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Abstract

This thesis covers theoretical and practical aspects of Bayesian inference and
survival analysis, which is a powerful tool for the analysis of the time until a certain
event of interest occurs. This dissertation focuses on non-standard models inspired
by features of real datasets that are not accommodated by conventional models.

Materials are divided in two parts. The first and more extended part relates
to the development of flexible parametric lifetime distributions motivated by the
presence of anomalous observations and other forms of unobserved heterogeneity.
Chapter 2 presents the use of mixture families of lifetime distributions for this pur-
pose. This idea can be interpreted as the introduction of an observation-specific
random effect on the survival distribution. Two families generated via this mech-
anism are studied in Chapter 3. Covariates are introduced through an accelerated
failure times representation, for which the interpretation of the regression coeffi-
cients is invariant to the distribution of the random effect. The Bayesian model is
completed using reasonable (improper) priors that require a minimum input from
practitioners. Under mild conditions, these priors induce a well-defined posterior
distribution. In addition, the mixture structure is exploited in order to propose a
novel method for outlier detection where anomalous observations are identified via
the posterior distribution of the individual-specific random effects. The analysis is
illustrated in Chapter 4 using three real medical applications.

Chapter 5 comprises the second part of this thesis, which is motivated in the
context of university outcomes. The aim of the study is to identify determinants
of the length of stay at university and its associated academic outcome for under-
graduate students of the Pontificia Universidad Católica de Chile. In this setting,
survival times are defined as the time until the end of the enrollment period, which
can relate to different reasons - graduation or dropout - that are driven by different
processes. Hence, a competing risks model is employed for the analysis. Model
uncertainty is handled through Bayesian model averaging, which leads to a better
predictive performance than choosing a unique model. The output of this analysis
does not account for all features of this complex dataset yet it provides a better
understanding of the problem and a starting point for future research.

Finally, Chapter 6 summarizes the main findings of this work and suggests
future extensions.
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Chapter 1

Introduction

“...the past and the future formed part of a single unit, and the reality

of the present was a kaleidoscope of jumbled mirrors where everything

and anything could happen”.

Isabel Allende

The house of the spirits

The use of survival methods had an important growth during the last few

decades. A possible explanation is the availability of ready-to-use software, which

makes sophisticated techniques accessible to applied users. However, this popularity

is also justified by a wider range of applications. Whereas survival analysis was

originally motivated in a medical setting, nowadays, other disciplines are making

use of its strengths. Depending on the context, developments have been made

under different names. For instance, engineers refer to it as reliability analysis. In

economics, it is renamed as duration analysis. Event history analysis is often the

choice in other social sciences. Regardless of the label, the objective is the same:

to model or predict the time until a certain event of interest occurs. Perhaps, the

canonical example is in clinical trials, where the event is usually defined as the

relapse, recovery or death of a patient. Other examples include the time to failure

of a system and the amount of time that a graduate spends searching for a first job.

One proof of this increasing popularity is the large number of books dedi-

cated to the topic [e.g. Cox and Oakes, 1984; Klein and Moeschberger, 1997; Ibrahim

et al., 2001; Kalbfleisch and Prentice, 2002; Collett, 2003]. Standard models vary

from simple parametric models (e.g. exponential survival times) to more complex

parametric structures and non-parametric or semi-parametric extensions [e.g. the

well-known Cox proportional hazards model presented in Cox, 1972]. In this disser-

tation, the main focus is on parametric models and on conducting Bayesian inference
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Table 1.1: Functions that characterize a lifetime distribution.
Density fT (t)

Distribution FT (t) = P (T < t) =
∫ t

0 fT (s) ds

Survival ST (t) = P (T ≥ t) =
∫∞
t fT (s) ds = 1− FT (t)

Hazard hT (t) = lim∆→0
P (t≤T<t+∆|T≥t)

∆ = fT (t)
ST (t) = − d

dt log(ST (t))

with them.

This introductory Chapter provides a framework for the methodology pre-

sented throughout this thesis. Firstly, Section 1.1 briefly introduces some of the main

concepts in survival analysis. Section 1.2 relates to Bayesian inference for survival

models, including implementation issues and standard Bayesian model comparison

criteria. In particular, Subsection 1.2.2 highlights that the use of point observations

under continuous sampling can affect the existence of the posterior distribution and

considers a solution through set observations for this problem. Regression models

for survival data are introduced in Section 1.3. Section 1.4 summarizes the main

contributions that this thesis adds to existent literature. An outline of subsequent

chapters concludes Chapter 1. All the proofs are contained in Appendix A without

mention in the text.

1.1 Standard setting for survival analysis

Let T be a positive-valued random variable representing the time-to-event for an

individual (or unit). It is usually called survival or failure time. On a first stage, T is

assumed to have a continuous nature but discrete times are considered in Chapter

5. A model for T can be specified via any of the functions defined in Table 1.1.

For easy of notation, these definitions ignore possible parameters associated to the

lifetime distribution. In particular, ST (t) represents the probability of observing no

event for the individual before time t. The hazard function hT (t) is defined as the

instantaneous rate of failure at time t, given that no event has been observed before.

A distinct feature of survival analysis is the ability to deal with censored

observations. Censoring appears when, because of limited time or resources, it

is not possible to observe the exact survival time and only some bounds for the

actual lifetime are available. Censoring must be taken into account when conducting

inference. It is possible to distinguish between three types of censoring. These

are illustrated in Figure 1.1. Right censoring is frequently encountered in survival

datasets. It occurs when only a lower bound for T is known. For instance, when

the event of interest has not yet happen by the end of a fixed observation period.

2



Figure 1.1: Graphical representation of censored observations.

0 t ∞
Left censored observation

0 t ∞
Right censored observation

0 t1 t2 ∞
Interval censored observation

On the other hand, left censoring is less often seen. In such a case, the record

consists of an upper limit for T . This might happen, for example, when the event of

interest already occurred before the first screening time. Finally, interval censoring

is a combination of the previous schemes where a lower and upper bound for T

are reported (e.g. the event took place between two consecutive inspection times

and it is not possible to identify the exact moment). Censoring is assumed to be

non-informative throughout this thesis, mainly focusing on right censoring. Define

ci =


0, if the observation i is non-censored,

1, if the observation i is right censored,

2, if the observation i is left censored,

3, if the observation i is interval censored.

(1.1)

A survival dataset contains both, the recorded lifetimes (possibly censored) and the

corresponding censoring indicators (when ci = 3, ti = (ti1, ti2) is recorded). In an

abuse of notation, define T = (T1, . . . , Tn)′ as a vector containing the survival times

of n independent individuals. In the presence of censoring, if T = t is recorded, a

general expression for the associated likelihood function is given by

LT (t; c) =

n∏
i=1

[fTi(ti)]
I({ci=0})[STi(ti)]

I({ci=1})[FTi(ti)]
I({ci=2})[FTi(ti2)− FTi(ti1)]I({ci=3}).

(1.2)

Choosing a parametric model for the survival times is not a trivial task. The

survival literature includes a large number of lifetime distributions. For instance,

Marshall and Olkin [2007] compiles a comprehensive list of parametric models and

their properties. One aspect to be considered when selecting a parametric model is

the behaviour of its hazard function. If the risk of the event is expected to be con-

stant over time, a simple exponential model is a reasonable option. Non-monotonic

hazard trajectories are accommodated by more flexible models such as the Weibull
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or the log-normal ones. Physical or theoretic reasons might also motivate the choice

of a model. For example, in a reliability context, Owen and Padgett [1999] pointed

out that cumulative damages can be represented in an additive or a multiplicative

fashion, in which a failure will be observed when the cumulative damage exceeds

certain threshold. Their argument can be extended to other backgrounds (e.g. con-

tinued losses of a firm can lead to bankruptcy; high levels of arsenic ingested in

drinking water can produce liver damage). The log-normal distribution arises as

the limiting distribution of an additive damage scheme [Crow and Shimizu, 1988].

The Birnbaum-Saunders [Birnbaum and Saunders, 1969] is its counterpart for a

multiplicative damage model.

1.2 Bayesian inference

Assume the distribution of the survival times depends on a parameter Ψ with sup-

port F (often Ψ contains a vector of regression parameters plus scale and/or shape

parameters). Classical inference assumes Ψ is a fixed but unknown quantity. In

contrast, the Bayesian approach considers it as a random magnitude. Uncertainty

about Ψ is represented in terms of (probability) measures, which are defined as

subjective degrees of belief. Prior to the observation of the data, previous knowl-

edge about Ψ is summarized into a so-called prior distribution πΨ(ψ). Once data

has been observed, prior beliefs are updated via Bayes theorem [Bayes, 1763]. The

so-called posterior distribution of Ψ given the observed data corresponds to

πΨ(ψ|T = t; c) =
LT (t|Ψ = ψ; c)πΨ(ψ)

LT (t; c)
, (1.3)

where LT (t|Ψ = ψ; c) is the likelihood function given a fixed value ψ of Ψ (as in

(1.2)) and LT (t; c) corresponds to the marginal likelihood (after integrating out ψ),

defined as

LT (t; c) =

∫
F
LT (t|Ψ = ψ; c)πΨ(ψ) dψ. (1.4)

All inferences about Ψ are based on its posterior distribution. Hereafter, π(ψ),

π(ψ|t; c), L(t; c) and L(t|ψ; c) will be used instead of πΨ(ψ), πΨ(ψ|T = t; c), LT (t; c)

and LT (t|Ψ = ψ; c), respectively. In addition, no differentiation between Ψ and ψ

will be made throughout the text.
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1.2.1 Jeffreys priors

The choice of a prior distribution is a challenging task. If reliable prior information

is available, such beliefs can be used in order to construct a prior distribution. The

Bayesian literature refers to this process as prior elicitation. Details and guidance

about this procedure are provided in O’Hagan et al. [2006]. Nonetheless, the (fre-

quently encountered) setting of prior ignorance precludes the elicitation of a prior

distribution on the basis of prior information. Alternative non-informative or ob-

jective priors (based on formal mathematical rules rather than in prior knowledge)

can be used in such a situation. These priors attempt to minimize the influence of

the prior over posterior inference and to provide baseline comparison when actual

prior knowledge exists [Bernardo and Smith, 2000]. In this context, one of the most

popular choices is the Jeffreys prior [Jeffreys, 1946, 1961], defined as the square root

of the determinant of the Fisher information matrix (FIM). Jeffreys [1961] also pro-

posed the independence Jeffreys prior, a variation that deals separately with blocks

of the FIM. These priors do not require the elicitation of hyper-parameters, pro-

viding an attractive tool to applied users. However, as Jeffreys-style priors do not

always correspond to proper probability density functions, their use requires careful

consideration.

1.2.2 Posterior propriety and the use of point observations under

continuous sampling

Posterior inference is well-defined as long as the marginal likelihood L(t; c) is finite

(see equations (1.3) and (1.4)). This condition is not a major drawback when proper

prior distributions are in use (where L(t; c) is always finite with probability one).

However, improper priors may lead to an infinite marginal likelihood, preventing a

meaningful Bayesian analysis. Hence, posterior propriety has to be verified in order

to validate posterior inferences.

Censoring must be taken into account when conducting Bayesian inference

for survival datasets. Nonetheless, the following proposition states that adding

censored observations cannot destroy the propriety of the posterior distribution.

Ignoring censored observations leads to sufficient conditions for posterior existence.

Proposition 1. Let t = (t1, . . . , tn)′ be the recorded survival times of n indepen-

dent individuals, realizations of random variables with survival function STi(ti|ψ)

(i = 1, . . . , n). Without loss of generality, assume only the first no observations

are uncensored (no ≤ n) and denote by to the vector containing all uncensored ob-

servations. A sufficient condition for the existence of π(ψ|t; c) is the propriety of
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Figure 1.2: Graphical representation of point and set observations.

0 ti ∞
Point observation

0 ti − εl ti + εr ∞
Set observation

π(ψ|to).

Posterior propriety verification is usually conducted without taking into ac-

count events that have zero probability of being observed. In fact, standard checks

only assess if L(t; c) is finite with probability one. This situation can cause problems

when conducting Bayesian inference under continuous sampling. Continuous models

assign zero probability to particular (point) values. In spite of this, conventional

statistical analysis is based on point observations. Hence, the propriety of the pos-

terior distribution can be destroyed when a specific sample of point observations t0

is observed. As argued in Fernández and Steel [1998], this issue introduces the risk

of having senseless inference. Theorem 6 (Subsection 3.2.3) reveals an example for

which using point observations is a liability.

In the context of scale mixture of normals, Fernández and Steel [1998];

Fern̈ı¿1
2ndez and Steel [1999] proposed the use of set observations as a solution

to this problem. This idea is based on the fact that, in practice, it is impossible to

record realizations of continuous random variables with total precision. Each obser-

vation can only be considered as a label of a set with positive Lebesgue measure. In

fact, a point observation ti only indicates that the actual survival time is between

ti − εl and ti + εr, where εl and εr are determined by the accuracy with which the

data was recorded (e.g. if the data is recorded in integers, εl = εr = 0.5). The latter

has an easy interpretation in survival data. As illustrated in Figure 1.2, such a set

observation is an interval censored record on (ti − εl, ti + εr). In the same spirit,

right censored observations are themselves set observations (without the need of εl

and εr). As shown by Theorem 1, set observations can ensure a proper posterior

distribution in situations where a particular sample of point observations might not.

Theorem 1. Adopt the same assumptions as in Proposition 1. Denote by tc the n−
no censored observations. Replace the uncensored observations by set observations

tε = {(t1 − εl, t1 + εr), . . . , (tno − εl, tno + εr)} (0 < εl, εr < ∞). Define E =

(t1−εl, t1+εr)×(t2−εl, t2+εr)×· · ·×(tno−εl, tno+εr). The posterior distribution of ψ

given (tε, tc) is proper if and only if the marginal likelihood under point observations
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(to, tc) is finite for any to ∈ E, excluding a set of zero Lebesgue measure.

1.2.3 Implementation of posterior inference

Conjugate priors (for which prior and posterior belong to the same parametric fam-

ily) produce well-known and tractable posterior distributions. In contrast, under

more general priors, the posterior distribution is usually known only up to a nor-

malization constant L(t; c). This is often the case when Jeffreys-style priors are in

use. Exact posterior inference is not possible in those cases, yet Markov Chain Monte

Carlo (MCMC) methods make Bayesian inference feasible. The general strategy is

to generate a Markov chain whose stationary distribution is π(ψ|t; c) [Bernardo and

Smith, 2000]. Once the sampler converges to the equilibrium distribution, draws

generated via this mechanism can be used in order to estimate features of π(ψ|t; c).
An initial burn-in period (before convergence) of iterations is normally discarded for

this purpose. The Markov structure induces correlation between the MCMC draws.

Strong autocorrelations show evidence of a poor mixing as the chain will explore the

parameter space slowly. Let ψ = (ψ1, . . . , ψJ)′. For each element of ψ, the Effective

Sample Size (ESS) is defined as

ESS(ψj) =
M

1 + 2
∑∞

m=1 ρm(ψj)
, (1.5)

where M is the total number of iterations in use (after burn-in) and ρm(ψj) repre-

sents the autocorrelation function of lag m between the draws of ψj . The ESS(ψj)

quantifies the number of independent samples to which the chain of ψj is equivalent.

It can be larger than M if negative autocorrelations are observed. In the presence

of strong positive autocorrelations, storage space can be saved by introducing a

thinning period (i.e. only storing draws every certain number of iterations).

The Bayesian literature includes several approaches for assessing the conver-

gence of a chain. A first, intuitive, idea is to run various independent chains using

different (disperse) starting values. Under stationary, these chains should exhibit

very similar behaviour. This can be informally assessed using the trace plots of

the chains. For the numerical examples in this document, two formal convergence

diagnostics are applied to MCMC chains (after burn-in and thinning). Both of them

are available in standard statistical software. Firstly, the test proposed in Geweke

[1992] compares the means of the first 10% and the last 50% of the chain. If both

means differ substantially, the chain has not yet reached stationarity. The second

diagnostic, introduced in Heidelberger and Welch [1983], uses the Cramer-von-Mises

statistic in order to assess lack of convergence. If extra burn-in is required, the test
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reports the number of iterations that should be discarded.

The complexity of the implementation might be affected by the presence of

censoring (e.g. if the survival function has no closed analytical form, as in the log-

normal case). However, censored observations can be accommodated through the

idea of data augmentation [Tanner and Wong, 1987]. This introduces an additional

step in the sampler in which, given the current value of the parameters, point values

of the survival times in line with the censoring are simulated. Given these values,

the rest of the sampler acts as if there were not censoring. The latter also applies

when replacing non censored observations by set observations (see Subsection 1.2.2).

Nevertheless, even in the absence of censoring, direct sampling from π(ψ|t; c) can

be a cumbersome task. The following algorithm often provides a simple solution.

Gibbs sampling [Geman and Geman, 1984]

Define

π(ψj |ψ−j , t; c), ψ−j = (ψ1, . . . , ψj−1, ψj+1, . . . , ψJ)′, j = 1, . . . , J, (1.6)

as the set of full conditionals for {ψ1, . . . , ψJ}. A Markov chain
{
ψ(0), ψ(1), . . .

}
is

generated via the following mechanism. Given an initial guess ψ(0) = (ψ
(0)
1 , . . . , ψ

(0)
J )′,

at the iteration m of the chain

sample ψ
(m+1)
1 from π(ψ1|ψ(m)

2 , . . . , ψ
(m)
J , t; c),

sample ψ
(m+1)
2 from π(ψ2|ψ(m+1)

1 , ψ
(m)
3 , . . . , ψ

(m)
J , t; c),

...

sample ψ
(m+1)
J from π(ψJ |ψ(m+1)

1 , . . . , ψ
(m+1)
J−1 , t; c).

For large m, the distribution of ψ(m) converges to π(ψ|t; c). If all the full condition-

als have a known form, the implementation of a Gibbs sampler is straightforward.

Otherwise, if sampling from π(ψj |ψ−j , t; c) is troublesome, stochastic simulation

techniques can be used within a Gibbs sampler. Some common examples of this are

described below.

Rejection sampling [Devroye, 1986]

Let g(·) be a probability density function such that π(ψj |ψ−j , t; c) ≤ Ag(ψj) for all

possible values of ψj and a constant value of A (A > 1). This method relies on the

ability of generating random samples from g(·). Drawings from π(ψj |ψ−j , t; c) are

generated via the following mechanism.
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1. Sample υ ∼ Unif(0, 1) and a candidate ψ∗j from g(·).

2. If υAg(ψ∗j ) ≤ π(ψ∗j |ψ−j , t; c), return ψ∗j .

3. Otherwise, reject ψ∗j and repeat from step 1 until a candidate is accepted.

Metropolis-Hastings algorithm [Metropolis et al., 1953; Hastings, 1970]

Given a current status ψ
(m)
j define q(ψ

(m)
j , ·) as a transition PDF. A sample whose

equilibrium distribution is π(ψj |ψ−j , t; c) is obtained as follows.

1. Sample υ ∼ Unif(0, 1) and a candidate ψ∗j from q(ψ
(m)
j , ·).

2. Define

a(ψ
(m)
j , ψ∗j |ψ−j , t; c) = min

{
1,

π(ψ∗j |ψ−j , t; c)

π(ψ
(m)
j |ψ−j , t; c)

q(ψ∗j , ψ
(m)
j )

q(ψ
(m)
j , ψ∗j )

}
. (1.7)

3. If υ ≤ a(ψ
(m)
j , ψ∗j |ψ−j , t; c), return ψ∗j . Otherwise, return ψ

(m)
j .

A common choice for q(ψ
(m)
j , ·) is a Normal(ψ

(m)
j , ω2) distribution. The literature

often refers to this as a Gaussian Random Walk Metropolis-Hastings algorithm. The

value of ω2 should be tuned in order to achieve an optimal acceptance rate [Roberts

and Rosenthal, 2001]. This can be tedious and time consuming (it requires to re-run

the algorithm several times using different values of ω2). Alternatively, the adaptive

Metropolis-Hastings algorithm detailed in Section 3 of [Roberts and Rosenthal, 2009]

can be used. The latter provides an automated tuning process for the variance of the

proposal distribution. The combination of a Gibbs sampling scheme and (adaptive)

Metropolis-Hastings updates is often called (adaptive) Metropolis-within-Gibbs.

1.2.4 Bayesian model comparison

The following Bayesian model comparison criteria are used throughout this thesis.

Bayes Factors (BF) [Jeffreys, 1935; Kass and Raftery, 1995]

In a way that is totally coherent with the Bayesian paradigm, BF compares two

models M0 and M1 in terms of their prior and posterior odds. The BF against of

M0 and in favour of M1 is defined as

BF10 =
π(M1|t; c)
π(M0|t; c)

/π(M1)

π(M0)
=
L1(t; c)

L0(t; c)
, (1.8)
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Table 1.2: Kass and Raftery [1995] rule for the interpretation of Bayes factors.
2 loge(B10) B10 Evidence against M0

0− 2 1− 3 Not worth more than a bare mention
2− 6 3− 20 Positive
6− 10 20− 150 Strong
> 10 > 150 Very strong

where π(M0), π(M1), π(M0|t; c) and π(M1|t; c) are corresponding prior and posterior

probabilities associated to each model. The marginal likelihoods L0(t; c) and L1(t; c)

are defined as in (1.4). This criterion cannot be used in combination with improper

priors, unless the improper part of the prior is related to parameters that are shared

by both models. Jeffreys [1961] proposed an initial rule for the interpretation of

B10. However, Kass and Raftery [1995] introduced some modifications in order to

have more accurate results. Their interpretation rule is summarized in Table 1.2.

Computing marginal likelihoods is a very challenging endeavour. A survey of several

methods is provided in Section 7.3 of Robert [2007]. In particular, two approaches

are employed throughout this thesis: the Bridge sampling proposed in Meng and

Wong [1996] and the MCMC estimator of [Chib, 1995] and Chib and Jeliazkov

[2001], which is based on a Metropolis-within-Gibbs algorithm.

Let g0(·) and g1(·) be two densities sharing the same support and that are

known only up to proportionality constants c0 and c1, respectively. Inspired by

the physics literature, Meng and Wong [1996] shown that for any arbitrary bridge

function α(·) (such that the required expectations exist), it follows that

r =
c1

c0
=

Eg0 (g̃1(ψ)α(ψ))

Eg1 (g̃0(ψ)α(ψ))
, (1.9)

where g̃0(·) and g̃1(·) are the known un-normalized versions of g0(·) and g1(·), re-

spectively. The expectations in (1.9) are with respect to g0(·) and g1(·), respectively.

Using (1.9), the bridge sampling estimator of c1/c0 is defined as

r̂α =
1/n0

∑n0
i=1 g̃1(ψ0i)α(ψ0i)

1/n1
∑n1

i=1 g̃0(ψ1i)α(ψ1i)
, (1.10)

where ψ01, . . . , ψ0n0 and ψ11, . . . , ψ1n1 are random samples from g0(·) and g1(·),
respectively. If draws within each of these samples are independent, Meng and

Wong [1996] deduced that the variance of log(r̂α) is minimized when

α∗(ψ) ∝ 1

s1g̃1(ψ) + rs0g̃0(ψ)
, (1.11)
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where sj = nj/(n0 + n1), j = 0, 1. As discussed in Meng and Schilling [2002],

dependencies between the draws are not too critical for this optimization as long as

they are weak. Since r is unknown, α∗(ψ) cannot be directly used. Nevertheless,

given an initial guess r̂
(0)
α , an optimal bridge estimator can be defined iteratively as

r̂(m+1)
α =

1/n0
∑n0

i=1 l0i/(s1l0i + s0r̂
(m)
α )

1/n1
∑n1

i=1 1/(s1l1i + s0r̂
(m)
α )

, m = 1, 2, . . . (1.12)

where lji = g̃1(ψji)/g̃0(ψji), i = 1, . . . , nj , j = 0, 1. The latter defines a consistent

estimator of r. Nonetheless, the method in Meng and Wong [1996] is restrictive in

the sense that it requires the same support for g0(·) and g1(·). In particular, this

condition does not hold when the aim is to estimate the BF between two models

M0 and M1 which have different number of parameters (e.g. in variable selection).

As a solution, Chen and Shao [1997] proposed to augment the smaller support,

introducing a correction factor in (1.10). Alternatively, Meng and Schilling [2002]

suggested a different solution that computes c0 and c1 independently. They pointed

out that (1.10) defines an estimator of c1 when g̃0(ψ) is replaced by an auxiliary

normalized density g(ψ) which has the same support as g1(ψ). Of course, c0 can be

estimated in an analogous manner.

Another estimator for the marginal likelihood of a given model is proposed

in Chib [1995] and Chib and Jeliazkov [2001]. This is defined as

log(L̂(t; c)) = log(L(t|ψ̂; c)) + log(π(ψ̂))− log(π̂(ψ̂|t; c)), (1.13)

where ψ̂ denotes a value of ψ with high posterior density and π̂(ψ|t; c) is an es-

timator for the posterior density of ψ. Often, computing L(t|ψ̂; c) and π(ψ̂) is

straightforward. In order to estimate π(ψ̂|t; c), Chib [1995] exploits the following

decomposition

π(ψ̂|t; c) =
J∏
j=1

π(ψ̂j |ψ̂(j−1), t; c), (1.14)

where ψ̂(j−1) = (ψ̂1, . . . , ψ̂j−1)′. For each j = 1, . . . , J , define

π̂(ψ̂j |ψ̂(j−1), t; c) = M−1
M∑
m=1

π(ψ̂j |ψ̂(j−1), ψ
(m)
(−j), t; c), (1.15)

where
{
ψ

(m)
(−j) = (ψ

(m)
j+1, . . . , ψ

(m)
J )′,m = 1, . . . ,M

}
are draws from a reduced Gibbs

sampler, with fixed ψ̂(j−1). The estimator in (1.15) involves the full conditional of

ψj (see (1.6)). Chib and Jeliazkov [2001] extends this methodology for when the
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draws of ψj are generated using a (non-adaptive) Metropolis-Hastings algorithm. In

such a case,

π̂(ψ̂j |ψ̂(j−1), t; c) =
M−1

∑M
m=1 a(ψ

(m)
j , ψ̂j |ψ̂(j−1), ψ

(m)
(−j), t; c)q(ψ

(m)
j , ψ̂j)

L−1
∑L

l=1 a(ψ̂j , ψ
(l)
j |ψ̂(j−1), ψ

(l)
(−j), t; c)

, (1.16)

with a(·, ·|ψ−j , t; c) defined as in (1.7). In addition,
{

(ψ
(m)
j , ψ

(m)
(−j))

′,m = 1, . . . ,M
}

and
{
ψ

(l)
(−j), l = 1, . . . , L

}
are draws from reduced Gibbs samplers with fixed ψ̂(j−1)

and ψ̂(j), respectively. For each l = 1, . . . , L, ψ
(l)
j is a draw from the Metropolis-

Hastings proposal q(ψ̂j , ·). As shown in Meng and Schilling [2002] and Mira and

Nicholls [2004], the estimator in Chib [1995] and Chib and Jeliazkov [2001] is a

particular case of bridge sampling.

The former estimator is based on a non-adaptive Metropolis-within-Gibbs

algorithm. For the adaptive version, using the stabilized proposal variances, the

L(t; c) can be estimated from shorter non-adaptive chains for which the starting

values are defined as the converged parameter values of the original chains.

Deviance Information Criteria (DIC)

Introduced by Spiegelhalter et al. [2002], the DIC is defined

DIC ≡ E(D(ψ, t)|t; c) + pD = E(D(ψ, t)|t; c) + [E(D(ψ, t)|t; c)−D(ψ̂, t)], (1.17)

where D(ψ, t) = −2 log(L(t|ψ; c)) is known as the deviance function, pD is inter-

preted as the effective number of parameters of the model and ψ̂ is an estimated

value of ψ (e.g. the posterior mean or median). The expectation on (1.17) is with

respect to π(ψ|t; c) and it can be easily estimated using an MCMC sample of the

model parameters. Lower DIC values suggest better models.

Conditional Predictive Ordinate (CPO)

Model performance can be also measured in terms of predictive ability. For each

observation i, the CPOi [Geisser and Eddy, 1979] is defined as

CPOi = L(ti|t−i; c) =

[
E

(
1

L(ti|ψ; c)

)]−1

, t−i = (t1, . . . , ti−1, ti+1, . . . , tn),

(1.18)

where the expectation is with respect to π(ψ|t; c) and L(ti|t−i; c) is the predictive

likelihood for ti given t−i. For uncensored observations, L(ti|t−i; c) is equal to the
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predictive density function f(ti|t−i). In case of right censored observations, f(ti|t−i)
is replaced by the predictive survival function S(ti|t−i) [as in Banerjee et al., 2007;

Hanson, 2006]. A larger value of CPOi indicates better predictive accuracy for the

observation i. A Monte Carlo estimation of CPOi is easily obtained on the basis of

an MCMC sample of ψ.

Pseudo Bayes Factors (PsBF)

Geisser and Eddy [1979] also proposed PsML =
∏n
i=1 CPOi as an estimator of the

marginal likelihood (often called Pseudo Marginal Likelihood). Higher values of

PsML indicate a better overall predictive performance of the model. PsBF can be

easily computed as ratios of PsML’s.

1.2.5 Detection of influential observations

A robust model will have no (or just few) influential observations. Influential ob-

servations can be detected using Ki = KL(π(ψ|t; c), π(ψ|t−i; c−i)), where KL(·, ·)
denotes the Kullback-Leibler divergence function [Peng and Dey, 1995; Cho et al.,

2009]. It quantifies the perturbation produced in the posterior distribution of ψ when

the observation i is removed from the sample. As suggested in McCulloch [1989],

Ki is transformed in terms of its calibration index pi = 0.5
[
1 +

√
1− exp{−2Ki}

]
,

pi ∈ [0.5, 1]. In relation to the Kullback-Leibler divergence, the effect of removing

observation i is equivalent to assigning probability pi to an event which has true

probability 0.5. A large value of pi (usually larger than 0.9) suggests that observa-

tion i is influential. This method is closely related to CPO’s. In fact,

Ki = Eψ (log(L(ti|ψ; c)))− log(CPOi), (1.19)

where the expectation is with respect to the posterior distribution of ψ. This can

be easily estimated using the draws of an MCMC algorithm.

1.3 Survival regression

An important aspect of statistical modelling is the inclusion of covariates. These

covariates can include clustering variables such as group of treatment or manufac-

turer and other characteristics that are specific of each subject (e.g. age, sex, health

scores). Here, covariates are assumed to be non-stochastic and constant over time.

Let xi ∈ Rk be a vector containing the value of k covariates associated with individ-

ual i. Survival regression models arise as representations of the dependence between
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Ti and xi.

1.3.1 Proportional hazards model

The semi-parametric Cox Proportional Hazards (PH) model [Cox, 1972] is routinely

used in applied survival analysis. It defines the effect of the covariates over the

survival times in terms of the hazard function as

hTi(ti|β∗;xi) = h0(ti) e
x′iβ
∗
, i = 1, . . . , n, (1.20)

where β∗ = (β∗1 , . . . , β
∗
k)′ ∈ Rk is a vector of parameters. The factor h0(·), de-

nominated baseline hazard rate, represents the hazard rate of a baseline variable

T0 (which does not depend on xi nor i). In this context, eβ
∗
j is interpreted as the

proportional marginal change of the hazard rate after a unit change in covariate j.

