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ABSTRACT

Motivation: Networks are widely used as structural summaries of bio-

chemical systems. Statistical estimation of networks is usually based

on linear or discrete models. However, the dynamics of biochemical

systems are generally non-linear, suggesting that suitable non-linear

formulations may offer gains with respect to causal network inference

and aid in associated prediction problems.

Results: We present a general framework for network inference and

dynamical prediction using time course data that is rooted in non-

linear biochemical kinetics. This is achieved by considering a dynam-

ical system based on a chemical reaction graph with associated

kinetic parameters. Both the graph and kinetic parameters are treated

as unknown; inference is carried out within a Bayesian framework.

This allows prediction of dynamical behavior even when the underlying

reaction graph itself is unknown or uncertain. Results, based on (i) data

simulated from a mechanistic model of mitogen-activated protein

kinase signaling and (ii) phosphoproteomic data from cancer cell

lines, demonstrate that non-linear formulations can yield gains in

causal network inference and permit dynamical prediction and uncer-

tainty quantification in the challenging setting where the reaction graph

is unknown.

Availability and implementation: MATLAB R2014a software is avail-

able to download from warwick.ac.uk/chrisoates.

Contact: c.oates@warwick.ac.uk or sach@mrc-bsu.cam.ac.uk

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Statistical network inference techniques are widely used in the

analysis of multivariate biochemical data (Ellis and Wong, 2008;

Sachs et al., 2005). These techniques aim to make inferences re-

garding a network N whose vertices are identified with biomole-

cular components (e.g. genes or proteins) and edges with (direct

or indirect) regulatory interplay between those components.
Network inference methods are typically rooted in linear or

discrete models whose statistical and computational advantages

facilitate exploration of large spaces of networks (e.g. Ellis and

Wong, 2008; Maathuis et al., 2009; Werhli et al., 2006). On the

other hand, when the network topology is known, non-linear

ordinary differential equations (ODEs) are widely used to

model biochemical dynamics (Chen et al., 2009; Kholodenko,

2006). The intermediate case where ODE models are used to

select between candidate networks has received less attention.

We propose a general framework called ‘Chemical Model

Averaging’ (CheMA) that uses biochemical ODE models to

carry out both network inference and dynamical prediction. In

summary, we consider a dynamical system dX=dt=fGðX; �Þ
where the state vector X contains the abundances of molecular

species, G is a chemical reaction graph that characterizes reac-

tions in the system, fG is a kinetic model that depends onG, and �
collects together all unknown kinetic parameters. A causal net-

work N is obtained as a coarse summary N(G) of the reaction

graph G in which each chemical species appears as a single node,

and directed edges indicate that the parent is involved in chem-

ical reaction(s), which have the child as product (we make these

notions precise below). Given time course data D consisting of

noisy measurements of X, we carry out inference and prediction

within a Bayesian framework. In particular, we treat G itself as

unknown and make inference concerning it using the posterior
distribution,

pðGjDÞ / pðGÞ

Z
pðDj�;GÞpð�jGÞd�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

marginal likelihood pðDjGÞ

ð1Þ

where the marginal likelihood pðDjGÞ captures how well the

chemical reaction graph G describes data D, taking into account

both parameter uncertainty and model complexity and pð�jGÞ is
a prior density over the kinetic parameters. In contrast to linear

or discrete models that are motivated by tractability, our likeli-

hood pðDj�;GÞ depends on (richer) reaction graphs G and their

associated kinetics.
This article makes three contributions: (i) A general frame-

work for joint network learning and dynamical prediction

using ODE models, (ii) a specific implementation (‘CheMA

1.0’), rooted in Michaelis–Menten kinetics, that uses

Metropolis-within-Gibbs sampling to allow Bayesian inference

at feasible computational cost and (iii) an empirical investigation,

using both simulated and experimental time course data, of the

performance of CheMA 1.0 relative to several existing

approaches for network inference and dynamical prediction.
The statistical connection between linear ODEs and network

