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Abstract—Conventions are often used in multi-agent systems
to achieve coordination amongst agents without creating ad-
ditional system requirements. Encouraging the emergence of
robust conventions via fixed strategy agents is one of the main
methods of manipulating how conventions emerge. In this paper
we demonstrate that fixed strategy agents can also be used to
destabilise and remove established conventions. We examine the
minimum level of intervention required to cause destabilisation,
and explore the effect of different pricing mechanisms on the cost
of interventions. We show that there is an inverse relationship
between cost and the number of fixed strategy agents used.
Finally, we investigate the effectiveness of placing fixed strategy
agents by their cost, for different pricing mechanisms, as a
mechanism for causing destabilisation. We show that doing so
produces comparable results to placing by known metrics.
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I. INTRODUCTION

Coordination is fundamental to multi-agent systems (MAS)
and self-organisation as it increases the efficiency of sys-
tems. Coordination is required as incompatible actions cause
conflicts or incur costs. However, it is often impossible to
constrain agents beforehand to ensure coordination. This can
be due to lacking knowledge of clashing actions or the inability
or unwillingness to dictate behaviour. This is of particular
importance in self-* systems without centralised control or
where the range of possible actions makes pre-determination
infeasible.

Hence, many MAS rely on the emergence of conventions,
in the form of expected behaviour adopted by agents, with
minimal prior involvement by system designers. As such,
conventions allow coordinated actions to emerge through self-
organisation. In particular, conventions have been shown to
emerge given only agent rationality and the ability to learn
from previous interactions. Understanding their emergence and
what system characteristics might influence them is an area of
active research [1], [2], [3], [4], [5].

Fixed strategy agents, that always choose the same action
regardless of others’ choices, have been shown to facilitate
rapid convention emergence and to influence the adopted
action. A small number of such agents, placed suitably, are able
to influence a much larger population [2], [4], [6]. However,
in realistic domains there is likely to be a cost associated with
inserting a fixed strategy agent, or persuading an agent to act
in a particular way, and it is desirable to minimise this cost.

It is useful to have the ability to replace existing conven-
tions, as well as to establish new ones. Suboptimal conventions

that have emerged, either due to restricted agent knowledge
or a temporal quality of optimality, can be replaced with
better conventions. Understanding how these changes can be
instigated will also allow the design of mechanisms that
increase convention robustness.

This paper considers what is required to destabilise an es-
tablished convention. We propose temporarily inserting agents,
known as Intervention Agents (1As), with strategies that differ
from the established convention to influence a population into
discarding the established convention. Using this approach we
show that a small proportion of IAs placed at targeted locations
in the population for a sufficient length of time can destabilise
an established convention, replacing it with another of our
choosing. We also establish that the cost of these interventions
varies inversely with the number of IAs used and that this
effect is replicated across different pricing mechanisms. Finally
we examine how the costs associated with agents may be used
to inform IA placement. We show that, provided the associated
costs are an indication of influence, placing by cost yields
results similar to placing by network position metrics.

The remainder of this paper is structured as follows:
in Section II we examine the related work on convention
emergence and fixed strategy agents. Section III describes the
model of convention emergence and metrics for characterising
conventions used in this paper. The experimental setting is
described in Section IV, and our results are presented in Sec-
tion V. Finally, our conclusions are presented in Section VI

II. RELATED WORK

A convention is a socially-accepted rule regarding behaviour.
There is no explicit punishment for going against it, nor
any implicit benefit in the conventional action over similar
actions. The convention members expect others to act in a
certain way, and deviation from this increases the likelihood of
coordination issues and costs. A convention is “an equilibrium
everyone expects in interactions that have more than one
equilibrium” [7]. They are able to emerge from local agent
interactions [1], [3], [8], [9] and enhance coordination by
placing social constraints on the actions that agents are likely
to choose [10].

