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This study investigated the correlation of age in male and female specimens with physico-mechanical properties of 

trabecular bone including compressive strength, bone volume fraction, structural model index, trabecular thickness 

factor, level of inter-connectivity and pore morphology. An artificial neural network was designed to analyse 35 

available samples in order to account for complex inter-dependencies of the key parameters in multi-dimensional 

space. Trained by using Levenberg-Marquardt back propagation algorithm, the network achieved regression factor 

of 0·96 by optimisation and showed that age correlates strongly with the physical properties of the bone affected by 

severe osteoarthritis. In addition, the compressive strength was found to be the most important factor for predicting 

the bone aging. Within the limitations of the input data set, the model developed provides a reliable predictive tool 

to tissue engineering applications.

1.	 Introduction
Bone is a natural biocomposite comprising hierarchical cortical 
and trabecular (cancellous) structures. The skeletal structure–
function relationship of trabecular tissue in vivo is complex1 since 
the mechano-biological properties are intrinsically dependent on 
the physical and geometrical parameters of bone,2 for example, 
three-dimensional (3D) trabecular architecture,3 pore size, 
compressive strength,4 yield strain and modulus,5,6 strain energy 
density and bone remodelling. The task of optimising or predicting 
these properties especially for trabecular bone becomes even 
more onerous due to the fact that mechanical properties of bone 
differ according to their anatomical location.7 Tissue engineers are 
thus often faced with problems of selecting the most successful 
strategy for both the design and fabrication of synthetic scaffold for 
the treatment of patients suffering from degenerative orthopaedic 
diseases triggered by osteoarthritis, osteoporosis, trauma, injury 
and metastatic cancer occurring in specific age group and gender.8,9 
Computational techniques such as finite-element analysis (FEA) 
and other mathematical procedures have been used for clinical 

data in hip fractures with limited success.10–12 Phenomenological 
(data-driven) models, based on the experimental or clinical data, 
are known to have poor accuracy and restricted by the size of 
available data sets.13 Resulting statistical models are generally very 
sensitive to the inaccurate data and outliers, as well as the level 
of ambiguity allowed by the fuzzy logic and soft algorithms. This 
necessitates generation of large volume and high-quality data, and 
in tissue engineering, these requirements are highly impractical and 
often unrealistic. To resolve this dilemma and make statistical data-
driven models applicable, it is desirable to design a model based 
on the principles of machine learning, which enables the ability of 
such model to learn from the additional data and to dynamically 
adapt to new inputs.14–17

Among various machine-learning data-driven algorithms, artificial 
neural network (ANN) is a powerful statistical tool of multi-
dimensional data analysis genre. It enables modelling of multi-
dimensional relationship of experimental data such as pattern 
recognition, clustering and function fitting. This avoids significant 
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complexity penalties of increased dimensionality typically associated 
with most statistical modelling.18 Although ANN is a data-driven 
model, it nevertheless has been successful to learn from smaller 
data sets, achieving higher performance when predicting outputs, 
compared to probabilistic models such as Bayesian networks 
or decision trees.14,19 ANN is capable of finding complex multi-
dimensional relationships between inputs and outputs of the 
system and has been a proven particular suite to the general field 
of bioinformatics. Evidently, it has great potential in bone tissue 
engineering decision support that can monitor and predict the outcome 
of clinical problems and provide valuable information to both 
clinicians and tissue engineers, thus reducing failures and improving 
therapeutic effects. The latter is often engaged in the challenging 
task of modelling and designing hierarchical synthetic scaffolds for 
skeletal regeneration.20–23 For trabecular hard tissue engineering, in 
particular, the application of neural networks is novel and largely 
an unexplored area. There are some reports of trabecular bone 
modelling, but only few studies adopted ANN-based approach24,25 
in combination with more established computational techniques of 
FEA of the trabecular bone as a cellular structure. For example, ANN 
has been applied successfully to predict the mechanical properties 
of trabecular bone,24 and estimated the apparent fatigue damage 
accumulation due to cyclic loading in a trabecular bone. The promise 
of ANN for modelling the mechanical behaviour of trabecular bone 
was demonstrated25 by estimating load from the spatial distribution 
of density in the femoral bone. The key limitations of both studies 
were the dependence of the ANN performance on the validity of 
the assumptions in the corresponding FEA model. It was evident24,25 
therefore that further work in this area using ANN is vital. A strategic 
approach must consider clinically important parameters such as age, 
gender, anatomical bone location, biological factors, pore morphology 
of the trabecular network structure and the effect of drugs prescribed 
to patients. Literature in this field is scarce and supports the view that 
there is an urgent need for an effective stand-alone ANN-based data-
driven algorithms that integrate complex structural and mechano-
biological parameters in a single model of human trabecular tissue. 
In parallel, understanding how various structural (3D constructs) 
and mechanical parameters correlate with the age and gender of the 
patients affected by bone loss can provide valuable clinical insights 
for diagnosis, prevention and potential treatment of bone disorders.

