation is particularly simple. Then all the m.
1

can be taken to be 1 and if
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then the residue is simply -1w(p)det (c 0 0 (p» = w(p)det (oh .foz 0 (p» •
1J ~ J

.:

This is the situation which arises in the fixed point formula at a

transversal fixed point.

Thus the formula can be written

X(f,~) = ~ trace ~(p);'det(I-df( p»
ptF

provided that all the fixed points Mot;! transversal. Here df(p) denotes

the endomorphism of the holomorphic tangent space at p induced by f.

Finally we remark that in the case n = 1 the Grothendieck

residue coincides with the classical Cauchy residue. In fact, from

the integral formula expression for the residue 4.1.1 it can be seen that

Resp [W(ZadZ J - ....Lrf.. w(z)dz- zrn ~ h(z) •

5.1 The fixed-point formula and holomorphic vector fields

The tecbniques developed in the preceding sections will now be

applied to the foIlowfng situation.

As before, let M be a compact, complex-analytic manifold of

complex dimension n, and let X be a holomorphic vecmr field on M;

i.e. a holomorphic section of the holomorphic tangent bundle TM of M.

Then X generates a one-parameter group of endomorphisms of M,

such that for z t M, and s,t t C ,

f(f(z,s),t) = f(z,s+t).
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In fact, if t = uv with u in the unit circle in the complex
plane and v real, then f(z,t) = f (z,v),

u
where f

u
is the one-

parameter group generated by the real vector field uX + uX on M.

A method often used to demonstrate the existence of such a flow

is the iterative procedure found, for example, in [12]. This device

will be applied in the context of the fixed-point formula in order to

calculate the fixed-point index at an isolated zero of the vector

field, as a function on the complex plane.

It is not difficult to show that this index is a meromorphic

function of t in the neighbourhood of t = 0, with a pole at the

origin. This can be done as follows (this proof was shown to me by

G. Lusztig):

Let zl,•••,zn be local holomorphic coordinates centred at the

isolated zero p of x. Since f(z,O) = z it makes sense to consider
the coordinates f.(z,t) for small t, and z near p.

1

We make the abbreviation f.(z,t) t and note that on a small= z.
1 1

neighbourhood of (p,O) in M X C the only common zeroes of the

functions are the union of the set z = 0, and the set t 0.

Then we can apply the analytic Nullstellensatz to obtain analytic

functions c ..(z,t) on a neighbourhood of (p,O), and positive integers
1J

mi, such that for I ~ i ~ n

=

Then by properties of the residue [1], the fixed-point index is

[
dz A···Adz J-Res 1 n

p t tzl-zl,···,zn-zn
Res [det

tM p

I c ..(zt)dzA.·.Adz l11' 1 n
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= ~ x coefficient of
t

m -1n in the expansion of••• z
n

as a power series in z, with coefficients analytic functions of t

(where M=Lm.).
i 1.

However, since the Nullstellensatz is a nonconstructive result,

it is very difficult to obtain further information about the resulting

meromorphic function of t by this method and so we adopt instead the

following approach.

With the above notation, let 0 be the local ring at P t M,
+p

and let 0' be the loca1 ring at (p,0) e M X e . Then 0 may be
+p --p

identified with a subring of 0' ~ia the projection (z,t) ~ z.--p

Similarly an element of 0' may be regarded as a family of elements
+p

of 0 parametrized by t, for t sufficiently small.
+p

Then X may be expressed in a neighbourhood of p by:

5.1.1 X(z) =
n
La. (z)%z.
i=l 1. 1.

with each a. holomorphic. In the following, holomorphic functions
1.

will be identified with their germs whenever this is convenient. The

following theorem holds for an arbitrary holomorphic vector field (not

necessarily with isolated zeroes), and all p ~ M.

of the functions

tI (z-z ) c 0'
=p --p

tzi - zi for 1 ~ i ~ n,

be the ideal generated by the germs5.1.2 Theorem. Let

and let r (a) c ° be-p -p

the ideal generated by the germs of the ai(z). Then
tI (z-z ) = t.r (a).