The assumptions regarding agent behaviour are only ra-
tionality and a (limited) memory of previous interactions.
Convention emergence with these assumptions has been the
focus of numerous studies [1], [4], [6], [9]. Walker and
Wooldridge [9] investigated convention emergence with few
assumptions about agents’ capabilities. They show global
convention emergence is possible based on agents observing
others’ actions. Building on this, Sen and Airiau [4] explored



social learning as a model for emergence, where agents receive
a payoff from their interactions to inform their learning (via
Q-Learning). They show that convention emergence can occur
with no memory of interactions and agents only being able
to observe direct interactions. However, their model is limited
as agents are not situated within a network topology and can
interact with any other agent, and the convention space has
only two possible actions. Network topology has been shown
to have a significant effect on convention emergence [1], [3],
[5], [11]. Recent work has investigated larger action spaces
and has shown that this typically slows convergence [2], [6],
[12].

Sen and Airiau [4] show that a small number of fixed
strategy agents can cause a population to adopt the strategy as a
convention over other equally valid choices. This indicates that
small numbers of agents can affect much larger populations.
Franks et al. [2], [13] investigated fixed strategy agents where
interactions are constrained by a network topology with a large
convention space. They found that topology affects the number
of such agents required to increase convergence speed. They
also established that where such agents are placed is a key
factor in how influential they are, with placement by metrics
such as degree or eigenvector centrality being significantly
more effective than random placement.

Previous work often assumes no restrictions when placing
fixed strategy agents into the network. We follow this assump-
tion, but add that such an insertion has an associated cost. In
real-world domains, inserting fixed strategy agents likely has
a cost, and understanding how to minimise this is crucial. In
this paper, we investigate the effect of the cost of insertion and
its relation to the duration and efficacy of intervention.

Previous investigations of fixed strategy agents typically
insert them at the beginning of a simulation. We investigate
insertion when a convention has already become established
with the aim of causing members of the dominant convention
to cease using it. Previous work has shown that destabilisation
is possible [14], and in this paper we examine the minimum
level of intervention required to cause destabilisation, and
explore the effect of different pricing mechanisms and the
effectiveness of placing fixed strategy agents by their cost.

III. CONVENTION EMERGENCE MODEL

Convention emergence occurs as a result of agents in a
population learning the best strategy over time. Each timestep,
every agent will choose one of its neighbours to interact with.
Both choose an action from the available strategies and receive
a payoff that is determined by the combination of actions. In
this paper, the interaction and payoff are based on the n-action
coordination game, such that agents receive a positive payoff
if they select the same action and a negative payoff otherwise.
We utilise the n-action coordination game to avoid restricting
the number of possible conventions to a binary choice.

Each agent chooses the action that it believes will result
in the highest payoff from knowledge of prior interactions.
Agents also have the capability to explore the action space,
such that with probability pe;piore agents will choose randomly
from the available actions. We adopt the approach of Villatoro
et al. [5], using a simplified Q-learning algorithm for both
partners to update their strategies. Additionally, agents are

situated on a network topology that restricts their interactions
to their neighbours. We consider small-world and scale-free
topologies as these exhibit properties observed in real-world
networks. We also examine random topologies as a baseline.

We utilise the convention membership metrics formulated
by Marchant et al. [14]. These metrics offer ways of measuring
when a convention exists as well as how strongly an agent
adheres to it. Using this, we can state when a convention
is established as well as measuring the membership of the
convention. Doing so allows us to monitor the emergence,
growth and destabilisation of conventions without having ac-
cess to agent internals. We are also able to distinguish, by
their adherence, between agents who have chosen a strategy
at random and those who are members of the convention.

A. Intervention Agents

As discussed in Section II, in contrast to previous work we
examine the effect of introducing fixed strategy agents once
a convention has emerged. We call such agents Intervention
Agents (IAs) and, expanding on the work of Franks et al. [2],
[13], we introduce IAs as replacements for agents within the
primary convention (the convention with the highest member-
ship) with the aim of destabilisation. The length of time these
agents are left within the system is varied to explore the level
of intervention needed to cause permanent change.

IV. EXPERIMENTAL SETUP

Our experimental setup is based on that used by Marchant
et al. [14], in which a population of 1000 agents use Q-
learning in the 10-action coordination game. The learning and
exploration rate are both set to 0.25. Unless stated otherwise,
all simulations are averaged over 30 runs.