The original proposal in Cox [1972] does not specify h0(·). Instead, the inference

focuses on β∗, considering h0(·) as a nuisance element. Alternatively, a parametric

model can be assigned to T0. Some standard choices are the exponential and Weibull

distributions, for which the distribution of Ti remains in the same parametric family.

Despite its popularity, the model in (1.20) is not always appropriate. In

terms of the survival function, (1.20) is equivalent to

STi(ti|β∗;xi) = [S0(ti)]
ex
′
iβ
∗

, i = 1, . . . , n. (1.21)

Hence, if the PH assumption holds, the survival functions associated to different

sub-populations (defined by configurations of the covariates values) must not cross.

The latter motivates an informal graphical test for the PH property. Typically,

the non-parametric Kaplan-Meier estimator [Kaplan and Meier, 1958] of STi(ti|xi)
is used for this purpose. Other (formal) checks are based on residual analysis [see

Chapter 4 in Collett, 2003]. The validity of the PH premise relies on the inclusion of

all relevant covariates. If (1.20) is truly satisfied for a set of covariates, the omission

of one or more of these predictors destroys the PH property. In such cases, using

a PH model produces biased estimations of the regression parameters [Hutton and

Monaghan, 2002].

1.3.2 Accelerated failure times model

Alternatively, in an Accelerated Failure Times (AFT) model, the effect of the co-

variates is directly introduced through the time-scale as
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Ti|β;xi
d
= ex

′
iβTi0|β;xi, i = 1, . . . , n, (1.22)

where β = (β1, . . . , βk)
′ ∈ Rk and Ti0 is assigned a baseline distribution (which does

not depend on xi nor i). In the log-scale, (1.22) coincides with a linear regression

for log(Ti) with error terms distributed as log(Ti0). Nonetheless, standard proce-

dures for linear regression cannot be used because they do not account for censored

observations. The model in (1.22) is more intuitive than the PH specification as it

directly relates to the survival times [Wei, 1992; Cox, 1997]. The impact of changes

in the covariate j is to accelerate or decelerate the speed at which the event occurs.

Such effects can be interpreted in terms of the percentiles of the lifetime distribution

(e.g. its median).

In terms of the hazard and survival functions, (1.22) is equivalent to

STi(ti|β;xi) = S0

(
e−x

′
iβti

)
, i = 1, . . . , n (1.23)

and

hTi(ti|β;xi) = e−x
′
iβh0

(
e−x

′
iβti

)
, i = 1, . . . , n, (1.24)

respectively. Unlike the PH setting, a fully parametric model is usually assumed for

Ti0. However, a non-parametric approach can be found in Wei [1992]. In a paramet-

ric setting, the relationship in (1.22) makes attractive the use of distributions that

are invariant under power-scale transformations (i.e. the distribution of the resul-

tant random variable remains in the same parametric family). Typical examples for

this are the log-normal, log-logistic and Weibull distributions.

In contrast to PH models, the omission of relevant covariates does not destroy

the validity of an AFT regression. Hence, AFT models constitute a more robust

alternative to the PH hazards regression [Hutton and Monaghan, 2002].

1.4 Contributions in this thesis

Conventional survival models often do not accommodate all features of real datasets,

inducing the need of more flexible models. Since some standard lifetime distributions

can be too restrictive (in terms of shape and tails), a first group of developments

aims to build new parametric models (or to extend the old ones). In this line,

Chapters 2 and 3 provide the following contributions.

• Flexible families of life distributions are intuitively generated on the basis

of well-known models by introducing an individual-specific random effect.

15



This induces a hierarchical structure, accounting for unobserved heterogeneity

which possibly relates to outlying observations. Whereas this idea has been

previously explored in the survival literature, the approach presented here is

more general as it does not rely on specific parametric models.

• Unlike most of the previous related literature, an AFT scheme is adopted for

the inclusion of covariates. In this context, the interpretation of the regres-

sion coefficients is invariant to the distribution of the random effect (and, in

particular, whether or not a random effect was introduced). This is a major

advantage over the usual PH specification, where the interpretation of the

regression coefficients is conditional on the random effect.

• Reasonable (improper) priors that require a minimum input from applied users

are proposed and weak conditions for posterior propriety are derived. Censor-

ing, which is a critical feature of survival data, is incorporated in the analysis.

Nevertheless, it is shown that adding censored observations cannot destroy the

existence of a well-defined posterior distribution.

• A novel outlier detection procedure (based on Bayes factors) is proposed. This

is an intuitive use of the model hierarchical structure where anomalous obser-

vations are identified via the posterior distribution of the individual-specific

random effects.

A second path of extensions relates to situations in which the standard setting

does not correctly represent the nature of the event under analysis. In the context

of university outcomes (graduation or dropout), Chapter 5 studies a discrete-time

competing risks model which allows more than one type of event. The main aim of

the analysis is to determine potential risks factors that might contribute to higher

rates of dropout and delayed graduations. The output of this analysis does not

account for all features of this complex dataset yet it provides a better understanding

of the problem and a starting point for future research.

• The empirical approach presented here jointly deals with graduations and

dropouts. Since it incorporates a temporal component, the detection of critical

periods where students have a higher risk of dropout is allowed. In contrast,

previous studies often treat university outcomes in a dichotomous manner,

focusing on whether or not a student withdraws before graduation.

• The complex structure of the analyzed dataset cannot be directly handled

using a maximum likelihood approach and the proportional odds model that
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has been suggested by previous authors in similar contexts. Nonetheless, a

Bayesian setting and the choice of appropriate priors aids the analysis, allowing

the extraction of sensible information from the data.

• Finally, different criteria for covariate selection are employed in order to iden-

tify, within the set of available covariates, the main determinants of length of

stay at university and its associated outcomes. This provides valuable infor-

mation to university authorities, which might have an important impact on

future policies.

1.5 Outline

This thesis is organized as follows. In Chapter 2, mixture families of survival distri-

butions are introduced as a natural approach for accommodating unobserved het-

erogeneity between individuals. For these models, the effect of outlying observations

is diminished, producing more robust inference. General features of these mixture

models are discussed, with emphasis on the implementation of Bayesian inference.

In specific, it is discussed how the mixing representation of these models is par-

ticularly useful for the detection of potential outlying observation and an intuitive

Bayesian method for outlier detection is proposed. Chapter 2 finalizes making a link

to a wide range of previous related literature. Two examples within these mixture

families are studied in Chapter 3. These families contain some well-known survival

models, some of which are routinely used in applied research. Nonetheless, the hi-

erarchical structure facilitates prior elicitation and the implementation of Bayesian

inference. These methods are illustrated in Chapter 4 using three real datasets, one

concerning a lung cancer trials, a second one related to bone marrow transplants

and another on cerebral palsy. A substantive real-life problem motivates Chapter 5.

As a potential result of a less restrictive access to university education, issues such

as dropout and late graduations appear as a major complication. Using a dataset

provided by the Pontificia Universidad Católica de Chile (PUC), the length of stay

at university (until graduation or dropout) is analyzed. In this context, a compet-

ing risks model is employed. Model uncertainty is handled through Bayesian model

averaging, which leads to a better predictive performance than choosing a unique

model. As a comparison, other criteria for model selection are also implemented.

Finally, Chapter 6 concludes this thesis describing further developments to be ex-

plored in further research. Appendix F lists the main probability density functions

used throughout this thesis.
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Chapter 2

Mixtures of life distributions

“The essential is invisible to the eye”.

Antoine de Saint-Exupèry

The Little Prince

2.1 Introduction

Frequently, standard survival models do not accommodate all features of real ap-

plications. In particular, datasets often exhibit more “rare” or “tail” observations

than predicted by usual models. Hence, models such as Weibull or log-normal lead

to inference that is not robust to the presence of outliers [Barros et al., 2008]. A

second, related, issue is the existence of specific individual factors that result in

unobserved heterogeneity of the survival times which cannot be captured by co-

variates [Marshall and Olkin, 2007]. Therefore, the typical assumption that the

survival times correspond to realizations of random variables T1, . . . , Tn which have

the same “thin tailed” distribution (possibly depending on a set of known covariates)

can be inappropriate. An example of such a case is the Veterans’ Administration

(VA) lung cancer data presented in Kalbfleisch and Prentice [2002], for which the

previous literature found strong evidence of influential observations and unobserved

heterogeneity related to outliers [e.g. Barros et al., 2008; Heritier et al., 2009]. These

data are analyzed in Chapter 4.

Here, the use of mixtures of life distributions is considered in order to account

for unobserved heterogeneity and add robustness to the presence of outliers. These

families are sometimes called compound distributions and their use has been argued

by several authors. See for example Padgett and Tsokos [1978], McDonald and

Butler [1987], Singpurwalla [2006] and Marshall and Olkin [2007]. In particular,
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the last authors dedicated a whole chapter of their book to the study these mixture

families. Nevertheless, in spite of the theoretical development of the recent years,

their use has not yet reached high levels of popularity in applied work, a task that

remains as a big challenge.

Section 2.2 introduces mixture families of lifetime distributions as a natural

extension of well-known distributions, where unobserved heterogeneity is represented

in a hierarchical manner. As illustrated in Section 2.3, this hierarchical structure

can be easily incorporated when conducting Bayesian inference. Covariates are in-

cluded in Section 2.5 via two alternative representations. In addition, Section 2.4

presents a novel method for outlier detection that exploits the mixing structure. For

completeness, Section 2.6 provides an overview of previous related literature. Fi-

nally, Section 2.7 concludes with a discussion of the main advantages of the proposed

framework.

2.2 Mixtures of life distributions

Definition 1. Let Ti be a positive-valued random variable. The distribution of Ti is

defined as a mixture of lifetime distributions if and only if its density function can

be represented as

f(ti|ψ, θ) =

∫
L
f(ti|ψ,Λi = λi) dPΛi(λi|θ), (2.1)

where f(·|ψ,Λi = λi) represents the density function of a lifetime distribution pa-

rameterized in terms of ψ and λi (denoted by the underlying distribution) and λi

is a realized value of a random variable Λi which has distribution function PΛi(·|θ)
defined on L (denoted by the mixing distribution). Alternatively, a hierarchical rep-

resentation of (2.1) is given by

Ti|ψ,Λi = λi ∼ F (·|ψ,Λi = λi) , Λi|θ ∼ PΛi(·|θ), (2.2)

where F (·|ψ,Λi = λi) is the underlying distribution function.

This approach intuitively leads to flexible distributions on the basis of a

known distribution by mixing over a parameter. A wide variety of shapes and

tails are generated by (2.1), accommodating unobserved heterogeneity (possibly

related to outlying observations). Mixture models mitigate the effect of extreme

observations on the posterior distribution of the model parameters. This is reflected

in a reduction on the number of influential observations (see Subsection 1.2.5).
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The extent of unobserved heterogeneity is controlled by the spread of the mixing

distribution. If L is a finite set of values, the distribution of Ti is a finite mixture of

life distributions. In particular, if L contains a single value, the mixture recovers the

original underlying distribution (no unobserved heterogeneity). Discrete mixtures

of lifetime distributions are explored in Nickell [1979], Vaupel and Yashin [1985],

Maŕın et al. [2005] and Soliman [2006], among others. Here, however, the focus is

the case in which Λi is a continuous random variable (throughout L = R+, unless

specified), where f(·|ψ, θ) is interpreted as an infinite mixture of densities [as in,

e.g., Vaupel et al., 1979; Hougaard, 1995; Duchateau and Janssen, 2008].

The mixing distribution can, in principle, correspond to any proper prob-

ability distribution [several alternatives are listed in Chapter 5 of Hanagal, 2011].

Nevertheless, some restrictions are often required for identifiability reasons. These

identification constraints are specific to each family of mixtures (typically, unknown

separate scale parameters are not allowed). Heckman and Singer [1984a] remark

that inference might be sensitive to the mixing distribution and therefore use a

non-parametric model for the random effect. Non-parametric mixtures of paramet-

ric survival models are also explored in Elbers and Ridder [1982], Horowitz [1999]

and Kottas [2006], among others. However, a non-parametric mixing distribution

might not be appropriate for moderate sample sizes. A fully parametric approach is

adopted here and the adequacy of a particular mixing distribution is evaluated using

Bayesian model comparison tools (see Subsection 1.2.4). This parametric choice is

a compromise between the standard model in which Λi = λ0 (with probability one)

and the use of a fully flexible non-parametric mixing distribution.

Varying the underlying model, generates a wide class of lifetime distributions.

To illustrate Chapter 3 explores two mixture families generated by log-normal and

Weibull distributions, respectively. In addition, Balakrishnan et al. [2009] and Pa-

triota [2012] explored mixtures of Birnbaum-Saunders distributions [Birnbaum and

Saunders, 1969] that are based on scale mixtures of normals [Fern̈ı¿1
2ndez and Steel,

2000]. In an engineering context, Patriota [2012] suggests the latter family for fail-

ures produced by progressive material cracks. In such a case, the mixing distribution

accounts for dependencies between the cracks.

If an (underlying) distribution is underpinned by theoretical or practical

reasons, the same reasons hold for the mixture model in the presence of unobserved

heterogeneity. Conditional on the mixing parameters, survival times are distributed

as in the underlying model but with a different value λi for each individual (see

(2.2)). For example, if theory suggests that individuals have a constant hazard rate,

an exponential model is appropriate. Using mixtures of exponential distributions
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leads to a decreasing hazard rate [Marshall and Olkin, 2007, p.92,Corollary D.4.a.],

yet does not contradict this theory. In such a case, the decreasing behaviour of

the population hazard is linked to unobserved heterogeneity. In fact, individual

hazards remain constant on time but high-risk individuals die earlier, leaving only

low-risk individuals to be observed at longer times. Hence, if neglected, unobserved

heterogeneity yields to an incorrect estimation of the individual hazard rate [Omori

and Johnson, 1993].

An extended study of the distributions distributions generated by (2.1) and

its properties is presented in Marshall and Olkin [2007]. In particular, the survival

function retains the same structure as in (2.1), being defined as

S(ti|ψ, θ) =

∫
L
S(ti|ψ,Λi = λi) dPΛi(λi|θ), (2.3)

where S(·|ψ,Λi = λi) is the survival function associated to the underlying model.

The latter also applies to the distribution function but it is not valid for the hazard

function. A similar representation for h(ti|ψ, θ) exists, however it involves a differ-

ent mixing distribution which depends on ti [Marshall and Olkin, 2007, p.84]. In

addition, if the underlying distribution has a decreasing hazard rate, the marginal

hazard (after integrating out λi) also decreases. This is regardless of the mixing

distribution. The counterpart, when the underlying hazard is non-monotone or in-

creasing, is not true. In those cases, the hazard rate induced by mixing is more

flexible. For instance, mixtures of distributions with increasing hazard rate might

produce monotone decreasing hazards [Marshall and Olkin, 2007, p.92].

2.3 Posterior inference for mixtures of life distributions

If an analytical solution is available for the integral in (2.1), the marginal model

can be used for inference purposes. An example of such a situation is the log-

logistic distribution, which can be represented as an infinite mixture of log-normal

distributions (see Section 3.2). When an analytic representation of the marginal

model does not exist, the hierarchical structure in (2.2) can be exploited. In a

frequentist setting, a maximum likelihood analysis can be implemented by means of

a Expectation-Maximization algorithm [Dempster et al., 1977]. Instead, a Bayesian

approach can deal with the mixing parameters using a Gibbs Sampler (Subsection

1.2.3) and the data augmentation idea proposed in Tanner and Wong [1987]. Let

π(ψ, θ) represent a prior distribution for (ψ, θ). The following full conditionals are

defined.

21



π(ψ|λ, θ, t; c) ∝ π(ψ, θ)
n∏
i=1

L(ti|ψ,Λi = λi; ci), (2.4)

π(λi|ψ, θ, t; c) ∝ L(ti|ψ,Λi = λi; ci) dPΛi(λi|θ)π(ψ, θ), i = 1, . . . , n, (2.5)

π(θ|ψ, λ, t; c) ∝ π(ψ, θ)
n∏
i=1

dPΛi(λi|θ), (2.6)

where λ = (λ1, . . . , λn)′ and L(ti|β,Λi = λi; ci) denotes the likelihood contribution

of the i-th observation.

The latter sampler requires the update of n mixing parameters at each step

of the chain. This may be computationally inefficient (especially when sampling

from the mixing variables is cumbersome). In order to avoid this problem, the λi’s

can be sampled only every Q iterations of the chain. As a consequence, the ESS

(see (1.5)) of the chain is diminished. Hence, an appropriate value for Q must be

chosen by considering a trade-off between ESS and the time required for running

the algorithm.

In terms of setting up a sampler, it might be easier to simply start directly

from the marginal model (if known), rather than its interpretation as a mixture.

Nonetheless, when using the mixing structure, various mixtures of the same under-

lying model can be implemented by only modifying (2.5) and (2.6) in the sampler.

This is particularly useful when π(ψ, θ) = π(ψ)π(θ) and (2.4) has a known closed

form (e.g. if ψ has a conjugate prior with respect to the underlying model). More-

over, the mixture representation often facilitates dealing with censored (or set) ob-

servations (as point values are sampled using a common underlying structure). In

addition, prior elicitation for ψ and θ can also be benefited by the mixing structure.

For instance, Jeffreys-style priors (Subsection 1.2.1) can share a similar patterns

for all distributions in the same mixture family. If using informative priors, these

can be “matched” through a common feature in order to represent the same prior

information for any mixing distribution (within the same underlying model). Fur-

thermore, if the mixing representation is ignored, posterior inference on the mixing

variables would be lost. As described in Section 2.4, such information is particu-

larly important in identifying outlying observations [West, 1984; Lange et al., 1989;

Fern̈ı¿1
2ndez and Steel, 1999]. These ideas are further discussed in Chapter 3.
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2.4 A method for outlier detection

Mixture models account for unobserved heterogeneity between subjects that can-

not be measured with covariates. Occasionally, this heterogeneity is linked to par-

ticularly anomalous observations. Here, the posterior distribution of the mixing

variables is exploited in order to propose an intuitive method for outlier detection.

Extreme values (with respect to a reference value, λref ) of the mixing variables

are associated with outliers [see also West, 1984]. Formally, evidence of ti being

an outlying observation can be assessed by contrasting the models M0 : Λi = λref

versus M1 : Λi 6= λref (with all other Λj , j 6= i free). Evidence in favour of each

of these models is measured using Bayes factors (Subsection 1.2.4), which can be

computed as the generalized Savage-Dickey density ratio proposed in Verdinelli and

Wasserman [1995]. The evidence in favour of M0 versus M1 (i.e. against observation

i being an outlier) is

BF01 = π(λi|t; c)E
(

1

dPΛi(λi|θ)

) ∣∣∣∣
λi=λref

, (2.7)

where the expectation is with respect to π(θ|Λi = λref , t; c). In such a case, esti-

mating
{

BF
(i)
01

}
i=1,...,n

is computationally intensive. In fact, the estimation of each

BF
(i)
01 requires a reduced run of the algorithm introduced in Section 2.3, where λi

is fixed (equal to λref ). Long running times are needed for this (specially when

n is large and sampling from λi is not straightforward). Nevertheless, as these n

runs are independent, the process can be easily speed-up with the help of parallel

computing. In contrast, when the parameter θ does not appear in the model, (2.7)

simplifies to the original Savage-Dickey density ratio

BF01 =
π(λi|t; c)
dPΛi(λi)

∣∣∣∣
λi=λref

= E

(
L(ti|ψ,Λi = λi; ci)

L(ti|ψ; ci)

) ∣∣∣∣
λi=λref

, (2.8)

where L(ti|ψ,Λi = λi; ci) and L(ti|ψ; ci) represent the likelihood contribution of

the i-th observation under the underlying (conditional on the mixing parameter)

and marginal models, respectively. The expectations in (2.8) are with respect to

π(ψ|t; c). The original MCMC chain generated by the algorithm in Section 2.3 can

be used for a fast estimation of (2.8).

This outlier detection method relies on the choice of a reasonable value for

λref , which is specific of each mixture. In the absence of unobserved heterogeneity,

the posterior density of the random effects should behave as a Dirac function with a

spike on λref . Following this intuition, E(Λi|θ) (if it exists) is proposed as λref . If
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θ is unknown, it can be replaced by a Bayesian estimate (e.g. its posterior median).

Examples for which E(Λi|θ) is not finite require a more detailed analysis. Subsection

3.2.5 provides extra guidance in this respect. In such cases, a value for λref can be

determined in an empirical fashion (using simulated and real datasets).

2.5 Incorporating unobserved heterogeneity to survival

regressions

There is no unique method for incorporating unobserved heterogeneity to survival

regressions. Conditional on the mixing parameters, a regression model can be speci-

fied for the underlying structure (as in the standard setting). This model summarizes

the effect of the measured covariates at an individual level. After integrating out

the random effects, the marginal model condenses the covariates effect at a pop-

ulation level. These effects do not always coincide. Below, two schemes that are

predominantly used in previous research are introduced.

2.5.1 The mixed PH model

In the presence of unobserved heterogeneity, the survival literature mostly focuses

on a PH specification. In the so-called mixed PH model, mixing parameters affect

the hazard rate in a multiplicative manner. It is defined as

hTi(ti|β∗,Λi = λi;xi) = g∗(λi)h0(ti) e
x′iβ
∗
, Λi ∼ PΛi(·|θ), i = 1, . . . , n, (2.9)

where β∗ and h0(·) are defined as in (1.20). In addition, g∗(·) is an arbitrary positive-

valued function. When g∗(·) is the identity function, Omori and Johnson [1993]

shown that the unconditional hazard function (after integrating out the mixing

parameters) is given by

hTi(ti|β∗;xi) =
E(Λi exp{−ΛiH0(ti) e

x′iβ
∗})

E(exp{−ΛiH0(ti) e
x′iβ
∗})

h0(ti) e
x′iβ
∗
, (2.10)

where H0(ti) =
∫ ti

0 h0(s) ds and both expectations are with respect to the mixing

distribution. Hence, even though the mixed PH model is a mixture of PH models,

the proportional hazards property is generally not preserved for the marginal model.

The deviation from the PH assumption caused by unobserved heterogeneity adds

plausibility to the mixed PH model in applications where this assumption has been

refuted. Accounting for unobserved heterogeneity is critical under a PH scheme.

In fact, in this context, eβ
∗
j is interpreted as the proportional marginal change of
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the hazard rate after a unit change in covariate j at an individual level. This

interpretation is conditional on the random effect and it cannot be extended to the

population level.

The mixed PH model is widely used in econometrics [e.g. Heckman and

Singer, 1984b; Honoré, 1990; Omori and Johnson, 1993; Mosler, 2003; Abbring and

Van Den Berg, 2007]. However, the baseline hazard is often assumed to have a

non-parametric structure [as in Cox, 1972]. For the mixed PH model, the marginal

survival function corresponds to the Laplace transform of the mixing density evalu-

ated at H0(ti) e
x′iβ
∗

[Wienke, 2010]. Therefore, mixing densities with known Laplace

transform are an attractive choice. An example of this is the Power Variance Func-

tion (PVF) family, for which the variance is a power of the mean. This option

is explored in Wasinrat et al. [2013] (under a maximum likelihood approach). In

particular, the positive stable distribution is a limiting case of the PVF family

[Wienke, 2010]. Some other examples in the PVF family are the Gamma and the

inverse Gaussian distributions (with one of their parameters fixed). The Gamma

distribution is perhaps the most popular choice for the distribution of the random

effect. Although one of the main reasons for this is the simplification of analytical

expressions, Abbring and Van Den Berg [2007] also gives an asymptotic argument

for a Gamma mixing.

2.5.2 The mixed AFT model

Unobserved heterogeneity can be also incorporated through a mixture of AFT re-

gressions [e.g. Anderson and Louis, 1995]. The mixed AFT model is defined as

Ti|β,Λi = λi;xi
d
= ex

′
iβg(Ti0, λi)|β,Λi = λi;xi i = 1, . . . , n, (2.11)

with β and Ti0 are defined as in (1.22). Furthermore, g(·) is an arbitrary positive-

valued function. Although this option is less explored in the existing literature,

some authors recommend its use [e.g. Keiding et al., 1997]. Unlike the mixed PH

model, the marginal model generated by (2.11) is itself an AFT model, for which

the baseline variable is defined as T̃i0 = g(Ti0,Λi). Hence, the interpretation of

the regression coefficients is invariant to the mixing distribution (and, in particular,

whether or not a random effect was introduced). This important feature is an

advantage over the mixed PH model, in which the interpretation of the regression

parameters is conditional on the random effect. As in the standard AFT model, eβj

can be interpreted as the proportional marginal change of the median survival time

(or any other percentile) after a unit change in covariate j. This interpretation does
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not differentiate between individual and population levels.

2.6 Related literature

Mixture modeling can be interpreted as the introduction of a random effect on the

survival distribution. The survival literature often refers to λ1, . . . , λn as frailties,

a term that was originally introduced by Vaupel et al. [1979]. In this context, the

model in (2.1) is usually called univariate frailty model and its use dates back to

Beard [1959]. During the last decades, the literature about frailty models experi-

enced a large expansion. Among others, some examples of this are Honoré [1990],

Omori and Johnson [1993], Mosler [2003], Abbring and Van Den Berg [2007], Wienke

[2010] and Hanagal [2011]. Mixtures as in (2.1) constitute an small part of the

research related to frailty models. Beyond representing unobserved heterogeneity

between specific individuals, frailty models can also accommodate more complex

data structures. Some examples are listed below.

2.6.1 Shared frailty models

Aiming to account for correlation between clustered observations, shared frailty

models are one of the most popular extensions of the univariate frailty model [Clay-

ton, 1978; Hougaard, 1995]. An extensive survey about this subject can be found in

Duchateau and Janssen [2008]. These models are used for grouped datasets where,

conditional on the observed covariates, survival times are assumed to have the same

distribution within each cluster (e.g. siblings, patients treated in the same hospital,

systems built by the same manufacturer). In such a case, the frailty terms take a

common value for all individuals belonging to the same group. The latter introduces

intra-cluster dependencies (independence is conditional on the mixing parameters).

As discussed in Chapter 6 of Duchateau and Janssen [2008], this approach can be

also extended to hierarchical frailties, where more than one level of clustering occurs.

2.6.2 Correlated frailty models

Assigning the same frailty value to all observations within a cluster is not always

appropriate. There is often intra-cluster variation that cannot be controlled by the

observable covariates (as in the un-clustered case). A more flexible approach for

grouped observations is provided by correlated frailty models [see Chapter 12 in

Hanagal, 2011]. These models assign a joint distribution to the mixing parameters

associated to each group. For example, in Banerjee et al. [2003], correlations between
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the frailties account for spatial dependencies when modelling infant mortality. If

groups are formed by only two observations (e.g. identical twins), these models are

often renamed as bivariate frailty models [Wienke et al., 2005]. In particular, in the

absence of within-group dependencies, they reduce to the univariate frailty case.

2.6.3 Cure rate models

In some contexts, there is a proportion of individuals who will never experience the

event of interest. Following a medical nomenclature, these subjects are commonly

labeled as cured units. For instance, patients that evidence a full recovery must

be removed from the “at-risk” group. Frailty models accommodate these type of

datasets by using a mixing distribution that assigns a positive probability to not

observing the event (i.e. the hazard function is equal to zero). One example of

such mixing is the compound Poisson distribution proposed by Aalen [1992], which

is also used in Price and Manatunga [2001].

2.7 Concluding remarks

The use of mixtures of life distributions is recommended as a convenient framework

for survival analysis, particularly when standard models such as the Weibull or log-

normal are not able to capture some features of the data. These mixture families can

accommodate unobserved heterogeneity (possibly related to outlying observations),

which is crucial in survival analysis. This approach intuitively leads to flexible dis-

tributions on the basis of a known distribution by mixing over a parameter. Mixture

modelling can also be interpreted through random effects or frailty terms which has

a strong link with the previous survival literature. The setting presented here is

general, without assuming a particular distribution for underlying nor the mixing

model (whether the induced survival time distribution has a closed-form density

function or not). This is a major advantage over previous works, where mixing pa-

rameters are typically assigned a Gamma distribution in order to obtain analytical

expressions for the marginal model. The proposed MCMC inference scheme does

not rely on a closed form expression for the survival density with the mixing vari-

ables integrated out and this sampler can be easily extended for some of the models

described in Section 2.6.

Mixture models diminish the effect that anomalous observations have over

posterior inference. Nonetheless, it might be of interest for practitioners to deter-

mine whether a small group of outlying observations drives the unobserved hetero-

geneity. An outlier detection method is designed for this objective. It exploits the
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mixing structure, comparing individual frailties with respect to a reference level.

This comparison is formalized by means of Bayes factors. If the mixing distribution

has a finite expectation, a general recommendation for the (critical) choice of a ref-

erence value is provided. Cases where the expected value of the mixing parameters

fails to exist are explored in detail in Section 3.2.5.

Previous literature provides no consensus about how unobserved heterogene-

ity must be incorporated in survival regression models. A mixed PH specification

is frequently used for this purpose. However, for the mixed PH model, the interpre-

tation of the regression parameters is subject to conditioning on the random effects

and posterior inference is very sensitive to variations of the mixing distribution.

Instead, the mixed AFT model is an attractive alternative. It provides a clearer

interpretation of the covariates effects (which is not affected by the mixture) and

the posterior distribution of the regression coefficients is more robust to the choice

of mixing distribution.

The methodology introduced in this Chapter is illustrated in Chapter 3 using

mixture families generated from log-normal and Weibull distributions, respectively.
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Chapter 3

Two flexible families for survival

modelling

“In this quest to seek and find God in all things there is still an area of

uncertainty. There must be”.

Pope Francis

3.1 Introduction

The log-normal and Weibull distributions are routinely applied in survival analysis.

Respectively, Crow and Shimizu [1988] and Rinne [2008] provide detailed surveys

about these models, their origins and properties. In an engineering context, the

log-normal model can be conceived as the limiting distribution of an additive cumu-

lative damage scheme, where repeated exposures to a risk factor trigger the event.

It generates a non-monotone hazard function, which has an initial increasing haz-

ard phase. Instead, the Weibull distribution accommodates flexible shapes for the

hazard rate (including monotone ones). The Weibull model is a particular case

of the generalized extreme value distribution [Fisher and Tippett, 1928]. Despite

their popularity, the presence of unobserved heterogeneity can invalidate the use

of these models. In particular, they produce inferences that are not robust to the

presence of outlying observations [Barros et al., 2008]. As in Chapter 2, unobserved

heterogeneity is incorporated to these models by means of an infinite mixture of

lifetime distributions. This idea generates flexible classes of distributions for sur-

vival modelling that provide natural ways to deal with both the presence of outlying

observations and unobserved heterogeneity.
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Section 3.2 explores the Shape Mixtures of Log-Normal (SMLN) distribu-

tions for which the shape parameter is assigned a mixing distribution. This new

class covers a wide range of shapes, in particular cases with fatter tail behaviour

than the log-normal. It includes the already studied log-Student t, log-Laplace,

log-exponential power and log-logistic distributions among others. Covariates are

included in Subsection 3.2.1 via an AFT specification (for which the interpretation

of the regression parameters is not affected by the mixture). A prior distribution,

inspired by the Jeffreys-rule, is presented in Subsection 3.2.2 and conditions for

posterior propriety are provided in Subsection 3.2.3. Subsection 3.2.4 describes

implementation aspects and outlier detection for AFT-SMLN models is studied in

Subsection 3.2.5. Following the same structure, Section 3.3 introduces the family of

Rate Mixtures of Weibull (RMW) distributions, for which a random effect is intro-

duced through the rate parameter. This family contains i.a. the well-known Lomax

distribution and can accommodate flexible hazard functions. Finally, Section 3.4

concludes. All proofs are contained in the Appendix A without mention in the text.