inference using linear models has been discussed in Oates and

Mukherjee (2012) and exploited in Bansal et al. (2006), Gardner

et al. (2003). Several approaches based on non-linear ODEs have
been proposed, including €Aij€o and L€ahdesm€aki (2010); Honkela

et al. (2010); Nachman et al. (2004); Nelander et al. (2008). This

article extends these ideas by formulating a Bayesian approach to

both network inference and dynamical prediction that is rooted

in chemical kinetics. Bayesian model selection based on non-

linear ODEs has been shown to be a promising strategy for*To whom correspondence should be addressed.
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elucidation of specific signaling mechanisms (e.g. Xu et al., 2010).
Our work differs in motivation and approach in that we exploit
automatically generated rather than hand-crafted biochemical

models, thereby allowing full network inference without
manual specification of candidate models. Oates et al. (2012)
performed Bayesian model selection by comparing steady-state

data with equilibrium solutions of automatically generated ODE
models. This article extends this approach to time course data

and prediction of dynamics.
There are several considerations that motivate CheMA: (i)

inference in biological systems is complicated by correlations be-

tween components that are co-regulated but not causally linked.
It is well known that, under a linear formulation, the causal
network N is in general unidentifiable (Pearl, 2009). For ex-

ample, it may not be possible to orient certain edges, or edges
may be inferred between co-regulated nodes due to strong asso-
ciations between them. Non-linear kinetic equations, in contrast,

are able to confer asymmetries between nodes and may be suffi-
cient to enable orientation of edges (Peters et al., 2011), although

we note that causal inference using non-linear models still
requires a number of strong assumptions (Pearl, 2009). As a
consequence, CheMA can in principle aid in causal network in-

ference, and empirical results below support this. (ii) In contrast
to linear models, in CheMA, the mechanistic roles of individual
variables are respected. This facilitates analysis of data obtained

under specific molecular interventions and enhances scientific
interpretability. (iii) Prediction of dynamical behavior (e.g. re-
sponse to a stimulus or to a drug treatment) in general depends

on the chemical reaction graph. In settings where the graph itself
is unknown or uncertain (e.g. due to genetic or epigenetic con-

text), CheMA allows prediction of dynamics by averaging over
an ensemble of (automatically generated) candidate reaction
graphs.

The CheMA framework is general and can in principle be used
in many settings where kinetic formulations are available to de-
scribe the dynamics, including gene regulation, metabolism and

protein signaling. For definiteness, in this article, we focus on
protein signaling networks mediated by phosphorylation and
provide a specific implementation of the general framework.

Phosphorylation kinetics have been widely studied (Kholodenko,
2006), and ODE formulations are available, including those

based on Michaelis–Menten kinetics (Leskovac, 2003).
The remainder of the article is organized as follows. First, we

introduce the model and associated statistical formulation.

Second, we discuss network inference and dynamical prediction
within this framework. Third, we show empirical results, on
simulated and experimental data, comparing CheMA 1.0 with

several existing approaches. Finally, we discuss our findings and
suggest several directions for further work.

2 METHODS

Below we describe a first implementation of the CheMA framework,

called CheMA 1.0, for the specific context of protein phosphorylation

networks. Figure 1 provides an outline of the workflow below.

2.1 Automatic generation of reaction graphs G

We construct reaction graphs for p proteins fX1 . . .Xpg=V. Each Xi can

be phosphorylated to X�i ; the set of phosphorylated proteins is V�.

Phosphorylation reactions Xi ! X�i are catalyzed by enzymes E 2 Ei;

the subscript indicates that each protein may have a specific set of en-

zymes (kinases). We consider the case in which the kinases themselves are

phosphorylated proteins, i.e. Ei � V
� (if phosphorylation of Xi is not

driven by an enzyme in V�, we set Ei=1). For simplicity, we do not

consider multiple phosphorylation sites, other post-translational modifi-

cations (e.g. ubiquitinylation), protein degradation or spatial effects. The

ability of enzyme E 2 Ei to catalyze phosphorylation of Xi may be in-

hibited by proteins I 2 I i;E � V
�; the double subscript indicates that in-

hibition is specific to both target Xi and enzyme E (see below).