--p +p

Before stating the next theorem we introduce the following

notation. Let A(z) be the n X n matrix over the ring o-p given

by the partial derivatives of the a. :
1.
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5.1. 3 oa./oz.(z).
L J

We note that

5.1.4
00

T = t tkAk/(k+l)~
k=O

is an invertible element in the ring of n X n matrices over 0' .-p

Formally we may write

Then we can define an element T(z,t) € 0' by:-p

5.1. 5 tAT(z,t) = det(tA/(I-e ».

Theorem 5.1.2 is of course trivial at any point where the vector

field does not vanish. In order to apply the theorem, we again make

the restriction that p is an isolated zero of X. We then obtain the

following:

5.1.6 Theorem. Let gk be the sheaf of germs of holomorphic k-forms

on M, and let dz be the element d A 1\ d of,...,n.zl'\ . . . zn ~ Then (see

4.1 for notation) for t t ~ - t01 sufficiently small, the following

equality holds in n nExtO (I (a),O ):- -p -p
-p

- -n -
= Lt XT ( z ! t) d Z J .

al,···,an

Note that if we apply the residue to the left side we obtain the fixed-

point index at p in the Atiyah-Bott formula for the sheaf 2M, and

the right side gives an alternative expression for this index. Note

also that the right side has a much more explicit dependance on t
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than does the left side. This fact will be exploited in section 6 in

order to investigate the properties of the meromorphic function of t

obtained by applying the residue map.

We shall first prove these two theorems, and then show how the

results may be generalized to prove a fixed-point formula for cohomology

with values in the sheaf of germs of holomorphic sections of any vector

bundle which satisfies certain homogeneity properties compatible with

the action of X on M.

Proof of theorems 5.1.2 and 5.1.6. Let U be an open neighbourhood

of p t M on which the vector field has the form 5.1.1. Then the

resulting flow f is characterized by the conditions, for 1 < i < n,

and

fi(z,O) = z .•
1.

Let V cUbe open and let W be a disc centred on the origin

in C. Then if V and Ware chosen to be sufficiently small [19;

IV.I] we may inductively define functions £(n) : V X W ~ U by:

f(O)(z,t) = z

and for m > 0:

where a : is the function Note

that each f(m) is holomorphic so that the integral may be taken along

any smooth path from ° to t in W.
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Again, as in [12; IV.I], if V and Ware small enough, the

sequence converges uniformly on V X Wand the limn f is

the local flow associated to the vector field. This also shows that

f is holomorphic, being the uniform limit of holomorphic mappings

L!.§.; 2.2.4].

The elements of 0' can be expressed as convergent power series,
l'

and will be given the topology of simple convergence of the

coefficients [16; 2.2.4]. Thus f(m) ~ f if each coefficient in

the power series expansion of f(m) converges to the corresponding

coefficient in the expansion of f.

We first prove the following lemma.

5.1.7 Lemma. Let A be the matrix of partial derivatives 5.1.3. Then

in matrix notation, the following holds in for m > 0:

5.1.8

(m) m tk k-lf (z,t) - z:: ~ k~.A .a(z)
i=1

mod(t.l (a»2.0,n •
"P +p

Proof. The proof is a simple induction. The result is trivially true

for m = 1, and if true for m = N then, if I (z_f(N» is the ideal
l'

generated by the germs of the functions z. - f~N)(z,t) for l < i $ n:
1 1

a(f(N)(z,t» = a(z + f(N)(z,t) - z)
N

E a(z) + A(z) • (f (z,t) - z)
model (z_f(N»)2.0,n •

-p l'
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The congruence follows from the fact that it is true for every finite

partial sum of the Taylor expansion of a(z + f(N)(z,t) - z), and the

fact that ideals are closed in 0' for the topology of simple
-p

convergence [~; 6.3.5].

The result for m = N + 1 then follows from the case m N
and the definition of f(N+l).