Age correlation with individual physical parameters of trabecular 
bone affected by osteoarthritis was investigated26 by applying 
bivariate linear regression model. The research has shown that 
no significant correlation exists between the age of the specimen 
and any of the specified mechanical property parameters for 
either gender. Also, by generalising for all osteoarthritis-affected 
cases, the structural parameters and mechanical strength of the 
cancellous bone did not depend on age for patients suffering from 
this disorder. The authors hypothesized that the correlation of the 
age with the individual mechano-biological parameters, when 
studied in isolation, could potentially result in the loss of valuable 
inter-dependence of all the variables. The use of a simple bivariate 

regression for data with multi-variate dependency27 can lead to 
false-negative results whereas multi-variable regression analysis is 
more appropriate when such dependency may exist.

Multi-variable regression analysis implies investigation of how 
several parameters simultaneously influence the desired output. It 
also allows the prediction of an outcome (output) of a system based on 
values of a set of predictor variables (inputs), which can be measured 
in the experiments or represent clinical data. Several computational 
modelling studies of mechanical properties of the trabecular bone28,29 
have shown that a theoretical mathematical approach can be applied 
to determine the effects of scaffold micro-architecture on new bone 
formation. This comprehensive model allowed successful theoretical 
simulation of bone regeneration and the scaffold mass loss over 
time. However, the work highlighted the difficulty in obtaining 
the initial input parameters and thus the model required further 
extensive experimental validation for its use in practical scaffold 
design applications. Furthermore, experimentally derived specific 
mechanical properties, such as compressive strength, hardness and 
Young’s modulus of trabecular bone, were used.28,29 These studies 
provided valuable and experimentally validated conclusions 
regarding compressive properties of the trabecular bone; however, 
the complexity of the experiments failed to consider the mechanical 
properties in conjunction with the essential structural and mechano-
biological parameters of the trabecular bone behaviour for its use in 
hard tissue engineering. Therefore, the current state of research on 
trabecular bone modelling demands a more comprehensive model 
that could integrate in a single system with various mechanical, 
structural and biological aspects of the trabecular bone and yet be 
based on the actual experimental/clinical data.

The aim of this work is to apply ANN approach to perform multi-
dimensional data analysis of physical and mechanical properties of 
trabecular bone and investigate correlation of the properties with 
age of male and female specimens. The research targets a particular 
type of cancellous bone, which has been affected by osteoarthritis. 
Such computational approach is largely unexplored and original in 
the area of tissue engineering and could provide a sound platform 
that integrates machine learning and tissue engineering.