3.2 The family of Shape Mixtures of Log-Normals

Definition 2. A random variable Ti has a distribution in the family of Shape Mix-

tures of Log-Normals (SMLN) if and only if its density can be represented as

f(ti|µ, σ2, θ) =

∫
L

√
λi√

2πσ2

1

ti
exp

{
−λi(log(ti)− µ)2

2σ2

}
dPΛi(λi|θ), ti > 0, (3.1)

where µ ∈ R, σ2 > 0, θ ∈ Θ and λi is a realized value of a random variable Λi which

has distribution function PΛi(·|θ) defined on L ⊆ R+ (possibly discrete). Denote

Ti ∼ SMLNP (µ, σ2, θ). A hierarchical representation of (3.1) is given by

Ti|µ, σ2,Λi = λi ∼ Log −Normal
(
µ,
σ2

λi

)
, Λi|θ ∼ PΛi(·|θ). (3.2)

The SMLN family can be interpreted as a mixture of log-normal distributions

with random shape parameter or as the exponential transformation of a random

variable distributed as a scale mixture of normals. This family includes a number

of distributions that have been proposed in the context of survival analysis. For

example, finite mixtures of log-normal distributions are explored in Fowlkes [1979]

and Tian et al. [2010]. Here, instead, the focus is on infinite mixtures generated by

continuous mixing distributions. Table 3.1 lists some of them. In particular, the

log-Student t distribution was introduced by Hogg and Klugman [1983] and used in
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Table 3.1: Some SMLN models. fPS(·|δ) denotes a positive stable PDF with pa-
rameter δ.
Distribution Marginal PDF Mixing PDF

Log-Student t Γ(ν/2+1/2)

Γ(ν/2)
√
πσ2ν

1
ti

[
1 + (log(ti)−µ)2

σ2ν

]−( ν2 + 1
2 )

Gamma(ν/2, ν/2), ν > 0

Log-Laplace 1
2σ

1
ti

exp
{
− | log(ti)−µ|

σ

}
Inv-Gamma(1,1/2)

Log-
exponential
power

α
2σΓ( 1

α )
1
ti

exp
{
−
(
| log(ti)−µ|

σ

)α}
Γ(3/2)

Γ(1+1/α)λ
− 1

2
i fPS(λi|α2 ), α ∈ (1, 2)

Log-logistic 1
σ eµ

(ti/ e
µ)1/σ−1

[1+(ti/ eµ)1/σ]2
λ−2
i

∑∞
k=0

(−2
k

)
(1 + k) e

− (1+k)2

2λi

e.g. McDonald and Butler [1987] and Cassidy et al. [2009]. In the case of ν = 1,

Lindsey et al. [2000] applied it in the context of pharmacokinetic data. The log-

Laplace appeared in Uppuluri [1981] and Lindsey [2004]. The log-exponential power

was proposed by Vianelli [1983] and used in Marẗı¿1
2n and P̈ı¿1

2rez [2009]. Finally,

the log-logistic distribution was introduced by Shah and Dave [1963] and is used

regularly in survival analysis, hydrology and economics. This list can be increased

by varying the mixing distribution. For example, all the mixing distributions used

for scale mixtures of normals listed in Fern̈ı¿1
2ndez and Steel [2000] can be used in

this context. However, for identifiability reasons, the mixing distribution must not

have separate unknown scale parameters (unknown scale parameters are allowed

as long as they are linked to other features of the mixing distribution, e.g. Λi ∼
Gamma(θ,θ)).

Whereas all positive moments exist for the log-normal, this is not necessarily

the case for the shape mixtures. In general, the existence of moments relates to a

well-defined moment generation function for Λ−1
i (given θ).

Theorem 2. Let Ti be a random variable distributed according to (3.1). The r-th

moment of Ti (r ≥ 0) is finite if and only if EΛi

(
exp

{
σ2r2

2
1

Λi

} ∣∣∣∣θ) < ∞. If it

exists, it corresponds to erµEΛi

(
exp

{
σ2r2

2
1

Λi

} ∣∣∣∣θ).

As a consequence of Theorem 2, no positive moments exist for the log-Student

t (for any finite value of ν) and the log-Laplace only allows for moments up to

1/σ. Theorem 2 is less helpful for the log-logistic and log-exponential power models

(because they relate to more complex mixing distributions). However, log-logistic

moments with order less than 1/σ are well defined [Tadikamalla and Johnson, 1982]

and the log-exponential power distribution with α > 1 does possess all moments
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Figure 3.1: Density and hazard function (left and right panels, respectively) of some
SMLN models (µ = 0). Solid line is the log-normal(0, 1) density (or hazard).

[Angeletti et al., 2012; Singh et al., 2012]. In addition, as a corollary of Theorem

2, the coefficient of variation (i.e. the ratio between the standard deviation and

the expected value) of random variables in the SMLN family does not depend on µ.

Hence, σ2 and θ are the only parameters controlling the spread of these distributions.

As illustrated in Figure 3.1, the SMLN family allows for a wide variety of shapes

for the density and the hazard function. For example, it is clear that the tails of

all these examples of SMLN with continuous mixing distributions are fatter than

those of the log-normal distribution. In particular, the left tail behaviour of the

density function can be quite different. Moreover, while the hazard rate of the log-

normal distribution has an increasing initial phase, the log-Laplace and log-logistic

distributions produce a monotone decreasing hazard rate for some values of σ2.
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3.2.1 The SMLN-AFT model

A mixed AFT formulation is adopted. Apart from the arguments in Subsection

2.5.2, this choice is based on the closure under scale-power transformations of the

SMLN family (if T ∼ SMLNP (µ, σ2, θ), then aT b ∼ SMLNP (log(a) + µb, σ2b2, θ)

for a > 0, b 6= 0) and the lack of an analytic expression for the log-normal hazard.

The SMLN-AFT model expresses the dependence between the covariates and the

survival time by replacing the parameter µ with x′iβ, so that

Ti|β, σ2, θ;xi
ind∼ SMLNP (x′iβ, σ

2, θ), i = 1, 2, . . . , n, (3.3)

where xi is a vector containing the value of k covariates associated with individual

i and β ∈ Rk is a vector of parameters. This can also be interpreted as a linear

regression model for the logarithm of the survival times with error term distributed

as a scale mixture of normals [as in Fern̈ı¿1
2ndez and Steel, 2000]. As the median of

Ti in (3.3) is given by ex
′
iβ, eβj is interpreted as the (proportional) marginal change

of the median survival time as a consequence of a unitary change in covariate j.

As discussed in Subsection 2.5.2, this interpretation is not affected by the mixing

distribution (covering both, individuals and population levels).

3.2.2 Jeffreys-style priors for the SMLN-AFT model

Bayesian inference is conducted using objective priors generated by the Jeffreys rule

[Jeffreys, 1961]. This is one of the most common choices in the absence of prior in-

formation and has interesting invariance and information-theoretic properties. The

next theorem presents the FIM for the SMLN-AFT model which is the basis for the

Jeffreys-style priors.

Theorem 3. Let T1, . . . , Tn be independent random variables with Ti distributed

according to (3.3), then the FIM corresponds to

FIM(β, σ2, θ) =


1
σ2k1(θ)

∑n
i=1 xix

′
i 0 0

0 1
σ4k2(θ) 1

σ2k3(θ)

0 1
σ2k3(θ) k4(θ)

 , (3.4)

where k1(θ), k2(θ), k3(θ) and k4(θ) are functions depending only on θ.

The expressions involved in k1(θ), k2(θ), k3(θ) and k4(θ) are complicated (see

the proof) and thus FIM(β, σ2, θ) is not easily obtained from this theorem for

any arbitrary mixing distribution. Indeed, it is usually more efficient to compute
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FIM(β, σ2, θ) directly from f(·|β, σ2, θ). However, this structure facilitates a general

representation of the Jeffreys-style priors:

Corollary 1. Under the same assumptions as in Theorem 3, the Jeffreys, indepen-

dence Jeffreys (which deals separately with the blocks for β and (σ2, θ)) and inde-

pendence I Jeffreys (which deals separately with β, σ2 and θ) priors are respectively

given by

πJ(β, σ2, θ) ∝ 1

(σ2)1+ k
2

√
[k1(θ)]k[k2(θ)k4(θ)− k2

3(θ)], (3.5)

πI(β, σ2, θ) ∝ 1

σ2

√
k2(θ)k4(θ)− k2

3(θ), (3.6)

πII(β, σ2, θ) ∝ 1

σ2

√
k4(θ). (3.7)

The three non-subjective priors presented here can be written as

π(β, σ2, θ) ∝ 1

(σ2)p
π(θ), (3.8)

where π(θ) is the factor of the prior that depends on θ. For the Jeffreys prior p =

1 + (k/2) and p = 1 for the other two priors. If θ does not appear (e.g. log-normal,

log-Laplace and log-logistic models) this prior simplifies to π(β, σ2) ∝ (σ2)−p.

Corollary 1 also specifies the prior for θ. The implied priors for the special

cases of the log-Student t and the log-exponential power (derived directly from the

specific likelihood functions) are explicitly presented in the proof of Theorem 5. In

order to obtain meaningful Bayes factors between models, priors with a improper

component π(θ) for θ are discarded. For the examples explored throughout this

Section, this argument discards the independence I Jeffreys prior for the log-Student

t model.

3.2.3 Posterior propriety for the SMLN-AFT model

The three priors presented in Corollary 1 do not correspond to proper probability

distributions and therefore the propriety of the posterior distribution must be veri-

fied. As shown by Proposition 1, ignoring censored observations leads to sufficient

conditions for posterior propriety. The following results verify posterior propriety

for the SMLN-AFT model under the priors in Corollary 1 on the basis of the non-

censored observations (using n instead of no for ease of notation).

Theorem 4. Let t1, . . . , tn > 0 be the (non-censored) survival times of n indepen-

dent individuals, realizations of random variables distributed as in (3.3). Assume
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the prior given in (3.8), with
∫

Θ π(θ) dθ = 1. Define X = (x1, . . . , xn)′ and suppose

that the rank of X is k.

(i) For p = 1, a sufficient condition for posterior existence is n > k,

(ii) For p = 1+k/2, a sufficient condition for the posterior propriety is n > k and∫
Θ
E(Λ

− k
2

1 |θ)π(θ) dθ <∞. (3.9)

Theorem 5. Under the assumptions in Theorem 4 and provided that n > k, it

follows that

(i) For the log-Student t AFT model, the posterior is proper under the indepen-

dence Jeffreys prior. However, the posterior does not exist for the Jeffreys

prior.

(ii) For the log-Laplace AFT model, log-exponential power AFT model and log-

logistic AFT model, the propriety of the posterior can be verified with any of

the three proposed priors.

Theorem 5 implies that the log-Student t AFT model does not lead to valid

Bayesian inference in combination with the Jeffreys prior (see also Appendix B). In

the log-Student t case, the independence I Jeffreys prior is not covered by Theorem 5

but it was already discarded in Subsection 3.2.2). The other models can be combined

with all priors considered here; of course, the absence of θ in the log-Laplace and log-

logistic models implies that the independence Jeffreys and independence I Jeffreys

priors coincide in those cases.

As explained in Subsection 1.2.2, the use of point observations for continuous

sampling models introduces the risk of having senseless inference. The following

theorem illustrates the danger induced by the use of point observations in the context

of the log-Student t AFT model.

Theorem 6. Adopt the same assumptions as in Theorem 4 and assume that no > k.

If the mixing distribution is Gamma(ν/2,ν/2) and s (k ≤ s < n) is defined as the

largest number of uncensored observations that can be represented as an exact linear

combination of their covariates (i.e. log(ti) = x′iβ for some fixed β), a necessary

condition for the propriety of the posterior distribution of (β, σ2, ν) is∫ m

0
π(ν) dν = 0, where m =

n− k + (2p− 2)

n− s
− 1. (3.10)
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This result indicates that it is possible to have samples of point observations

for which no Bayesian inference can be conducted, unless π(ν) induces a positive

lower bound for ν. For the log-Student t model, only the independence Jeffreys prior

is used, so that p = 1 and (3.10) is violated whenever s > k. When no covariates are

taken into account (k = 1), s coincides with the largest number of (uncensored) tied

observations. Theorem 6 highlights the need for considering sets of zero Lebesgue

measure when checking the propriety of the posterior distribution based on point

observations.

Throughout, the set observations solution proposed in Fernández and Steel

[1998]; Fern̈ı¿1
2ndez and Steel [1999] is implemented when conducting Bayesian in-

ference for the SMLN-AFT models (regardless of the mixing distribution).

3.2.4 Implementation

Bayesian inference is implemented by means of the sampler presented in Section

2.3. Throughout, the prior presented in (3.8) is adopted. As the log-normal survival

function does not have a closed analytical form, data augmentation [Tanner and

Wong, 1987] is employed in order to accommodate censored and set observations.

Conditional on the mixing parameters, survival times t∗ = (t∗1, . . . , t
∗
n)′ are simulated

in line with the censoring. Based on the mixing representation, it follows that

log(Ti)|β, σ2,Λi = λi ∼ Normal

(
x′iβ,

σ2

λi

)
. (3.11)

Therefore, for right-censored observations, log(t∗i ) is drawn from a truncated version

of (3.11) to (log(ti),∞), where ti denotes the recorded censored time. Analogously,

for set observations, the range of (3.11) is truncated to (log(ti − εl), log(ti + εr)).

Obviously, if ti < εl, the lower bound corresponds to −∞. Conditional on these

simulated values, the other steps can be treated as if there were no censoring nor set

observations. Regardless of the mixing distribution and provided that n > 2 − 2p,

the full conditionals for β and σ2 are respectively given by

β|σ2, θ, λ, t∗ ∼ Normalk
(
(X ′X)−1X ′Dy∗, σ2(X ′X)−1

)
, (3.12)

σ2|β, θ, λ, t∗ ∼ Inv-Gamma

(
n+ 2p− 2

2
,
1

2
(y∗ −Xβ)′D(y∗ −Xβ)

)
,(3.13)

where λ = (λ1, . . . , λn)′, D = diag(λ1, . . . , λn) and y∗ = (log(t∗1), . . . , log(t∗n))′.

Metropolis-Hastings updates are not required for these parameters. In contrast,

the full conditionals for Λ1, . . . ,Λn and θ are generally not of a known form for
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arbitrary mixing distributions. The full conditional for θ is given by

π(θ|β, σ2, λ, t∗) ∝ π(θ)

n∏
i=1

dP (λi|θ). (3.14)

Metropolis updates for θ are implemented under the adaptive scheme in Roberts

and Rosenthal [2009]. For the Λi’s, π(λ1, . . . , λn|β, σ2, θ, t∗) =
∏n
i=1 π(λi|β, σ2, θ, t∗)

with

π(λi|β, σ2, θ, t∗) ∝ λ
1
2
i exp

{
− λi

2σ2
(log(t∗i )− x′iβ)2

}
dP (λi|θ), i = 1, . . . , n. (3.15)

The difficulty of this algorithm is strongly related to the complexity of the mixing

distribution. For example, for the log-Student t and log-Laplace models, (3.15)

simplifies to

Λi|β, σ2, θ, t∗ ∼ Gamma

(
ν + 1

2
,
1

2

[
(log(t∗i )− x′iβ)2

σ2
+ ν

])
, (3.16)

Λi|β, σ2, θ, t∗ ∼ Inv-Gaussian

(
σ

| log(t∗i )− x′iβ|
, 1

)
, (3.17)

respectively. If (3.15) does not have a known closed form, Metropolis-Hastings up-

dates can be implemented. However, if evaluating the mixing density is cumbersome

(as in e.g. the log-exponential power and log-logistic distributions), Metropolis up-

dates are very challenging (and inefficient, as they might require long running times).

Instead, for the log-logistic model, the rejection sampling algorithm proposed in

Holmes and Held (2006, p. 163) is implemented. It uses the fact that (2
√

Λi)
−1

has the asymptotic Kolmogorov-Smirnov distribution [Devroye, 1986, p. 151]. In

the case of the log-exponential power model, one possible approach to this is to use

a hierarchical representation for the positive stable distributions [as in Ibragimov

and Chernin, 1959]. Nonetheless, the latter requires the use of n extra augmenting

variables and is not appropriate when the value of α is unknown [Tsionas, 1999].

Instead, the mixture of uniforms representation used in Marẗı¿1
2n and P̈ı¿1

2rez [2009]

is adopted. This replaces the use of Λi by Ui (i = 1, . . . , n). In this case,

log(Ti)|β, σ2, α, Ui = ui ∼ Unif
(
x′iβ − σu

1/α
i , x′iβ + σu

1/α
i

)
, (3.18)

with Ui
iid∼ Gamma(1 + 1/α, 1). Consistently with the SMLN representation, the

range of α is restricted to (1, 2). The cases where α = 1 and α = 2 are excluded

but they covered by the log-Laplace and log-normal models, respectively. The data
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augmentation strategy for censored and set observations must be adapted to this

setting. As in the standard SMLN case, log(t∗1), . . . , log(t∗n) are simulated from a

truncated versions of (3.18) to (log(ti),∞) and (log(ti − εl), log(ti + εr)) for right-

censored and set records, respectively. For the log-exponential power model, the

posterior distribution π(β, σ2, α, u1, . . . , un|t) can be decomposed as π(β, σ2, α|t∗)×∏n
i=1 π(ui|β, σ2, α, t∗). As a consequence, the following full conditionals are defined

π(β|σ2, α, t∗) ∝ exp

{
− 1

σα

n∑
i=1

| log(t∗i )− x′iβ|α
}
, (3.19)

π(σ2|β, α, t∗) ∝ (σ2)−(n/2+p) exp

{
− 1

σα

n∑
i=1

| log(t∗i )− x′iβ|α
}
, (3.20)

π(α|β, σ2, t∗) ∝ αn

Γn(1/α)
exp

{
− 1

σα

n∑
i=1

| log(t∗i )− x′iβ|α
}
π(α), (3.21)

(3.22)

As none of the above has a known form, adaptive Metropolis-Hastings steps are

implemented for each parameter. In addition, the full conditionals for the mixing

parameters are given by the following truncated exponential distributions

π(ui|β, σ2, α, t∗) ∝ e−ui , ui >

(
| log(t∗i )− x′iβ|

σ

)α
, i = 1, . . . , n. (3.23)

A simulation study shown that standard Bayesian model comparison criteria

can fairly easily identify the need of incorporating unobserved heterogeneity to the

model, even with rather small sample sizes and a considerable amount of censoring

(see Appendix C). Ignoring unobserved heterogeneity can lead to biased or less

precise inference for the regression parameters, whereas inference with SMLN models

works well even in the absence of unobserved heterogeneity. The best results in terms

of identifying the correct model are obtained for the independence Jeffreys prior and

the model selection criteria DIC and PsBF.

3.2.5 Outlier detection for SMLN-AFT models

Outlying observations (in relation to a log-normal model with no mixture) can be

detected using the methodology introduced in Section 2.4. It compares the posterior

behaviour of the mixing parameters with respect to a reference value λref . Section

2.4 suggests λref = E(Λi|θ) (if such expectation exists). Using this rule, λref = 1

for the log-Student t model. This choice was supported by the empirical examples

explored in Chapter 4. However, the expectation of the mixing distributions that
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Figure 3.2: Bayes factor for outlier detection as a function of |zi|. The log Bayes
factor has been re-scaled by 2 in order to apply the interpretation rule proposed in
Kass and Raftery [1995]. The dotted horizontal line is the threshold above which
observations will be considered outliers.

generate the log-Laplace and log-logistic distributions do not exist. In these cases,

λref can be determined in an empirical manner. For example, simulated datasets

indicate a large heterogeneity between the posterior distributions of the Λi’s and

the existence of a unique reference value is not clear (even in the absence of outlying

observations). Nonetheless, on average, the posterior medians of the mixing param-

eters are generally close to unity (in this calculation, the lowest 25% of λi values is

discarded in order to remove the influence of any possible outliers). Hence, λref = 1

is proposed for the log-Laplace model. In the log-logistic case, the posterior distri-

butions of the Λi’s behave as in the log-Student t case, where the reference value is

clearer. Using the same argument as in the log-Laplace case, λref = 0.4 is defined

for the log-logistic model. Figure 3.2 illustrates the performance of these reference

values by plotting the Bayes factor in (2.7) for the log-Student t and in (2.8) for

the log-Laplace and log-logistic models against a standardized log survival time zi

(given β, σ2 and θ). This is defined as log(ti) minus its mean, divided by its standard

deviation (i.e. σ
√

EΛi(Λ
−1
i |θ)). For the log-Student t, log-Laplace and log-logistic

models, zi =
log(ti)−x′iβ

σ

√
ν−2
ν (for ν > 2), zi =

log(ti)−x′iβ
σ

1√
2

and zi =
log(ti)−x′iβ

σ

√
3
π ,

respectively. As expected, large values of |zi| lead to evidence in favour of an out-

lier. The log-Student t model with very large number of degrees of freedom requires

exceptionally large |zi| values to distinguish it from the log-normal case.

The log-exponential power model is a special case. As explained in Subsec-

tion 3.2.4, Bayesian inference for this model is implemented through a mixture of

uniforms representation (with mixing parameters denoted by Ui). The models for
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outlier detection in terms of Ui are M0 : Ui = uref versus M1 : Ui 6= uref (with

all other Uj , j 6= i free). The expectation of Ui (given α) is 1 + 1/α and, according

to the intuition presented in Section 2.4, it might be used as uref . With this rule,

uref is a function of α which lies in (1.5, 2). In practice, this choice detected large

amounts of outliers (even for datasets generated from the log-normal model). In

this case, π(uref |t) is estimated by averaging π(uref |β, σ2, α, t∗) in (3.23) using an

MCMC sample from the posterior distribution of (β, σ2, α) and the augmented sur-

vival times t∗. Hence, if the value of (t∗i , β, σ
2, α) is such that uref ≤

(
| log(t∗i )−x′iβ|

σ

)α
,

π(uref |β, σ2, α, t∗) is equal to zero and the BF in favour of the observation i being

an outlier is computed as infinity. Simulated datasets indicated that the means and

medians of
(
| log(t∗i )−x′iβ|

σ

)α
, i = 1, . . . , n, are around 0.6, regardless of the model

from which the data was generated. Hence, the reference value is adjusted to

uref = 1 + 1/α + 0.6 (which lies in (2.1, 2.6)). This choice performed much bet-

ter with simulated datasets (e.g. using log-normal data no outliers were detected).

The resulting BF as a function of z = log(t)−x′β
σ

√
Γ(1/α)
Γ(3/α) (see Figure 3.2) are not

much affected by the value of α.

For all models, moderate changes to the reference values do not have a large

impact on the outlier detection curves in Figure 3.2.

3.3 The family of Rate Mixtures of Weibulls

Definition 3. Let Ti be a positive-valued random variable distributed as a Rate

Mixture of Weibull distributions (RMW). Its density function is defined as

f(ti|α, γ, θ) =

∫ ∞
0

γαλit
γ−1
i e−αλit

γ
i dPΛi(λi|θ), ti > 0, α, γ > 0, θ ∈ Θ, (3.24)

where λi is a realization of a random variable Λi which has distribution function

PΛi(·|θ) defined on L ⊆ R+ (possibly discrete). Denote this by Ti ∼ RMWP (α, γ, θ).

A hierarchical representation of (3.24) is given by

Ti|α, γ,Λi = λi ∼Weibull (αλi, γ) , Λi|θ ∼ PΛi(·|θ). (3.25)

In line with Jewell [1982] and Kottas [2006], infinite mixtures of Weibull

distributions are studied here. Nonetheless, discrete mixtures are explored in e.g.

Tsionas [2002] and Maŕın et al. [2005]. In the previous literature, γ is often fixed

at 1 and the mixing parameters are assigned a Gamma distribution [e.g. Abbring

and Van Den Berg, 2007]. Throughout, the case with γ = 1 is referred as the Rate

Mixtures of Exponentials (RME) family and it is denoted by Ti ∼ RMEP (α, θ).
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The RME case can be extended to the RMW family via a power transformation.

In fact, if Ti ∼ RMEP (α, θ) then T
1/γ
i ∼ RMWP (α, γ, θ). When γ = 2, (3.24)

reduces to an infinite mixture of Rayleigh distributions [as in Hansen and Meno,

1977; Gómez-Déniz and Gómez-Déniz, 2013]. As shown in Jewell [1982], RMW

models are characterized as the distributions for which the survival function of T
1/γ
i

is completely monotone in (0,∞) (i.e. (−1)m dm

dtmi
S(t

1/γ
i ) ≥ 0 for all m = 0, 1, . . .). If

γ ≤ 1, the hazard rate of the resultant distribution decreases regardless of the mixing

distribution [Marshall and Olkin, 2007]. In contrast, non-monotonic behaviours can

be observed for γ > 1.

The following theorem provides some identifiability conditions for (α, γ, θ).

In particular, it precludes the use of (separate) unknown scale parameters for the

mixing distribution. This can be achieved by either fixing scale parameters of the

mixing distribution or by imposing the restriction E(Λi|θ) = 1. The latter is adopted

hereafter for a Gamma mixing, since it leads to better mixing when implementing

posterior inference by means of the MCMC sampler described in Subsection 3.3.4.

For the other mixtures explored here, the sampler performs better if the scale pa-

rameters of the mixing distribution are fixed.

Theorem 7. Let Ti be a random variable distributed according to (3.24). (α, γ, θ)

is identified by the distribution of Ti if and only if: (i) E(Λi|θ) is finite and (ii)

(α, θ) is identified by the distribution of αΛi.

Random variables in the RMW family do not necessarily have finite moments

of any order and the existence of finite moments is linked to the moments of Λ
−1/γ
i .

Theorem 8. Let Ti be a random variable distributed according to (3.24). The r-th

moment of Ti (r ≥ 0) is finite if and only if EΛi(Λ
−r/γ
i |θ) < ∞. If it exists, it

corresponds to Γ (1 + r/γ)α−r/γEΛi(Λ
−r/γ
i |θ).

Corollary 2. If all the following expressions are well defined, the coefficient of

variation cv (i.e. the ratio between the standard deviation and the expected value) of

the survival distributions in (3.24) is

cv(γ, θ) =

√√√√√√√
Γ (1 + 2/γ)

Γ2 (1 + 1/γ)

varΛi(Λ
−1/γ
i |θ)

E2
Λi

(Λ
−1/γ
i |θ)︸ ︷︷ ︸

(c∗v(γ,θ))2

+

[
Γ (1 + 2/γ)− Γ2 (1 + 1/γ)

]
Γ2 (1 + 1/γ)︸ ︷︷ ︸

(cWv (γ))2

. (3.26)

The expression in (3.26) simplifies to

√
2

varΛi
(Λ−1
i |θ)

E2
Λi

(Λ−1
i |θ)

+ 1 when γ = 1.

Corollary 2 indicates that
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Table 3.2: Examples in the RME family. Kp(·) stands for the modified Bessel
function. Θ = (0,∞), unless specified.

Mixing density E(Λi|θ) f(ti|α, θ) h(ti|α, θ)
Exponential(1) 1 α(αti + 1)−2 α(αti + 1)−1

Gamma(θ, θ) 1 α([α/θ] ti + 1)−(θ+1), θ > 2 α([α/θ] ti + 1)−1

Inv-Gamma(θ, 1) 1
θ−1

2α
Γ(θ)K−(θ−1)(2

√
αti)(αti)

(θ−1)/2, θ > 1
√

α
ti

K−(θ−1)(2
√
αti)

K−θ(2
√
αti)

Inv-Gauss(θ, 1) θ α e1/θ
[

1
θ2 + 2αti

]−1/2
e−[ 1

θ2
+2αti]

1/2

α
[

1
θ2 + 2αti

]−1/2

Log-Normal(0, θ) eθ/2 α√
2πθ

∫∞
0

e−αλiti e−
(log(λi))

2

2θ dλi No closed form

(i) cv(γ, θ) is an increasing function of c∗v(γ, θ), which is the coefficient of variation

of Λ
−1/γ
i given θ,

(ii) for the same value of γ, the coefficient of variation of the Weibull distribution

cWv (γ) is a lower bound for cv(γ, θ) and they are equal if and only if Λi =

λ0 with probability 1. Hence, evidence of unobserved heterogeneity can be

quantified in terms of the ratio

Rcv(γ, θ) =
cv(γ, θ)

cWv (γ)
, (3.27)

defined as the inflation that the mixture induces in the coefficient of variation

(with respect to a Weibull model with the same γ). If θ is such that c∗v(γ, θ)

goes to zero, then Rcv(γ, θ) tends to one and the mixture reduces to the

underlying Weibull model itself. If γ → 0, cWv (γ) and, consequently, cv(γ, θ)

become unbounded. In that case, Rcv(γ, θ) behaves as
√

[c∗v(γ, θ)]
2 + 1. If

γ = 1, then Rcv(γ, θ) = cv(1, θ).

Throughout, the range of (γ, θ) is restricted such that cv is finite (this re-

striction is not required when θ does not appear). This decision facilitates the

implementation of Bayesian inference (see Subsection 3.3.2).

The survival function generated by (3.24) corresponds to the Laplace trans-

form of the mixing density evaluated in αtγi [Wienke, 2010]. Therefore, mixing

densities with known Laplace transform are an attractive choice. An example of

this is the PVF family (see also Subsection 2.5.1). In particular, a positive stable

mixing distribution yields a marginal model which is the Weibull distribution itself.

Table 3.2 summarizes some examples in the RME family. This list can be enlarged

by simply varying the mixing distribution. All these examples can be extended to
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the RMW case using the power transformation that was introduced shortly after

(3.25). A Gamma mixing generates the Lomax distribution [Lomax, 1954] which

is widely used in the literature as a heavy tailed distribution in finance and other

contexts. In contrast, some other mixing distributions (such as the log-normal) do

not lead to analytical expressions for the resulting density.

Figure 3.3 shows the RME densities produced by the examples in Table 3.2

and different values of θ. The density is decreasing, like in the exponential case.

Nevertheless, the behaviour exhibited by the tails is very flexible. Figure 3.3 also

presents the hazard rate for these mixtures. As shown in Marshall and Olkin [2007],

they are decreasing functions of the survival time but the gradient varies among

the different mixing distributions. Figure 3.4 illustrates the effect of a Gamma(θ, θ)

mixing distribution for distributions in the RMW family (with free γ). Whereas the

shape of the density function was not greatly affected in this example, the effect of

the mixture on the hazard rate is more pronounced. For instance, while the hazard

rate of the Weibull model with γ = 2 is an increasing function of ti, the hazard of

the corresponding mixture exhibits a non-monotonic behaviour.