We are now in a position to prove the theorem. Fir~note that

since the functions converge uniformly in a neighbourhood of

(p ,0) in v X W, they also converge in 0'
+p

by the Cauchy inequalities

[~; 2.2.7]. The same applies to the partial sums on the right-hand

side of 5.1.8. Then, again using the fact that ideals of 0'-p are

closed, we can let m ~ 00 in 5.1.8 and conclude, with ~ defined

by 5.1.4, that

z-f(z,t) - ~(z,t) • ta(z)

Because ~ is invertible, this means that

t.I (a) = I (z_zt) + (t.I (a»2
p p p

and the theorem follows from Nakayama's lemma [see e.g. M. F. Atiyah

and I. G. Macdonald, Introduction to Commutative Algebra, Addison-

Wesley 1969, prop. 2.6].

5.1.9 z_zt § «I-etA)/tA) • ta

In order to prove theorem 5.1.6, simply observe that

where I
+p

(see 4.1).

t.I (a). The theorem then follows from the definitions-p
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5.2 A generalisation

We recall that the fixed-point theorem can be proved for cohomology

with coefficients in the sheaf of germs of sections of any holomorphic

vector bundle E for which there exists a suitable geometrical endo-

morphism (see 3.1). In the present situation we require the existence

of a family of geometrical endomorphisms of E corresponding to the

group of endomorphisms of M induced by the vector field. Sufficient

conditions for the existence of such a family are obtained in the

situation discussed below, which will be formulated in the context of

an arbitrary group G acting (on the left) on the complex-analytic

manifold M by holomorphic transformations.

In this case M will be said to be a holomorphic G-space,

and for g (G the corresponding endomorphism of M will also be

denoted by g.

First recall the following definition.

5.2.1 Definition. The holomorphic vector bundle E is said to be a

holomorphic G-bundle if:

(iii) For g t G and x ~ M the map E ~ E ( )x g x
is complex

(i) E is a holomorphic G-space.

(ii) The projection E ~ M commutes with the action of G.

linear.

For example, any combination of tensor or exterior powers of the

holomorphic tangent bundle of M is a h010morphic G-bundle. Other

examples occur on the homogeneous spaces of Lie groups [1,2].
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5.2.2 Remark. If E is a holomorphic G-bundle then so is the holo-

*morphic dual E. To see this, for x € M let E ( ) ~ Eg x x

be the map induced by the action of

* *E ~ E ( )x g x

-1
g on E. Then the adjoint

maps give an action of g *on E which makes *E into
a holomorphic G-bundle. Thus tensor and exterior powers of the holo-

morphic cotangent bundle are holomorphic G-bundles.

The point of this definition is that for G-vector bundles there

always exist geometrical endomorphisms compatible with the action of

G; by definition 5.2.1 and the universal property of the pull-back

there exists a holomorphic bundle map over M for all g t G,

-1 *E __,. (g ) E.

By taking the pull-back relative to the map g: M ~ M we

obtain the required endomorphism, which will be denoted by

*Cl> : g E ~ E.g

Note that if E is a G-vector bundle this gives a (right)

representation of G on the space COO (M,E) of smooth global sections

of E, which will be written s ~ sg for 00
S e C (M, E), where

Cl> (s(g(x»).
g

It is easy to check that this defines a representation.

Let x € M be a fixed point for the action of G, i.e. g(x) = x

for all g e G. Then if E is the space of germs of holomorphic
-x

sections of E at x, there is a (right) representation of G on

this space which will again be denoted by

sg = Cl> 0 sag.g

where as before
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In the case where E is the trivial line bundle the resulting

representation on the local ring o-x is simply where

fg(x) = f(g(x». This is therefore compatible with the notation of

section 5.1.