2.	 Materials and methods

2.1	 Data
This work focuses on a particular data set of 35 samples of four 
mechanical parameters for male and female specimens of various 
ages, adapted from a study on cancellous bones affected by 
osteoarthritis.26 Trabecular tissue samples from the femoral head of 
37 patients suffering from severe osteoarthritis and undergoing total 
hip arthroplasty were considered. For each trabecular bone sample, 
the series of experiments involving micro-computed tomography 
(micro-CT) scanning at the isotropic pixel resolution of 19·5 µm 
with a complete rotation over 185°, deformation testing with 
extensometer code to the sample and ashing at 650°C for 24 h with 
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subsequent mass measurements were conducted. During selection 
of this primary data, care was taken to ensure that samples from 
the patients affected by secondary osteoarthritis and other bone 
and joint diseases were excluded from the experiments. The tissue 
samples were extracted from each femur to ensure consistency of 
shape, location and alignment. The cylindrically shaped fragment 
(20 mm in free height and 10 mm in diameter) of cancellous bone 
was chosen from the principal compressive region of the femoral 
head and positioned for extraction so that the cylinder axis was 
aligned with the fixed main trabecular direction for each specimen.

These data were extracted from original measurement26 
comprising a total of 35 bone samples: 17 male and 18 female 
with age ranging between 42 and 87. The following four 
mechanical and structural parameters were extrapolated from the 
graphs: compressive strength (in MPa) measured by extensometer 
in deformation testing, porosity (%) characterised by the bone 
volume fraction BV/TV (derived from the cross-sectional 
micro-CT images by dividing the sum of voxels identified as 
trabecular bone by the sum of voxels composing the total volume 
of interest), level of inter-connectivity indicated by the trabecular 
thickness factor Tb.Th (dimensionless: measured in micro-CT 
using spherical estimation), morphology characterised by the 
Structure Model Index, SMI (dimensionless: determined from 
micro-CT images by approximating the bone topology in terms 
of rods and plates). The precision error of the data extraction is 
less than 0·7% for any given sample.

The final data set (Table 1) comprised five-dimensional matrix of 
one gender indicator coupled with the four mechanical parameters 
listed above as the input and the vector of specimens age as the 
corresponding output.

2.2	 Modelling
2.2.1	 ANN configuration and data input
Figure 1 illustrates the architecture of a multi-layer perceptron 
feedforward network adapted from Haykin.30 Five input neurons 
process the input vector of compressive strength, porosity, 
gender, morphology and inter-connectivity level in the trabecular 
bone samples: one hidden layer containing seven neurons maps 
the inputs to the corresponding output, and one output neuron 
produces the final calculation of the age of the specimen. The 
neurons are arranged in layers, with outputs from neurons in one 
layer feeding into the inputs of all the neurons in the next layer. 
The ANN was developed in MATLAB R2012b using Neural 
Network Toolbox 8·0.

The process of modelling was divided in three stages: training 
of ANN, validation and testing of the results. For this purpose, 
three data sets were required, and therefore, available 35 samples 
were randomly divided into three sets of training, validating and 
testing data.

2.2.2	 Training and validation of ANN
Levenberg-Marquardt backpropagation algorithm was used31 to 
train data set available for this study, as the learning configuration 
of this algorithm is most commonly used with multi-layer 
perceptrons.32 The algorithm is based on gradient descent method 
to calculate and update the values of weights and biases in the 
network, by using a function optimisation technique to reduce 
the error in the training data set. Notably, Levenberg-Marquardt 
algorithm is particularly efficient in minimising sum of square 
errors for non-linear functions, and therefore its performance has 
been measured by root mean squared error (rmse).33

1.
	

where y
i
 is the actual output, yi

�  is the output predicted by the 
ANN and n is the total number of samples. Five input variables, 
forming the ANN training set, were linearly independent as this 
condition maximises the learning efficiency of the backpropagation 
algorithm.18
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(Figure 2(a)).