3.3.1 The RMW-AFT model

A Weibull survival regression can be equivalently written in terms of PH and AFT

specifications. Let xi be a vector containing the value of k covariates associated

with the survival time i and β ∈ Rk be a vector of parameters. In the RMW-AFT

model, the covariates affect the time scale through the parameter α. This model is

defined as

Ti ∼ RMWP (αi, γ, θ), αi = e−γx
′
iβ, i = 1, . . . , n. (3.28)

Alternatively, the RMW-AFT model can be expressed as

log(Ti) = x′iβ + log(Λ
−1/γ
i T0), (3.29)

where Λi ∼ dPΛi(θ) and T0 ∼ Weibull(1, γ). As explained in Subsection 2.5.2, the

RMW-AFT is itself an AFT model with baseline survival function defined by the

distribution of T ′0 = Λ
−1/γ
i T0 and T ′0 ∼ RMWP (1, γ, θ). Under this model, eβj can

be interpreted as the proportional marginal change of the median (or any other

percentile) survival time after a unit change in covariate j. For β∗ = −γβ, (3.28) is

equivalent to the RMW-PH model which is defined as

h(ti|β∗, γ,Λi = λi;xi) = λiγt
γ−1
i ex

′
iβ
∗
, Λi ∼ dP (Λi|θ), i = 1, . . . , n. (3.30)
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Figure 3.3: Density and hazard function (left and right panels, respectively) of some
RME models (α = 1). The solid line is the Exponential(1) density (or hazard).

However, the marginal model generated by (3.30) does not generally retain the PH

property (see also Subsection 2.5.1). The only mixing distribution that retains this

property is the positive stable distribution [Wienke, 2010], where the marginal model

is the Weibull itself. In this setting, the interpretation of the regression coefficients

is conditional on the random effect (individual level). Unlike for the RMW-AFT

model, this interpretation cannot be extended to the population level. Most of

the earlier literature for unobserved heterogeneity is in terms of the PH model.

Nevertheless, here results are presented in terms of the RMW-AFT presentation

since the interpretation of the regression coefficients is clearer and the mixture model

is still an AFT model.

3.3.2 A weakly informative prior for the RMW-AFT model

First, a prior is defined for the RME-AFT model (i.e. fixing γ = 1). In the absence

of prior information, a popular choice is to use priors based on the Jeffreys rule [Jef-
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Figure 3.4: Some RMW models (α = 1). The mixing distribution is Gamma(θ, θ)
(Exponential(1) for θ = 1). The solid line is the Weibull(1, γ) density (or hazard).

freys, 1961]. Jeffreys-style priors require the FIM which is provided by the following

Theorem.

Theorem 9. Let T1, . . . , Tn be independent random variables with Ti distributed

according to (3.28) with γ = 1, then their FIM corresponds to

FIM(β, θ) =

(
k1(θ)X ′X k2(θ)X ′1n

k2(θ)1′nX nk3(θ)

)
, (3.31)

where k1(θ), k2(θ) and k3(θ) are functions depending only on θ, X = (x1 · · ·xn)′ and

1n is a column vector of n ones.

Corollary 3. Under the same assumptions as in Theorem 9, assume also that X has

rank k (n > k) and θ is a scalar parameter. The Jeffreys prior and the independence

Jeffreys prior (which deals separately with the blocks for β and θ) for the RME-AFT

model are correspondingly given by

πJ(β, θ) ∝ k
k/2
1 (θ)k

1/2
3 (θ)

[
1− k2

2(θ)

nk1(θ)k3(θ)
1′nX(X ′X)−1X ′1n

]1/2

, (3.32)

πI(β, θ) ∝ k
1/2
3 (θ). (3.33)

These two Jeffreys-style priors can be expressed as

π(β, θ) ∝ π(θ), (3.34)

where π(θ) is the component of the prior that depends on θ. Although Corollary

3 provides certain structure for the priors based on the Jeffreys rule, the actual
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Table 3.3: Relationship between cv and θ for some distributions in the RME family.

Mixing density Range of cv cv(θ)
∣∣∣ dcv(θ)

dθ

∣∣∣
Gamma(θ, θ) (1,∞)

√
θ
θ−2 θ−1/2(θ − 2)−3/2

Inv-Gamma(θ, 1) (1,
√

3)
√

θ+2
θ θ−3/2(θ + 2)−1/2

Inv-Gaussian(θ, 1) (1,
√

5)
√

5θ2+4θ+1
θ2+2θ+1

3θ+1
(5θ2+4θ+1)1/2(θ+1)2

Log-Normal(0, θ) (1,∞)
√

2 eθ − 1 eθ(2 eθ − 1)−1/2

expressions are not easily derived. Even when assuming a particular mixing dis-

tribution, it is not trivial to obtain k1(θ), k2(θ) and k3(θ). One alternative is to

compute the FIM directly from the resultant density (as in the proof of Theorem 5).

For example, in the simple case of a Gamma(θ, 1) mixing distribution the Jeffreys

and independence Jeffreys prior are given respectively by

πJ(β, θ) ≡ πJ(θ) ∝
[

θ

θ + 2

]k/2 1

θ

[
1− θ(θ + 2)

n(θ + 1)2
1′nX(X ′X)−1X ′1n

]1/2

(3.35)

and

πI(β, θ) ≡ πI(θ) ∝ 1

θ
. (3.36)

Even though this is one the simplest cases in the RME family, πJ(θ) is very involved.

It depends on the number of covariates, the sample size and the design matrix. These

priors become more complicated and have no easy derivation for other mixtures.

In particular, if the resultant distribution does not have a closed analytical form

(e.g. with a log-normal mixing distribution), computing the FIM is very challenging.

In addition, there is no guarantee of having a proper prior for θ when using an

arbitrary mixing distribution. For instance, in the Lomax case, πJ(θ) and πI(θ) are

not proper density functions (both behave as 1/θ for large values of θ). As the role

of θ is specific to each mixture, improper priors for θ will not allow the comparison

between RME models using Bayes factors.

To overcome these issues, a simplification of the Jeffreys-style priors is pro-

posed. It keeps the structure in (3.34) but assigns a proper π(θ). The comparison

between models is meaningful if, regardless of the mixing distribution, π(θ) con-

tains the same prior information (i.e. the priors are “matched”). This is achieved

by exploiting the relationship between θ and cv, the coefficient of variation of the

survival times. A proper prior, which is common for all models, is assigned to cv.

Denote it by π∗(cv). As cv does not involve β (expression (3.26) does not involve

α), π∗(cv) only provides information about θ. Once π∗(cv) has been defined, π(θ)
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Figure 3.5: Relationship between (γ, θ) and cv for some RMW models. Solid, dashed
and dotted lines are for γ = 0.5, 1 and 2, respectively. Dashed lines indicate the
relationship between θ and cv for distributions in the RME family.

can be easily derived by means of a change of variables. Using (3.26), the functional

relationship between cv and θ for some distributions in the RME family is derived

(see Table 3.3). The inverse function of cv(θ) must exist (cv(θ) must be injective),

yet an explicit expression is not required. Injectivity holds for all the examples in

Table 3.3 (Figure 3.5 illustrates this). The induced prior for θ is defined by

π(θ) = π∗(cv(θ))

∣∣∣∣ dcv(θ)dθ

∣∣∣∣ (3.37)

When comparing with models without θ, meaningful results derive from the fact

that the prior on θ is reasonable. Two natural choices for π∗(cv) are the truncated

exponential and Pareto type I distributions (both on (1,∞)) with hyper-parameters

a and b, respectively. These priors cover a wide set of tails for cv. Smaller values of

a and b assign larger probabilities to small values of cv (b is restricted to be larger

than 1 in order to have a finite expectation for cv). These hyper-parameters can

be elicited from experts’ opinion, for example, using the expected value of cv. The

expected values under these priors are 1 + 1/a and b/(b− 1) respectively, and with

b = a+ 1 the expected values are equated. When the range of cv differs from (1,∞)

(e.g. with the inverse Gamma and inverse Gaussian mixing distributions), these

priors can be adjusted by truncating π∗(cv). If the values of a and b are such that

the prior expectation of cv falls outside the range allowed by a specific model, the

prior is not consistent with that model. For example, the model generated by the

inverse Gaussian mixing distribution should be discarded a priori if a < (
√

5− 1)−1

and b < 1 + (
√

5− 1)−1.

For a general RMW-AFT model with unknown γ, the structure of the FIM is

more involved than the one presented in Theorem 9. As a consequence, priors based

on the Jeffreys rule are not easy to obtain (there is also no guarantee of having
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Table 3.4: c∗v(γ, θ) and its partial derivative with respect to θ for some mixing distri-
butions. Kp(·) and ψ(·) stand for the modified Bessel and the digamma functions,
respectively.

Mixing [c∗v(γ, θ)]2
∣∣∣ d[c∗v(γ,θ)]2

dθ

∣∣∣
Gamma(θ, θ) Γ(θ)Γ(θ−2/γ)

Γ2(θ−1/γ)
− 1, θ > 2/γ Γ(θ)Γ(θ−2/γ)

Γ2(θ−1/γ)
[ψ(θ) + ψ(θ − 2/γ) − 2ψ(θ − 1/γ)]

Inv-Gamma(θ, 1) Γ(θ)Γ(θ+2/γ)

Γ2(θ+1/γ)
− 1 Γ(θ)Γ(θ+2/γ)

Γ2(θ+1/γ)
[ψ(θ) + ψ(θ + 2/γ) − 2ψ(θ + 1/γ)]

Inv-Gauss(θ, 1)
√

θπ
2
e−

1
θ

K−( 2
γ

+1
2
)
(1/θ)

K2

−( 1
γ

+1
2
)
(1/θ)

− 1
√

π
2

θ−3/2 e
− 1
θ

K3

−( 1
γ

+1
2 )

(1/θ)

[
K−

(
2
γ

+ 1
2

)(1/θ)K−
(

1
γ

+ 1
2

)(1/θ)

+K−
(

1
γ

+ 1
2

)(1/θ)K−
(

2
γ
− 1

2

)(1/θ)

−2K−
(

2
γ

+ 1
2

)(1/θ)K−
(

1
γ
− 1

2

)(1/θ)

]
Log-normal(0, θ) eθ/γ

2

− 1 1
γ2
eθ/γ

2

a proper component for θ). As an alternative, a prior for (β, γ, θ) is defined by

extending the structure in (3.34) to

π(β, γ, θ) ∝ π(γ, θ) ≡ π(θ|γ)π(γ), (3.38)

where π(θ|γ) is a proper density function of θ (given γ) and π(γ) is a proper prior

for γ. This implies a flat prior on β. The prior product structure between β and

(γ, θ) in (3.38) is reasonable in the RMW-AFT model where the interpretation of β

does not depend on γ nor θ. Conditional on the value of γ, π(θ|γ) is defined as in

the RME-AFT case (i.e. via a prior for cv, π
∗(cv)). Define cv(γ, θ) and c∗v(γ, θ) as

in (3.26). Hence,

π(θ|γ) = π∗(cv(γ, θ))

∣∣∣∣ dcv(γ, θ)dθ

∣∣∣∣ , (3.39)

where
dcv(γ, θ)

dθ
=

Γ(1 + 2/γ)

Γ2(1 + 1/γ)

1

2cv(γ, θ)

d[c∗v(γ, θ)]
2

dθ
. (3.40)

Table 3.4 contains [c∗v(γ, θ)]
2 and its partial derivative with respect to θ for the same

mixing distributions used in Table 3.3. Although some of the expressions in Table

3.4 are complicated, they can be easily evaluated numerically. Figure 3.5 shows

the relationship between (γ, θ) and cv for some distributions in the RMW family.

As in the RME case, a truncated exponential and Pareto type I prior distributions

for cv are suggested (given γ). These priors must be truncated to (cWv (γ),∞) (see

(3.26)). However, as in the exponential mixtures, some mixing distributions impose

a finite upper bound for cv. This upper bound is equal to
[

Γ2(1+2/γ)
Γ4(1+1/γ)

− 1
]1/2

and[√
π Γ(1+2/γ)

Γ2(1+1/γ)
Γ(2/γ+1/2)
Γ2(1/γ+1/2)

− 1
]1/2

when using the inverse Gamma and inverse Gaus-
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sian mixing distributions, respectively.

A proposal for π(γ) is not trivial. In particular, a conjugate prior for γ in

(0,∞) does not exist [Soland, 1969]. A discrete prior for γ is conjugate but restrictive

and inappropriate in most real situations (especially where no prior information

about γ is available). Berger and Sun [1993] and Kundu [2008] suggested the use

of continuous log-concave priors for γ. Here, a Gamma prior is defined for γ (with

a range of hyperparameters values that also allows for a not log-concave Gamma

density). Hyper-parameters for this prior can be elicited using expert’s opinion.

For example, if the hazard function is expected to be monotonically decreasing, the

prior must mostly support values in (0, 1). Beliefs about non-monotone behaviours

of the hazard rate are translated in priors for γ that assign more probability to the

range (1,∞).

3.3.3 Posterior propriety for the RMW-AFT model

The following theorem covers posterior propriety for the RMW-AFT model under

the weakly informative (improper) prior in (3.38). Following Proposition 1, it only

considers the non-censored observations (using n instead of no for ease of notation).

As a consequence, only sufficient conditions for posterior existence are derived.

Theorem 10. Let T1, . . . , Tn be the survival times of n independent individuals

distributed as in (3.28). Assume that survival times t1, . . . , tn are observed and

define X = (x1 · · ·xn)′. Assume that n ≥ k, X has rank k (full rank) and that the

prior for (β, γ, θ) is proportional to π(γ, θ), which is a proper density function for

(γ, θ). If ti 6= 0 for all i = 1, . . . , n, the posterior distribution of (β, γ, θ) is proper.

As mentioned in Section 3.3.2, the suggested prior for (γ, θ) is proper so that

Theorem 10 assures a proper posterior distribution if X has full column rank and

there are no zero observations of the survival time.

Posterior propriety can be precluded when conditioning on a particular sam-

ple of point observations which has zero Lebesgue measure (see Subsection 1.2.2).

Nevertheless, point observations are not a major issue regarding to posterior propri-

ety for the RMW-AFT model. In this case, the posterior distribution is well-defined

as long as there are no individuals for which ti = 0. Whereas the latter is a sensible

assumption in most real applications, survival times can be recorded as zero due to

rounding. In such a case, the point observation can be replaced by a set observation

(0, ε), where ε stands for the minimum value that the recording mechanism detects

(equivalent to a left censored observation on (0, ε)).
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3.3.4 Implementation

Here, only right-censoring is assumed, which is the most frequent situation in sur-

vival data. Bayesian inference for the RMW-AFT model, under the prior in (3.38),

is implemented using the sampler described in Section 2.3. Mixing parameters are

handled through data augmentation [Tanner and Wong, 1987]. As the Weibull

survival function has a known simple form, data augmentation is not required for

dealing with censored (and set) observations [Ibrahim et al., 2001; Kottas, 2006].

The full conditionals for the Gibbs sampler are

π(βj |β−j , γ, θ, λ, t; c) ∝ e−γβj
∑n
i=1(1−ci)xij−

∑n
i=1 λi(ti e

−x′iβ)γ , j = 1, . . . , k,(3.41)

π(γ|β, θ, λ, t; c) ∝ γn−
∑n
i=1 ci

[
n∏
i=1

t1−cii

]γ−1

e−γ
∑n
i=1(1−ci)x′iβ

× e−
∑n
i=1 λi(ti e

−x′iβ)γπ(θ|γ)π(γ), (3.42)

π(θ|β, γ, λ, t; c) ∝
n∏
i=1

dP (λi|θ)π(θ|γ), (3.43)

π(λi|β, γ, θ, λ−i, t; c) ∝ λ1−ci
i e−λi(ti e

−x′iβ)γ dP (λi|θ), i = 1, . . . , n, (3.44)

where β−j = (β1, . . . , βj−1, βj+1, βk), λ−i = (λ1, . . . , λi−1, λi+1, λn) and the ci’s,

i = 1, . . . , n are censoring indicators equal to 1 if the survival time for individual

i is right censored and 0 otherwise (as in (1.1), in the absence of left and interval

censoring).

For a general mixing distribution, Metropolis updates are required in all full

conditionals. These are drawn using an adaptive scheme [Roberts and Rosenthal,

2009]. Nevertheless, Gibbs steps can be used for the λi’s in case of particular

mixing distributions. For instance, the first four mixing distributions in Table 3.2,

respectively, lead to

Λi|β, γ, θ, t; c ∼ Gamma
(

2− ci, 1 + (ti e
−x′iβ)γ

)
, (3.45)

Λi|β, γ, θ, t; c ∼ Gamma
(
θ + 1− ci, θ + (ti e

−x′iβ)γ
)
, (3.46)

Λi|β, γ, θ, t; c ∼ GIG
(
−θ + 1− ci, 2, 2(ti e

−x′iβ)γ
)
, (3.47)

Λi|β, γ, θ, t; c ∼ GIG
(

1/2− ci, 1, θ−2 + 2(ti e
−x′iβ)γ

)
. (3.48)

In practice, the suggested prior led to very poor mixing of the chain when

using a log-normal(0, θ) mixing. This relates to a strong a priori correlation between

γ and θ, which persists when not much can be learned about θ (as θ controls the tails
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of the distribution, this is especially problematic for small n and/or high proportion

of censoring). A re-parametrization of the model from (θ, γ) to (θ∗, γ), where θ∗ =

θ/γ2, is adopted. As in the original parametrization, a prior for θ∗ can be induced

via a prior for cv ([c∗(γ, θ∗)]2 equals eθ
∗ − 1 in this case). This new parametrization

is more orthogonal and substantially improves the mixing of the chain.

3.3.5 Outlier detection for RMW-AFT models

As in Section 2.4, outliers (with respect to the underlying Weibull model) are de-

tected using the posterior distribution of the mixing variables. The suggested refer-

ence value is a valid option for RMW models because E(Λi|θ) is always finite (given

the identifiability constrains provided by Theorem 7). Therefore, λref = E(Λi|θ)
is adopted. Table 3.2 displays E(Λi|θ) for the mixing distributions presented as

examples here. As advised in Section 2.4, when unknown, θ is replaced by its pos-

terior median (based on a MCMC sample). Unlike in the SMLN case, empirical

evidence does not support the latter choice for the censored observations. Only a

lower bound of the survival time is known for right censored observations. There-

fore, this is highly informative for the mixing parameters (as the λi’s affect the

scale of the underlying distribution). For this reason, the posterior distributions of

the λi’s linked to right censored observations are driven towards lower values (in

line with the possibility of very large survival times). The proposal here is to keep

λoref = E(Λi|θ) as the reference value for non-censored observations and adjust it

for right-censored observations as follows:

λcref = Ci(β, γ, θ)λ
o
ref , with Ci(β, γ, θ) =

E(Λi|ti, ci = 1, β, γ, θ)

E(Λi|ti, ci = 0, β, γ, θ)
. (3.49)

For exponential mixing Ci(β, γ, θ) = 1/2 and Ci(β, γ, θ) = θ/(θ+ 1) for the Gamma

mixing distribution (see the conditionals in Subsection 3.3.4). In these cases, the

correction factor does not depend on i, β or γ. If Λi ∼ inv-Gamma(θ, 1) or Λi ∼
inv-Gaussian(θ, 1), Ci(β, γ, θ) is equal to

K2
−θ+1

(
2
√(

ti e
−x′iβ

)γ)
K−θ+2

(
2
√(

ti e
−x′iβ

)γ)
K−θ

(
2
√(

ti e
−x′iβ

)γ) , or (3.50)
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Figure 3.6: 2 × log-Bayes factor for outlier detection as a function of |zi| in AFT-
RMW models. The dotted horizontal line is the threshold above which observations
will be considered outliers [according to the rule in Kass and Raftery, 1995].

K2
1/2

(√
2
(
ti e
−x′iβ

)γ
+ θ−2

)
K−1/2

(√
2
(
ti e
−x′iβ

)γ
+ θ−2

)
K3/2

(√
2
(
ti e
−x′iβ

)γ
+ θ−2

) , (3.51)

respectively, where Kp(·) is the modified Bessel function. For the log-normal mix-

ing distribution Ci(β, γ, θ) has no closed form but can be estimated via numerical

integration. The performance of these reference values has been validated using

simulated datasets.

To illustrate this outlier detection method, Figure 3.6 displays BF
(i)
01 as a

function of a standardized observation zi. Following the AFT structure in (3.29),

this is defined in terms of log(ti) minus its mean (if finite), divided by its standard

deviation (given β, γ and θ). Using that log(T0) ∼ Gumbel(0, γ−1), it follows that

zi = γ

[
log(ti)− x′iβ + γ−1 (EΛi(log(Λi)|θ) + ψ(1))√

varΛi(log(Λi)|θ) + π2/6

]
, (3.52)

where ψ(·) denotes the digamma function. In terms of zi, BF
(i)
01 does not depend on

β nor γ (the full conditional of Λi depends on ti only through
[
ti e
−xiβ

]γ
). Naturally,

outliers relate to large values of |zi|. The threshold on |zi| at which an observation

is detected as outlier depends on θ. For example, for a Gamma(θ, θ) mixing, this

threshold is an increasing function of θ. The RMW model with gamma mixing tends

to the Weibull model as θ →∞ and thus, the model with large θ requires large |zi|
values to distinguish it from the Weibull. As shown in Figure 3.6, the correction
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factor Ci(β, γ, θ) induces a similar outlier detection threshold (in terms of |zi|) for

censored and non-censored observations.

3.4 Concluding remarks

As in Chapter 2, mixtures of life distribution are used in order to account for un-

observed heterogeneity in survival models. In particular, mixtures generated from

log-normal and Weibull underlying models were explored in detail. These families

produce distributions with a variety of tail behavior, making their use applicable in

a wide range of situations. In the SMLN case, the mixing is applied to the shape

parameter of the log-normal distribution and the resulting density has a quite flex-

ible shape which can be adjusted by choosing the mixing distribution. Instead, in

RMW models, the mixture is introduced through a rate (scale) parameter and the

shape of RMW densities is not much affected by the mixture with respect to the

underlying Weibull shape (although the mass is redistributed). In both cases, the

mixing has an important effect over the hazard function.

The prior distributions adopted in this Chapter are inspired by the Jeffreys

rule, which is particularly useful in the absence of reliable prior information or as

a benchmark analysis. A general representation of the FIM, which is the basis of

Jeffreys-style priors, is provided for the SMLN-AFT and RME-AFT models. In both

cases, regardless of the mixing distribution, the induced priors can be factorized as an

(improper) flat prior for the regression coefficients times a (possibly improper) prior

for the other model parameters. In view of the clear interpretation of β (which does

not depend on the mixing), this product structure of the prior seems a reasonable

assumption. An explicit expression for the Jeffreys prior (and two of its variations)

for SMLN-AFT models can be found in Corollary 1 and the proof of Theorem 5.

For the examples analyzed here, these priors produced a proper component for θ. In

contrast, the Jeffreys prior of the RMW-AFT is of no simple form and the induced

prior for θ is not guaranteed to be proper. The latter precludes meaningful model

comparison between RMW models in terms of Bayes factors. Instead, a weakly

informative prior, with a proper component for θ is presented. The latter preserves

the structure of the Jeffreys prior (being flat on β) and the prior for θ is elicited

via the coefficient of variation of the survival times. Priors for different mixing

distributions are matched by a common prior on the coefficient of variation, so that

models can be meaningfully compared through Bayes factors.

Subsections 3.2.3 and 3.3.3 provide conditions for posterior propriety based

on an arbitrary mixing distribution. In particular, the problem associated with
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the use of point observations is addressed. Whereas using point observations is

not critical for RMW-AFT models (unless a zero time is recorded), Theorem 6

illustrates that point observations might invalidate posterior inferences for SMLN-

AFT models. The use of set observations for the SMLN family is proposed as

a solution. This can easily be implemented in an MCMC sampling scheme. Set

observations can also be helpful in other contexts. For example, the issues of the

Cox PH model with ties in the data are well known. Heritier et al. [2009] ignored

ties when analyzing a real dataset, but that strategy might lead to serious loss of

information if applied routinely. Other methods have been proposed for dealing

with ties in the Cox regression model [see Kalbfleisch and Prentice, 2002, p. 104],

but they might lead to biased estimations [Scheike and Sun, 2007]. In contrast,

set observations are a natural solution that takes into account the imprecision with

which the data was recorded and, as illustrated in Chapter 4, posterior inferences do

not substantially change whether set or point observations are in use (of course, this

comparison is only valid when the posterior distribution based on point observations

is well-defined).

Outlier detection (with respect to the underlying model) is implemented as

in Section 2.4. However, the general suggestion of reference value λref = E(Λi|θ) is

not always applicable. In particular, Subsection 3.2.5 deals with situations where

E(Λi|θ) is not finite. In those cases, a reference value is defined in an empirical

manner, considering the posterior distribution of the mixing parameters for simu-

lated and real datasets. A different scenario is observed for RMW-AFT models,

where E(Λi|θ) is always finite, but λref = E(Λi|θ) is only applicable to non-censored

observations. As discussed in Subsection 3.3.5, censoring is highly informative for

the mixing parameters of these models. Hence, a new re-scaled reference value is

proposed in such a case.
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Chapter 4

Some applications

“To mix or not to mix, that is the survival dilemma”.

Catalina

4.1 Introduction

In this Chapter, the two mixture families studied throughout Chapter 3 are applied

to three real datasets. Bayesian inference is conducted under the priors introduced

in Subsections 3.2.2 and 3.3.2. MCMC chains are generated using an adaptive

Metropolis-within-Gibbs algorithm as described in Subsections 3.2.4 and 3.3.4. For

these chains, the total number of iterations, thinning and burning periods are dis-

played in Tables D.1, D.13 and D.25 of Appendix D. These tables also show the

update period for the mixing parameters Q (defined in Section 2.3). The use of

different starting points (including random values) and the convergence diagnos-

tics described in Subsection 1.2.3 strongly suggest convergence of the chains (see

Appendix D). Posterior distributions are summarized in terms of their posterior

medians and Highest Probability density intervals (HPD). Models are compared

through the criteria described in Section 1.2.4.

4.2 Veteran’s Administration Lung Cancer

This Veteran’s Administration (VA) Lung Cancer dataset [presented in Kalbfleisch

and Prentice, 2002] relates to a trial in which a therapy (standard or test chemother-

apy) was randomly applied to 137 patients who were diagnosed with inoperable lung

cancer. The survival times of the patients were measured in days since the appli-

cation of the treatment and the following covariates were recorded: the treatment
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that is applied to the patient (0: standard, 1: test); the histological type of the

tumor (squamous, small cell, adeno, large cell); a continuous index representing the

status of the patient at the moment of the treatment (the higher the index, the

better the patient’s condition1); the time between the diagnosis and the treatment

(in months); age (in years); and a binary indicator of prior therapy (0: no, 1: yes).

The data contain 9 right censored observations. During the trial, 69 patients re-

ceived the standard treatment (only 5 of them recorded as censored observations).

For these patients, the median time to follow-up (death or censoring) is equal to 97

days (first and third quartiles are 25 and 153 days, respectively). The remaining 68

patients were assigned a test treatment (4 of them with censored survival times). In

this group, the median of their follow-up times is 52.5 days (first and third quartiles

are 24.75 and 117.20 days, respectively). All patients are aged between 34 and 81

years old. Although the proportion of patients with small cell tumors is doubled

(halved in case of adeno type tumors) for those under the standard treatment, both

treatment groups presented a similar distribution of the patients with respect to the

other recorded covariates.

This dataset has been previously analyzed from a frequentist point of view

using traditional models such as the Cox, Weibull, log-normal and log-logistic re-

gressions [see Lee and Wang, 2003; Barros et al., 2008; Heritier et al., 2009]. These

models all suggest that the status of the patient at the moment of treatment and the

histological type of the tumor are the most relevant explanatory variables for the

survival time. Nevertheless, evidence of influential observations has been found.

Barros et al. [2008] illustrated that the inference produced by a log-Birnbaum-

Saunders model is greatly modified when dropping observations 77, 85 and 100.

They proposed a log-Birnbaum-Saunders Student t distribution as a more robust

alternative for this dataset because it allows for fatter tails and accommodates het-

erogeneity in the data (this distribution can also be represented through a mixture

family as in Chapter 2, so the methodology presented here could be also extended to

include this distribution). In an independent analysis, Heritier et al. [2009] detected

observations 17 and 44 as influential when fitting a Cox proportional hazard model

and proposed the use of an adaptive robust estimator as a solution.

Firstly, the data is analyzed using the log-normal and Weibull AFT models

(with no mixture). Regression coefficients are defined as: β0 (intercept), β1 (treat-

ment: test), β2 (tumor type: squamous), β3 (tumor type: small cell), β4 (tumor

type: adeno), β5 (status), β6 (time from diagnosis), β7 (age) and β8 (prior therapy:

1According to the value of this index, the patient can be classified in three different categories
(10-30: completely hospitalized, 40-60: partial confinement, 70-90: able to care for self).

56



● ● ● ●

● ● ●
●

● ●

● ●

0.
5

1.
5

2.
5

Intercept

Model−Prior

β 0 ● ● ● ●

● ● ●
●

● ●

● ●

LN (point) LN (set) LST LLAP LEP LLOG

● ● ● ●

●

● ●

●
● ● ● ●

−
0.

6
−

0.
2

0.
2

Treatment: test

Model−Prior

β 1 ● ● ● ●

●

● ●

●
● ● ● ●

LN (point) LN (set) LST LLAP LEP LLOG

● ● ● ●

●

● ● ● ● ●

● ●

−
0.

6
−

0.
2

0.
2

0.
6

Tumor type: squamous

Model−Prior

β 2 ● ● ● ●

●

● ● ● ● ●

● ●

LN (point) LN (set) LST LLAP LEP LLOG

● ● ● ● ● ● ● ● ● ● ● ●

−
1.

2
−

0.
8

−
0.

4

Tumor type: small cell

Model−Prior
β 3 ● ● ● ● ● ● ● ● ● ● ● ●

LN (point) LN (set) LST LLAP LEP LLOG

● ● ● ●
●

● ●
●

● ●

● ●

−
1.

4
−

1.
0

−
0.

6
−

0.
2

Tumor type: adeno

Model−Prior

β 4 ● ● ● ●
●

● ●
●

● ●

● ●

LN (point) LN (set) LST LLAP LEP LLOG

● ●
● ●

●
● ● ● ● ●

● ●

0.
03

0
0.

04
0

Status

Model−Prior

β 5 ● ●
● ●

●
● ● ● ● ●

● ●

LN (point) LN (set) LST LLAP LEP LLOG

● ● ● ●

●

● ●

●

● ●

● ●

−
0.

02
0.

00
0.

02

Time from diagnosis

Model−Prior

β 6 ● ● ● ●

●

● ●

●

● ●

● ●

LN (point) LN (set) LST LLAP LEP LLOG

● ● ● ●

●
● ●

●

● ●
● ●

−
0.

01
0.

01
0.

03

Age

Model−Prior

β 7

● ● ● ●

●
● ●

●

● ●
● ●

LN (point) LN (set) LST LLAP LEP LLOG

● ● ● ●
●

● ● ● ●
● ● ●

−
0.

6
−

0.
2

0.
2

Prior therapy: yes

Model−Prior

β 8 ● ● ● ●
●

● ● ● ●
● ● ●

LN (point) LN (set) LST LLAP LEP LLOG

●

●

●

●

●

●

●

●

●

●

●
●0.

5
1.

0
1.

5
2.