5.2.3 We now return to the case where G = C+ and the C+· M-act10n on

is induced by a holomorphic vector field X with isolated zeroes. Let

p be a zero of the vector field ar.d let sl"" ,srn be holomorphic

sections generating the +C -vector bundle E in a neighbourhood of p,

with corresponding dual sections of *E . Recall that the

expression which enters into the fixed-point index at p is the class

in 0'/1 of
+p -p

As before, it is not clear how this expression depends on t.

This dependance can be clarified as follows. We identify sections of

E with their germs at p whenever this is convenient.

For 1 5 i ~ m we may differentiate in E with respect
-p

to t and obtain

with Lij t ~.

implies that

Since is a representation of this

OSit/otlt=u = ~ L~.SUj'j=l 1J

This is a system of first-order differential equations for the
tSj which may be integrated in precisely the same way as the vector field

•
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of 5.1. We write s = (sl,.,.,sm) and, using matrix notation, define

inductively

t
s(O) = s

and

As before the converge in the topology of simple convergence

to ts • We first prove:

5.2.4 Lemma. The following holds in E'-p for k > O'

k 1 .
I: ., (tL)1. • s
i=O 1..

mod I .E'-p-p

(as before I-p denotes the ideal t.l (a».-p

Proof. This is trivially true for k = 0, and if true for k N,

Thus if we write formally tL
e =

CD

I: (tL)i/i!
1=0

and define an

then as in lemma 5.1.7,

t
s (N+l) -

N
s + I: Lt 1 .u 1.o iT L (uL) • s du

i=O
N+1 1 i
I: -., (tL)

i=O 1..
• s mod I.E'p-p

as required.

element ch(E,z,t) c 0' by
-p

h(E ) -_trace etL(z)c ,z,t

we obtain the following theorem:
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5.2.5 Theorem. Let dz be the element dz "···"dz1 n
of On.

-p Then
for t ~ C - (o} sufficiently small, the following equality holds in
Extno (0 II (a),On):- -p-p -p-p

l--nt xch(E,z,t)XT(z,t)
al,···,an

5.2.6 Remark. The expression for the fixed-point index obtained by

applying the Grothendieck residue to the right-hand side of the equality

given by theorem 5.1.6 can also be derived by purely analytic methods,

using the integral formula expression for the residue, and a local

perturbation of the vector field to obtain non-degenerate zeroes;

see [22]. However the generalisation given by the above theorem appears

to be less amenable to this approach, except in the case where E is

some tensor or exterior power of the holomorphic cotangent bundle.

This is because it is not clear in general how to extend the pertur-

bation on M to a compatible perturbation of the action on E,

although this may be possible in particular cases.

Remark. Note that if
1E = 9, the sheaf of germs of sections of

holomorphic cotangent bundle of M with the corresponding geometric

endomorphism given by the differential of the endomorphism of M,
then taking the usual generating sections dz1, .••,dzn,

oa .loz.
1. J A .. '

1.J

Therefore if we define elements kT (z,t) ~ 0'-p for o < k < n:

k k tA tAT (z,t) = trace A (e ) X det(tA/(I-e »
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we can calculate the fixed-point indices for the case E = gk by

using:

5.2.8 l--n k
t XT (z,t)

al,···,an

Of course, this result could also be obtained directly from the

work of 5.1. If 5.1.9 is differentiated with respect to Z it gives

t tA(oz./oz.) = e
1 J

mod I
--p

which immediately implies the above equal~ty.

5.2.9 Remark. One or two observations are in order concerning the matrix

L, which may be regarded as an endomorphism L:E --;.E
-p -p where,

for s ~ E ,-p

f ~ X. f

Note that if E is the trivial line bundle, the corresponding endo-

morphism of 0 is simply-p

where X. f 1s the derivative of f along the vector field, i.e.
n
t ai of/ozi• Thus
1=1

L(fs) = (X • f)s + fL(s).

This implies that L induces a well-defined linear transformation

of the fibre of E at the zero p of X, which with respect to the

basis lSi(P)} of the fibre is given by the matrix Lij(p). In case
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1E = n , then L is essentially the Lie bracket action and the eigen-

values of the matrix A ..(0) are the characteristic roots of the
~J

vector field at p.