2.2.3	 Performance of the model
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the model quality.37
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Sample
Age: 
years

Porosity: %
Gender  

(1 – female,  
0 – male)

Morphology 
(SMI)

Level of inter-
connectivity 

(Tb.Th)

Compressive 
strength: MPa

1 41·8 32·48 1 0·06 243 20·9

2 49 9·68 1 1·93 154 8·22

3 52 21·55 1 1·42 224 6·91

4 57 26·56 1 0·48 239 18·2

5 60·9 33·84 1 0·31 252 20·5

6 62·8 22·48 1 0·7 283 12·2

7 63·9 43·54 1 −0·82 212 9·46

8 64 17·89 1 1·22 419 23·1

9 66 25·34 1 0·92 263 15·4

10 67·1 27·59 1 0·64 223 19·4

11 68·1 9·82 1 2·1 197 2·76

12 69·9 39·72 1 −0·43 299 23·2

13 71·5 26·89 1 0·38 367 18·9

14 72·6 13·72 1 1·59 247 1·93

15 73·9 20·99 1 1·04 239 8·15

16 74·9 15·36 1 0·8 218 6·49

17 76 24·98 1 0·54 314 17·8

18 87 32·41 1 0·3 326 24·2

19 41·7 30·40 0 −0·17 287 21·5

20 45·7 27·45 0 0·45 257 19·6

21 46·8 35·59 0 −0·05 288 24·3

22 47·9 36·98 0 −0·31 284 16·4

23 49·8 38·71 0 0·04 265 11·1

24 49·7 22·68 0 0·82 244 26·5

25 62·9 27·51 0 0·44 266 18·5

26 64·9 26·64 0 0·39 246 19·3

27 65·8 37·56 0 −0·23 303 28·8

28 68 12·16 0 0·71 178 14

29 68 25·34 0 1·77 219 4·91

30 72·9 17·44 0 1·33 261 9·81

31 73·9 29·75 0 0·04 307 23·7

32 77·8 32·08 0 0·15 270 22·2

33 81·8 31·64 0 0·36 271 24·4

34 84·9 21·76 0 0·7 234 13·3

35 87 19·42 0 1·08 193 9·12

Table 1. Secondary data on 35 bone samples
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strong correlation with good predictive ability and 0·6 < R < 0·86 
for statistically significant correlation with weak predictive value.

3.	 Results

3.1	 Training and validation
Twenty samples were randomly chosen for ANN training, five 
further samples for validation and last ten were used as testing 
data set. Applying Levenberg-Marquardt algorithm,32 the ANN 
was trained by altering the weights of neurons and biases 

according to the data inputs. Each of the 20 samples was fed, its 
weights and biases were re-calculated and performance evaluated 
by validation. Following first iteration (epoch), samples were 
randomly shuffled and presented to the ANN once again with new 
values of parameters, obtained from the first epoch. This iterative 
procedure was repeated. It should be noted that in the process of 
a successful training, values of rmse tend to zero lim

n tr→∞
→rmse 0

, where index ‘tr’ indicates that rmse characterises training data 
set, while validation error had to be minimized not allowing 
over-fitting as verified by early-stopping technique. After five 
consecutive iterations (epochs) and validation checks, the least 
root mean squared error rmse

val
, with which ANN could map the 

inputs to the target age over the validation samples, was found 
to be equal to 9·81 years (Figure 2(a)). On further iteration, the 
training error continued to decrease as expected as the system 
was progressively learning from the data (blue line with squares 
in Figure 2(a)). Validation error, however, showed its minimum 
value at the fifth epoch (green line with circles, Figure 2(a)), 
and continued training process past fifth epoch resulted in over-
fitting of the ANN.

Consequently, the ability of ANN to generalise data decreased 
causing an increase in the validation error. Thus, cross-validation 
was successfully utilized to monitor and establish the maximum 
performance of the ANN, that is, the optimal point with minimum 
validation error, and subsequently terminate training and revert the 
state of the ANN neurons to that optimum point. The accuracy of 
the network measured by rmse

test
 (red line with crosses in Figure 2) 

showed the value of 8·6 years at the optimal fifth epoch (red line 
with crosses, Figure 2(a)).