0

Model−Prior

σ2

●

●

●

●

●

●

●

●

●

●

●
●

LN (point) LN (set) LST LLAP LEP LLOG

Figure 4.1: VA lung cancer dataset using SMLN-AFT models: vertical lines are the
HPD 95% intervals and dots represent posterior medians. From left to right, Jeffreys
and ind. Jeffreys priors (plus ind. I Jeffreys prior for log-exp. power model). Only
ind. Jeffreys prior is used for log-Student t. Horizontal lines at 0 were drawn for
reference.
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Figure 4.2: VA lung cancer dataset using RMW-AFT models with γ ∼
Gamma(d1, d2) and (if appropriate) a trunc. exponential or Pareto prior for cv: ver-
tical lines are the HPD 95% intervals and dots represent posterior medians. From
left to right, d1 = 4, d2 = 1, d1 = d2 = 1 and d1 = d2 = 0.01. Values of E(cv) are
displayed in the top panel. Horizontal lines at 0 were drawn for reference.
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Figure 4.3: VA lung cancer dataset using RMW-AFT models with γ ∼
Gamma(d1, d2) and (if appropriate) a trunc. exponential or Pareto prior for cv: ver-
tical lines are the HPD 95% intervals and dots represent posterior medians. From
left to right, d1 = 4, d2 = 1, d1 = d2 = 1 and d1 = d2 = 0.01. Values of E(cv) are
displayed in the top panel. Horizontal lines at 0 were drawn for reference.
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Figure 4.4: VA lung cancer dataset. log-BF and log-PsBF (w.r.t. log-normal AFT)
of SMLN-AFT models.

yes). Posterior inferences are summarized in Figures 4.1, 4.2 and 4.3. For each

model, all the priors considered here produced similar results, making the choice

within these priors not too critical. The use of point observations does not produce

problems for the log-normal model yet, for illustration purposes, Bayesian inference

was conducted on the basis of point and set observations (using εl = εr = 0.5 for

uncensored observations). In this case, inference on point and set observations is

quite similar. However, set observations avoid potential problems with the inference

for other SMLN models (see Theorem 6), so the rest of the analysis for SMLN-AFT

models will focus on set observations. Set observations are not required for RMW-

AFT models and point observations are used throughout. In line with Lee and Wang

[2003], Barros et al. [2008] and Heritier et al. [2009], the log-normal and Weibull

AFT models suggest that the main covariate effects are due to the tumour type

and patient status. However, these models induce a different marginal effect of the

covariates. For instance, with respect to a log-normal fit, the effect of the treatment

is more accentuated when using a Weibull model. The most evident discrepancy

relates to the squamous tumors coefficient β2, where a Weibull fit points a positive

effect (in contrast to the log-normal fit, where the HPD interval is almost centered

around zero). Furthermore, these models provide conflicting interpretations for the

hazard rate of the survival distribution. Whereas a log-normal fit indicates a non-

monotonic behaviour, the Weibull model suggests a constant underlying hazard rate

(as γ ≈ 1).

In a second stage, the data is fitted using SMLN-AFT and RMW-AFT mod-

els with the continuous mixing distributions presented in Tables 3.1 and 3.2 (with

the same definition for the regression coefficients as in the models with no mixture).

For the SMLN and RMW families, the posterior distribution of β is somewhat differ-
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Figure 4.5: VA lung cancer dataset. log-BF and log-PsBF (w.r.t. Weibull AFT) of
RMW-AFT models. Unfilled and filled characters denote a trunc. exponential and
Pareto priors for cv, respectively. Upper panels use E(cv)=1.5. Lower panels use
E(cv)=5. Legend is displayed in the last panel.
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Table 4.1: VA lung cancer dataset using SMLN-AFT models: DIC, the fraction of
observations with better CPO performance than the AFT-log-normal model, and
the number of influential observations.

Prior Model
log

DIC
CPO No. obs.

PsML better pi ≥ 0.9

Jeffreys

Log-normal -726.15 1449.01 - 2
Log-Student t - - - -
Log-Laplace -723.62 1444.18 52% 1
Log-exp. power -723.35 1444.00 54% 1
Log-logistic -723.28 1444.14 66% 1

Ind. Jeffreys

Log-normal -726.00 1449.56 - 2
Log-Student t -723.81 1445.86 64% 1
Log-Laplace -723.20 1444.37 53% 1
Log-exp. power -723.24 1444.79 55% 1
Log-logistic -723.08 1444.49 66% 1

Ind. I Jeffreys

Log-normal -726.00 1449.56 - 2
Log-Student t - - - -
Log-Laplace -723.20 1444.37 53% 1
Log-exp. power -723.27 1444.81 55% 1
Log-logistic -723.08 1444.49 66% 1

ent from that for the log-normal and Weibull models (see Figures 4.1, 4.2 and 4.3).

In particular, all mixtures suggest that the effect of the treatment is less pronounced

(especially when using SMLN models). Nonetheless, these mixture models still indi-

cate that the most important predictors are the tumour type and the patient status.

The choice within these priors and mixing distributions was not too critical for the

inference about β. For these examples, selecting between a log-normal or Weibull

underlying model is not too critical either. Only minor discrepancies between the

effect of the treatment and the tumor type are observed. In all cases, the results on

β are relatively close to the classical ones reported in Barros et al. [2008] using the

log-Birnbaum Saunders Student t model and to the ones in Lee and Wang [2003]

using the log-logistic model.

Model comparison criteria are summarized in Figures 4.4 and 4.5 and Tables

4.1 and 4.2. In particular, the Weibull model is pointed out as the worst candidate

(which is, in contrast to all other models, the only one inducing a constant underlying

hazard rate). It has the highest DIC and the lowest PsML within all models (BF with

respect to log-normal and SMLN models cannot be computed because an improper

prior for uncommon parameters is in use). Overall, all criteria provide evidence

in favour of mixture models. For the log-Student t model, this evidence is also

supported by the fact that inference on ν favours relative small values. Similarly,
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Table 4.2: VA lung cancer dataset using RMW-AFT models under a Gamma(d1, d2)
prior for γ: DIC, the fraction of observations with better CPO performance than
the AFT-Weibull model, and the number of influential observations.

Trunc. exp. prior for cv Pareto prior for cv

E(cv) d1, d2 Mixing
log

DIC
CPO No. log

DIC
CPO No.

PsML
better pi PsML

better pi
≥ 0.9 ≥ 0.9

1.5

4,1

None -727.4 1451.31 - 3 -727.4 1451.31 - 3
Exp. -723.1 1444.24 64% 1 -723.1 1444.24 64% 1
Gam. -723.1 1443.81 69% 1 -723.0 1443.94 68% 1
Inv-Gam. -724.9 1446.89 69% 2 -724.8 1446.93 73% 1
Inv-Gauss. -724.0 1446.41 66% 2 -724.2 1446.36 66% 2
Log-norm. -723.6 1445.47 66% 1 -724.2 1445.86 66% 1

1,1

None -727.5 1451.52 - 4 -727.5 1451.52 - 4
Exp. -723.0 1444.54 65% 1 -723.0 1444.54 65% 1
Gam. -722.9 1443.95 69% 1 -723.0 1444.41 69% 1
Inv-Gam. -724.8 1447.56 70% 2 -725.5 1447.95 70% 2
Inv-Gauss. -724.0 1446.72 66% 2 -724.4 1446.66 67% 2
Log-norm. -723.6 1445.85 66% 1 -723.8 1446.07 67% 2

0.01,0.01

None -727.5 1451.58 - 3 -727.5 1451.58 - 3
Exp. -723.2 1444.65 64% 1 -723.2 1444.65 64% 1
Gam. -722.9 1444.00 69% 1 -723.2 1444.44 69% 1
Inv-Gam. -724.7 1447.23 73% 1 -725.0 1448.01 73% 2
Inv-Gauss. -724.2 1446.70 69% 2 -724.0 1446.56 69% 2
Log-norm. -723.7 1445.86 69% 1 -723.9 1446.23 69% 2

5

4,1

None -727.4 1451.31 - 3 -727.4 1451.31 - 3
Exp. -723.1 1444.24 64% 1 -723.1 1444.24 64% 1
Gam. -722.6 1443.25 67% 1 -722.7 1443.21 67% 1
Inv-Gam. -724.6 1446.78 71% 1 -724.9 1447.14 71% 2
Inv-Gauss. -724.3 1446.52 64% 2 -724.1 1445.85 66% 2
Log-norm. -724.2 1446.16 64% 2 -723.9 1445.71 66% 1

1,1

None -727.5 1451.52 - 4 -727.5 1451.52 - 4
Exp. -723.0 1444.54 65% 1 -723.0 1444.54 65% 1
Gam. -722.4 1443.29 66% 1 -722.8 1443.87 69% 1
Inv-Gam. -724.8 1447.43 69% 2 -724.8 1446.99 70% 2
Inv-Gauss. -724.0 1446.56 66% 2 -724.4 1446.31 69% 2
Log-norm. -724.0 1446.34 66% 1 -723.9 1446.09 69% 1

0.01,0.01

None -727.5 1451.58 - 3 -727.5 1451.58 - 3
Exp. -723.2 1444.65 64% 1 -723.2 1444.65 64% 1
Gam. -722.5 1443.33 67% 1 -722.7 1443.54 68% 1
Inv-Gam. -724.8 1447.04 72% 2 -724.8 1447.34 72% 2
Inv-Gauss. -723.9 1446.57 68% 2 -724.2 1446.55 69% 2
Log-norm. -723.9 1446.90 68% 1 -723.8 1446.10 69% 1

the log-exponential power model suggests values of α far from 2. Figure 4.6 contrasts

the prior and the posterior distributions of ν and α under the log-Student t and log-

exponential power models. Clearly, they differ and this is strongly driven by the data

itself. The contrast between the Jeffreys prior for α and its posterior is somewhat
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Table 4.3: VA lung cancer dataset using RMW-AFT models under a Gamma(d1, d2)
prior for γ: posterior medians and HPD 95% intervals of Rcv(γ, θ) (as in equation
(3.27)).

d1 = 4, d2 = 1 d1 = d2 = 1 d1 = d2 = 0.01
Prior cv E(cv) Mixing Med. HPD 95% Med. HPD 95% Med. HPD95%

T. Exp.

1.5

Gam(θ, θ) 2.08 [1.03,3.95] 1.97 [1.07,3.81] 1.95 [1.04,3.72]
Inv-Gam(θ, 1) 1.36 [1.13,1.55] 1.31 [1.13,1.55] 1.33 [1.13,1.55]
Inv-Gauss(θ, 1) 1.47 [1.16,1.79] 1.41 [1.09,1.71] 1.43 [1.14,1.74]
log-norm(0, θ) 1.89 [1.14,3.01] 1.72 [1.08,2.62] 1.76 [1.07,2.73]

5

Gam(θ, θ) 6.07 [1.25,20.25] 5.68 [1.21,19.42] 5.69 [1.20,19.72]
Inv-Gam(θ, 1) 1.38 [1.13, 1.56] 1.35 [1.13, 1.56] 1.35 [1.13, 1.56]
Inv-Gauss(θ, 1) 1.50 [1.11, 1.81] 1.47 [1.17, 1.77] 1.46 [1.13, 1.76]
log-norm(0, θ) 2.21 [1.20,3.71] 1.96 [1.11,3.22] 2.13 [1.19,3.76]

Pareto

1.5

Gam(θ, θ) 1.91 [1.04,4.34] 1.75 [1.05,3.79] 1.78 [1.05,4.00]
Inv-Gam(θ, 1) 1.30 [1.08,1.54] 1.25 [1.03,1.51] 1.28 [1.04,1.52]
Inv-Gauss(θ, 1) 1.44 [1.12,1.74] 1.37 [1.09,1.68] 1.36 [1.09,1.67]
log-norm(0, θ) 1.81 [1.11,2.88] 1.56 [1.03,2.48] 1.58 [1.00,2.39]

5

Gam(θ, θ) 2.97 [1.08,20.32] 2.66 [1.03,17.77] 2.69 [1.10,15.97]
Inv-Gam(θ, 1) 1.34 [1.12, 1.55] 1.32 [1.11, 1.55] 1.31 [1.04, 1.53]
Inv-Gauss(θ, 1) 1.47 [1.15, 1.81] 1.39 [1.09, 1.70] 1.42 [1.13, 1.73]
log-norm(0, θ) 1.95 [1.18,3.11] 1.71 [1.10,2.66] 1.78 [1.08,2.85]

surprising, in view of the results for the other priors. However, this is explained

by the fact that σ2 and α are highly (positively) correlated a posteriori. For the

VA lung cancer dataset (k = 9), the Jeffreys prior assigns high probabilities to low

values of σ2 (much higher in comparison with the other two priors) and therefore

the Jeffreys prior is implicitly driving the posterior of α towards 1. Indeed, using a

modification of the Jeffreys prior where p = 1, the posterior of α is shifted to the

right, with a mode around 1.5 (not shown). In case of the RMW models, Rcv is

substantially larger than 1 (see Table 4.3). In accordance with the model comparison

criteria, this also suggest a better fit of RMW models with respect to the Weibull

one.

Overall, the log-logistic model seems the best SMLN candidate for fitting this

dataset (within these examples). This is in line with the results in Lee and Wang

[2003] in which, using a maximum likelihood approach, the log-logistic model is pre-

ferred to the log-normal and other standard models. Within the RMW models, the

exponential(1) and Gamma(θ, θ) mixing distributions have the best performance.

While the exponential mixing is preferred when E(cv) is small, larger values of

E(cv) drive the evidence towards the Gamma mixing. Hence, the survival distribu-

tion appears to have a large but finite cv (otherwise the exponential mixing would

also be chosen when E(cv) is large). As shown in Table 4.3, the Gamma mixing

produces the highest inflation of cv with respect to a Weibull model (for the same
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γ). According to PsML and DIC this model is also preferred over all other SMLN

and RMW models under most of the considered priors. Both, the log-logistic and

RMW model with Gamma mixing suggest a mild unobserved heterogeneity, where

the coefficient of variation associated of the marginal distribution is finite.
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Figure 4.7: VA lung cancer dataset. For λi, i = 1, . . . , n: vertical lines are the HPD
95% intervals and circles represent posterior medians (filled for censored observa-
tions). Horizontal lines are located at λref (and λcref , if appropriate). Upper panel:
log-logistic model (ind. Jeffreys prior). Lower panel: RMW model with Gamma(θ,θ)
mixing (γ ∼Gamma(4,1) and trunc. exponential prior for cv with E(cv=1.5)).

For all the priors used here, Tables 4.1 and 4.2 show that the number of

influential observations is smaller for the mixture models. This is consistent with

the superior ability of the SMLN and RMW models to accommodate unusual ob-

servations. In particular, observations 85 and 106 are detected as influential for the

log-normal model (with no mixture). In case of a Weibull fit, observations 44, 75

and 106 are influential (observation 17 is added to this list in case of a Gamma(1,1)

prior for γ). In contrast, only observation 106 is considered as influential for SMLN

and RMW models (although, for some priors, observation 44 is also influential when

using a RMW model with inverse Gamma or inverse Gaussian mixing). Patient 106
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has a (censored) survival time of 51 days and received the test treatment for a small

cell type of tumor (for which previous treatments were applied). This patient was 59

years old and completely hospitalized (status score equal to 30) at the moment of the

treatment (about 7 years after diagnosis). Moreover, this subject has the second

longest delay between diagnosis and the test treatment, with a particularly large

survival time within those with more than two and a half years of delay. In Barros

et al. [2008], observation 106 was also detected as a (mild) influential observation

when fitting a log-Birnbaum-Saunders-t model.

The posterior distributions of the mixing parameters (see Figure 4.7) vary

substantially between the patients, suggesting heterogeneity in the data. For all con-

sidered priors, this behaviour supports the choices of λref (and λcref , if appropriate)

indicated in Subsections 3.2.5 and 3.3.5. Figure 4.8 formalizes this by presenting the

Bayes factor in favour of being an outlier for each of the 137 observations. There is

clear evidence for the existence of outlying observations under the suggested priors

for all models. For SMLN models, although all these priors present similar results,

this evidence is slightly stronger for the Jeffreys prior. The choice within these

mixing distributions does not greatly affect the conclusions. The log-logistic model

suggests that, for both priors considered here, observations 77 and 85 are very clear

outliers (with respect to the underlying log-normal model). Patients 77 and 85 had

an uncensored survival time of 1 day (the lowest value observed in the dataset), were

under the standard treatment and had a squamous type of tumor. Observations 15,

17, 21, 44, 75, 95 and 100 are added to this list when using the other suggested

SMLN models (not reported). The model detecting the largest amount of outliers

is the log-Laplace (which induces the strongest unobserved heterogeneity). Weibull

mixtures detect different outliers. This is not surprising as the underlying model is

different. For all the priors in use, the RMW model with Gamma(θ, θ) mixing sug-

gest that the records 17, 36, 44, 75, 78 and 118 are outliers. In particular, patients

17 and 44 (who survived 384 and 392 days, respectively) are the largest survival

times for patients that had the same type of tumor (small cell). In addition, obser-

vation 75 has the second largest survival time in the sample (observation 70 has the

largest survival time, but it is explained by a very good patient’s status at treatment

time). Whereas the choice between a truncated exponential Pareto prior for cv does

not substantially affect the results, the prior expectation of cv does. As shown in

Figure 4.8, the number of detected outliers is larger when E(cv)=5 (in comparison

to E(cv)=1.5). In fact, a less tight prior for cv induces a stronger unobserved het-

erogeneity, allowing the λi’s to explore more extreme values. This is particularly

important in case of a Gamma(θ, θ) mixing, where the reference value is fixed at 1
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Figure 4.8: VA lung cancer dataset. 2 × log(BF) in favour of H1 : λi 6= λref (ui 6=
uref ) versus H0 : λi = λref . Horizontal lines reflect the interpretation rule of Kass
and Raftery [1995]. First panel: log-logistic model (independence Jeffreys prior).
Second and third panels: RMW model with Gamma(θ,θ) mixing (γ ∼Gamma(4,1)
and trunc. exponential prior for cv with E(cv=1.5) and E(cv=5), respectively).
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Figure 4.9: AA Bone Marrow Transplant dataset. log-BF and log-PsBF of SMLN-
AFT models with respect to the AFT-log-normal one.

(regardless of the value of θ). Similar outliers are detected by other RMW models.

For instance, the exponential(1) mixing suggest that observations 9, 17, 21, 36, 44,

75, 78 and 118 are outliers.

4.3 Autologous and Allogeneic Bone Marrow Transplant

The Autologous and Allogeneic (AA) Bone Marrow Transplant dataset [presented

in Klein and Moeschberger, 1997] contains post-surgery information about 101 pa-

tients with advanced acute myelogenous leukemia. The endpoint of the study is the

disease-free survival time of the patients, i.e. the time until relapse or death (mea-

sured in months). The disease-free survival time was observed for 50 patients while

the others are right-censored. In the trial, 51 patients received an autologous bone

marrow transplant. This replaces the patient’s marrow with their own marrow after

the application of high doses of chemotherapy. The median of the time to follow-up

(relapse, death or censoring) is equal to 13.06 months (first and third quartiles are

6.07 and 18.42 months, respectively). The rest of the patients received an allogeneic

bone transplant, in which their marrow was replaced by the one extracted from

a sibling (matched according to a Histocompatibility Leukocyte Antigen criteria).

The median time to follow-up is 11.81 months (first and third quartiles are 3.61 and

31.88 months, respectively) for this group. Although similar studies suggested a

significant effect of the Karnofsky score (a continuous index representing the status

of the patient at the moment of the treatment) and the time between diagnosis and

transplant, there is no record of these covariates in the dataset. Only the type of

treatment is documented and therefore an important amount of unobserved hetero-

geneity is expected.
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Figure 4.10: AA Bone Marrow Transplant dataset. log-BF and log-PsBF of RME-
AFT models with respect to the AFT-exponential one. Unfilled and filled characters
denote a trunc. exponential and Pareto priors for cv, respectively. Legend is dis-
played in the last panel.
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Figure 4.11: AA Bone Marrow Transplant dataset. Histogram for the posterior
sample of ν and α (log-Student t and log-exp. power models, respectively). Solid
curve represents the prior density.

69



Table 4.4: AA Bone Marrow Transplant dataset using SMLN-AFT models: DIC,
the fraction of observations with better CPO performance than the AFT-log-normal
model, and the number of influential observations.

Prior Model
log

DIC
CPO No. obs.

PsML better pi ≥ 0.9

Jeffreys

Log-normal -223.06 446.09 - 0
Log-Student t - - - -
Log-Laplace -227.14 453.42 0.33 0
Log-exp. power -223.96 448.07 0.37 0
Log-logistic -223.99 447.92 0.41 0

Ind. Jeffreys

Log-normal -223.06 446.09 - 0
Log-Student t -223.97 448.41 0.37 0
Log-Laplace -227.09 453.41 0.34 0
Log-exp. power -224.01 448.32 0.38 0
Log-logistic -224.02 448.06 0.41 0

Ind. I Jeffreys

Log-normal -223.06 446.09 - 0
Log-Student t -223.97 448.41 0.37 0
Log-Laplace -227.09 453.41 0.34 0
Log-exp. power -224.15 448.51 0.38 0
Log-logistic -224.02 448.06 0.41 0
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Figure 4.12: AA Bone Marrow Transplant dataset. Histogram for the posterior
sample of Rcv(1, θ) (which equals cv(1, θ)) using a log-normal mixing distribution.
Solid curve represents the prior density.

The data is first analyzed using log-normal, exponential and Weibull AFT

models (the last two models have equivalent PH representations). The regression

coefficients are β0 (intercept) and β1 (treatment: autologous). Within these models,

the log-normal is pointed out as the best fit (in terms of DIC and PsBF). This is

not entirely unpredictable as the standard graphical check of log(− log(S(t))) versus
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Table 4.5: AA Bone Marrow Transplant dataset using RME-AFT models: DIC, the
fraction of observations with better CPO performance than the AFT-exponential
model, and the number of influential observations.

Trunc. exp. prior for cv Pareto prior for cv

E(cv) Mixing
log

DIC
CPO No. log

DIC
CPO No.

PsML
better pi PsML

better pi
≥ 0.9 ≥ 0.9

1.25

None -230.4 460.0 - 0 -230.4 460.0 - 0
Exp. -223.6 446.6 47% 0 -223.6 446.6 47% 0
Gam. -228.3 455.8 49% 0 -228.1 455.5 49% 0
Inv-Gam. -224.5 448.8 48% 0 -224.5 448.8 48% 0
Inv-Gauss. -223.8 447.7 48% 0 -223.8 447.8 47% 0
Log-norm. -225.8 450.0 51% 0 -224.9 448.5 50% 0

1.5

None -230.4 460.0 - 0 -230.4 460.0 - 0
Exp. -223.6 446.6 47% 0 -223.6 446.6 47% 0
Gam. -227.7 454.7 49% 0 -227.6 454.5 49% 0
Inv-Gam. -224.3 448.4 47% 0 -224.5 448.8 48% 0
Inv-Gauss. -223.4 446.9 47% 0 -223.5 447.2 46% 0
Log-norm. -224.1 447.3 50% 0 -223.8 447.0 48% 0

2.0

None -230.4 460.0 - 0 -230.4 460.0 - 0
Exp. -223.6 446.6 47% 0 -223.6 446.6 47% 0
Gam. -227.2 453.7 49% 0 -227.3 454.0 49% 0
Inv-Gam. - - - 0 - - - 0
Inv-Gauss. -223.4 446.9 45% 0 -223.4 447.0 47% 0
Log-norm. -223.4 446.1 49% 0 -223.4 446.3 48% 0

5.0

None -230.4 460.0 - 0 -230.4 460.0 - 0
Exp. -223.6 446.6 47% 0 -223.6 446.6 47% 0
Gam. -226.7 452.7 48% 0 -226.9 453.3 48% 0
Inv-Gam. - - - 0 - - - 0
Inv-Gauss. - - - 0 - - - 0
Log-norm. -223.0 445.7 48% 0 -223.3 446.2 48% 0

10.0

None -230.4 460.0 - 0 -230.4 460.0 - 0
Exp. -223.6 446.6 47% 0 -223.6 446.6 47% 0
Gam. -226.5 452.3 48% 0 -226.9 453.2 49% 0
Inv-Gam. - - - 0 - - - 0
Inv-Gauss. - - - 0 - - - 0
Log-norm. -223.1 446.0 50% 0 -223.2 446.2 46% 0

t (not reported) suggests that the proportional hazards assumption does not hold.

The BF in favour of the Weibull model with free γ (with respect to the exponential

one) is 4.39, suggesting γ 6= 1. In line with this, the posterior median of γ is 0.69

(HPD 95%: (0.53,0.85)) for the Weibull model with γ ∼ Gamma(4,1). In a second

stage, the SMLN, RME and RMW AFT models explored throughout this document

are fitted to these data. In contrast to the Weibull case, the RMW-AFT regressions

shown strong evidence in favour of γ = 1. For example, for the exponential(1) mixing

and γ ∼ Gamma(4,1), the BF in favour of the RME specification (γ = 1) is 22.01. In
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this case, the posterior median of γ is 0.86 (HPD 95%: (0.67,1.07)). These opposite

conclusions are not surprising because the Weibull model tends to underestimate γ

in the presence of unobserved heterogeneity (as illustrated in Section 4.2). Based

on this evidence, RMW-AFT models with free γ are discarded for these data.

Overall, SMLN models do not have a good performance with respect to the

log-normal model with no mixture (see Figure 4.9 and Table 4.4). This is also

reflected in the posterior distribution of ν and α for the log-Student t and log-

exponential power models, respectively (see Figure 4.11). This poor performance is

not entirely unforeseen because the underlying hazard rate appears to be constant

in time (as evidenced in the previous paragraph). For RME models, E(cv) equal

to 1.25, 1.5, 2, 5 and 10 is used (if there is no θ in the model, all these priors

coincide). Large values of E(cv) are associated with stronger prior beliefs about

the existence of unobserved heterogeneity. Nevertheless, as explained in Section

3.3.2, if E(cv) is larger than
√

3, the model generated by the inverse Gamma mixing

distribution is not compatible with the prior beliefs. The same occurs for the inverse

Gaussian mixing when E(cv) >
√

5. For these data, the presence of unobserved

heterogeneity is strongly supported by the data as all RME models perform better

than the exponential one with no mixture (see Figure 4.10 and Table 4.5). Despite

its simplicity, the model generated by the exponential mixing distribution is chosen

because it receives most support overall. The log-normal mixing distribution has

slightly more support for large E(cv), but the exponential mixing distribution does

not require prior elicitation for θ and is easy to implement (as the full conditionals

of the λi’s have a close known form). Despite the small sample size, there is learning

about Rcv (which in this case equals cv). As seen in Figure 4.12, even though the

truncated exponential and Pareto priors are concentrated around small values of

Rcv , the posterior distribution is shifted to the right. This suggests the need for a

mixture and is consistent with strong heterogeneity in the data that leads to support

for the exponential mixing model (which does not allow for a finite cv).

Figures 4.13 and 4.14 summarize marginal posterior inference for SMLN and

RME AFT models under different prior assumptions. All models suggest that there

is no substantive difference between the median survival times under both treat-

ments. For the RME models, whereas the choice of a prior affects inference on Rcv ,

the posterior distribution of β (which is usually the parameter of interest) is more

robust. With RME models, the effect of the treatment (β1) is less pronounced than

the value estimated by the exponential model, for all considered mixing distribu-

tions and priors. This discrepancy is among the largest when using the exponential

mixing.
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Figure 4.13: AA Bone Marrow Transplant dataset using SMLN-AFT models: ver-
tical lines are the HPD 95% intervals and dots represent posterior medians. From
left to right, Jeffreys and ind. Jeffreys priors (plus ind. I Jeffreys prior for log-exp.
power model). Only ind. Jeffreys prior is used for log-Student t. Horizontal lines
at 0 were drawn for reference.
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(if appropriate) a trunc. exponential or Pareto prior for cv: vertical lines are
the HPD 95% intervals and dots represent posterior medians. From left to right,
E(cv)=1.25,1.5,2,5,10. Horizontal lines at 0 were drawn for reference.
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Figure 4.15: AA Bone Marrow Transplant dataset using an RME model with ex-
ponential(1) mixing. (a) 95% HPD interval of the λi’s for the exponential mixing
distribution. Horizontal lines at λoref = 1 and λcref = 1/2. Circles located at
posterior medians (filled for censored observations). Observations are grouped by
treatment and displayed in ascending order of the ti’s. (b) Bayes Factors in favour
of the model M1 : Λi 6= λref versus M0 : Λi = λref .

No influential observations are detected for any model considered (all the

pi’s are below 0.9). This includes the exponential and log-normal models without

mixture (see Tables 4.4 and 4.5). Panel (a) in Figure 4.15 illustrates the posterior

behaviour of the mixing parameters for the RME model with exponential mixing.

Because the mixture was introduced via a scale (rate) parameter, there is a strong

posterior association between the λi’s and the survival times. In this case, no outly-

ing observations are detected when using the outlier detection mechanism proposed

in Subsection 3.3.5 (see panel (b) in Figure 4.15). So this is a situation where no

single observation is identified as an outlier, yet there is ample evidence in favour of

the exponential mixture model on the basis of the entire sample.

4.4 Cerebral Palsy

This dataset is a subset of the data in Hutton et al. [1994] and Kwong and Hutton

[2003] and contains information about 1,549 children affected by cerebral palsy and

born during the period 1966-1984 in the administrative area of the Mersey Region

Health Authority. See Hutton et al. [1994] for more information about the data
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Figure 4.16: Cerebral palsy dataset. For SMLN-AFT models (set observations).
Vertical lines are the HPD 95% intervals and dots represent posterior medians.
From left to right, Jeffreys and ind. Jeffreys priors (plus ind. I Jeffreys prior for
log-exp. power model). Only ind. Jeffreys prior is used for log-Student t.

collection. The times to follow-up (survival or censoring time) are recorded as the

number of years since birth. Following Kwong and Hutton [2003], the amount of

severe impairments (ambulation, manual dexterity and mental ability) and the birth

weight (in kilograms) are used as predictors for the time to death. The percentage

of children with 0, 1, 2 and 3 severe impairments is equal to 63%, 15%, 5% and

17% respectively. The median time to follow-up for these four categories (first and

third quartiles in parenthesis) are 30.88 (26.12,38.42), 32.44 (27.09,38.96), 31.22

(23.96,38.22) and 17.91 (8.97,27.99) years, respectively. Regarding birth weight,

14%, 26% and 60% of the children were born with very low weight (less than 1.5

kg), low weight (1.501-2.5 kg) and normal weight (more than 2.5 kg). The median

time to follow-up for these groups are 27.37 (23.69,31.14), 29.85 (24.84,36.87) and

30.83 (24.72,38.48). The deaths of 242 children were observed by the end of the

observation period. The survival times of the remaining 1,307 patients are right

censored, so there is a very large proportion of censoring (84.4%) in this dataset.

The data are analyzed using the SMLN-AFT and RMW-AFT models defined

by the mixing distributions in Tables 3.1 and 3.2. Log-normal and Weibull AFT

regressions without mixture are also fitted. Regression coefficients are defined as:

β0 (intercept), β1 (amount of impairments: none), β2 (amount of impairments:

1), β3 (amount of impairments: 2) and β4 (birth weight). Figures 4.16 and 4.17
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Figure 4.17: Cerebral palsy dataset. For RMW-AFT models with γ ∼
Gamma(d1, d2) and (if appropriate) a trunc. exponential or Pareto prior for cv.
Vertical lines are the HPD 95% intervals and dots represent posterior medians.
From left to right, d1 = 4, d2 = 1, d1 = d2 = 1 and d1 = d2 = 0.01. Values of E(cv)
are displayed in the top panel.

