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Abstract. As mobile devices capable of sensing location have become
pervasive, the collection and transmission of location data has be-
come commonplace, enabling the creation of models of behaviour that
support location prediction. With such devices often heavily resource-
constrained, the nature of data used in location prediction must be un-
derstood in order to optimise storage and processing requirements. This
paper specifically explores data sparsity and collection duration. The re-
sults presented provide insight which suggest: (i) a relationship of dimin-
ishing returns in predictive accuracy when collecting user location data
at increased rates over a fixed period, and (ii) the duration over which
a fixed size sample of location data is collected has a greater impact on
predicative accuracy than data sparsity.
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1 Introduction

Location-aware devices are routinely used by a significant proportion of the
global population [8]. Data pertaining to a user’s location can now be sensed,
stored and shared in real-time through devices such as smartphones and tablet
computers. Many applications might benefit from location prediction, including
city planning, law enforcement, marketing, etc., however relatively little is un-
derstood regarding the necessary quality of data for forecasting. Much existing
work assumes that location data can be stored indefinitely and at the highest
rate afforded by a collection method [3, 16]. These assumptions are inconsistent
with the devices typically used to perform location analysis, which are generally
battery-powered portable devices carried by an individual with limited storage
and memory capability. As a result, data collectors must be able to justify the
resolution and duration of collection mechanisms to users.

In this paper we consider two dimensions of data quality for location pre-
diction. Specifically, we investigate data sparsity and collection duration, with
a view to informing the design of data collection mechanisms and addressing
user privacy concerns. Through the application of three established techniques
in location prediction to data varying in sparsity and collection duration, it is
shown that: (i) there is a relationship of diminishing returns in predictive accu-
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racy when collecting user location data at increased rates over a fixed period,
and (ii) the duration over which a fixed size sample of location data is collected
has a greater impact on predicative accuracy than data sparsity.

2 Related Work

Location prediction is widely recognised as being beneficial to providing location-
aware services. Early work in this area considered the problem of predicting
future locations within small, enclosed environments with a fixed number of
discrete user locations, typically employing neural networks, Markov models or
dynamic Bayesian networks [2, 10, 13]. Solutions to this problem have applica-
tions within offices, homes and public buildings but do not lend themselves to
location prediction in large uncontrolled environments.

Motivated by applications such as cell tower handover — seamlessly passing
a connection from one cell tower to another when a device is moving — research
has considered location prediction in more open environments [7, 17]. Ashbrook
and Starner investigated the use of algorithms to extract a user’s ‘significant
locations’ from GPS data, and using these locations as the basis for the devel-
opment of Markov models for location prediction [3]. Similar investigations have
been conducted on GPS traces [14, 15], online check-in data [9], and discrete real-
world locations such as cell towers [4, 6, 16]. In contrast to the variety of location
prediction approaches, existing work has generally considered near-continuous
data collected over long time periods, an assumption explored in this paper.

3 Modelling the Location Prediction Problem

We characterise location data as a set of n-tuples, called points, containing lo-
cation and time values, where a location is an identifier given to a distinct geo-
graphic area on the surface of the earth. The dataset, Du, of a user, u, is therefore
the set of all points associated with u, having inherent sparsity and duration.

Du = {x1,u, x2,u, ..., xn,u}

The mapping between a time range and set of visited locations for a user can be
represented by unknown function, fu, such that fu([start : end]) = S, where S
is a non-empty, potentially large, set of locations visited by the user during that
period. It is the aim of location prediction to construct an approximation of the
unknown function, f̂u, given a training set TRu ⊆ Du, such that ∀y ∈ TRu :
time(y) ≺ start, which ensures that predictions are in the future.

3.1 Evaluation Model

The function f̂u can then be used to produce a set of estimated locations, Ŝ,
for a specified time range, known as an evaluation window. This set can then be
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compared against the known set of visited locations for the same window, S. True
Positives (TP), False Positives (FP) and False Negatives (FN) are intuitively
defined as S ∩ Ŝ, Ŝ − S and S − Ŝ respectively. We define the set of True
Negatives (TN) as loc(TRu) − (S ∪ Ŝ), where loc(TRu) is the set of locations
that exist within a user’s training data. We can now define accuracy as:

ACC =
|TP |+ |TN |

|TP |+ |FP |+ |TN |+ |FN |

4 Experimental Setup

Data was collected by installing a bespoke smartphone application on mobile
phones belonging to 5 members of the Department of Computer Science at the
University of Warwick. Users ran the application for a period of several months,
which recorded the time, latitude and longitude of the device every minute. We
generated datasets of different sparsities and durations by selecting a random
continuous subset of length n weeks from each collected dataset, and then sam-
pling the truncated data according to a retention probability, r, where each point
within the dataset had probability r of being included. Although our approach is
limited to using data from only 5 users, this represents an improvement over ex-
isting work. The collection of such data is challenging, and existing approaches
typically rely on data collected from a single individual [3, 5], or on artificial
simulated data [4, 7, 16, 17].