Compare the situation with that of [~]J where closely related

results on zeroes of holomorphic vector fields are given.

5.2.10 Remark. The explanation for the notation T and ch is as

follows.

Define elements c. c 0 for 1 ~ i < m by~ -p

det (I + xL(z» 1 +
m i
t xc. (z )
. 1 1~=

where x is an indeterminate. In fact the c. depend on the parti-
1

cular coordinates chosen around p, but it is not difficult to check

that their classes mod I (a) are in fact independant of the coordinates.
+p

In any case when L = A, then T(z, c) is essentially the (dual)

Todd class in the "Chern classes" ci(z) and when L is the matrix
associated to the a::+ .,: vector bundle E, then ch fE, z , t)

is the Chern character in the classes c.(z).
1

See [12].

~. Properties of the fixed point index at ~ ~ of the vector field

'V (E,t) = 1 Res [Ch(E'Z.t)TCZ•t) dZ-] •
P tn P al,···,an

We now investigate more closely the form of the fixed-point

contributions in the Atiyah-Bott formula for a one parameter group,

i.e. the functions
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In case E = Ok with the usual geometrical endomorphisms induced by

the kth exterior power of the derivative we write

v (of,t) = vk(t).
p p

We prove the following results.

6.1 Theorem. Let Ai for 1 < i ~ n be the characteristic roots of

the vector field at p, i.e.
A t

and let Y.(t) = (l-e i )-1
1.

the eigenvalues of the matrix cai/czj(p),

and Y.(t) = 0 otherwise.
1.

Similarly, for 1 ~ i ~ m, let ~i be the eigenvalues of the matrix

L(p). Then for t sufficiently small and non-zero:

(1)
-nV (E,t) = t

P

m ~i t
l: e Q .(t,Yl(t),•••,Y (t»
. 1 p,1. n
1.=

for certain polynomials Qp,i

in C.

in n + 1 variables with coefficients

(11)

for certain polynomials in n + 1 variables with coefficients in a:.

Proof. For a multi-index I = (il,•••,in)

In view of the algorithm 4.3 for calculating the residue it is

sufficient to prove that for each I:
I m l-1i t

(a) d ch(E,p,t) = l: e Pi(t)
z i=l

for certain polynomials P.
1.

in one variable, and for o ~ k ~ n:

(b) I k
d T (p,t)z is a polynomial in t and the Y.(t).

1.

We first prove (a); the proof of (b) will be similar. As in 5.2.10

we write
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6.2.1 det(I + tL(z» m i
1 + ~ ci(z)t

i=l
and then ch(E,z,t) can be expressed in terms of the c. as

1.

ch(E,z,t) = F(c(z),t)

where c = (cl,•••,cn). Then we can write also

6.2.2 F(c,t) = S(x,t)

where S(x, t ) = and is regarded as the kth elementary

symmetric function in the x..
1.

Now differentiation by the chain rule shows that it is sufficient

to show that all the dIF(c(p),t) are of the required form. Thec

purpose of the following lemmas is to show that we can go further and

consider only

D(xl,···,xn)
= n (x.-x.).

i<j 1. J

Then6.2 Lemma. Let

Proof. Let ic. be the
J

jth elementary symmetric function in the

and let for all 1.

joc/oxj = ci-l•
To see this note that

We first prove that. D(xl+t, •.•,xn+t) = D(xl, •.•,xn).
. j 1. j k

cJ(x+t) = c.(x) + ~ Bkc. k(x)t for certain
i 1. k=l 1-

integers Bk depending only On k, and then use standard properties

Then

of determinants.