76



summarize the marginal posterior inference. Set observations are used for SMLN-

AFT models (εl = εr = 0.5). These estimations are in line with the ones in Kwong

and Hutton [2003], where the log-normal, log-logistic and Weibull models were also

fitted. Throughout, results are fairly insensitive to the choice within these priors.

With the exception of the log-Laplace model, covariate effects do not greatly differ

within SMLN-AFT models. The log-Laplace model relates to a strong unobserved

heterogeneity, with var(Λi)=∞ and induces a more pronounced difference between

those children with no impairments and those with 3 disabilities (the ratio between

their median survival times is e3.4 ≈ 30, in contrast to e3.0 ≈ 20 predicted by the

log-normal model and e3.1 ≈ 22 for other SMLN models). For RMW-AFT models,

set observations are not required and point observations are assumed throughout.

In this case, the main differences relate to whether mixing is used or not. All

Weibull mixtures estimate the effect of no impairments (β1) to be less than in the

Weibull model without mixing. Under the Weibull model, the median survival time

is increased by a factor of approximately e3.3 ≈ 27 for children with no impairments

(w.r.t. those with 3 impairments). In contrast, under the RMW models, the same

factor is estimated to be roughly e3.1 ≈ 22. Furthermore, the bottom panel of

Figure 4.17 shows that, in all cases, γ is estimated to be larger than 1. In line

with the results in Kwong and Hutton [2003], this indicates a non-monotone shape

of the underlying hazard rate (as in any SMLN model). Nonetheless, in order to

accommodate the variability of the data, the Weibull model tends to underestimate

γ (the coefficient of variation of the Weibull distribution is a decreasing function of

γ). As shown in Tables 4.6 and 4.8, no influential observations are detected by any

of these models.
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Figure 4.18: Cerebral palsy dataset. log-BF and log-PsBF (w.r.t. log-normal AFT)
of SMLN-AFT models.

Figure 4.18 and Table 4.6 show that, with exception of the log-Laplace model,
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Figure 4.19: Cerebral palsy dataset. log-BF and log-PsBF (w.r.t. Weibull AFT) of
RMW-AFT models. Unfilled and filled characters denote a trunc. exponential and
Pareto priors for cv, respectively. Upper panels use E(cv)=1.5. Lower panels use
E(cv)=5. Legend is displayed in the last panel.
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Figure 4.20: Cerebral palsy dataset. Histogram for the posterior sample of ν and α
(log-Student t and log-exp. power models, respectively). Solid curve represents the
prior density.
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Table 4.6: Cerebral palsy dataset. For SMLN-AFT models: DIC, the fraction of
observations with better CPO performance than the AFT-log-normal model, and
the number of influential observations.

Prior Model
log

DIC
CPO No. obs.

PsML better pi ≥ 0.9

Jeffreys

Log-normal -1230.71 2460.94 - 0
Log-Student t - - - -
Log-Laplace -1235.20 2470.53 56% 0
Log-exp. power -1228.76 2457.15 65% 0
Log-logistic -1227.54 2454.91 70% 0

Ind. Jeffreys

Log-normal -1230.72 2461.03 - 0
Log-Student t -1227.98 2455.92 75% 0
Log-Laplace -1235.15 2470.50 56% 0
Log-exp. power -1228.73 2457.15 67% 0
Log-logistic -1227.55 2454.98 70% 0

Ind. I Jeffreys

Log-normal -1230.72 2461.03 - 0
Log-Student t - - - -
Log-Laplace -1235.15 2470.50 56% 0
Log-exp. power -1228.83 2457.38 67% 0
Log-logistic -1227.55 2454.98 70% 0

Table 4.7: Cerebral palsy dataset. For some RMW-AFT models under a
Gamma(d1, d2) prior for γ: posterior medians and HPD 95% intervals of Rcv(γ, θ)
(as in equation (3.27)).

d1 = 4, d2 = 1 d1 = d2 = 1 d1 = d2 = 0.01
Prior cv E(cv) Mixing Med. HPD 95% Med. HPD 95% Med. HPD95%

T. Exp.

1.5

Gam(θ, θ) 2.41 [1.13, 4.36] 2.34 [1.17, 4.16] 2.35 [1.20, 4.15]
Inv-Gam(θ, 1) 1.41 [1.23, 1.55] 1.40 [1.18, 1.55] 1.41 [1.24, 1.55]
Inv-Gauss(θ, 1) 1.66 [1.43, 1.83] 1.63 [1.36, 1.84] 1.64 [1.37, 1.82]
log-norm(0, θ) 2.30 [1.53,2.99] 2.21 [1.41,3.10] 2.17 [1.40,2.85]

5

Gam(θ, θ) 6.98 [1.54,19.90] 6.76 [1.59,20.00] 6.77 [1.56,19.97]
Inv-Gam(θ, 1) 1.43 [1.25, 1.55] 1.41 [1.20, 1.55] 1.41 [1.22, 1.55]
Inv-Gauss(θ, 1) 1.68 [1.49, 1.85] 1.65 [1.43, 1.83] 1.66 [1.45, 1.85]
log-norm(0, θ) 2.45 [1.76,3.21] 2.37 [1.63,3.22] 2.42 [1.64,3.18]

Pareto

1.5

Gam(θ, θ) 2.42 [1.13, 6.10] 2.20 [1.10, 5.86] 2.38 [1.07, 5.92]
Inv-Gam(θ, 1) 1.41 [1.19, 1.55] 1.39 [1.21, 1.54] 1.39 [1.19, 1.55]
Inv-Gauss(θ, 1) 1.65 [1.35, 1.84] 1.61 [1.31, 1.82] 1.62 [1.38, 1.83]
log-norm(0, θ) 2.10 [1.40,2.85] 2.05 [1.41,2.77] 2.06 [1.29,2.87]

5

Gam(θ, θ) 4.45 [1.16,32.66] 4.35 [1.10,28.69] 4.18 [1.18,28.92]
Inv-Gam(θ, 1) 1.42 [1.23, 1.55] 1.41 [1.23, 1.55] 1.39 [1.17, 1.55]
Inv-Gauss(θ, 1) 1.66 [1.43, 1.85] 1.64 [1.37, 1.82] 1.65 [1.42, 1.85]
log-norm(0, θ) 2.25 [1.49,2.98] 2.19 [1.42,3.21] 2.21 [1.41,3.09]

SMLN models perform better than the log-normal one (for any of the considered

priors). In terms of Bayes factors, this evidence is accentuated when using the
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Table 4.8: Cerebral palsy dataset. For RMW-AFT models under a Gamma(d1, d2)
prior for γ: DIC, the fraction of observations with better CPO performance than
the Weibull model, and the number of influential observations.

Trunc. exp. prior for cv Pareto prior for cv

E(cv) d1, d2 Mixing
log

DIC
CPO No. log

DIC
CPO No.

PsML
better pi PsML

better pi
≥ 0.9 ≥ 0.9

1.5

4,1

None -1235.6 2471.1 - 0 -1235.6 2471.1 0
Exp. -1227.5 2454.8 57% 0 -1227.5 2454.8 57% 0
Gam. -1230.3 2460.7 57% 0 -1230.2 2460.6 57% 0
Inv-Gam. -1231.0 2462.2 56% 0 -1231.0 2457.9 54% 0
Inv-Gauss. -1228.8 2457.9 54% 0 -1229.0 2458.4 53% 0
Log-norm. -1227.9 2455.9 52% 0 -1228.3 2456.7 53% 0

1,1

None -1235.7 2471.4 - 0 -1235.7 2471.4 0
Exp. -1227.5 2454.8 58% 0 -1227.5 2454.8 58% 0
Gam. -1230.2 2460.4 61% 0 -1230.5 2461.1 60% 0
Inv-Gam. -1231.2 2462.9 58% 0 -1231.1 2458.4 55% 0
Inv-Gauss. -1229.0 2458.4 55% 0 -1229.2 2458.7 54% 0
Log-norm. -1228.2 2456.7 55% 0 -1228.3 2456.9 55% 0

0.01,0.01

None -1235.7 2471.2 - 0 -1235.7 2471.2 0
Exp. -1227.5 2454.9 57% 0 -1227.5 2454.9 57% 0
Gam. -1230.3 2460.6 57% 0 -1230.2 2460.6 55% 0
Inv-Gam. -1231.0 2462.4 55% 0 -1231.4 2458.2 54% 0
Inv-Gauss. -1228.9 2458.2 54% 0 -1229.0 2458.3 54% 0
Log-norm. -1228.3 2456.8 53% 0 -1228.6 2457.5 54% 0

5

4,1

None -1235.6 2471.1 - 0 -1235.6 2471.1 0
Exp. -1227.5 2454.8 57% 0 -1227.5 2454.8 57% 0
Gam. -1229.2 2458.2 57% 0 -1229.5 2459.0 57% 0
Inv-Gam. -1230.9 2462.0 57% 0 -1231.0 2457.7 53% 0
Inv-Gauss. -1228.7 2457.7 53% 0 -1228.9 2458.2 55% 0
Log-norm. -1227.8 2455.6 50% 0 -1227.9 2456.0 52% 0

1,1

None -1235.7 2471.4 - 0 -1235.7 2471.4 0
Exp. -1227.5 2454.8 58% 0 -1227.5 2454.8 58% 0
Gam. -1229.2 2458.4 60% 0 -1229.6 2459.3 60% 0
Inv-Gam. -1230.9 2462.3 56% 0 -1231.0 2458.0 55% 0
Inv-Gauss. -1228.8 2458.0 55% 0 -1229.0 2458.2 56% 0
Log-norm. -1228.1 2456.3 53% 0 -1228.3 2456.6 55% 0

0.01,0.01

None -1235.7 2471.2 - 0 -1235.7 2471.2 0
Exp. -1227.5 2454.9 57% 0 -1227.5 2454.9 57% 0
Gam. -1229.3 2458.5 56% 0 -1229.5 2459.2 57% 0
Inv-Gam. -1231.0 2462.4 56% 0 -1231.1 2458.2 54% 0
Inv-Gauss. -1228.9 2458.2 54% 0 -1228.9 2458.2 53% 0
Log-norm. -1227.9 2455.9 52% 0 -1228.2 2456.6 53% 0

original Jeffreys prior. As in the VA lung cancer application, Figure 4.20 indicates

that this is also supported by the posterior of ν and α for the log-Student t or log-

exponential power models, respectively. For RMW models, Figure 4.19 and Table 4.8

indicate that all the suggested Weibull mixtures provide a better fit for the data and
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Figure 4.21: Cerebral palsy dataset. For a random sub-sample of 150 children, λi:
vertical lines are the HPD 95% intervals and circles represent posterior medians
(filled for censored observations). Horizontal lines are located at λref (and λcref , if
appropriate). Upper panel: log-logistic model (ind. Jeffreys prior). Lower panel:
RMW model with exponential(1) mixing (γ ∼Gamma(4,1)).

lead to better predictions. In line with the results displayed in Table 4.7 (where the

posterior distribution of Rcv is concentrated away from one), this strongly suggests

the existence of unobserved heterogeneity. Overall, the Weibull model provides the

worst fit for these data (in terms of DIC and PsML). The log-Laplace distribution

has a similar performance (for the log-exponential power model, the posterior α

is far from one which corroborates a poor log-Laplace fit). In contrast, the log-

logistic regression appears as the best SMLN model. The exponential(1) mixing

distribution provide the best results among RMW models. These models are very

similar in terms of DIC and PsML and are simple to elicit (as there is no θ). In

practice, the same estimations for the regression parameters (including the intercept)

are obtained using both models. Nonetheless, the RMW model with exponential

mixing is computationally more attractive (as the full conditionals of the λi’s are

easy to sample from).
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Figure 4.22: Cerebral palsy dataset. BF in favour of H1 : λi 6= λref (ui 6= uref )
versus H0 : λi = λref . Horizontal lines drawn at 1 for reference. Upper panel: log-
logistic model (ind. Jeffreys prior). Lower panel: RMW model with exponential(1)
mixing (γ ∼Gamma(4,1)).

Existence of unobserved heterogeneity is also supported by the posterior dis-

tribution of the mixing parameters. This is illustrated in Figure 4.21 (only a random

sub-sample of 150 records is displayed). For all priors considered, the log-logistic

model suggests a mild unobserved heterogeneity, where most of the λi’s have a very

similar posterior distribution (with posterior medians located around λref = 0.4).

As shown by the upper panel of Figure 4.22, 12 outliers are detected by the log-

logistic model (with respect to the the log-normal model). The most clear outliers

are observations 886, 1015, 1179, 1231 and 1470 (only the last two are non-censored

records), for which the posterior median of the λi’s are all below 0.16 (the reference

value is 0.4). In particular, the follow-up times of patients 1015, 1179 and 1470

are substantially smaller than for all other children with normal birth weight (more

than 2.5 kg) and no impairments. The same occurs for patients 886 and 1231 when

considering those children that had no impairments but a low birth weight. A dif-
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ferent picture is provided by the RMW model with exponential(1) mixing (see lower

panels in Figures 4.21 and 4.22). In such a case, there is more variability between the

posterior distributions of the λi’s (especially within the non-censored observations).

Thus, there is evidence of unobserved heterogeneity in the sample, which provides

strong support for the mixture, but there are no particular single observations that

could be considered clear outliers (with respect to the Weibull model). Of course,

several outliers would be detected if ignoring the effect of censoring on the mixing

parameters.

4.5 Concluding remarks

The three datasets presented here are quite representative of standard survival ap-

plications. Nonetheless, very distinct features for these datasets were uncovered by

the analysis. Overall, the methodology introduced in Chapter 2 was shown to have

a better performance than the exponential, Weibull and log-normal models (with no

mixture). In general, whether or not the frailty terms are incorporated in the model

is critical for the inference on β. However, posterior inference on this parameter is

relatively robust to the adoption of a particular mixing distribution. In addition, all

the priors employed for the analysis induced similar covariate effects. In contrast,

inference on θ (if unknown) was slightly more affected by changes in the prior. Nev-

ertheless, this has no major practical consequences (as θ can be often treated as a

nuisance parameter).

For the VA lung cancer data (n = 137, 6.6% of censoring and 5 covariates, two

of which are categorical with more than 2 levels, leading to a total of 8 effects), the

analysis reports a mild unobserved heterogeneity which is mostly linked to few out-

lying observations. In this case, all mixtures suggested a non-monotone individual

hazard rate. In contrast, for the AA bone marrow transplant application (n = 101,

50.5% of censoring and 1 covariate), mixtures of exponential distributions (which

induce a constant underlying hazard rate) were preferred. These models suggested

an important amount of unobserved heterogeneity but no particularly anomalous

observations are detected. This is reasonable given that only the treatment type

was used as predictor and its effect appears to be non significative. Finally, for the

cerebral palsy data (n = 1549, 84.4% of censoring and 2 covariates, with 4 effects),

both mixture families revealed a non-monotone underlying hazard function but dif-

ferent scenarios in terms of unobserved heterogeneity (with respect to the underlying

model). Whereas mixtures of Weibull distributions reported a strong unobserved

heterogeneity and no outliers, mixtures of log-normal distributions found strong
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evidence of outliers. The latter highlights that the definition of unobserved hetero-

geneity and outliers is relative to an underlying or base model (which is different

for both families of models). Nonetheless, in this application, the choice within one

of these mixture families has no practical consequences for the inference about β

(which is frequently the parameter of interest).
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Chapter 5

Survival modelling of university

outcomes

“Education is the most powerful weapon which you can use to change

the world”.

Nelson Mandela

5.1 Motivation

During the last decades, the coverage of the higher education system had a sig-

nificant growth in Chile. According to the Chilean Ministry of Education1, the

total admission evolved from around 165 thousand students at the beginning of the

80’s to more than 1 million students enrolled in 2012. Nowadays, the access to

higher education is not restricted to an elite group. Among others, this is a result

of a bigger role for studies as a tool for social mobility, the increase of the num-

ber of scholarships, a more accessible system of student loans and the opening of

new institutions. This change of scenario entails new problems. One of them is an

alarming amount of university dropouts. Currently, more than half of the students

enrolled at higher education institutions does not complete their degree. This figure

includes students expelled from the university for academic or disciplinary reasons

and those who voluntarily resigned (the term “voluntary” is understood as the drop

out that is not controlled by the university but is not necessarily the student’s will;

e.g. a student can be forced to dropout because of financial hardship). Another

issue is the high frequency of late graduations, in which the student takes longer

1http://www.mineduc.cl/
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than the official duration of the programme in order to obtain the degree. Unlike

the UK’s and other educational systems, Chilean universities allow more flexibility.

Students can repeat failed modules and/or have a reduced academic load in some

semesters. These issues involve a waste of time and resources from the perspective

of the students, their families, universities and the society.

There is a large literature devoted to university dropout. It includes con-

ceptual models based, among others, on psychological, economic and sociological

theories [e.g. Tinto, 1975; Bean, 1980]. Here, instead, the focus is on empirical

models. In this context, a large share of the previous research treats the dropout

as a dichotomous problem, neglecting the temporal component. In other words,

they focus on whether or not a student has dropped out from university at a fixed

time (e.g. dropout by the second year of enrollment). Ignoring when the dropout

occurs is a serious waste of information [Willett and Singer, 1991]. Potential high

risk periods will not be identified and no distinction between early and late dropout

will be made. An alternative is to use (standard) survival models for the time to

dropout [as in Murtaugh et al., 1999]. This approach labels graduated students

as right censored observations, which is a major pitfall. Whilst students are en-

rolled at university, dropout is a possibility. However, dropout cannot occur after

graduation (the time to dropout is “infinite”), contradicting the idea of censoring.

Instead, graduation must be considered as a competing event and incorporated into

the survival model.

This study aims to identify determinants of the length of stay at university

and its associated academic outcome for undergraduate students of the Pontificia

Universidad Católica de Chile (PUC). The PUC is one of the most prestigious

universities in Chile and it is the second best university in Latin America2. Despite

having one of the lowest dropout rates in the county (far below the national level),

dropout is still a significant issue for some degrees of the PUC. The output of this

analysis aims to help university authorities in order to have a better understanding

of the current situation at the university. Hopefully, it will also inspire policies

mitigating late graduations and dropouts.

A competing risks model is proposed for the length of stay at university,

where the possible events are defined as graduation, voluntary dropout and invol-

untary dropout. These are defined as the final academic situation recorded by the

university at the end of 2011. Students that have not experienced any of these events

by the end of 2011 are labeled as right censored observations (censoring is assumed

to be non-informative). In Chile, the academic year is structured in semesters

2According to QS Ranking 2013. http://www.topuniversities.com/
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(March-July and August-December). Survival times are defined as the length of

enrollment at university and measured in semesters from admission (which means

they are inherently discrete). It is an advantage of this approach that it deals jointly

with graduations and dropouts. This analysis does not account for all the features

of this complex dataset yet it provides a better understanding of the problem and a

starting point for future research. This Chapter is organized as follows. The main

features of the PUC dataset are summarized in Section 5.2, showing high levels of

heterogeneity between programmes. This diversity is in terms of academic outcomes

and the population composition of each degree programme. Section 5.3 introduces

competing risk models with focus in the context of university outcomes. This model

can be estimated by means of a multinomial logistic regression. It explained how

the Bayesian setting is particularly helpful in this application where maximum like-

lihood inference for the suggested model is precluded. In addition, Section 5.4.2

introduces a Gibbs sampling algorithm that exploits a hierarchical representation of

the multinomial logistic likelihood [based on Holmes and Held, 2006; Polson et al.,

2013]. The last part in Section 5.4.2 relates to the critical issue of covariate selection.

The output of the analysis is summarized in Section 5.5, focusing on some of the sci-

ence programmes which are more affected by dropout and late graduations. Finally,

Section 5.6 compiles the main findings of the study, discussing possible limitations

and future extensions.

5.2 The PUC dataset

The PUC provided anonymized information about 34,543 students enrolled via the

ordinary admission process during the period 2000-2011. This admission process se-

lects students according to their high school marks and the results of a standardized

university selection test, which is applied at a national level. Only the curriculums

that existed during the whole 2000-2011 period are included. The following inclusion

criteria are defined for the analysis, which will only consider students who

• were enrolled for at least 1 semester (as the dropout produced right after

enrollment might have a different nature),

• are enrolled in a single programme (students doing parallel degrees usually

need more time to graduate and have less risk of dropout),

• do not have validated modules previously approved from other degree pro-

gramme (in which case the time to graduation can be significantly reduced),
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• were alive by the end of 2011 (0.1% of the students had died by then),

• had full covariates’ information (a small number of missing values was recorded,

missingness at random is assumed).

Overall, 78.7% of the students satisfied these criteria. Table 5.1 breaks this number

down by program. Throughout, the analysis will only consider this subset of the

original data.

By the end of 2011, 41.9% of the students were still enrolled (right cen-

sored observations), 37.2% graduated, 6.6% were expelled (involuntary dropout,

which is mostly related to poor academic performances), 10.7% withdrew (volun-

tary dropout), and 3.7% abandoned the university without an official withdrawal.

Following university’s guidance the latter group is classified as voluntary dropout.

The large percentage of censoring is mostly linked to students from later years of

entry, who were not yet able to graduate by the end of 2011. From those who are

not currently enrolled, only an overall 65% graduated. Figure 5.1 shows that the

performance of former students is not homogenous across programmes. In terms

of total dropout, Medicine (8.2%) has the lowest rate and the highest rates are for

Chemistry (79.4%) and Mathematics and Statistics (79.3%). The highest rates of

involuntary dropout belong to Agronomy and Forestry Engineering (28.9%) and

Mathematics and Statistics (26.2%). Chemistry (56.5%) and Astronomy (56.0%)

present the largest rates of voluntary dropout. Dropouts are mostly observed dur-

ing the first semesters of enrollment. In contrast, graduation times are concentrated

on large values, typically above the official length of the programme (the duration

of different programmes varies between 8 and 14 semesters, with a typical value of

10 semesters). Figure 5.2 displays the distribution of graduated students in terms

of timely graduation. Strong levels of heterogeneity between programmes are ex-

hibited. In fact, the proportion of students that graduated on time varies from

88% (Medicine and Education Elementary School in Villarrica Campus) to 12%

(Mathematics and Statistics) and 11% (Education Elementary School).

The covariates listed in Table 5.2 were recorded at enrollment time. They

include demographic, socioeconomic and variables related to the admission pro-

cess. According to these covariates, substantial differences are observed between

programmes (see Figures E.1 to E.8 in Appendix E). In terms of demographic

factors, some degrees concentrate a high percentage of female students (e.g. all

education-related programs, Nursing). In contrast, most of the Engineering stu-

dents are males. The proportion of students who live outside the Metropolitan

area is more stable across programmes (of course, a particularly high percentage
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is observed in the Education for Elementary School degree taught in the Villar-

rica campus, which is located in the south of Chile). Strong levels of heterogeneity

are also detected for the socioeconomic characterization of the students. Chilean

schools are classified according to their funding system as public (fully funded by

the government), subsidized private (the state covers part of the tuition fees) and

private (no funding aid). This classification can be considered as a proxy for the

socioeconomic situation of the student (low, middle and upper class, respectively).

The educational level of the parents is usually a good indicator of socioeconomic

status as well. In the PUC, some degrees have a very low percentage of students

that graduated from public schools (e.g. Business Administration and Economics,

Design) and others have a high percentage of students with parents without a higher

degree (e.g. Education for Elementary School in Villarrica Campus, Chemistry and

Pharmacy). In addition, a few programmes had low rate of students who receive a

scholarship or have a student loan (e.g. Business Administration and Economics,

Architecture). Finally, “top” programmes (e.g. Medicine, Engineering, Law, Busi-

ness Administration and Economics) only admit students with the highest selection

scores. For instance, for the admission process 2011, the lowest score selected in the

Arts programme was 603.75 but Medicine did not enroll any students with score

below 787.75 (the minimum score required when applying to the PUC is 600, except

for some education-related programmes where exceptions apply). In the same spirit,

these highly selective programmes only enrolled students that applied to it as a first

preference.

This substantial heterogeneity (in terms of outcomes and covariates) pre-

cludes a meaningful comparison of academic outcomes across programmes. Thus,

the analysis will be carried out separately for each degree.

5.3 Discrete time competing risks models

Standard survival models only allow for a unique event of interest. Occurrences of

alternative events are often recorded as censored observations. For instance, in the

context of university outcomes, graduated students might be recorded as censored

observations when the event of interest is dropout [as in Murtaugh et al., 1999].

This is not appropriate. Clearly, those students who graduated are no longer able

to dropout (from the same degree). Alternatively, competing risks models can be

used when more than one type of event can occur and there is a reason to believe

they are a result of different mechanisms. Competing risks models incorporate

simultaneously both the survival time and the type of event (or cause). There is
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Table 5.1: PUC dataset. Amount of students satisfying the inclusion criteria used
in this study broken down by program.

Program No. students % students

Acting 362 80.1
Agronomy and Forestry Engineering 2,466 85.2
Architecture 841 69.9
Art 688 76.3
Astronomy 295 88.3
Biochemistry 331 85.5
Biology 791 83.9
Business Administration and Economics 2,027 72.7
Chemistry 379 82.0
Chemistry and Pharmacy 687 85.6
Civil Construction 1,930 86.0
Design 651 65.2
Education, elementary school 1,277 81.4
Education, elementary school (Villarrica campus) 301 80.5
Education, preschool 949 83.2
Engineering 3,522 69.3
Geography 534 84.5
History 552 76.6
Journalism and Media Studies 876 76.2
Law 2,303 84.2
Literature (Spanish and English) 911 80.8
Mathematics and Statistics 598 78.0
Medicine 972 89.8
Music 161 74.5
Nursing 886 78.6
Physics 237 85.9
Psychology 801 75.9
Social Work 440 87.5
Sociology 421 74.0

Total 27,189 78.7
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Figure 5.1: PUC dataset. Distribution of former students according to final aca-
demic situation. From darkest to lightest, colored areas represent the proportion of
students that: graduated, involuntary dropout and voluntary dropout, respectively.
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Figure 5.2: PUC dataset. Distribution of graduated students according to opportune
graduation (with respect to the official duration of the programme). The lighter area
represents the proportion of students with timely graduation.
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Table 5.2: PUC dataset. Available covariates (recorded at enrollment). Options for
categorical variables in parentheses.
Demographic factors

Sex (female, male)
Region of residence (Metropolitan area, others)

Socioeconomic factors

Parents education (at least one with a technical or university degree, no degrees)
High school type (private, subsidized private, public)
Funding (scholarship and loan, loan only, scholarship only, none)

Admission-related factors

Selection score (numerical)
Application preference (first, others)
Gap between high school graduation and admission to PUC (1 year or more, none)

a large literature about this topic [e.g. Crowder, 2001; Pintilie, 2006; Beyersmann

et al., 2012]. However, most of it focuses on continuous survival times. Instead, in

the context of university outcomes (where survival times are usually measured in

numbers of academic periods), a discrete time approach is more appropriate.

In a discrete-time competing risks setting, the variable of interest is (R, T ),

where R ∈ {1, . . . ,R} denotes the type (or reason) for the observed event and

T ∈ {1, 2, . . .} is the survival time. Analogously to the single-event case, a model can

be specified via the sub-distribution or sub-hazard functions which are respectively

given by

F(R,T )(r, t) = P (R = r, T ≤ t), (5.1)

h(R,T )(r, t) =
P (R = r, T = t)

P (T ≥ t)
. (5.2)

For ease of notation, the sub-index (R, T ) is omitted onwards. The sub-distribution

function (also called cumulative incidence function) represents the proportion of in-

dividuals for which an event type r has been observed by time t. On the other hand,

h(r, t) is the conditional probability of observing an event of type r during period

t given that no event (nor censoring) has happened before. The total hazard rate

for all causes is defined as h(t) =
∑R

r=1 h(r, t). In the discrete case, the maximum

likelihood non-parametric estimator of h(r, t) corresponds to the ratio between the

number events of type r observed during period t and the total number of indi-

viduals who were at risk at time t [Singer and Willett, 1993; Crowder, 2001]. The

latter is a discrete adaptation of the Kaplan-Meier estimator [Kaplan and Meier,

1958]. Although the sub-hazard rate can be easily estimated from the data, its

93



0 5 10 15 20

0.
0

0.
1

0.
2

0.
3

Graduation

Semester

E
m

pi
ric

al
 h

az
ar

d 
ra

te

0 5 10 15 20

0.
0

0.
1

0.
2

0.
3

Involuntary Dropout

Semester

E
m

pi
ric

al
 h

az
ar

d 
ra

te

0 5 10 15 20

0.
0

0.
1

0.
2

0.
3

Voluntary Dropout

Semester

E
m

pi
ric

al
 h

az
ar

d 
ra

te

Figure 5.3: PUC dataset. Non-parametric estimation of cause-specific hazard rates
for Chemistry students.

interpretation is not trivial. Alternatively, the cumulative incidence function is of-

ten preferred when interpreting results. It terms of sub-hazard rates, it adopts the

following recursion [Kalbfleisch and Prentice, 2002]

F (r, 1) = h(r, 1), (5.3)

F (r, t) = h(r, t)[1− F (t− 1)] + F (r, t− 1), t > 1. (5.4)

In some contexts, a simple (cause-specific) parametric model can be assigned

to the survival times. For example, a geometric model is the discrete-time analogue

for exponential survival times [see example 5.1 in Crowder, 2001]. However, such

straightforward parametric models are not suitable for analyzing the PUC dataset.

Overall, for these data, the cause-specific hazard rates have a rather erratic be-

haviour over time. Figure 5.3 illustrates this for Chemistry students. In particular,

no graduations are observed during the firsts semesters of enrollment, inducing a

zero graduation hazard at those times. In fact, graduations only start about a year

before the official duration of the programme (10 semesters). In addition, during

the first years of enrollment, the hazard of voluntary dropout has spikes located at

the end of each academic year (even semesters). Therefore, more flexible models are

required in order to accommodate these hazard paths.