The reaction graph G provides a visual representation of the sets

Ei and I i;E; Figure 1 shows an illustrative example on three proteins A,

B and C. A causal biological network N(G) is formed by drawing

exactly p vertices and edges (i, j) indicating that X�i is either an enzyme

catalyzing phosphorylation of Xj, or an inhibitor of such an enzyme.

That is, ði; jÞ 2 N, i 2 Ej _ 9E � i 2 I j;E. For the example shown in

Figure 1, the corresponding network N is the directed graph

A! C B.

2.2 Automatic generation of kinetic models fG
The reaction graph G can be decomposed into local graphs Gi describing

enzymes (and their inhibitors) for phosphorylation of protein Xi. For

simplicity of exposition, we consider inference concerning Gi. Thus, Xi

plays the role of the substrate; following conventional notation in enzyme

kinetics, we refer to Xi using the symbol S and use [�] to denote concen-

tration of the chemical species indicated by the argument.

We use kinetic models fG based on Michaelis–Menten functionals

(Leskovac, 2003). Here we restrict attention to a relatively simple model

class, but more complex dynamics could be incorporated. The rate of

phosphorylation due to kinase E is given by VE½E�½S�
h=ð½S�h+Kh

EÞ,

which acknowledges variation of kinase concentration [E] and permits

kinase-specific response profiles, parameterized by KE and h, with rate

constant VE. Below, the Hill coefficient h is taken equal to 1 (non-coopera-

tive binding). We consider competitive inhibition, where substrate and

inhibitor I compete for the same binding site on the enzyme

(EIÐ EÐ ES! E+S�). When multiple inhibitors are present, they

are assumed to act exclusively, competing for the same binding site on

Fig. 1. CheMA. Chemical reaction graphs G summarize interplay that is

described quantitatively by kinetic equations fG. Candidate graphs G are

scored against observed time course data D in a Bayesian framework. A

network N gives a coarse summary of the system; marginal posterior

probabilities of edges in N quantify evidence in favor of causal relation-

ships. The reaction graph G (and N) is treated as an unknown, latent

object and the methodology allows Bayesian prediction of dynamics

(including under intervention) in the unknown graph setting
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the enzyme (EIÐ EÐ EI0), corresponding mathematically to a rescaling

of the Michaelis–Menten parameter KE �KEð1+
P

I2IS;E
½I�=KIÞ. We do

not model phosphatase specificity; in particular, dephosphorylation is

assumed to occur at a rate V0½S
��=ð½S��+K0Þ, depending on a

Michaelis–Menten parameter K0 and taking a maximal value V0.

Combining these assumptions produces a kinetic model for phosphor-

ylation of substrate S, given by fG;SðX; �SÞ=

�
V0½S

��

½S��+K0
+
X
E2ES

VE½E�½S�

½S�+KE 1+
X
I2IS;E

½I�

KI

 ! ð2Þ

where the parameter vector �S contains the maximum rates V and

Michaelis–Menten constants K, and the (local) graph GS specifies the

sets ES and IS;E. The complete dynamical system fG is given by taking,

for each species S 2 V, a model akin to Equation (2). In this way, we are

able to automate the generation of candidate parametric ODE models.

2.3 Model averaging and the network N

Evidence for a causal influence of protein i on protein j is summarized by

the marginal posterior probability of a directed edge (i, j) in the network

N. This is obtained by averaging over all possible reaction graphs G, as

pðði; jÞ 2 NjDÞ=

X
G:i2Gj

pðDjGÞpðGÞ

X
G

pðDjGÞpðGÞ
: ð3Þ

We note that while the marginal posterior in Equation (3) is an intuitive

summary, the full posterior over reaction graphs G is also available

for more detailed exploration. In the same vein, model averaging is

used to compute posterior predictive distributions (see Supplementary

Material).