An interaction window of A = 30 is used for adherence
approximation, and actions for which at least one agent has
selection probability of v > 0.5 are considered (potential)
conventions. The adherence threshold for an established con-
vention is 3 = 0.9 X (1 — (Pewpiore (N — 1)) /N)), where N is
the number of strategies, peqpiore i the exploration rate, and
(N —1)/N represents the ratio of random choices that are not
the convention’s strategy.

Interaction topologies were generated using the Java Uni-
versal Network/Graph Library. Scale-free topologies were
generated using the Barabdsi-Albert algorithm with 4 initial
vertices and 3 edges added from a new node to existing nodes
each evolution of the topology [15]. The Kleinberg model was
used to generate small-world topologies with a lattice size of
10 x 100, clustering exponent & = 5 and one long distance
connection per node [16].

Convention emergence and stabilisation occurred within
5000 timesteps for all topologies. IAs were then introduced,
replacing nodes within the primary convention according to
the placement strategy. Unless otherwise stated, the placement
strategy was to select nodes in descending order of degree. The
strategy adopted by IAs is that of the secondary convention
at timestep 5000. If multiple conventions have the same
membership, the one with the highest average adherence is
selected.



The IAs remain either indefinitely or for a finite time,
to investigate the duration required for destabilisation. When
agents cease being IAs they again use Q-learning to choose
actions (learning continues whilst they are IAs). Unless oth-
erwise stated, simulations ran for 10000 iterations in total, to
give conventions enough time to emerge after destabilisation.

Each agent also has a cost associated with it. In order for
an agent to be an IA this cost must be paid each timestep. As
such, the cost of an intervention is simply the sum of the costs
over all IAs for each timestep that the intervention occurs.

When considering the minimum cost of intervening we
examine the idea of a minimum intervention, the minimum
length of time that a given number of agents must remain in
the system in order for destabilisation to occur. To quantify
this we introduce a new measure: the crossover ratio x.,. The
crossover ratio is defined as:

membgec
X(TO =
menlbprim

where memby,,.iy, and memb,.. are the membership levels of
the primary and secondary conventions respectively.

The minimum intervention is the minimum amount of time
that a given number of IAs must be introduced to cause Yo
to exceed some threshold, 7.,. In this paper we set 7., = 1.5
such that the secondary convention must become 50% larger
than the primary to be classed as destabilisation.

V. RESULTS AND DISCUSSION
A. Number of fixed strategy agents

Our initial experiments seek to show that destabilisation is
possible and establish the minimum number of IAs required.
We begin by considering the setting where IAs remain in the
system indefinitely after introduction.

Note that any conventions with near-zero membership have
been removed from the following figures for clarity, as they do
not affect the emergence exhibited by the system. Conventions
are labelled to indicate their relative rankings at timestep 5000.

We begin by considering scale-free topologies. Figure 1
shows the effect on convention membership of introducing
IAs. As can be seen in Figure la, the addition of 20 IAs
causes a drop in the membership of the primary convention
after timestep 5000. The size of this drop indicates that the
IAs are successful in changing the strategies of agents around
them. However, the convention soon stabilises at a new level
and the influence of the IAs ceases to spread. The secondary
convention never becomes established, as those persuaded to
move away from the primary convention did not become strong
adherents to the secondary. In comparison, Figure 1b shows
that insertion of 40 IAs causes the entire membership of the
primary convention to switch, within only 2000 timesteps.
These results show that there is a minimum number of IAs
required to induce destabilisation. Increasing the number of
IAs beyond this minimum was found to accelerate the desta-
bilisation.

The results for small-world topologies (shown in Figure 2)
show similar behaviour to that presented above but there are
some distinctions to highlight. Firstly, the overall level of
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membership is lower than in scale-free graphs and, secondly,
changes take effect more gradually. Franks et al. [2] have
observed similar differences between scale-free and small-
world topologies. However, as in other topologies, a minimum
number of agents is required to cause a destabilisation to occur.

Random topologies were also examined but exhibited sim-
ilar results to scale-free topologies, although requiring more
IAs. For space reasons, the results are omitted from this paper.