5.3.1 Proportional Odds model for competing risks data

Cox [1972] proposed a Proportional Odds (PO) model for discrete times and single

cause of failure. It is a discrete variation of the well-known Cox PH models, proposed

in the same seminal paper. Let xi ∈ Rk be a vector containing the value of k

covariates associated to individual i and β = (β1, . . . , βk)
′ ∈ Rk a vector of regression
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parameters. The Cox PO model is given by

log

(
h(t|δt, β;xi)

1− h(t|δt, β;xi)

)
= log

(
h(t)

1− h(t)

)
+ x′iβ ≡ δt + x′iβ, i = 1, . . . , n, (5.5)

where {δ1, δ2, . . .} respectively represent the baseline log-odds at times {1, 2, . . .} and

t = 1, . . . , ti. The model in (5.5) can be estimated in most statistical software by

means of a binary logistic regression [Singer and Willett, 1993]. For this purpose, the

data has to be transformed into a person-period format. Define Yit as 1 if the event

is observed at time t for the individual i; 0 otherwise. In the person-period format,

each individual is represented by as many rows as periods in which he/she was

at risk. To illustrate, Table 5.4 shows the transformed version of the fictional data

displayed in Table 5.3. The period-indicators δt are estimated by introducing binary

variables to the set of covariates. One basic assumption of the logistic regression is

the independence between observations. However, in the person-period data, there is

a clear association between observations linked to the same individual. Nevertheless,

as shown in Singer and Willett [1993], the likelihood related to the survival process

coincides with the likelihood of the logistic regression model for which the rows

in the person-period data are treated as independent Bernoulli trials. In fact, the

contribution to the likelihood of the individual i (data collection for this individual

stops if the event is observed or right censoring is recorded) is given by

Li = P (Yiti = yiti , · · · , Yi1 = yi1) = h(ti)
yiti

ti∏
s=1

[1− h(s)]1−yis , (5.6)

which is derived by decomposing P (Yiti = yiti , · · · , Yi1 = yi1) as a sequential product

of conditional probabilities (covariates are omitted for easy of notation). Equiva-

lently, defining ci = 0 if the survival time is observed (i.e. Yiti = 1, Yi(ti−1) =

0, . . . , Yi1 = 0) and ci = 1 if right censoring occurs (with ti as the terminal time),

we can express the likelihood contribution as

Li =

[
h(ti)

1− h(ti)

]1−ci
S(ti), S(ti) =

ti∏
s=1

[1− h(s)], (5.7)

which is the same expression that would be obtained in a survival setting.

The model in (5.5) can be extended in order to accommodate R possible

events. Let B =
{
β(1), . . . , β(R)

}
be a collection of cause-specific regression param-

eters (each of them defined on Rk). Define δ = {δ11, . . . , δR1, δ12, . . . , δR2, . . .}. A
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Table 5.3: Fictional data. Example of a standard competing risks dataset (covariates
are omitted for simplicity).

ID Follow-up time Event
1 8 Observed
2 3 Censored

Table 5.4: Fictional data. Person-period format for the data shown in Table 5.3.
ID Period Outcome

1 1 0
1 2 0
1 3 0
1 4 0
1 5 0
1 6 0
1 7 0
1 8 1
2 1 0
2 2 0
2 3 0

multinomial logistic regression can be defined as

log

(
h(r, t|δ,B;xi)

h(0, t|δ,B;xi)

)
= δrt+x

′
iβ(r), r = 1, . . . ,R; t = 1, . . . , ti; i = 1, . . . , n, (5.8)

where

h(0, t|δ,B;xi) = 1−
R∑
r=1

h(r, t|δ,B;xi) (5.9)

is the hazard of no event being observed at time t. The latter is equivalent to

h(r, t|δ,B;xi) =
eδrt+x

′
iβ(r)

1 +
∑R

s=1 e
δst+x′iβ(s)

. (5.10)

This notation implies that the same predictors are used for each cause-specific

component (but this is easily generalised). In (5.8), covariates have an effect that

is homogeneous over time. Hence, changes in the covariates influence both the

marginal probability of the event (P (R = r)) and the speed at which the event

occurs. In fact, positive values of the cause-specific coefficients indicate that (at

any time point) the hazard of the corresponding event increases with unit changes

in the associated covariates. In the context of university outcomes, (5.8) has been

used by Scott and Kennedy [2005], Arias Ortis and Dehon [2011] and Clerici et al.

[2014], among others. Nonetheless, its use has some drawbacks. First, it involves

a large number of parameters. In fact, if T is the maximum of the recorded sur-
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vival/censoring times, there are R × T different δrt’s. Scott and Kennedy [2005]

overcome this by assigning a unique indicator δrt0 to the period [t0,∞) (for fixed

t0). The choice of this threshold is rather arbitrary but it is reasonable to choose a

value of t0 such that most of the individuals already experienced one of the events by

time t0. Second, maximum likelihood inference for the multinomial logistic regres-

sion is precluded when the outcomes are (quasi) complete separated with respect to

the predictors, i.e. a subset of the possible outcomes are not (or rarely) observed

for some covariate configurations [Albert and Anderson, 1984]. In other words, the

predictors can (almost) perfectly predict the outcomes. In the case of (5.8), these

predictors include binary variables that are related to the period indicators δrt’s.

Therefore, (quasi) complete separation will occur if the event types are (almost)

entirely defined by the survival times. This is a major issue in the context of uni-

versity outcomes. For example, no graduations can be observed during the second

semester of enrollment. Therefore, the likelihood function will be maximized when

the cause-specific hazard related to graduations (defined in (5.10)) is equal to zero

at time t = 2. Thus, the “best” value of the corresponding period-indicator is −∞.

In order to overcome these problems, Singer and Willett [2003] suggests poly-

nomial baseline odds when modelling single outcomes. This can be easily extended

to the competing risks case as

log

(
h(r, t|δ∗, B;xi)

h(0, t|δ∗, B;xi)

)
= δ∗r0+δ∗r1(t−1)+δ∗r2(t−1)2+· · ·+δ∗rP(t−1)P+x′iβ(r), (5.11)

where δ∗ = {δ10, . . . , δR0, . . . , δ1P , . . . , δRP} and P denotes de degree of the polyno-

mial. Defining the polynomial in terms of t− 1 facilitates the interpretation of the

intercept (δ∗r0 represents the baseline cause-specific hazard at time t = 1). This op-

tion is less flexible than (5.8), but it is not affected by a separation of the outcomes

with respect to the survival times. Nevertheless, its use is only attractive when a

low-degree polynomial is good enough to represent the baseline hazard odds. This

is not the case for the PUC dataset, where cause-specific hazard rates have a rather

complicated behaviour (e.g. even semesters exhibit spikes on the hazard of voluntary

dropouts). In practice, not even large values of P would provide a good fit.

Here, the model in (5.8) is adopted for the analysis of the PUC dataset, using

Bayesian methods to handle separation. We define the last period as [t0,∞) [for

fixed t0, as in Scott and Kennedy, 2005], and period-indicators for time t = 1 are

defined as cause-specific intercepts.
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5.4 Bayesian PO competing risks regression

5.4.1 Prior specification

An alternative solution to the separation issue lies in the Bayesian paradigm, where

an appropriate prior distribution for the period-indicators δrt’s can deal with a

(quasi) complete separation of the outcomes [Gelman et al., 2008], allowing the

extraction of sensible information from the data. The Jeffreys prior can be used for

this purpose [Firth, 1993]. This is attractive when reliable prior information is not

available. In a binary logistic case, the Jeffreys prior is proper and its marginals

are symmetric with respect to the origin [Ibrahim and Laud, 1991; Poirier, 1994].

These properties have no easy generalization for the multinomial case, in which case

an expression for the Jeffreys prior is very involved [Poirier, 1994]. Instead, Gelman

et al. [2008] suggested weakly informative independent Cauchy priors for a re-scaled

version of the regression coefficients. For this purpose, the binary variables linked

to the period-indicators must be scaled to have mean zero, keeping the difference

of 1 unit between their lower and upper values. When the outcome is binary, these

Cauchy (as well as any Student t) priors have the same shape as the Jeffreys prior

(symmetric with respect to the origin) but produce fatter tails [Chen et al., 2008].

The prior in Gelman et al. [2008] assumes that the regression coefficients fall within

a restricted range. For the model in (5.8), this prior assigns small probabilities to

large differences between the period-indicators δrt’s associated to the same event.

Such a prior is convenient when the separation of the outcomes is related to a

reduced sample size (where increasing the sample size will eventually eliminate the

separation issue). The latter intuition is not applicable for the PUC dataset. For

these data, the separation arises from structural restrictions (e.g. it is not possible

to complete graduation requirements during the first periods of enrollment). Hence,

large differences are expected for the δrt’s associated to the same event. In particular,

it is intuitive that δrt will have a large negative value in those periods where events

type r are very unlikely to be observed (inducing a nearly zero cause-specific hazard

rate). Define δr = (δr1, . . . , δrt0)′. The following prior is suggested

δr ∼ Cauchyt0(0, ω2It0), r = 1, . . . ,R (5.12)

where It0 denotes the identity matrix of dimension t0. Equivalently,

π(δr|Λr = λr) ∼ Normalt0(0, λ−1
r ω2It0), Λr ∼ Gamma(1/2, 1/2), r = 1, . . . ,R.

(5.13)
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Figure 5.4: PUC dataset. For Chemistry students: estimated hazard rate of each
competing event with respect to no event using the proportional odds model in (5.8)
under δr ∼ Cauchyt0(0, ω2It0), r = 1, 2, 3. No covariates in use (model with only
period-indicators).

This prior assigns non-negligible probability to large negative values of the δrt’s.

Of course, an informative prior could also be used. However, it requires non-trivial

prior elicitation (as it is not entirely clear a priori which δrt’s are affected by the

separation issue, i.e. at which point do graduations start and where the dropout

stops). Focusing on Chemistry students and using different values of ω2 for the

prior in (5.12), Figure 5.4 shows the induced trajectory for the posterior median of

the log-hazard ratio for each event type with respect to no event being observed.

For simplicity, covariates are excluded from these regressions. Choosing a value of

ω2 is not critical for those periods where the separation is not a problem (as the

data is very informative). In contrast, ω2 has a strong effect in those semesters

where the separation occurs. Tight priors [as the ones in Gelman et al., 2008] are

too conservative and produce non-intuitive results. Hence, large values of ω2 seem

more appropriate. How large is arbitrary but, after a certain threshold, its not too

relevant in the hazard ratio scale (as the hazard ratio will be practically zero). For

the analysis of the PUC dataset, ω2 = 100 is adopted.

The Bayesian model is completed using independent g-priors [Zellner, 1986]

for the cause-specific vectors of covariates coefficients, i.e.

β(r) ∼ Normalk(0k, gr(X
′X)−1), r = 1, . . . ,R, (5.14)

where 0k denotes a null vector of dimension k. This is a standard choice in applied

Bayesian analysis, especially when there is covariate uncertainty [e.g. Ley and Steel,

2009; Hanson et al., 2014]. This prior is invariant to scale transformations of the
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covariates. Whereas the default version of this prior assumes {g1, . . . , gR} as fixed

quantities, this can have serious consequences in the posterior inference [Liang et al.,

2008]. Some deterministic choices for the gr’s are discussed in Fernández et al. [2001]

and Liang et al. [2008]. Instead, in the context of a binary logistic regression, Hanson

et al. [2014] opts for eliciting gr using averaged prior information (across different

covariates configurations). Alternatively, a hyper-prior can be assigned to each gr,

inducing a hierarchical prior structure [Liang et al., 2008]. A review of several

choices for this hyper-prior is provided in Ley and Steel [2012]. Based on theoretical

properties and a simulation study (in a linear regression setting) they recommended

the use of a benchmark Beta prior for which

gr
1 + gr

∼ Beta(b1, b2), or equivalently (5.15)

π(gr) =
Γ(b1 + b2)

Γ(b1)Γ(b2)
gb1−1
r (1 + gr)

−(b1+b2) (5.16)

where b1 = 0.01 max{n, k2} and b2 = 0.01. The latter hyper-g prior is adopted for

the regression coefficients throughout the analysis of the PUC dataset.

5.4.2 Markov chain Monte Carlo implementation

Fitting a multinomial (or binary) logistic regression is not straightforward. There

is no conjugate prior and sampling from the posterior distribution of the regression

coefficients is cumbersome [Holmes and Held, 2006]. The Bayesian literature nor-

mally opts for alternative representations of the likelihood function for this model.

For instance, Forster [2010] exploits the relationship between a multinomial logis-

tic regression and a Poisson generalized linear model. Following the idea in Albert

and Chib [1993], Holmes and Held [2006] adopt a hierarchical structure where the

logistic link is represented as a scale mixture of normals (in the same fashion as the

SMLN representation of the log-logistic model introduced in Chapter 3). Alterna-

tively, Frühwirth-Schnatter and Frühwirth [2010] approximated the logistic link via

a finite mixture of normal distributions, suggesting that 10 components provides a

good approximation. Here, the methodology proposed in Polson et al. [2013] is im-

plemented. As in Holmes and Held [2006] and Frühwirth-Schnatter and Frühwirth

[2010], this employs a hierarchical representation of the multinomial logistic likeli-

hood. For a binary logistic model with observations {yit : i = 1, . . . , n, t = 1, . . . , ti}
(yit = 1 if the event is observed at time t for subject i, yit = 0 otherwise), the key
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result in Polson et al. [2013] is that

[ ez
′
iβ
∗
]yit

ez
′
iβ
∗

+ 1
∝ eκitz

′
iβ
∗
∫ ∞

0
exp{−ηit(z′iβ∗)2/2}fPG(ηit|1, 0) dηit, (5.17)

where zi is a vector of covariates associated with individual i, β∗ is a vector of

regression coefficients, κit = yit−1/2 and fPG(·|1, 0) denotes a Polya-Gamma density

with parameters 1 and 0, which has Laplace transform Eη( e
−ηs) =cosh−1(

√
s/2).

In terms of the model in (5.5), zi includes xi and the binary indicators linked to the

δt’s. Thus, β∗ = (δ1, . . . , δt0 , β
′)′.

The result in (5.17) can be used to construct a Gibbs sampling scheme for

the multinomial logistic model along the lines of Holmes and Held [2006]. Now

let 0, 1, . . . ,R be the possible values for observations yit associated with regression

coefficients β∗(1), . . . , β
∗
(R). Given β∗(1), . . . , β

∗
(r−1), β

∗
(r+1), . . . , β

∗
(R), the “conditional”

likelihood function for β∗(r) is proportional to

n∏
i=1

ti∏
t=1

[
exp{z′iβ∗(r) − Cir}

]I(yit=r)
1 + exp{z′iβ∗(r) − Cir}

, where Cir = log

1 +
∑
r∗ 6=r

exp{z′iβ∗(r∗)}

 .

(5.18)

Assume β∗(r) ∼ Normalt0+k (µr,Σr), r = 1, . . . ,R and define B∗ =
{
β∗(1), . . . , β

∗
(R)

}
.

Using (5.17) and (5.18), a Gibbs sampler for the multinomial logistic model is defined

through the following full conditionals for r = 1, . . . ,R

β∗(r)|ηr, β
∗
(1), . . . , β

∗
(r−1), β

∗
(r+1), . . . , β

∗
(R), y11 . . . , yntn ∼ Normalt0+k(mr, Vr),(5.19)

ηitr|B∗ ∼ PG(1, z′iβ
∗
(r) − Cir), t = 1, . . . , ti, i = 1, . . . , n, (5.20)

defining Z = (z1 ⊗ ι′t1 , . . . , zn ⊗ ι
′
tn)′, ηr = (η11r, . . . , ηntnr)

′, Dr = diag{ηr}, Vr =

(Z ′DrZ + Σ−1
r )−1, mr = Vr(Z

′κr + Σ−1
r µr), κr = (κ11r, . . . , κntnr)

′ and κitr =

I{yit=r} − 1/2 + ηitrCir (where IA = 1 if A is true, 0 otherwise). The previous

algorithm applies to (5.8) using β∗(r) = (δ′r, β
′
(r))
′ and defining zi in terms of binary

variables related to the δrt’s and the covariates xi. Extra steps are required to

accommodate the adopted prior, which is a product of independent multivariate

Cauchy and hyper-g prior components. Both components can be represented as a

scale mixture of normal distributions (see (5.13) and (5.14)). Hence, conditional

on Λ1, . . . ,ΛR, g1, . . . , gR, the sampler above applies. In addition, at each iteration,
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Λr’s and gr’s are updated using the full conditionals.

Λr|δr ∼ Gamma

(
t0 + 1

2
,
δ′rδr
2ω2

)
, r = 1, . . . ,R, (5.21)

gr|βr ∼ g−k/2r exp

{
−β
′
rX
′Xβr

2gr

}
π(gr), r = 1, . . . ,R. (5.22)

An adaptive Metropolis-Hastings step [see Section 3 in Roberts and Rosenthal, 2009]

is implemented for (5.22).

5.4.3 Bayesian variable selection and model averaging

A key aspect of the analysis is to select the relevant covariates to be included in the

model. A popular approach is to choose the model with the best performance (in

terms of DIC, PsML, BF or some other criteria). However, in a Bayesian setting,

a natural way to deal with model uncertainty is to use the posterior probabilities

associated to each model. Denote by k∗ the number of available covariates (k∗ and

the number of regression coefficients k do not necessarily match because categorical

predictors with more than two levels introduce more than one regression coefficient).

Let M1, . . . ,MM be the collection of all M = 2k
∗

competing models (if a discrete

covariate is included, all its levels are as well incorporated in the model). Given

observed times Tobs and event types Robs, posterior probabilities for these models

are defined via Bayes theorem as

π(Mm|Tobs, Robs) =
L(Tobs, Robs|Mm)π(Mm)∑M

m∗=1 L(Tobs, Robs|Mm∗)π(Mm∗)
, (5.23)

where L(Tobs, Robs|Mm), m = 1, . . . ,M are the marginal likelihoods related to each

model (as in (1.4), integrating out model parameters) and π(M1), . . . , π(MM) rep-

resent prior beliefs about the model space with
∑M

m=1 π(Mm) = 1. These marginal

likelihoods can be estimated using the bridge sampler described in Subsection 1.2.4.

A uniform prior for the model space is defined as

π(Mm) =
1

M
, m = 1, . . . ,M. (5.24)

Alternatively, a prior for the model space can be specified through the covariate-

inclusion indicators

γj =

{
1, if covariate j is included;

0, otherwise.
(5.25)
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for j = 1, . . . , k∗. Independent Bernoulli(θ) priors can be assigned to the γj ’s. For

θ = 1/2, the induced prior coincides with the uniform prior in (5.24). As discussed

in Ley and Steel [2009], assigning an hyper prior for θ provides more flexibility and

reduces the influence of the prior on posterior inference. A Beta(a1, a2) prior for

θ leads to the so-called Binomial-Beta prior on the number of included covariates

C =
∑k∗

j=1 γj [Bernardo and Smith, 2000, p.117]. If a1 = a2 = 1 (uniform prior for

θ), the latter induces a uniform prior for C, i.e.

π(C = c) =
1

k∗ + 1
, c = 0, . . . , k∗. (5.26)

If a single model concentrates a particularly high posterior probability, that

model could be chosen. Otherwise, if the model posterior probabilities are not con-

centrated but similar amounts of non-negligible probability are assigned to several

models, Bayesian Model Averaging (BMA) provides an attractive solution. Good

surveys about this topic are provided in Hoeting et al. [1999] and Chipman et al.

[2001]. Instead of selecting a single model, BMA defines a model via a mixture of all

M possible models, where mixture weights are given by the posterior probabilities of

each model. Let ∆ be a quantity of interest (e.g. one of the regression coefficients).

In BMA, the posterior distribution of ∆ is given by

P (∆|Tobs, Robs) =
M∑
m=1

Pm(∆|Tobs, Robs)π(Mm|Tobs, Robs), (5.27)

where Pm(∆|Tobs, Robs) denotes the posterior distribution of ∆ for a given model

Mm. In particular, the posterior distribution of each βrj is given by a point mass at

zero (with mass equal to the probability of not including the j-th covariate) and a

continuous component (defined as a mixture over the posterior distributions of βrj

given each model where the corresponding covariate is included). BMA constitutes

the formal Bayesian treatment of model uncertainty and leads to a better predictive

performance than choosing a unique model [Raftery et al., 1997; Fernández et al.,

2001].

5.5 Empirical results for the PUC data

The PUC dataset is analyzed using the model in (5.8) and the algorithm described in

Section 5.4.2. As indicated in Section 5.2, the analysis is carried out independently

for each programme, focusing on some of the science programmes for which the

rates of dropout and/or late graduations are normally higher. For all programmes, 8
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covariates are available (see Table 5.2), inducing 28 = 256 possible models (using the

same covariates for each cause-specific hazard). Selection scores cannot be directly

compared across admission years (as the test varies from year to year). Hence,

in order to obtain more meaningful results, the selection score is replaced by an

indicator of being on the top 10% of the enrolled students (for each program and

admission year). The following regression coefficients are defined for each cause

(the sub-index r is omitted for ease of notation): β1 (sex: female), β2 (region:

metropolitan area), β3 (parents’ education: with degree), β4 (high school: private),

β5 (high school: subsidized private), β6 (funding: scholarship only), β7 (funding:

scholarship and loan), β8 (funding: loan only), β9 (ranking: 10% superior), β10

(application preference: first) and β11 (gap after high school graduation: yes). All

models contain an intercept and t0 − 1 = 15 period indicators. For all models, the

total number of iterations is 200,000. In the following, results are presented on the

basis of 1,000 draws (after a burn-in of 50% of the initial iterations and thinning).

Trace plots and the usual convergence criteria strongly suggest a good mixing and

the convergence of the chains (not reported).

Figure 5.5 displays the trajectory of the cause-specific hazard rates for all

possible 256 models, corresponding to the reference case (where xi = 0ιk). Dif-

ferences between these estimations are mostly related to changes in the intercept,

which is obviously affected by the removal or addition of covariates. In particular,

the first row of panels in Figure 5.5 roughly recovers the same patterns as in Figure

5.3, suggesting that these estimates are dominated by the data and not by the prior.

Some similarities appear between these programmes. For example, the highest risk

of involuntary dropout is observed by the end of the second semester from enroll-

ment. This is not entirely surprising as, in the science programmes, students often

have a bad performance during their first year of studies. In addition, during the 4

first years of enrollment, the hazard rate associated to voluntary dropouts has spikes

located at even semesters. Again, this result is intuitive. Withdrawing at the end of

the academic year allows students to re-enroll at a different programme without hav-

ing a gap in their academic careers. In terms of graduations, mild spikes are located

at the official duration of the programmes. Nonetheless, for these programmes, the

highest hazards of graduation occur about 4 semesters after the official duration.

The spikes at the last period are due to a cumulative effect (as δrt0 represents the

period [t0,∞)).

Figure 5.6 summarizes marginal posterior inference under all possible 256

models for Chemistry, Mathematics and Statistics, and Physics (the sub-index r

is omitted for ease of notation). Across all models, the median effects normally
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Figure 5.5: PUC dataset. Spaghetti plot of baseline cause-specific hazards across
the 256 possible models. For graduation hazards, dashed vertical lines are located at
the official duration of the programme. Two lines are displayed in the Mathematics
and Statistics programme because students following the Statistics track require two
additional semesters in order to obtain a professional degree.

retain the same sign (within the same degree programme). Only covariates with

smaller effects display estimates with opposite signs (e.g. the coefficient related to

sex, β1, for Chemistry students). Nonetheless, the actual effect values do not coin-

cide across different models. In general, students who applied as a first preference

to these degrees graduated more and faster (see estimations of β10). These students
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also exhibit a lower rate of voluntary dropout, which might be linked to a higher

motivation about the programme at which they are enrolled. Whether or not the

student had a gap between high school graduation and university admission also

has a strong influence on the academic outcomes for these programmes. These gaps

can, for example, correspond to periods in which the student was preparing for the

admission test (after a low score in a previous year) or enrolled at a different pro-

gramme (of the PUC or other institutions). Overall, this gap induces less and slower

graduations for these programmes. In addition, at each semester, students with a

gap before university enrollment have a higher risk of being expelled from these

degrees. In line with the descriptive analysis presented in Section 5.2, the effect of

the covariates are not homogeneous across the analyzed programmes. Whereas the

effect of the student’s sex (β1) is almost negligible in Chemistry, female students in

Mathematics and Statistics present a higher hazard of graduation and lower risk of

being expelled at all semesters.

Table 5.5: PUC dataset.Top 3 models in terms of DIC and PsML for some degree
programmes (ticks indicate covariate inclusion).

Programme DIC Sex Region Parents School Funding Top 10% Pref. Gap

Chemistry
1915.23 X X X X
1915.54 X X X
1915.64 X X

Mathematics 3117.89 X X X X X
and 3119.95 X X X X X X
Statistics 3120.06 X X X X X X

Physics
1091.86 X X X X
1093.23 X X X X X
1093.40 X X X X X

Programme log-PsML Sex Region Parents School Funding Top 10% Pref. Gap

Chemistry
-962.76 X X
-963.77 X X X
-963.81 X X X

Mathematics -1563.44 X X X X X
and -1564.27 X X X X X X
Statistics -1564.46 X X X X X X

Physics
-550.78 X X X X
-552.79 X X X X X
-553.10 X X X X

Table 5.5 summarizes Bayesian model comparison in terms of DIC and PsML.

For the analyzed programmes, both criteria point in the same direction, suggest-

ing that the most important covariates are the application preference and the gap

indicator (associated to the effects β10 and β11, respectively). Sex (related to β1)

and the high school type (represented by β4 and β5) are added to this list in case of
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Figure 5.6: PUC dataset. Boxplot of estimated posterior medians for covariate ef-
fects across the 256 possible models. The sub-index r is omitted for ease of notation.
When a covariate is not included in the model, the corresponding posterior medians
are replaced by zero.

Mathematics and Statistics students and the ones enrolled in Physics. The selection

score indicator β9 (top 10%) also appears to have some relevance (specially in case of

Mathematics and Statistics). As shown in Table 5.6, similar conclusions follow from

the posterior distribution on the model space as those models with the highest pos-

terior probabilities often include the same covariates suggested by DIC and PsML.

In fact, for these programmes, those models with the highest posterior probabilities

often include the same covariates that were suggested according to DIC an PsML.

One difference is that for two programmes there is more support for the null model

(the model without covariates where only the δrt’s are included to model the baseline

hazard). The choice between the priors in (5.24) and (5.26) on the model space can
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Table 5.6: PUC dataset. Top 3 models with highest posterior probability for some
degree programmes (ticks indicate covariate inclusion).

Prior Programme Prob. Sex Region Parents School Funding Top 10% Pref. Gap

(5.24)

Chemistry
0.270 X X X X
0.238 X X
0.193 X X X X

Mathematics 0.942 X X X X X X X
and 0.036 X X X X X X
Statistics 0.014 X X X X X X

Physics
0.268
0.150 X X X X X
0.054 X X X X

(5.26)

Chemistry
0.354
0.259 X X
0.117 X X X X

Mathematics 0.982 X X X X X X X
and 0.011 X X X X X X
Statistics 0.004 X X X X X X

Physics
0.937
0.009 X X X X X
0.007 X X

have a strong influence on posterior inference. As discussed in Ley and Steel [2009],

the prior in (5.26) downweighs models with size around k∗/2 = 4 (with priors odds

in favour of the null model or the model with all 8 covariates versus a model with

4 covariates equal to 70) and this is accentuated in Physics, where the best model

under both priors is the null model and the second best model has k∗ = 5, so that

posterior model probabilities differ substantially between priors (see Table 5.6). In

contrast, the choice between these priors has less effect in Maths and Stats, where

the best models are of similar sizes. In a BMA framework, posterior probabilities

of covariate inclusion are displayed in Table 5.7. For these programmes, the highest

posterior probabilities of inclusion relate to the application preference and the gap

indicator (for both priors on the model space). As expected, results vary across

programmes. For Mathematics and Statistics, there is strong evidence in favour of

including all available covariates with the exception of the region of residence. In

contrast, under both priors the model suggests that sex, high school type and the

source of funding have no major influence on the academic outcomes of Chemistry

students. For Physics (and to some extent for Chemistry) interesting models tend

to be small and then the (locally) higher model size penalty implicit in prior (5.26)

substantially reduces the inclusion probabilities of all covariates. For Maths and

Stats, the best models are rather large and the prior (5.26) then favours models

that are even larger, leading to very similar inclusion probabilities.
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Figure 5.7: PUC dataset. For Chemistry students: posterior density (given that
the corresponding covariate is included in the model) of some selected regression
coefficients: sex (β1), ranking (β9), preference (β10) and gap (β11). A vertical dashed
line was drawn at zero for reference. The prior in (5.24) was adopted for the model
space.
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Table 5.7: PUC dataset. Posterior probability of variable inclusion under priors
(5.24) and (5.26) on the model space.
Programme Prior Sex Region Parents H. school Funding Top 10% Pref. Gap

Chemistry
(5.24) 0.08 0.52 0.28 0.08 0.07 0.50 0.93 0.99
(5.26) 0.06 0.23 0.15 0.04 0.06 0.27 0.61 0.65

Maths. and (5.24) 0.99 0.02 0.98 1.00 0.95 1.00 1.00 1.00
Statistics (5.26) 1.00 0.01 0.99 1.00 0.98 1.00 1.00 1.00

Physics
(5.24) 0.49 0.25 0.37 0.31 0.11 0.27 0.71 0.62
(5.26) 0.04 0.02 0.03 0.03 0.01 0.02 0.06 0.05

The posterior distribution of each βrj is given by a point mass at zero (equal

to the probability of excluding the j-th covariate) and a continuous component (a

mixture over the posterior distributions of βrj given each model where the corre-

sponding covariate is included). Figure 5.7 displays the continuous component of

the posterior distribution of some selected regression coefficients for the Chemistry

programme under the prior in (5.24). The first row shows that the marginal densi-

ties of the effects related to sex are concentrated around zero. This is in line with

the results in Table 5.7, where both priors on the model space indicate a low poste-

rior inclusion probability for sex. In contrast, the third row in Figure 5.7 suggests

a clear effect of the application preference on the three possible outcomes (positive

for graduations and negative for both types of dropout). This agrees with a high

posterior probability of inclusion and to put the magnitude of the effect into per-

spective, the odds for outcome r = 1, 2, 3 versus no event are multiplied by a factor

exp(βr 10) if Chemistry is the student’s first preference. A similar situation is ob-

served for the selection score indicator (see second row in Figure 5.7). In this case,

those students with scores in the top 10% graduate more and faster and are affected

by less (and slower) involuntary dropouts. Nonetheless, this score indicator has no

major influence on whether a student withdraws. Finally, for the gap indicator, we

also notice a clear effect on graduations and involuntary dropouts, which has the

opposite direction to that of the score indicator.

5.6 Concluding remarks

The modelling of university outcomes (graduation or dropout) is not trivial. In fact,

as discussed in Willett and Singer [1991], the usual approach where the dropout is

treated as a dichotomous process is not appropriate and a temporal component must

be incorporated into the model. In this article, a simple but flexible competing risks

survival model is employed for this purpose. This is based in the Proportional Odds
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model introduced in Cox [1972] and can be estimated by means of a multinomial

logistic regression. The suggested sampling model has been previously employed in

the context of university outcomes, but the structure of typical university outcome

data precludes a maximum likelihood analysis. However, we use a Bayesian setting,

where an appropriate prior distribution allows the extraction of sensible information

from the data. Adopting a hierarchical structure allows for the derivation of a

reasonably simple MCMC sampler for inference. The proposed methodology is

applied to a dataset on undergraduate students enrolled in the Pontificia Universidad

Católica de Chile (PUC) over the period 2000-2011.

As illustrated in Sections 5.2 and 5.5, there are strong levels of heterogene-

ity between different programmes of the PUC. Hence, building a unique model for

the whole university is not recommended. The methodology presented here can be

applied to all programmes of the PUC. For brevity, this Chapter only presents the

analysis of three science programmes for which late graduations and dropouts are a

major issue, but the methodology presented here can be applied to all programmes.