Following work in structural inference for graphical models (Ellis and

Wong, 2008), we bound graph in-degree; in particular, we consider only

those sets of kinases ES � V
� that satisfy jESj � c1, and similarly, we

bound the number of inhibitors jIS;Ej � c2 (see Section 3.1 below).

Bayesian variable selection requires multiplicity correction to control

the false discovery rate and avoid degeneracy (Scott and Berger, 2010).

For phosphorylation networks, we achieve multiplicity correction using a

prior p(G) uniform over the number of kinases, and for a given kinase,

uniform over the number of kinase inhibitors:

pðGÞ=
Yp
i=1

p

jEij

 !�1 Y
E2Ei

p

jI i;Ej

 !�1
ð4Þ

We note that the above prior does not include biological knowledge

concerning specific edges; informative structural priors are also available

in the literature (Mukherjee and Speed, 2008).

2.4 Statistical formulation: CheMA 1.0

2.4.1 Time course data Data D comprise measurements yiðtjÞ and y�i
ðtjÞ proportional to the concentrations of unphosphorylated and phos-

phorylated forms, respectively, of protein i at discrete times tj, 0 � j � n.

Data are scale normalized to give unit mean for each protein

(
P

j yiðtjÞ=
P

j y
�
i ðtjÞ=n+1). In CheMA 1.0, observables are related to

dynamics via ‘gradient matching’. We follow €Aij€o and L€ahdesm€aki

(2010); Bansal et al. (2006); Oates and Mukherjee (2012) and use a

simple Euler scheme that approximates the gradient dXi=dt at time tj
by ziðtjÞ=ðy

�
i ðtjÞ � y�i ðtj�1ÞÞ=ðtj � tj�1Þ. We note that more accurate ap-

proximations could be used, at the cost of requiring more data points or

additional modeling assumptions (see Section 4). The ODE model fG;S
[Equation (2)] is formulated as a statistical model by constructing, con-

ditional upon (unknown) Michaelis–Menten parameters K, a design

matrix DG;SðKÞ with rows"
�

y�S
y�S+K0

; . . . ;
y�EyS

yS+KE 1+
P

I2IS;E
y�
I

KI

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

; . . .

E2ES

#
ð5Þ

and then interpreting Equation (2) statistically as

zS=DG;SðKÞV+�; ��Nð0; �
2IÞ ð6Þ

where zS=½zSðt1Þ; . . . ; zSðtnÞ�
T; N denotes a normal density, �2 the noise

variance, I the identity matrix and, as above, V is the vector of maximum

reaction rates. The appropriateness of normality, additivity and the

uncorrelatedness of errors necessarily depends on the data generating

and measurement processes, as well as the time intervals tj � tj�1 between

consecutive observations, as discussed in Oates and Mukherjee (2012).

This approximation has the crucial advantage of rendering the local re-

action graphs GS statistically orthogonal, such that each may be esti-

mated independently (see Hill et al., 2012). Iterating over S 2 V permits

inference concerning the complete reaction graph G.

2.4.2 MCMC and marginal likelihoods CheMA 1.0 uses truncated

normal priors N Tð�;SÞ with parameters �;S inherited from the corres-

ponding untruncated distribution. Truncation ensures non-negativity of

parameters, while normality facilitates partial conjugacy (see below); add-

itional information on truncated normals is provided in the

Supplementary Material. To simplify notation, we consider a specific

variable S and candidate model GS and omit the subscript in what fol-

lows. To elicit hyperparameters �;S, we follow Xu et al. (2010) and

assume all processes occur on observable time and concentration scales,

that is �V; �K �Oð1Þ, reflecting that the data are normalized a priori.