Figure 1. Neural network architecture defining the input, hidden and 

output layers, where each neuron is represented by a circle and the 

arrows denote the weight of the connection

Input layer

Strength

Porosity

Gender

Morphology

Interconnectivity

Output layer

Age

Hidden layer

Figure 2. (a) ANN performance and (b) optimised ANN performance 

in training (blue line, marker ‘□’), validation (green line, marker ‘o’) 

and testing (red line, marker ‘x’) as measured by rmse. Minimum 

validation error occurred at fifth epoch with rmseval = 9·81 years for 

(a) and at first epoch with rmseval = 2·87 years for (b). Vertical dashed 

lines mark epoch numbers with minimal validation errors rmseval. 

ANN, artificial neural network; rmse, root mean squared error
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The ANN performance (Figure 2(a)) measured by the regression 
factor R was as follows: R

tr
 = 0·91 for training data (20 samples) and 

R
val

 = 0·61 for validation data (five samples). The ANN performed 
significantly better on the training data set, than on the validation 
samples, as the ANN was supplied with the target age values 
multiple times throughout the learning process. In addition, the 
validation set at only five input vectors comprised substantially 
less data points. This increased the effect of random distribution 
and outliers. The subsequent analysis of the ten samples reserved 
for testing arrived at regression factor R

test
 = 0·87. This indicates 

a strong positive correlation between predictive and target values 
of age and corresponds to a good predictive performance of the 
model (as specified by the benchmarks in Section 2.2.3). The 
regression factor calculated for the entire data set (35 samples) 
was R

all
 = 0·86. Overall, all four regression factors were within 

satisfactory boundaries indicating a strong positive correlation 
between the age and the mechanical parameters of the trabecular 
bone when multi-dimensional inter-dependencies between the 
parameters are considered.

3.2	 Optimisation of ANN
ANN performance varied substantially with the random order with 
which the input data could be split into training, validation and test 
groups, as well as the sequence of the training. This is due to the 
limited size of the sample set but despite the potential drawback of 
increased ANN design complexity, this provided an opportunity for 
optimisation of the ANN.

In the context of data-driven systems, a statistical model can be 
optimised for the data it operates. Such optimisation offers vast 
potential to maximise the accuracy of the model and ability 
to fit the data. Contrarily, it can induce negative effects such as 
decreasing the ability of the system to generalise for the new data 
making the application of the model limited to the initial data set. 
This can however be resolved if the data set is fully and uniquely 
representative of all the data for which the model would be 
optimised. Hence, assuming that this pre-condition holds true for 
the entire range of trabecular bone samples, from the femoral head 
of osteoarthritis-affected patients, it was possible to optimise the 
ANN model and achieve enhanced predictive power, performance 
and generalisation ability.

Direct optimisation is generally achieved if the ANN is trained, 
validated and tested in a specific order and by the set number of 
the input data samples maximising its performance.14 However, 
determining this optimum order requires searching through all the 
possible combinations for 35 available data samples, randomly 
divided every time into three sets of groups: training data, validation 
samples and test vectors. For example, the number of possible 
combinations for 22 training data samples (comprising 63% of 
all samples), seven validation (20%) and six test (17%) vectors is 
approximately 1033, which would require 1021 millennia to assess 

the performance of the ANN in MATLAB. Due to this constraint, 
the number of input combinations was reduced: a total of 2079 
ANN were produced with random split and sequence in order to 
find the optimum. Each ANN was evaluated for the regression in an 
automated manner, and the best-performing ANN was determined.

The best validation results (Figure 2(b)) with optimised ANN 
occurs as early as during the first epoch, and the training was 
terminated at that instance. The regression factors between the 
target and output values of age, achieved by the optimised ANN 
(Figure 3) were improved in comparison with non-optimal case: R

tr
 

= 0·96 for training data (22 samples, (Figure 3(a)), R
val

 = 0·99 for 
validation data (seven samples, (Figure 3(b))) and R

test
 = 0·91 for 

testing data (six samples, Figure 3(c)) with R = 0·96 across the 35 
samples (Figure 3(d)). Similarly, accuracy of the ANN measured 
by rmse

test
 (red line with crosses in Figure 2) has significantly 

increased: rmse
test

 = 8·6 years for initial ANN (at optimal fifth 
epoch, (Figure 2(a)), rmse

test
 = 3·37 years for optimised ANN (at 

optimal first epoch, (Figure 2(b)).