Thus D(xl,.·.,x) = D(xl-x ,•••,x I-x ,0)n n n- n
n-l

= n(xk-x )
k=l n

x n (x.-x) by induction, assuming the result true for n - 1.
0$ i < j < n 1. j

This is the required result.
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Let us sayan analytic function defined on the open neighbourhood

u X W of the origin in nC X C has property (M,N) if it can be

expressed as

-M ID(x) X ~ PI(x)d S(x,t)
III:SN x

with each PI(x)a polynomial in xl, .•.,xn' on the open dense subset

of U X W where D(x) + O. The ploof of the following lemma is

inunediate ,

6.3 Lemma. If w(x,t) has property (M,N) in U X W, then ow/oxk

has property (M+l,N+l) in U X W for l:s k :sn.

6.4 Lemma. If F and S are related by 6.2.2, then for each I,

dIF(c,t) has property (2111, III).
c

Proof. The proof is by induction on III. The case III = 0 is

simply F(c,t) = S(x,t), so suppose the lemma holds for III:s N.

Then by lemma 6.3, for O:s k :sn,

n I
~ %cj[d F(c,t»)ocj/oxkj=l c

has property (2N+l,N+l) if III = N. Therefore by solving for
I%cj[dcF(c,t)] we see that for each j this function has property

(2N+2,N+l). This completes the induction step and the proof of the

lemma •

~ Lemma. Note that ck(p) is the kth elementary symmetric function

of ~l"" '~n' For all I the function Id F(c(p), t )
c

of t is a

certain finite linear combination of the functions J
d S(IJ.,t).x
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Proof. If the \.1i are distinct, then D(\.1)+ 0 and the lemma follows
simply by setting x = \.1 in lemma 6.4. If there exist equalities
between the \.1i, say \.11::\.12' then if

I -M I Jd F(c,t) = D(x) X ~ PJ(x)d S(x,t)
c 1J j:sN x

we can apply L'~pital's rule and obtain

Id F(c(p), t)c Ml., X -1-1 '
i<j

M L. I J I(\.1,-\.1') X M (~PJ(x)d S(x,t»
1 J x Ix=\.1oXl

where the prime indicates that (\.11-\.12)is omitted in the product.

This expression is still of the required form and we may proceed

similarly if there exist further equalities between the \.1i'

Result (a) will now follow if each
m ~,t
L e 1 PI ,(t) for certain polynomials
1=1 ,1

dJS(\.1,t) is of the formx .

Pr i(t), but this is clearly,
true.

The proof of (b) is the same except that we set

F(c(z),t) kT (z j t)

where this time the c, are defined by setting L = A in 6.2.1.
1

Then F(c,t) = S(x,t) where, if Ok is the kth elementary symmetric

function,

s (x , e)
x,t n x,t

= 0k(e 1 ) ~ (X,t/(l-e 1 ».
i=1 1

As before we reduce the problem to the direct differentiation of

S(x,t) where the result is easily checked.
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These resul~ have the following interesting corollary which

generalises the results of [18] and [20] to include the case of

isolated degenerate fixed points.

If f: M ~ M is complex analytic we denote the induced endomorphism

of Hj(M,Ok) by Hj,k(f) and write

k n j . k
'X. (f) = ~ (-1) trace HJ, (f)

j=O C

for the corresponding Lefschetz number. If f is the one-parameter

group generated by the holomorphic vector field X with isolated

zeroes, we write the Lefschetz number as k
'X. (r ) for

6.6 Theorem. For 0 < k < n,

n
t (-l)jdimc Hj(M,Dk)

j=O

for a 11 t e C •

Proof. This is a simple extensicn of the proof given in [20] for the

non-degenerate case. First note that each fixed point index k
\) (r)
p

complex plane, and that k'X. (t) =

meromorphic function
M A.. t
~ ± e 1

i=l

on the wholehas an analytic continuation as a

for certain

By uniqueness of analytic continuation the fixed-point formula

then holds for all t, except where the right-hand side has poles. Now

if t e lR and s lies on the unit circle in the complex plane, one
observes that each \)k(t)

p

integer N such that \)k(st)t-N
p

has the property that there exists some

~O as t _.,. 00 for all but a



63

finite number of s, i.e. those s such that AS is purely imaginary

for some characteristic root A of the vector field at one of its

zeroes. But this behaviour is incompatible with the behaviour of
k~ (t) unless this function is actually constant, as is shown by the

following lemma.

k M o.it6.7 Lemma. In the expression ~ (t ) = t ±e
i=l

cancel in pairs or, with the above aot a t t on ,

the exponentials either
k -NX (st)t ~oo as

t ~ 00 for s running in an open set of the unit circle.