For prior covariance of Michaelis–Menten parameters SK, we assume

independence of the components Ki, so that pðKÞ=N TðK;�K; �IÞ,

where �K; � are hyperparameters. For the prior covariance SV of max-

imum reaction rates, we take a unit information formulation of the trun-

cated g-prior, so that pðVjK; �Þ=N TðV;�V; n�
2ðD0DÞ�1Þ where

D=DG;SðKÞ is the design matrix defined above. This implies that the

prior contributes (approximately) the same amount of information as

one data point, as recommended by Kass and Wasserman (1995), and

automatically selects the scale of the prior covariance (see Zellner, 1986).

For the noise parameter, we use a Jeffreys prior pð�Þ / 1=�. These latter

choices render the formulation partially conjugate, permitting an efficient

Metropolis-within-Gibbs Markov chain Monte Carlo (MCMC) sampling

scheme for the parameter posterior distribution, as described in detail in

the Supplementary Material.

To estimate marginal likelihoods from sampler output, we exploit par-

tial conjugacy and use the method of Chib and Jeliazkov (2001). As

inference in CheMA 1.0 decomposes over proteins Xi 2 V, and for a

given protein, over local models Gi, the computations were parallelized

(full details and software provided as Supplementary Material).

Alternatively, MCMC could be used over the discrete space of reaction

graphs (Ellis and Wong, 2008) or the joint space of graphs and param-

eters (Oates et al., 2012).

2.4.3 Interventions on the system In interventional experiments,

data are obtained under treatments that externally influence network

edges or nodes. Inhibitors of protein phosphorylation are now increas-

ingly available; such inhibitors typically bind to the kinase domain of

their target, preventing enzymatic activity. We consider such inhibitors

in biological experiments below. Within CheMA 1.0, we model inhibition

by setting to zero those terms in the design matrix DG;S corresponding to

the inhibited enzyme E in the treated samples (‘perfect certain’ interven-

tions in the terminology of Eaton and Murphy, 2007; Spencer et al.,

2012). This removes the causal influence of E for the inhibited samples.
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3 RESULTS

3.1 Hyperparameter specification and sensitivity

For CheMA 1.0, we set hyperparameters �V=�K=1; �=1=2
and the maximum in-degree constraint c1=2; we investigated

sensitivity by varying these parameters within (i) a toy model

of signaling (Supplementary Fig. S3a–c) and (ii) in a subset of

the simulations reported below (Supplementary Fig. S2). As the

action of inhibition is second order in the Taylor expansion

sense, inference for inhibitor variables IS;E may be expected to

require substantially more data, in line with the ‘weak

identifiability’ of second-order terms reported in Calderhead

and Girolami (2011). A preliminary investigation based on a

toy model of signaling revealed that at typical sample sizes in-

ference for inhibitor sets IS;E was extremely challenging

(Supplementary Fig. S3d). Combined with computational con-

siderations, we decided to fix c2=0 for subsequent experiments;

that is, we did not include inhibitory regulation in the reaction

graph. Further diagnostics, including MCMC convergence, are

presented in the Supplementary Material.

3.2 In silico MAPK pathway

Data were generated from a mechanistic model of the MAPK

signaling pathway described by Xu et al. (2010), specified by a

system of 25 ODEs of Michaelis–Menten type whose reaction

graph is shown in Figure 2a. This archetypal protein signaling

system provides an ideal test bed, as the causal graph is known,

and the model has been validated against experimentally ob-

tained data (Xu et al., 2010). Following Oates and Mukherjee

(2012), the Xu et al. model was transformed into a stochastic

differential equation with intrinsic noise �. Full details of the

simulation setup appear in Supplementary Material.