Within both topologies there is some minimum number of
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TAs that must be inserted in order for destabilisation to occur.
Fewer IAs than this minimum allow the primary convention
to stabilise at a lower level whilst additional IAs will increase
the speed of destabilisation.

B. Length of Intervention

Whilst IAs remained indefinitely in the previous simulations,
we now include them for finite time to find the minimum
duration needed for destabilisation. This examines the ability
of the primary convention to recover from temporary interven-
tions. Figure 3 shows the effect of including 40 IAs for 500
timesteps and then removing them. Destabilisation begins to
occur but, when the IAs are removed, the primary convention
rapidly reclaims most of the agents. However, the secondary
convention has a small but notable membership after the
intervention. This indicates that there is a minimum duration
that IAs must be present to prevent the primary convention
from recovering. Increasing the length of intervention to 1000
timesteps caused irrecoverable destabilisation. Corresponding
results for small-world topologies were also found and showed
similar behaviour. The required duration was 1500 timesteps,
which is significantly longer and is likely due to the more
gradual adoption of change in small-world topologies.

Hence, there is both a minimum number of IAs and a
minimum length of time that they must be present in order
for them to induce destabilisation. That is, there is a minimum
intervention within each topology.

C. Cost of Intervention

To examine how the cost of destabilisation relates to the
number of IAs used, we calculated the costs of minimum
interventions. This was determined by increasing the length
of time that the IAs were inserted into the population in steps
of 50, starting from 0. For larger numbers of IAs (> 200)
steps of 5 were used, to add finer granularity. The minimum
intervention is defined as the smallest insertion time such
that the crossover ratio of the averaged runs was greater than
Yeo = 1.5. Whilst this is not the true minimum it gives an
approximation which is sufficient for our calculations.

Initial experiments used a uniform price for all IAs, with
each TA costing one unit per timestep. The number of IAs was
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varied from 40 (the minimum needed to induce destabilisation
in both topologies) up to 500. This is likely to be an unrealisti-
cally large proportion in most real-world domains, representing
half of the population, but is included for completeness.
Uniform cost amongst agents is also potentially unrealistic and
so we consider the situation where agents are priced directly
based on their degree. Note that in this set of results IA
placement is by degree.

Figures 4 and 5 show the results for scale-free and small-
world topologies respectively. The cost of minimum inter-
vention for both topologies decreases as the number of IAs
increases, following an inverse relationship. Whilst the cost per
timestep increases, due to more IAs, the amount of time needed
before destabilisation occurs decreases at a faster rate. Whilst
both topologies exhibit this behaviour, the cost of minimum
intervention in small-world topologies is generally higher than
that in scale-free topologies, particularly with smaller numbers
of IAs. This is again likely due to convention adoption in
small-world topologies occurring at a slower rate than in scale-
free networks.

Whilst the scale of the graphs for these results vary,
the relationship for each pricing mechanism is similar, with
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decreasing costs and diminishing returns as the number of IAs
increases. This indicates that, regardless of how IA costs are
calculated, it is cheaper to place as many IAs as possible into
the system at high-degree locations. However the effectiveness
of this reduces significantly around 10% of the population.

D. Cost-based Placement

In the above experiments we assume information about the
topology and agent characteristics, such as degree, are avail-
able. We now consider the situation where such information
is hidden, and all that is known is an advertised cost which
may or may not be indicative of an agent’s influence. In the
following experiments, IAs are placed at high cost locations,
without assuming knowledge of degree.

Our previous experiments also assumed that multiple sim-
ulations could be performed ahead of time, to determine the
minimum intervention. In real-world settings this is impractical
and instead an intervention must be monitored in real-time
to establish whether destabilisation has occurred and the IAs
can be removed. In the following experiments we use moving
averages (window size of 30 timesteps) to calculate .,
within a simulation. When this exceeds 7., destabilisation has
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scale-free topologies. The pricing mechanism is degree with additional noise
with TAs placed at high cost locations. Noise is varied from 0.1 to 0.7 in steps
of 0.2.

occurred, the IAs are removed and the simulation terminated.
The cost up to this point represents the cost of a minimum
intervention. If this condition is not met by timestep 10000
then the run is deemed unlikely to destabilise and is marked as
invalid. We require 2/3 of the runs to be valid for the minimum
interventions to be considered representative and the average
minimum cost over the valid runs is then used.