Since location clustering remains an open problem, cell tower regions were
used to discretise locations for prediction. There is no loss of generality with
regard to the defined data model, since cell tower regions can be considered
arbitrary geographical regions designed to maximise coverage.

4.1 Location Prediction Techniques

Formalising location prediction as a classification problem allows machine learn-
ing techniques to produce predictions for locations given a specific time. A train-
ing set of instances, in this case a set of points, is used to represent attributes of
the user’s current location. Each instance in the space, xi, has a single classifica-
tion, f(xi), where this classification is the location visited. A classifier is able to
generate a prediction for a single instance of time, rather than for a time range.
To obtain results for a time range, classifiers can be provided with test instances
for every time step, in this case each minute, throughout the test range and the
results merged to form a set spanning the evaluation window.

Several classification techniques have been shown to be effective for the
problem of location prediction, including neural networks [10, 13], decision
trees [1, 12] and support vector machines [11, 12]. To ensure the results presented
are representative, each of these techniques is used in this paper. Experiments
were performed for each user using 4 different durations and 9 sparsities, with
each repeated 50 times.
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(a) Split on retention probability (b) Split on training length

Fig. 1: Predictive accuracy against evaluation window averaged across classifiers

(a) 2 day evaluation window (b) 14 day evaluation window

Fig. 2: Retention probability against predictive accuracy for different durations

5 Results

Each classifier performed similarly across all experiments, and so for brevity we
present results averaged across classifiers. Figure 1 shows how predicative accu-
racy varies with evaluation window length. With an evaluation window of 0 days,
the resulting predictions are for a single instance, meaning that |Ŝ| = |S| = 1.
As the evaluation window is increased to approximately 1 hour, prediction ac-
curacy increases. This is because any error in a set of predictions made on an
individual visiting a small number of locations, especially a single location, is
likely to negatively skew predictive accuracy. As the set of visited locations in-
creases, any single error has a reduced impact. Despite this, predictive accuracy
declines as the evaluation window is increased further, likely due to the inherent
complexity of human mobility. This finding can be used to inform the design of
location-aware services, not least because the selection of an appropriate evalu-
ation window can impact the utility of the service.

We now consider how sparsity and duration impact the performance of pre-
diction techniques. Figure 2 shows how predicative accuracy changes with levels
of sparsity for the different training durations. In particular, Figures 2a and 2b
show these results for evaluation windows of 2 and 14 days respectively. It can
be seen that an increase in the proportion of location data, i.e., a reduction in
sparsity, consistently yields increased predictive accuracy, although the increase
is non-linear. This change in growth rate is significant, since it demonstrates
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(a) 2 day evaluation, split on n (b) 14 day evaluation, split on n

(c) 2 day evaluation, split on r (d) 14 day evaluation, split on r

Fig. 3: Training instance count against predictive accuracy

that the increase in quality of service afforded is not necessarily linear with the
amount of location data collected for prediction.

Figure 3 shows the relationship between number of training instances and
predictive accuracy. The number of training instances is a function of both spar-
sity and duration — the same number of instances can be generated from a short
duration with low sparsity or a longer duration at higher sparsity. In order to
investigate the interplay between sparsity and duration, each graph shows the
result of dividing the range of instance values (0− 35000) uniformly into groups
of 1000, with data points falling into each grouping being averaged.

It can be observed from Figures 3a and 3b that there is a marked difference
in terms of predictive accuracy when drawing on training instances of longer du-
ration (and therefore higher sparsity). With a fixed number of training instances,
those drawn from a longer duration perform nearly uniformally better than those
from a shorter duration. This finding is reinforced by Figures 3c and 3d which
show a less pronounced relationship between predictive accuracy and number of
training instances when split on different retention probabilities. This substan-
tiates the finding that the duration over which location data is collected is at
least as, if not more, important to predictive accuracy than sparsity.

6 Conclusion

This paper has explored the impact of sparsity and duration on the accuracy
of location prediction, with a view to informing the design of location data col-
lection mechanisms. Our analysis is based on data collected from 5 individuals,
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which, although limited, improves on previous approaches that use a single in-
dividual’s data [3, 5], or on artificial simulated data [4, 7, 16, 17].

In particular, we have demonstrated the performance of established loca-
tion prediction techniques under general purpose models of data, prediction and
evaluation. These results provide insight which suggests: (i) a relationship of
diminishing returns in predictive accuracy when collecting user location data at
increased rates over a fixed period, and (ii) the duration over which a fixed size
sample of location data is collected has a greater impact on predicative accuracy
than data sparsity.
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