For inference of the network N(G), we compared our ap-

proach with existing network inference methods that are com-

patible with time course data: (i) ‘1-penalized regression

(‘LASSO’), (ii) time series network identification (‘TSNI’;

Bansal et al. 2006; this is based on ‘2-penalized regression), (iii)

dynamic Bayesian networks (‘DBN’; Hill et al., 2012), (iv) time-

varying DBNs (Dondelinger et al., 2012) and (v) Gaussian pro-

cess regression with model averaging (‘GP’; €Aij €o and

L€ahdesm€aki, 2010). Approaches (i–iii) are based on linear differ-

ence equations; (iv) relaxes the linear assumption in a piecewise

fashion, whereas (v) is a semiparametric variable selection tech-

nique. We note that because TSNI cannot deal with multiple

time courses, we adapted it for use in this setting. Implementa-

tion details for all methods may be found in the Supplementary

Material.
To systematically assess estimation of network structure, we

computed the average area under the precision-recall (AUPR)

and area under the receiver-operating characteristic (AUROC)

curves. Figure 2b shows mean AUPR for all approaches, for 20

regimes of sample size n and noise �. CheMA 1.0 performs con-

sistently well in all regimes, and outperforms (i–v) substantially

at the larger sample sizes. It is interesting to note that the linear

and piecewise linear DBNs (iii–iv) perform better at moderate

sample sizes compared with higher sample sizes, possibly because

of model misspecification. AUROC results (Supplementary

Fig. S6) showed a broadly similar pattern, with CheMA 1.0

offering gains at larger sample sizes. For the kinetic parameters,

however, we found that CheMA 1.0 struggled to precisely re-

cover the true values �=fV;Kg, even when the reaction graph

G was known (Fig. 3). The posterior distribution over rate con-

stants V was much more informative than the posterior distribu-

tion over Michaelis–Menten parameters K, consistent with

the ‘weak identifiability’ of kinase inhibitors that we found in

Section 3.1.
To investigate dynamical prediction in the setting where nei-

ther reaction graph nor parameters are known, we generated

data from an unseen intervention and assessed ability to predict

the resulting dynamics (details of the simulation are included in

the Supplementary Material). To fix a length scale, both true and

predicted trajectories were normalized by maximum protein
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Fig. 2. Network inference, simulation study. (a) Reaction graph G for the MAPK signaling pathway because of Xu et al. (2010). (The model, based on

enzyme kinetics, uses Michaelis–Menten equations to capture a variety of post-translational modifications including phosphorylation.) (b) AUPR[with

respect to the true causal network N(G)] for varying sample size n and noise level �. [Network inference methods: (i) LASSO, ‘1-penalized regression, (ii)

TSNI, ‘2-penalized regression, (iii) DBN, dynamic Bayesian networks, (iv) TVDBN, time-varying DBNs, (v) GP, non-parametric regression, (vi)

CheMA 1.0, based on chemical kinetic models. Error bars display standard error computed over five independent datasets. (Full details provided in

Supplementary Material.)
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expression in the test data. The quality of a predicted trajectory

was then measured by the mean squared error (MSE) relative to

the (held out) data points. The network inference approaches (i–

v) above cannot be directly applied for prediction in this setting

(although they could in principle be adapted to do so).

Therefore, we compared CheMA 1.0 with the analogous linear

formulation, that replaces Equation (2) by fG;SðX; �SÞ=�0+P
E2ES

�E½X
�
E� (see Supplementary Material for details), along

with a simple, baseline estimator (the ‘stationary benchmark’)

that presumes protein concentrations do not change with time.

Figure 4a displays predictions for the dynamics that result from

EPAC inhibition. Here CheMA 1.0 provides qualitatively correct

prediction, whereas the linear analogue rapidly diverges to infin-

ity (due to poorly estimated eigenvalues). Therefore, we focused

only on short-term prediction, specifically the first 25% of the

time course, for which linear models may yet prove useful. Over

all simulation regimes and experiments, including at small

sample sizes, we found that our approach produced significa-

ntly lower MSE than both the linear and benchmark mo-

dels (MSECheMA 1:0=0:061; MSELin:=2:55; MSEBench:=0:199).
Furthermore, CheMA 1.0 consistently produced lowest MSE

at all fixed values of n and � (Supplementary Fig. S10;

P50.001 binomial test).