We begin by considering the effect of pricing (and hence
placing) agents by degree in scale-free networks, with the
results shown by the lower line in Figure 6. We also examine
the process of pricing and placing randomly, shown by the
upper line. Whilst the relationship between cost and the
number of IAs remains, a larger number of IAs is needed
to give sufficient valid runs. Importantly, even when placing
randomly, we see an inverse relationship regarding the number
of IAs and cost.

Figure 7 shows results for small-world topologies and
degree pricing. It differs from Figure 5 when the 2/3 threshold
is applied but replicates the shape when a higher threshold is
used. This is likely due to higher variance between runs for
small-world topologies allowing non-representative runs to be
included. Similar results occur for random placement.

Finally we examine the situation where the advertised cost



of an agent is an imperfect indication of their degree (and
hence influence). This pricing mechanism is useful in domains
where agents may be asked to estimate their own influence
or domains with unreliable information. This is modelled
by selecting each agent’s advertised cost from a Gaussian
distribution:

cost(v) = N (deg(v), (deg(v) x noise_level)?)

Results for this setting are shown in Figure 8. For both scale-
free and small-world topologies the noise level, n, was varied
from 0.1 to 0.7, and the valid run ratio threshold was set to
0.85 to remove the artefacts present in small-world graphs.

The effect in both topologies of increasing noise is to
increase the overall cost that is needed to cause destabilisation.
The results are shown on a log-log scale to more easily
distinguish this. However, even with 70% noise being applied,
the relationship between cost and number of IAs remains the
same. As long as the cost is known to be a function of degree,
rather than truly random, it is beneficial to base placement
decisions on this information even if it is substantially noisy.

Amongst all pricing mechanisms the same inverse rela-
tionship between number of IAs and overall cost remains.
However, the number of IAs required to consistently cause
destabilisation is affected by this mechanism. Hence the best
strategy is still to insert as many IAs as possible, using
advertised cost if no other metrics are available.

VI. CONCLUSIONS

We have shown that it is possible to cause destabilisation of
existing conventions by the insertion of a small proportion
of fixed strategy Intervention Agents into the population at
key locations. By setting the strategy of these agents to that
of the second largest convention we have shown that the
primary convention can be destabilised and replaced with the
secondary. In scale-free and small-world topologies we found
that 40 IAs in a population of 1000 were sufficient to cause
this. Fewer IAs than this were shown to cause a fall in the
membership of the primary convention in each topology, but
not enough to make the secondary convention dominant.

We have also shown that temporarily inserting IAs can also
cause destabilisation, and that there exists a minimum length of
time that they must be present in order to cause this. Removing
IAs prior to this minimum duration will cause the primary
convention to return to near previous levels. We found that the
minimum length of time required was smaller in scale-free
topologies than small-world topologies.

Next we considered the cost of these interventions, and
show that, independent of whether cost is uniform or linked to
degree, the cost of minimum intervention is inversely related
to the number of IAs. However, the relationship is one of
diminishing returns. As such, placing as many IAs as possible
into the system is beneficial but the additional effect generated
reduces substantially after 10% of the population.

Finally, we explored the effect of placing IAs by cost and
monitoring destabilisation in real-time. The same relationship
between number of IAs and cost was found to hold regardless
of pricing/placement mechanism although higher numbers of
IAs may be needed to sufficiently guarantee destabilisation.

We also found that small-world topologies vary in this respect
more between simulations than scale-free networks. The effect
of noise on the degree-based pricing mechanism was also
considered. It was found, for both topologies, that the effect of
noise was to increase the overall cost of minimum interventions
but to not affect the relationship between cost, the number of
IAs, and the duration of minimum interventions. We conclude
from this that placing by advertised cost would offer reasonable
results, assuming non-random pricing.

Overall we have shown that destabilisation and replacement
of an established convention is possible and that minimum
criteria exist in order to cause this. We have also presented
a number of ways of evaluating how much an intervention
might cost using various pricing methods and demonstrated
the relationship between the number of IAs and cost.
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