These results re-iterate the existence of a strong positive multi-
dimensional correlation between the age of the specimens of both 
genders and the mechano-biological parameters of their trabecular 
bones. The results also indicate high accuracy and predictive power 
of the optimised ANN.

Furthermore, a parameter sensitivity analysis was undertaken to 
assess whether or not it was possible to predict the age of a patient 
using less than five physical parameters of trabecular bone and yet 
retain the comparable level of modelling accuracy and predictive 
power of ANN. This was carried out by identifying which parameter 
out of the five inputs was least responsible for the correlation with 
age, as measured by the regression factor. If there was one such 
parameter, it could be potentially excluded from the input vector 
thus reducing the dimensionality of the multi-dimensional problem 
without losing any information on mechano-biological properties 
of trabecular bone.

Linear-independent component analysis is not directly applicable 
in multi-dimensional space, which necessitates alternative 
techniques to be used.27,39 It is suggested here that in the same 
ANN system, with the original input data set, the parameter in 
question is masked by substituting with its mean value across 
all the samples. By comparing the regression factors with the 
original factor R

test
 = 0·87, it was determined whether or not 

the input parameter considered played a primary role in the 
correlation model.

The correlation was first tested with regard to the compressive 
strength masked by its mean value. It is shown (Figure 4) that 
the new linear regression trend (solid line, Figure 4(b)) has 
substantially deviated from the perfect fit (dashed line, Figure 4(b)) 
corresponding to the scenario where the ANN predictions (age 
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output) are equal to the actual age targets. The predictive power 
of the ANN reduced markedly as the regression factor between the 
target and the predicted age decreased from R

test
 = 0·86 (Figure 4(a)) 

to R
test

 = 0·25 (Figure 4(b)). Therefore, the impact of compressive 
strength on the overall correlation of the ANN model is statistically 
significant.

This significance was also quantified by the relative change 
of 71% in the regression factor (Table 2) demonstrating that 
compressive strength was responsible for 71% of the predictive 
power of the ANN model. Similarly, the above procedure was 
applied to the four remaining input parameters: the trabecular bone 
porosity, morphology, level of inter-connectivity and the gender 

of the specimens. It was found (Table 2) that morphology of the 
trabecular bone (SMI index) and the gender of the specimen are 
next most important components with 45 and 41% of the overall 
predictive power, respectively. The trabecular thickness (bone 
inter-connectivity), masked by its mean value, decreased the ANN 
predictive power by 35%. Finally, porosity (bone volume fraction) 
was found to be the least important component with 27% of the 
predictive power.

As seen from Table 2, the regression factor does not exceed 0·6 
benchmark, R < 0·6 (except for the porosity, discussed in Section 3), 
demonstrating weak predictive ability of the model and absence 
of statistically significant correlations between target and output 

Figure 3. Optimised ANN: linear regression between the outputs 

and target value over (a) training, (b) validation, (c) test samples 

and (d) entire data set. Circles represent experimental data, solid 

lines correspond to linear fitting and dashed lines correspond to the 

scenario when the ANN predictions (age output) are equal to the 

actual age targets. ANN, artificial neural network
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values of age when one of the five parameters is excluded from 
the consideration. Thus, none of the five input parameters can be 
compromised for dimensionality reduction of the model, and age 
of the specimen depends on all five mechano-biological parameters 
of the trabecular bone: compressive strength, porosity, trabecular 
thickness and morphology for specimens of both genders.

3.3	 Compressive strength model
A single input–output inversion enables the ANN model to be 
used for determining compressive strength of a trabecular tissue 
from the bone volume fraction, its SMI and trabecular thickness 
parameters in combination with the age and the gender of the 
specimen. To validate the effect of such design alteration, the 
ANN was fed with the age values as one of the input parameters, 
and assigning compressive strength to the output neuron. 