3.3 In Vitro signaling

Next, we considered experimental data obtained using reverse-

phase protein arrays (Hennessy et al., 2010) from 15 human

breast cancer cell lines, of which 10 were of HER2+ subtype

(Neve et al., 2006). These data comprised observations for key

phosphoproteins AKT, EGFR, MEK, GSK3ab, S6, 4EBP1 and

their unphosphoryated counterparts. Data were acquired under

pretreatment with inhibitors Lapatinib (‘EGFRi’; an EGFR/

HER2 inhibitor), GSK690693 (‘AKTi’; an AKT inhibitor) and

without inhibition (DMSO) at 0.5, 1, 2, 4 and 8h following

serum stimulation, giving n=15 observations of each species

in each cell line (see Supplementary Material for full experimen-

tal protocol).
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Fig. 4. Predicting dynamical response to a novel intervention: (a) predicting the effect of EPAC inhibition under the data generating model of Xu et al.

(2010). [CheMA (solid) regions correspond to standard deviation of the posterior predictive distribution. Linear (dashed) replaces the non-linear

chemical kinetic models with simple linear models. The stationary benchmark (dotted) simply uses the initial data point as an estimate for all later

data points. The true test data are displayed as crosses. Here n=100, �=0:1.] (b) Assessing prediction over a panel of 15 breast cancer cell lines.

(Training data were time series under treatment with a single inhibitor; test data represented a second held-out inhibitor. Normalized MSE was averaged

over all protein species and all time points.)
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rates V (top row) than for the Michaelis–Menten parameters K (bottom

row)
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Assessment of inferred network topologies for the cell lines is
challenging because the true cell line-specific networks are not
known. Inferred topologies partially agree with known signaling

(Supplementary Fig. S11), but the latter is based mainly on stu-
dies using wild-type cells and may not reflect networks in genet-
ically perturbed cancer lines. Therefore, to assess performance,

we also considered the problem of prediction of trajectories
under an unseen intervention, where objective assessment is pos-
sible. We sought to compare performance of CheMA 1.0 against

a literature-based ODE model (reaction graph G fixed according
to literature and dynamics fG as described above) fitted to train-
ing data. No prior information concerning specific chemical

reactions was provided to CheMA 1.0. This problem is highly
non-trivial because of the small sample size, uneven sampling

times and the complex observation process associated with prote-
omic assay data.
Training on DMSO and EGFRi (or AKTi) data, we assessed

ability to predict the full dynamic response to AKT (or EGFR)
inhibition. In this way, each held-out test set contained trajec-
tories under a completely unseen intervention. By considering all

15 cell lines, giving 30 held-out datasets, we found that in 19 of
30 prediction problems CheMA 1.0 outperformed the literature
predictor (Fig. 4b). As expected (and as in the case of the simu-

lated data), the linear model was not well behaved for prediction
(Supplementary Fig. S12) and is not shown. In the AKTi test, of
the 10 HER2+ cell lines, 9 were better predicted by CheMA 1.0

compared with literature prediction (P=0.01, binomial test;
MSECheMA 1:0=0:064 versus MSELit:=0:274). Conversely, four
of five HER2– lines were better predicted by literature

(MSELit:=0:145 versus MSECheMA 1:0=0:240), suggesting that
signaling network topology in HER2+ lines may differ to the

(wild type) literature topology, in line with the literature on the
cell lines (Neve et al., 2006). This is encouraging from the per-
spective of CheMA, as a priori it is far from clear whether the

training data, which involved only P=6 species and n=10 data
points, contain sufficient information to predict the effect of an
unseen intervention, even approximately. However, in two of the

failure cases (HCC 1569, HCC 1954; EGFRi test) CheMA 1.0
produced extremely poor predictions (MSECheMA 1:041), likely
because of the small training sample size.