Proof. Suppose there exists an a. of largest modulus among the a..
1

which cannot be cancelled. Choose s such that sa. is real and

positive. Then as t ~ 00 through positive real values it is

clear that the term ua.te dominates all others for all u in an open

neighbourhood of s in the unit circle, and for any N we have that
k -N~ (ut)t ~ 00 as required.

6.8.1 Remark. The above argument cannot be applied to the situation

involving more general bundles due to the occurrence of extra factors

in the fixed-point indices. Note however the remark at the end of

the next section which shows that if the situation is wholly algebraic,

i.e. M is also an algebraic variety over C and the action of C+
is rational, then the above argument becomes valid in general since

the eigenvalues of the matrix L(p) will be zero at all the fixed

points.

6.8."2 Remark. If M is K8hler, then theorem 6.6 will follow also from

the fact that the cohomology group is embedded in the



64

cohomology group Hp+q(M,C) for all p and q, and these groups are

of course acted on trivially by any connected Lie group operating

continuously on M.

6.9 Examples

By analogy with [12] we may write, using the notation of 5.2.7,

T(Yjz,t) =
n k k~ T (z,t)y

k=O

where y is an indeterminate. Write also

so that

CD

( ) ~ a. (y)tm-n.a. Yj t = c.p m=O p,m

With this notation, theorem 6.6 may be rewritten as

~ Res (a. (y»p p,m
p

if m n

if m + n

where Y-.y(M) is the Y-.y-genusof M, as defined in [15).

Example 1. Setting y = -1, we see that

lda1\ ••. I\da ]1 na. (-1) =p,m al,·.·,an

and it follows from properties of the residue [11; III.9.R6] that

Res (a. (-1» = dim~(O /1). But this is the multiplicity of the zerop p,n IW-p-p

of X, and since X_l(M) is simply the Euler-Poincar~ characteristic,

we recover a special case of the classical Hopf theorem.
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Example 2. In the case where dime M

written locally as a(z)o/az, and

1, the vector field may be

ta' ta'-l~p(y;t) = [a'(l+ye )(l-e ) dz/a]

where a' = aa/oz. In this case the Grothendieck residue coincides

with the classical Cauchy residue and if a'(p) A. t 0 then

while if a(z) has a zero of order M > 1 at p;

Res (o, (y j t ) = -(1+y)(2TTit)-1~ dz/a + (1-y)M/2.
p p ':f

In dimension n we recall the following results from the earlier

work of section 6. The first also appears in [20].

a) If the zero of X is non-degenerate, i.e. A(p) is non-singular,

then Res (~(y;t» is a polynomial in y whose coefficients are
p p

bounded as t ~ 00 radially in all but a finite number of directions.

b) At the other extreme, if the transformation given by A(p) is

nilpotent, then the coefficients of the powers of y in

Res (~(y;t» are of the form
p p

-nt X polynomial in t.

One might then ask if the behaviour of a) occurs in case b). In

other words, are the polynomials in t always of degree ~ n? The

previous example shows that this is certainly the case in dimension 1,

but the vector field described below gives a counterexample in

dimension 3. However, I know of no counterexample in dimension 2, or
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in the case of a holomorphic vector field which is defined globally

on a compact manifold.

Example 3. Let (x,y,z) be coordinates for and take x to be

the vec tor field

X(x,y,z) = aa/ox + ba/ay + c%z

where

a(x,y,z) 2 x
= x + ye

b(x,y,z) 2 + zy

c(x,y,z) 2z .

This has an isolated zero at the origin, and A(O) is clearly nilpotent.