Subsequently, the modified ANN was trained, validated, optimised 
and tested using the methodology presented in the previous 
sections. It was found that the optimal ANN is able to predict 
the compressive strength of a bone sample with a standard error 
rmse = 1·90 MPa (Figure 5). The regression factors between the 
target and output strength values are R

tr
 = 0·998 for training, R

val
 

= 0·90 for validation and R
test

 = 0·97 for testing data with R = 0·97 
across the entire data set. The high accuracy of the compressive 
strength model enables estimation of bone fracture risk from the 
biological and structural parameters that are measured without 
invasive tests on the specimen.

Figure 4. ANN output against target age with all five inputs ((a), Rtest 

= 0·86) and with the compressive strength input masked ((b), Rtest = 

0·25). Circles represent experimental data, solid lines correspond to 

linear fitting and dashed lines correspond to the scenario when the 

ANN predictions (age output) are equal to the actual age targets. 

ANN, artificial neural network
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Figure 5. Scatter plot of target (circles, squares) and predicted 

(crosses, pluses) compressive strength values for all samples 

(distributed by age of the specimen). Results corresponding to test 

samples are shown by blue squares and pluses
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Target
Prediction
Target (test)
Prediction (test)

 Input parameter

 Rtest  Change in Rtest

Initial New Absolute
Relative: 

%

Compressive 
strength: MPa

0·86 0·25 0·61 71

Porosity: % 0·86 0·63 0·23 27

Morphology (SMI) 0·86 0·47 0·38 45

Level of inter-
connectivity (Tb.Th)

0·86 0·56 0·30 35

Gender 0·86 0·51 0·35 41

Table 2. Sensitivity analysis results for each input parameter
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4.	 Discussion
The authors applied ANN in order to account for possible 
complex inter-dependency of the mechano-biological parameters 
of trabecular bone affected by osteoarthritis. A generalized ANN 
model has been presented to be capable of predicting the output 
age from the physical parameters of the bone. It is important to 
note that ANN generally do not require pre-defined causal relations 
between the model elements and the initial design assumptions do 
not depend on the exact problem formulations.19 This makes ANN 
the most applicable tool for the presented correlation analysis of 
the mechano-biological parameters of the trabecular bone based on 
a relatively small experimental data set.

When analysed independently in a multi-dimensional space, the 
porosity of the trabecular bone was found to be the least important 
factor influencing the age as an output of the model (Table 2), 
whereas the compressive strength was the most important of the 
ANN inputs. At first observation, it may seem surprising that in the 
absence of the porosity the correlation of age with the remaining 
parameters decreases only by 27%. This is attributed to porosity 
being commonly regarded as one of the key factors associated 
with age of patients suffering from bone disorders.26,40 However, 
this finding can be explained by re-calling the fact that for this 
particular data set, the bone volume fraction was used as a measure 
of both porosity and indirectly the apparent density. Apparent 
density, in turn, correlates with the compressive strength: Gibson41 
quantified this relationship using a mechanical model of cellular 
solids and stated that compressive strength of the trabecular 
bone depends on apparent density raised to the 3/2 power. Such 
mathematical formulation extends to the trabecular bone samples 
used in this study since the experimental results26 demonstrated 
that compressive strength correlates with the porosity of diseased 
trabecular bone in polynomial manner with regression factor R = 
0·97. Therefore, the compressive strength input in the proposed 
ANN supersedes the porosity input in terms of its impact on 
predicting the age.

The computational model of trabecular hard tissue developed here 
successfully integrates the primary structural, mechanical and 
biological properties and has potential to be of particular value 
to hard tissue engineers when designing bioscaffolds that imitate 
the natural trabecular bone. It is thus possible to predict how 
compressive strength, bone volume fraction, trabecular thickness 
and SMI are inter-dependent of age and gender, and tissue engineers 
could then tailor the scaffold designs for an individual patient to 
match the mechano-biological properties of the trabecular tissue at 
the site of implantation.