4 DISCUSSION

We proposed a general framework for using chemical kinetics in
network inference and dynamical prediction. The use of chemical
kinetics can be expected to contribute gains in causal inference

because the underlying models are not structurally symmetric,
allowing causal directionality to be established (Peters et al.,
2011). In empirical results, we found that while CheMA 1.0

struggled to identify kinetic parameters from data, it was never-
theless able to identify the causal network; this discrepancy is
explained by the fact that the latter is in a sense a projection

of the former, and can be identifiable even when the full set of
parameters are not.
An important challenge in systems biology is to predict the

effect on signaling of a novel intervention, such as a drug treat-
ment. At present, dynamical predictions in systems biology re-
quire a known chemical reaction graph, for instance, taken from

the literature; a system of ODEs is usually specified based on

such a graph and used for prediction. However, in many settings,
the chemical reaction graph may differ depending on cell type or
disease state and cannot be assumed known. In contrast, CheMA

shows how prediction of dynamical behavior may be possible
even when the reaction graph itself is unknown a priori.
Unlike more convenient linear or discrete formulations, our

use of chemical kinetic models provides interpretable predictions.
For example, the dynamic behavior of phosphoprotein concen-
trations obtained under chemical kinetic rate laws is physically

plausible (i.e. smooth, bounded and non-negative). Furthermore,
by averaging predictions over reaction graphs, our approach
should provide robustness in (typical) situations where it is un-

reasonable to expect to identify G precisely. Nevertheless, pre-
diction of trajectories based on the protein data was challenging,
likely because of noise and small sample sizes (Supplementary

Fig. S13). We anticipate that continuing technical advances will
move high-throughput proteomics closer to the favorable simu-
lation regimes in Section 3.2 on which we found the richer non-
linear models to be useful.

Several improvements can be made to the CheMA 1.0 imple-
mentation reported here, of which we highlight two: (i) gradient
matching (rather than numerical solution of the automatically

generated dynamical systems) can help to relieve the computa-
tional demands associated with exploration the large model
spaces, but the Euler approximations we used for this purpose

are crude. Improved gradient matching should be possible (at the
expense of requiring more time points) via higher-order expan-
sions, or (at the expense of additional modeling assumptions)

kernel regression, the penalized likelihood approaches of
Gonz�alez et al. (2013); Ramsay et al. (2007), or the Bayesian
approach of Dondelinger et al. (2013). (ii) CheMA 1.0 does

not explicitly distinguish between process noise and observation
noise; an interesting direction for further research would be to
incorporate an explicit observation model.

Two ongoing challenges in Bayesian computation relevant to
CheMA include inference of model parameters and computation
of marginal likelihoods for model selection. The second is an

active area of research, with candidate approaches including
variational approximations (Rue et al., 2009) and MCMC
(Vyshemirsky and Girolami, 2008). In general, the computa-

tional burden of CheMA will be higher than many methods
(see Supplementary Material). By way of illustration, Bayesian
inference and prediction for a system of 27 protein species re-

quired over 12 h (serial) computational time. In contrast, linear
or discrete models offer better scalability to high-dimensional
settings. Thus, CheMA can complement existing methodologies

but is not at present applicable to truly high-dimensional prob-
lems with hundreds or thousands of nodes.
Finally, we note the following caveats: (i) the automatic gen-

eration of kinetic equations limits the extent to which detailed
knowledge about particular biochemical processes and dynamics
may be incorporated. (ii) Our empirical results suggest that more

complex interactions, including kinase inhibition, can be ex-
tremely difficult to identify in practice. (iii) The form of kinetics
used here will likely be suboptimal when the assumptions of the

Michaelis–Menten approximation are violated. (iv) Larger train-
ing and test datasets may be needed to allow truly effective
trajectory prediction and comprehensive assessment of

performance.
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