The algorithm described in 4.3 will be used to find the coefficient of

t in ResO(~O(O;t»). First note that

8 6 4 x 2 2 2x 3 3x 4x 2 4xx = (x -x ye +x y e -y e )a + e (y -z)b + e c
4 2

Y = (y -z)b + c
2z = c.

Let C(x,y,z) be the determinant of the matrix of multipliers:

6 4 x 2 2 2x 3 3x 2C(x,y,z) = (x -x ye +x y e -y e )(y -z).

Setting xa = 2x+yex it is easily checked that

oT (x,y,z,t) - -(l-a t/2+a2t2/12-a4t4/720)x x x
2 2 8 4 2 5X (l-yt+y t /3) X (l-zt) mod(x ,y ,z ,t ).
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Then, applying the algorithm, the required number is the coefficient
734 0of •x y zt in C(x,y,z) X T (x,y,z,t), and this may be checked to

be -1/90.

~ Additive ~ actions 2£ algebraic varieties

Analogous results to those of section 5 hold in the algebraic

category, provided we stay in zero characteristic. Suppose the additive

group of the algebraically closed field k acts rationally on the

smooth variety M, defined over k, by

+f : M X A ~ M.

Assume that p t M is an isolated fixed point for the action of

A+. Note that it is proved in [17] that if M is complete and

connected then the fixed-point set is connected, so that p will be

the only fixed point. Perhaps the simplest example of this situation

is the action of A+ on given by (z, t) ~ z+t

with fixed point tOO 1.
As before let 0 and 0' be the local rings at p e M andp p

+(p,O) e M X A , with maximal ideals m and m' respectively.p p

be regular parameters for M at p and let

Let

Zl,,··,zn
*fi :; f zi

e 0p
e 0'.p

The corresponding "germ of vector field" can then be

ofi/otlt:;o. The problem then comes down to constructingdefined by a.
1.

a solution for the formal differential equations

in the ring 0'p' subject to the initial conditions f.(z,O) :;z~.
1. J,.

It

is then necessary to prove uniqueness in order to identify the solution
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with the given A+ action. As in the analytic case this can be done
by defining an endomorphism ~ of the m'-adic completion

p
/\
(0' )n

p of
(O,)n by

P

t
a(g) = z + ~ a(g(z,u» du

o
/\

for g e m'(O,)n. (The formal integration needs the hypothesis thatp p

k is of zero characteristic.) It:s then trivial to prove that a

is a "contraction map" for the m'-adic topology, and the existence
p A.

and uniqueness of the solution in (O,)n follows immediately. However,p

it is more convenient to prove the following slightly stronger result.

Let 0'
p

be the completion of 0'p with respect to the

topology (this topology is finer than the m'-adic topology).
p

m -adicp

Then

a defines an endomorphism of and in order to show that a

solution of the differential equations exists in 0'p it is only
necessary to prove the following proposition.

7.1 Proposition

The endomorphism ~ is a contraction map for the m -adicp

topology.

Proof. For with k - ng-h e m (0') for k ~ 1
p P

~t(g(Z,U)_h(Z'U» du
o

we have

a(g)-a(h) - A •

where as before A •. (z) = oa.loz.
1J 1 J

in the 1\m -adic completion 0
p p

of
o .p

+Now A has a rational representation on the n-dimensional
vector space 2m 1m ,p p say Since A+ is a unipotent group
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the matrices Ut are unipotent and out/otlt=o = A(p) is nilpotent.
Thus for sufficiently large N the matrix AN has entries in m Sand

p p

as required.

Again we obtain the congruence

z-f(z,t) - T(z,t) • ta(z)

whereas before I = t.r (a). Note that for k large enough,p p
kmer (a), since the zero is isolated. Thus no essential information
p p

has been lost by taking the completion.

The generalisation of (5.2) can be carried through similarly in

the algebraic case. Note that in all cases the residue at the fixed

point will be of the form -nt X polynomial in t.
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