Assuming the data set is considered representative of the entire 
population of trabecular hard tissue affected by bone loss, this 
model provides a powerful predictive tool for a general set of 
clinical applications, including cases of osteoarthritis, osteopenia 
or osteoporosis for patients of a wide age spectrum, gender and 

varying severity of the disease. Although the study is somewhat 
limited by the relatively small size of tissue samples available, it 
has nonetheless confirmed the ability of such data to support the 
ANN approach in a clinical setting. Since the system is data driven, 
the model can be considered as a continuum since it processes 
the new data once they become available. This model, with its 
underlying machine-learning algorithms, is designed to improve its 
generalisation with every new data sample.42,43 The ability of this 
model to evolve with additional training and to simulate any given 
data makes this ANN model a promising versatile tool for a range 
of hard tissue engineering and clinical applications such as hard 
issue augmentation.

The trabecular bone model developed in this study serves as a 
foundation for further research on applications of ANN and other 
machine-learning algorithms for data-driven modelling in hard 
tissue engineering. The next step will naturally involve simulation 
of the model on the extended set of input data as could become 
available through the on-going experimental research on synthetic 
scaffolds20–22 or primary and secondary clinical data. As a data-
driven model, the ANN was so designed as to learn from the input 
data and can be trained to yield predictive results for not only 
osteoarthritis-affected samples but a variety of other clinical cases 
including osteoporosis and metastatic cancer for early diagnosis of 
the patients of both genders, varying age and the disease severity. 
This strategy can be further extended to scope problems by 
investigating other mechano-biological inter-dependencies on the 
live tissue-implant interface in the trabecular bone from the human 
femoral head or, alternatively, model the hard tissue from other 
anatomical locations. Such research would substantially increase 
range of potential clinical applications of the computational models 
in biomedicine and orthopaedics.

For hard tissue engineers, it would be of a particular value to model 
the inverse problem: for instance, how compressive strength of 
the trabecular tissue (ANN output) varies with various mechano-
biological (input) parameters. The current model already laid a 
solid foundation for such study and a new model can be produced 
by reverting the current outputs and inputs (as above), once the 
appropriate experimental data become available. The potential 
benefit of such model is a tool that could aid tissue engineers to 
optimise the hard tissue scaffolds during initial stages of the design 
process.

5.	 Conclusions
The ANN model proposed in this study demonstrated that 
mechanical and structural properties of the trabecular bone 
depend on age for the osteoarthritis-affected patients. The model 
provided a tool for a multi-variate non-linear regression analysis 
and indicated that combined changes in the individual bone 
properties such as porosity, compressive strength, level of inter-
connectivity and morphology cause the bone aging. The resultant 
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ANN model is capable of determining the age of a specimen from 
the parameters with standard error of 8·6 years. Such accuracy may 
not be sufficient for safely critical or high-precision applications; 
the proposed ANN can, however, be relied on as a basic decision 
support model for clinicians and tissue engineering practitioners 
even before optimisation of specific data set.

When optimised for the particular set of 35 samples by determining 
the best training split across a few thousands of possible 
combinations using iterative approach, the ANN achieved the 
regression factor of 0·96 across the entire data set and 0·91 for 
test samples. Its predictive power improved markedly compared to 
initial results, and the optimised ANN model was able to determine 
the age of the specimen from the input properties with rmse error 
of 3·37 years. The optimisation assumed that the original data set 
is fully representative of the all trabecular bone samples for which 
the model would be utilised.

Analysis of input components sensitivity implemented using ANN 
revealed that none of the five input parameters can be excluded 
from the model and therefore aging of the bone, affected by 
osteoarthritis, depends on all five mechano-biological properties 
of the trabecular bone: compressive strength, porosity, trabecular 
thickness and morphology for specimens of both genders. The 
compressive strength was found to be the most important factor in 
the correlation with age.
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