We formally consider model uncertainty in terms of the covariates included in the

model. For the analyzed programmes, all the variable selection criteria (DIC, PsML

and Bayes factors) tend to indicate similar results. However, in view of the pos-

terior distribution on the model space, choosing a single model is not generally

advisable and BMA provides more meaningful inference. The preference with which

the student applied to the programme plays a major role in terms of the length of

enrollment and its associated academic outcome for the three programmes under

study. In addition, and perhaps surprisingly, having a gap between high school

graduation and university admission is also found to be one of the most relevant co-

variates (but with the reverse effect of the preference indicator). The performance in

the selection test is also generally an important determinant. Other factors, such as

sex and the region of residence, only appear to matter for some of the programmes.
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Chapter 6

Conclusions and further work

“I cannot fix on the hour, or the spot, or the look or the words, which

laid the foundation. It is too long ago. I was in the middle before I knew

that I had begun”.

Jane Austen

Pride and Prejudice

This thesis covered theoretical and practical aspects of Bayesian inference and

survival analysis, which is a powerful tool for the analysis of time-to-event data. In

conventional survival models, observations represent the time until a unique event

of interest occurs, which are identically distributed (up to a set of known covari-

ates) realizations of positive-valued random variables generated by a “thin-tailed”

distribution. These assumptions are frequently not satisfied by real applications.

In particular, the main focus of this dissertation is the development and implemen-

tation of more flexible models that can deal with unobserved heterogeneity (which

cannot be captured by covariates) and multiple competing events.

The models presented in Chapters 2 and 3 deal with unobserved heterogene-

ity in a natural manner, where an individual-specific random effect accounts for

variations in the survival distribution that are not related to changes in the avail-

able covariates. As illustrated by three different medical applications, unobserved

heterogeneity (possibly related to outlying observations) is not a rare feature in real

datasets. Ignoring this component can have serious consequences for posterior infer-

ence. A key feature of these models is that estimation is more robust to the presence

of anomalous observations. This constitutes a major advantage in a context where

sample size is often small and collecting observations is not straightforward (e.g. in

a clinical trial where a new test treatment is being studied). Among others, the

following extensions could be considered.
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• The framework introduced in Chapter 2 does not rely on a closed-form ex-

pression for the marginal density (with the mixing parameters integrated out).

Nonetheless, all the examples of SMLN models explored in Chapter 3 relate to

a closed-form of the marginal lifetime density and have been already studied in

the existing literature. New distributions for the analysis of survival data can

be generated by varying the mixing distribution PΛi(·|θ). In such a case, the

Jeffreys prior (and its variations) do not necessarily generate a proper prior for

θ, precluding the use of Bayes factors for model comparison. As in the RMW

family, a proper prior for θ can be elicited via the coefficient of variation of the

survival times cv. However, as cv depends on σ2 (see Theorem 2), Theorems

4 and 6 will no longer cover posterior propriety.

• Another, and perhaps obvious, course of action is to extend the range of un-

derlying models. One example would be the Birnbaum-Saunders distribution

[Birnbaum and Saunders, 1969]. Maximum likelihood inference for mixtures

of Birnbaum-Saunders distributions based on scale mixtures of normals dis-

tributions has been studied in Barros et al. [2008], Balakrishnan et al. [2009]

and Patriota [2012]. However, in this context, benchmark Bayesian inference

is challenging because the Jeffreys-style priors do not lead to a proper poste-

rior distribution when using a single Birnbaum-Saunders distribution with no

mixture [Xu and Tang, 2011]. A second candidate for the underlying model

is the log-skew normal distribution [Azzalini et al., 2003]. This is a direct ex-

tension of the SMLN family for which a skewness parameter introduces more

flexibility. A special case of this family is the log-skew-t model proposed in

Azzalini et al. [2003].

A substantive real-life problem motivates the second part of this thesis. Using

a discrete-time competing risks model, Chapter 5 presents an analysis of university

outcomes for undergraduate students of the Pontificia Universidad Católica de Chile.

The main focus of the study is the identification of potential predictors for the

length of stay at university and its associated outcome. A simple but flexible model

is employed for this purpose. This allows the extraction of sensible information

from the data without making strong assumptions about the survival distribution.

The proposed model does not incorporate all features of this complex dataset yet

it provides a better understanding of the problem and constitutes a foundation for

future related research. Some potential extensions in this context are listed below.

• An obvious extension of the model presented here is to allow for different

covariates in the modelling of the three risks within the same programme. This
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would substantially increase the number of models in the model space (M =

23×8 = 16, 777, 216 in this case), so we would need to base our inference on

posterior model probabilities on sampling rather than complete enumeration.

This can easily be implemented by extending the MCMC sampler to the model

index and using e.g. Metropolis-Hastings updates based on data augmentation

such as in Holmes and Held [2006] or applications of the Automatic Generic

sampler described by Green [2003].

• It is not possible for the university to record all covariates that can have an

effect on academic outcomes. In fact, diverse aspects such as motivational lev-

els and life events (e.g. pregnancies and financial hardships) can have a direct

implication in whether or not a student completes the graduation requirements

for a degree. As discussed in Chapter 2, ignoring this unobserved heterogene-

ity can have serious consequences in posterior inference. As in Chapters 2 and

3, a natural solution to this problem is to incorporate an individual-specific

random effect into the model.

• For the analysis presented in Chapter 5, periods of temporary withdrawal were

considered as part of the total length of stay at university. Instead, multi-state

models [Meira-Machado et al., 2009] can be employed in order to formally deal

with these stopovers.

• Finally, an alternative approach for modelling the PUC dataset is given by

cure models (see Section 2.6). In such a case, the cause-specific hazard rate

can be assigned a positive probability of being equal to zero. The latter can

directly incorporate into the model structural restrictions of graduations and

dropout.
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Appendix A

Proofs

Proposition 1. The likelihood contribution of censored observations is a factor

bounded in [0, 1]. Hence, the likelihood of the complete sample L(t|ψ; c) is bounded

above by the likelihood of the non-censored observations L(to|ψ). Using (1.4), the

same applies for the respective marginal likelihoods L(t; c) and L(to). Therefore, a

sufficient condition for existence of the π(ψ|t; c) is L(to) <∞.

Theorem 1. Define I(s) =
∫
LT ((s, tc)|ψ; c)π(ψ) dψ, where the integral is over the

support of ψ. Based on the sample of set observations, the posterior distribution of

ψ exists if and only if
∫
E I(s) ds is finite. As E is bounded

∫
E I(s) ds is bounded as

long as I(·) is finite except on a set of zero Lebesgue measure.

Theorem 2. The result is a direct consequence of using Fubini’s theorem on the

integral
∫∞

0 tif(ti|µ, σ2, θ) dti (after replacing f(ti|µ, σ2, θ) by its SMLN representa-

tion).

Theorem 3. Taking the negative expectation of the second derivatives of the log

likelihood, the expressions k1(θ), k2(θ), k3(θ) and k4(θ) are given by

k1(θ) = nETi

([
log(ti)− x′iβ

σ

]2 [ Ei
f(ti)

]2
)
, (A.1)

k2(θ) =
n

4

[
ETi

([
log(ti)− x′iβ

σ

]4 [ Ei
f(ti)

]2
)
− 1

]
, (A.2)
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k3(θ) =
n

2
ETi


[

log(ti)−x′iβ
σ

]2
Ei
∫∞

0 fLN

(
ti|x′iβ, σ

2

λi

)
d
dθdPΛi(λi|θ)

f2(ti)


− 1

2

n∑
i=1

∫ ∞
0

d

dθ
dPΛi(λi|θ), (A.3)

k4(θ) = nETi


∫∞0 fLN

(
ti|x′iβ, σ

2

λi

)
d
dθdPΛi(λi|θ)

f(ti)

2


−
n∑
i=1

∫ ∞
0

d2

dθ2
dPΛi(λi|θ), (A.4)

where Ei = EΛi

(
ΛifLN

(
ti|x′iβ, σ

2

Λi

))
.

Corollary 1. The proof follows directly from Theorem 3 using the structure of the

determinant of the FIM and its sub-matrices.

Theorem 4. Define t = (t1, . . . , tn)′ and D = diag(λ1, . . . , λn). After some alge-

braic manipulation, fT (t) is proportional to

∫
Rk

∫
R+

∫
Θ

∫
Rn

+

π(θ)
∏n
i=1 λ

1
2
i

(σ2)
n
2 +p

∏n
i=1 ti

e−
1

2σ2
[(β−a)′A(β−a)+S2(D,y)]

n∏
i=1

dP (λi|θ) dβ dσ2 dθ, (A.5)

where y = (log(t1), . . . , log(tn))′, A = X ′DX, a = A−1X ′Dy and S2(D, y) =

y′Dy − y′DX(X ′DX)−1X ′Dy. Provided that ti 6= 0 for all i ∈ {1, . . . , n}, us-

ing Fubini’s theorem for the integral (A.5) and integrating first with respect to β,

fT (t) is proportional to

∫
R+

∫
Θ

∫
Rn+

(σ2)−
n+2p−k

2

∏n
i=1 λ

1
2
i√

det(X ′DX)
e−

S2(D,y)

2σ2 π(θ)
n∏
i=1

dP (λi|θ) dθ dσ2. (A.6)

After integrating with respect to σ2, it follows that fT (t) is proportional to∫
Θ

∫
Rn+

n∏
i=1

λ
1
2
i (det(X ′DX))−

1
2 [S2(D, y)]−

n+2p−k−2
2 π(θ)

n∏
i=1

dP (λi|θ) dθ, (A.7)

as long as n+ 2p− k− 2 > 0 and S2(D, y) > 0. If n > k we know that S2(D, y) > 0

a.s. and the first condition is certainly satisfied when p ≥ 1. Following Lemma 1 in
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Fern̈ı¿1
2ndez and Steel [1999], fT (t) has upper and lower bounds proportional to

∫
Θ

∫
0<λ1<···<λn<∞

∏
i/∈{m1,...,mk}

λ
1
2
i λ
−n+2p−k−2

2
mk+1 π(θ)

n∏
i=1

dP (λi|θ) dθ, (A.8)

where

k∏
i=1

λmi ≡ max

{
k∏
i=1

λli : det (xl1 · · ·xlk) 6= 0, l1, . . . lk ≤ n

}
, (A.9)

k+1∏
i=1

λmi ≡ max

{
k+1∏
i=1

λli : det

(
xl1 · · · xlk+1

log(tl1) · · · log(tlk+1
)

)
6= 0, l1, . . . lk ≤ n

}
.(A.10)

(i) For p = 1. Barring a set of zero Lebesgue measure, λmk+1
= max{λi : i 6∈

{m1, . . . ,mk}}. Hence, (A.8) is bounded above by
∫

Θ π(θ) dθ = 1. If n > k,

the posterior exists.

(ii) For p = 1 + k/2. By the same argument,
∫

ΘE(Λ
− k

2
mk+1 |θ)π(θ) dθ is an upper

bound for (A.8). However, E(Λ
− k

2
mk+1 |θ) ≤ E(Λ

− k
2

(1) |θ) where Λ(1) is the first

order statistic of {Λ1, . . . ,Λn}. Hence, it follows that E(Λ
− k

2

(1) |θ) ≤ nE(Λ
− k

2
i |θ)

∀i = 1, . . . , n and hence, as the Λi’s are iid, the results holds.

Theorem 5. (i) Similarly to Fonseca et al. [2008], it can be shown that the FIM

corresponds to

FIM(β, σ2, ν) =


1
σ2

ν+1
ν+3

∑n
i=1 xix

′
i 0 0

0 n
2σ4

ν
ν+3 − n

σ2
1

(ν+1)(ν+3)

0 − n
σ2

1
(ν+1)(ν+3)

n
4kST (ν)

 ,

(A.11)

where kST (ν) = Ψ′(ν2 )−Ψ′(ν+1
2 )− 2(ν+5)

ν(ν+1)(ν+3) and Ψ′(·) denotes the trigamma

function. Therefore, the components depending on ν of the Jeffreys, indepen-

dence Jeffreys and independence I Jeffreys prior are, respectively

πJ(ν) ∝
(
ν + 1

ν + 3

)k/2
πI(ν), (A.12)

πI(ν) ∝
√

ν

ν + 3

√
Ψ′
(ν

2

)
−Ψ′

(
ν + 1

2

)
− 2(ν + 3)

ν(ν + 1)2
, (A.13)
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πII(ν) ∝

√
Ψ′
(ν

2

)
−Ψ′

(
ν + 1

2

)
− 2(ν + 5)

ν(ν + 1)(ν + 3)
. (A.14)

It can be shown that πJ(ν) and πI(ν) are proper priors for ν [Corollary 1 in

Fonseca et al., 2008]. However, πII(ν) is not (it behaves as ν−1 when ν → 0).

Hence, as mentioned in Subsection 3.2.2, the independence I prior is discarded

for the log-Student t model.

Theorem 4 part (i) implies the propriety of the posterior distribution for the

independence Jeffreys prior. Theorem 4 cannot be used in order to conclude

about the posterior existence under the Jeffreys prior (the condition in part

(ii) is not satisfied because E(Λ
−k/2
1 |ν) does not exist for ν < k). However,

as shown in Appendix B, the Jeffreys prior does not produce a proper poste-

rior distribution for the Student t linear regression model. The latter is easily

extrapolated to the log-Student t AFT model in absence of censoring. Incor-

porating censored observations does not help, as the posterior distribution is

still not well defined. For effects of (A.15), denote no by the number of non-

censored observations and n as the total sample size (in an abuse of notation).

Under right censoring, the marginal likelihood can be expressed as

fT (t) =

∫
T ∗

∫
Rk

∫
R+

∫
Θ

[
n∏
i=1

fTi(t
∗
i |β, σ2, ν)

]
π(β, σ2, ν) dβ dσ2 dν dt∗ ≡

∫
T ∗
f∗T (t∗) dt∗,

(A.15)

where T ∗ = t1 × · · · × tno × (tno+1,∞)× · · · (tn,∞) and f∗T (t∗) is an auxiliary

marginal likelihood that treats censored observations as if they were non-

censored. As a result of Theorem 11 (Appendix B), f∗T (t∗) is not finite for any

t∗ ∈ T ∗. Hence, fT (t) is not finite and the posterior based on the complete

sample is not well-defined under the Jeffreys prior.

(ii) As the parameter θ is not required for the log-Laplace model, the independence

Jeffreys and independence I Jeffreys coincide. Theorem 4 part (i) indicates

that the posterior is proper under these priors. In both cases, E(Λ
− k

2
1 ) is

finite and therefore the posterior under the Jeffreys prior is also proper. In

fact, for the log-Laplace model, Λ−1
1 is Gamma distributed and all its positive

moments are finite. Both type of independence Jeffreys priors also coincide

the log-logistic model. In such a case, it can be shown that Ωi =
√

1/(4Λi)

has an Asymptotic Kolmogorov distribution with density function g(ωi) =

8ωi
∑∞

s=1(−1)s+1s2 e−2s2ω2
i , for ωi > 0. Therefore, for k > −2, it follows that
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E(Λ
−k/2
1 ) = 2k+3

∞∑
s=1

(−1)s+1s2

∫ ∞
0

ωk+1
1 e−2s2ω2

1 dω1 (A.16)

= 2k+2
∞∑
s=1

(−1)s+1s2

∫ ∞
0

ηk/2 e−2s2η dη (A.17)

= 2k/2+1Γ(1 + k/2)

∞∑
s=1

(−1)s+1 1

sk
<∞. (A.18)

For the log-exponential power model, the FIM was derived by Marẗı¿1
2n and

P̈ı¿1
2rez [2009] and is given by

FIM(β, σ2, α) =


α(α−1)Γ(1− 1

α
)

σ2Γ( 1
α

)

∑n
i=1 xix

′
i 0 0

0 nα
σ2 −n(1+Ψ(1+ 1

α
))

σα

0 −n(1+Ψ(1+ 1
α

))

σα kEP (α)

 ,

(A.19)

where kEP (α) = n
α3

[
(1 + 1

α)Ψ′(1 + 1
α) + (1 + Ψ(1 + 1

α))2 − 1
]

and Ψ′(·) de-

notes the trigamma function. As a consequence, the components depending

on α of the Jeffreys, independence Jeffreys and independence I Jeffreys prior

are, respectively

πJ(α) ∝
[
α(α− 1)Γ(1− 1/α)

Γ(1/α)

]k/2
πI(α), (A.20)

πI(α) ∝ 1

α

√(
1 +

1

α

)
Ψ′
(

1 +
1

α

)
− 1, (A.21)

πII(α) ∝ 1

α
3
2

√(
1 +

1

α

)
Ψ′
(

1 +
1

α

)
+

[
1 + Ψ

(
1 +

1

α

)]2

− 1.(A.22)

As the previous components are bounded continuous functions of α in (1, 2),

they induce proper priors for α. Theorem 4 part (i) implies the propriety of

the posterior distribution under the independence Jeffreys and independence

I Jeffreys prior. The propriety of the posterior under the Jeffreys prior can be

verified using Theorem 4 part (ii) because E(Λ
− k

2
1 |α) is a continuous bounded

function for α ∈ (1, 2). In fact,

E(Λ
− k

2
1 |α) =

Γ(3/2)

Γ(1 + 1/α)

E(W
k+1

2 |α)

E(Z
k+1

2 |α)
=

Γ(3/2)

Γ(1 + 1/α)

Γ((k + 1)/α+ 1)

Γ((k + 3)/2)
, (A.23)

where W ∼ Weibull(α/2, 1) and Z ∼ Exponential(1). The latter uses the
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lemma in Meintanis [1998] which states that a Weibull(a, 1) random variable

can be represented as the ratio of an Exponential(1) and an independent pos-

itive stable(a) random variable.

Theorem 6. If s is the largest number of observations that can be written as an

exact linear combination of their covariates, λmk+1
(defined in (A.10)) corresponds

to λ(no−s), which represent the (n − s)-th order statistic of λ1, . . . , λn. The rest

of the proof is obtained by iteratively integrating (A.8) and using the inequality

[Fern̈ı¿1
2ndez and Steel, 1999, 2000]

λvi+1

v
e−rλi+1 ≤

∫ λi+1

0
λv−1
i e−rλi dλi ≤

λvi+1

v
, r, v > 0. (A.24)

The integral in (A.24) is not finite for v ≤ 0. After integrating with respect to the

n− s− 1 smallest λ’s, (A.8) has a lower bound given by

∫ ∞
0

∫
Λ∗

[ (
ν
2

) ν
2

Γ
(
ν
2

)]no−s [ν+1
2

]−(no−s−1)

(no − s− 1)!
λa−1

(no−s) e
− (no−s)ν

2 λ(no−s)

no∏
i=no−s+1

dP (λ(i)|ν)π(ν) dν,

(A.25)

where Λ∗ = {(λ(n−s), . . . , λ(n)) : 0 < λ(n−s) < · · · < λ(n) < ∞} and a =

−n+2p−k−3
2 + ν

2 + (n−s−1)(ν+1)
2 . In (A.25), the integral with respect to λ(n−s) re-

quires a > 0 in order to have a be finite. Hence, the propriety of the posterior

distribution requires ν > n−k+(2p−2)
n−s − 1.

Theorem 7. Condition (i): This follows the proof in Honoré [1990], which

assumed α = 1. Using l’Hopital’s rule twice, it can be proved that

lim
t→0

log(− log(S(t|α, γ, θ))
log(t)

= γ (A.26)

if and only if E(Λ|θ) is finite. Condition (ii): the survival function associated to

Ti corresponds to the Laplace transform of the density of αΛ evaluated at tγ . The

result is immediate by uniqueness of the Laplace transform.

Theorem 8. E(T ri ) exists if and only if
∫∞

0 tri f(ti|α, γ, θ) dti < ∞. Using

Fubini’s theorem, the result is direct after using the formula for the r-th moment of

the Weibull distribution.

Corollary 2. Direct application of the expression for E(T ri ) provided in

Theorem 8.

Theorem 9. This proof consists in taking the expectation of minus the

second derivatives of the likelihood for each observation and computing the FIM on
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the basis of the whole sample as the sum of the FIM for single observations. The

functions k1(θ), k2(θ) and k3(θ) are given by

k1(θ) = nETi


[∫
L λi e

− e−x
′
iβλiTi

(
1− λiTi e−x

′
iβ
)
dP (λi|θ)

]2

E2
1


− nETi


∫
L λi e

− e−x
′
iβλiTi

(
1− 3λiTi e

−x′iβ + T 2
i e

2x′iβ
)
dP (λi|θ)

E1

(A.27)

k2(θ) = nETi


[∫
L λi e

− e−x
′
iβλiTi

(
1− λiTi e−x

′
iβ
)
dP (λi|θ)

]
E2

E2
1


− nETi


∫
L λi e

− e−x
′
iβλiTi

(
1− λiTi e−x

′
iβ
)

d
dθ dP (λi|θ)

E2

 (A.28)

k3(θ) = nETi

[
E2

2

E2
1

]
− nETi

∫L λi e− e−x′iβλiTi d2

dθ2 dP (λi|θ)
E1

 , (A.29)

where E1 =
∫
L λi e

− e−x
′
iβλiTi dP (λi|θ) and E2 =

∫
L λi e

− e−x
′
iβλiTi d

dθ dP (λi|θ). Note

that k1(θ), k2(θ) and k3(θ) do not depend on β because all the terms inside the

expectations depend on Ti and β only through Yi = e−x
′
iβTi and the distribution of

Yi does not depend on β nor i.

Corollary 3. The proof follows directly from Theorem 9 using the structure

of the determinant of the FIM and its sub-matrices.

Theorem 10. The posterior distribution of (β, γ, θ) given the data is proper

if and only if∫
Rk

∫
R+

∫
Θ

∫
Rn+
γn

n∏
i=1

[
tγ−1
i λi

]
e
−
∑n
i=1

(
γx′iβ+ e−γx

′
iβλit

γ
i

)
π(γ, θ)

n∏
i=1

dP (λi|θ) dθ dγ dβ

(A.30)

is finite. The proof requires the Fubini’s theorem in order to exchange the order

of the integrals. For integrating with respect to β, we use a similar argument than

in Kim and Ibrahim [2000]. For ti > 0 and any value of (β, γ, λi) ∈ Rk × R+,

fTi(ti|β, γ, λi) is bounded by a finite constant. Therefore, the integral in (A.30) has
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an upper bound proportional to∫
Rk

∫
R+

∫
Θ

∫
Rk+
γk
∏
i∈I

[
tγ−1
i λi

]
e
−
∑
i∈I

(
γx′iβ+ e−γx

′
iβλit

γ
i

)
π(γ, θ)

∏
i∈I

dP (λi|θ) dθ dγ dβ,

(A.31)

for any I = {(i1, . . . , ik) : 1 ≤ i1 < · · · < ik ≤ n}. Define the transformation

U = g(β) = X∗β, where X∗ is a k × k matrix containing the i1, . . . , ik rows of X.

Note that X∗ has rank k because X was assumed to be full rank. Therefore, g(·) is

bijective and its Jacobian corresponds to det((X∗)−1). Hence, (A.31) is proportional

to∫
R+

∫
Θ

∫
Rk+
γk

k∏
i=1

[
tγ−1
i λi

] [ k∏
i=1

∫ ∞
−∞

e−γui e−e
−γuiλit

γ
i dui

]
k∏
i=1

π(γ, θ) dP (λi|θ) dθ dγ.

(A.32)

Using wi = e−γui , the later integral becomes

∫
R+

∫
Θ

∫
Rk+
γk

k∏
i=1

[
tγ−1
i λi

] [ k∏
i=1

∫ ∞
0

γ−1 e−wiλit
γ
i dwi

]
k∏
i=1

π(γ, θ) dP (λi|θ) dθ dγ,

(A.33)

which simplifies to
k∏
i=1

t−1
i

∫ ∞
0

∫
Θ
π(γ, θ) dθ dγ. (A.34)

Therefore, if ti 6= 0 for all i ∈ I and π(γ, θ) is a proper prior for (γ, θ), then the

posterior distribution of (β, γ, θ) given the data exists.
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Appendix B

On posterior propriety for the

Student-t linear regression

model under Jeffreys priors

B.1 Introduction

The normal assumption in linear regression models does not always provide an

appropriate fit to real datasets. Data often require more flexible errors, capable of

accommodating outlying observations. Regression models with fat-tailed error terms

are an increasingly popular choice to obtain more robust inference to the presence

of outlying observations. A popular choice is to assume a Student-t distribution

for the error term [see for example West, 1984; Lange et al., 1989; Fern̈ı¿1
2ndez and

Steel, 1999; Fonseca et al., 2008]. The choice of a prior is very challenging when

conducting Bayesian inference under Student-t sampling. While some “standard”

priors can be adopted for the regression and scale parameters, there is no consensus

about a prior distribution for the degrees of freedom (ν). Villa and Walker [2013]

provide a comprehensive discussion of the literature. The seminal paper by Fonseca

et al. [2008] is, perhaps, the first attempt to base an objective prior for ν on formal

rules and introduces two objective priors based on the Jeffreys rule. They propose

the original Jeffreys-rule prior and one of its variants, the independence Jeffreys

prior (which treats the regression parameters independently). These priors have

been considered in several subsequent articles. Ho [2012] and Villa and Walker

[2013] used both priors. In the context of skew-t models, the independence Jeffreys

prior was used in Juárez and Steel [2010] and Branco et al. [2012].

This note is a follow-up of Fonseca et al. [2008]. Their posterior propriety
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results are revisited and corrected. In particular, it is shown that the prior based

on the original Jeffreys rule precludes the existence of a proper posterior distribu-

tion. Nevertheless, the independence Jeffreys prior yields a well-defined posterior

distribution.

The Student-t linear regression model is presented in Section B.2, which also

includes the priors presented in Fonseca et al. [2008]. Posterior propriety under

these priors is examined in Section B.3, while Section B.4 concludes.

B.2 Bayesian Student-t linear regression model

Let Y = (Y1, . . . , Yn)′ ∈ Rn represent n independent random variables generated by

the linear regression model

Yi = x′iβ + σεi, i = 1, . . . , n, (B.1)

where xi is a vector containing the value of k covariates associated with observation

i, β ∈ Rk is a vector of regression parameters and εi has Student-t distribution

with mean zero, unitary scale and ν degrees of freedom. The Bayesian model is

completed using Jeffreys priors, which require the FIM. Similarly to Fonseca et al.

[2008] (they parameterize with respect to σ instead), the FIM for the model in (B.1)

is given by (A.11). Hence, as in the log-Student t case, the Jeffreys-rule and the

independence Jeffreys (which deals separately with the blocks for β and (σ2, ν))

priors are respectively given by (A.12) and (A.13). These priors have been proposed

in Fonseca et al. [2008] and can be written as

π(β, σ2, ν) ∝ 1

(σ2)a
π(ν), (B.2)

where π(ν) is the component of the prior that depends on ν, a = 1 + k/2 for the

Jeffreys-rule prior and a = 1 for the independence Jeffreys prior. As shown in

Fonseca et al. [2008], π(ν) is a proper density function of ν for both priors.

B.3 Posterior propriety

Verifying the existence of the posterior distribution is mandatory under the prior

in (B.2), which is not a proper probability density function of (β, σ2, ν). Corollary

2 in Fonseca et al. [2008] states that, provided n > k, the posterior distribution

is well-defined under the Jeffreys-rule and the independence Jeffreys priors. Their

proof refers to Theorem 1 in Fern̈ı¿1
2ndez and Steel [1999], but unfortunately this
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theorem does not cover the Jeffreys-rule prior, as it assumes that a = 1 in (B.2). A

necessary condition for the existence of the posterior distribution is now provided

in the following Theorem.

Theorem 11. Let y = (y1, . . . , yn)′ be n independent observations from model (B.1).

Define X = (x1, . . . , xn)′ and assume that n > k and the rank of X is k. Under

the prior in (B.2), a necessary condition for posterior propriety is π(ν) = 0 for all

ν ∈
(

0, 2a−2
n−k

]
.

Proof. In the absence of censoring, posterior propriety for the Student t and log-

Student t models are equivalent. Therefore, barring a set of zero Lebesgue measure,

(A.24) and (A.8) imply that fY (y) has a lower bound proportional to

∫ ∞
0

∫
Λ∗

[ (
ν
2

) ν
2

Γ
(
ν
2

)]n−k λd−1
(n−k)[

ν+1
2

]n−k−1
e−

(n−k)ν
2 λ(n−k) dλ(n−k)

[
n∏

i=n−k+1

fGΛi(λ(i)|ν) dλ(i)

]
π(ν) dν,

(B.3)

where Λ∗ = {(λ(n−k), . . . , λ(n)) : 0 < λ(n−k) < · · · < λ(n) < ∞} and d =

−n+2a−k−3
2 + ν

2 + (n−k−1)(ν+1)
2 = ν(n−k)+2−2a

2 . When integrating with respect to

λ(n−k), c > 0 is needed in order to have a finite integral in (B.3). Hence, the

propriety of the posterior distribution requires ν > 2a−2
n−k .

As a consequence, the posterior distribution of (β, σ2, ν) is not proper if

a > 1 and the range of ν is (0,∞). In particular, the Jeffreys-rule prior (for which

a = 1 +k/2) does not lead to a proper posterior distribution and Bayesian inference

is thus precluded with this prior. The independence Jeffreys prior satisfies the

necessary condition in Theorem 11, but this does not guarantee posterior existence.

Nevertheless, posterior propriety under the independence Jeffreys prior for n > k is

proved by Theorem 1 in Fern̈ı¿1
2ndez and Steel [1999].

B.4 Concluding remarks

The choice of a prior distribution for the degrees of freedom under Student-t sam-

pling is a very challenging task. Fonseca et al. [2008] adopt Jeffreys principles to

find objective priors for ν. This is an important addition to the previous litera-

ture in which much more ad-hoc priors were used [e.g. the exponential prior in

Geweke, 1993; Fern̈ı¿1
2ndez and Steel, 1999]. Here, it is shown that the Jeffreys-rule

prior does not produce a proper posterior distribution, in contrast to the claim in

Fonseca et al. [2008]. It is crucial to point this out to the scientific community

to avoid meaningless inference and misleading conclusions. The Jeffreys-rule prior

under Student-t sampling has also been used in Ho [2012] and Villa and Walker
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[2013]. For this prior, Fonseca et al. [2008] and Villa and Walker [2013] observe very

poor frequentist coverage of the 95% credible intervals for ν when the sample size

is small (n = 30). For small sample size the lower bound required on the support of

ν (here equal to k/(n − k)) may easily be violated by samples from the posterior,

so this poor empirical performance might be linked to the impropriety shown here.

Posterior propriety can be verified under the independence Jeffreys prior, and its

use as an objective prior is recommended to practitioners (see Theorem 5).
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Appendix C

Simulation study for

SMLN-AFT models

This document displays the results of the simulation study implemented for SMLN-

AFT model. The objective is to illustrate the performance of the proposed method-

ology and to assess the effectiveness of the suggested Bayesian model comparison

criteria.

Two independent covariates, x1 ∼ Ber(0.5) and x2 ∼ Unif(0, 1) are simulated

and an intercept is added (k = 3). Throughout we use β = (4, 0.5,−1)′ and σ2 = 0.1

(which are in the range of usual empirical values). Datasets are simulated from the

following models: (i) log-normal, (ii) log-Student t with ν = 5, (iii) log-Student t

with ν = 20, (iv) log-Laplace, (v) log-exponential power with α = 1.2, (vi) log-

exponential power with α = 1.8 and (vii) log-logistic. Four different scenarios are

defined as a combination of sample size (n = 100, 500) and percentage of censoring

(PC = 10%, 70%). Independent censoring times are sampled from a uniform distri-

bution in (0, C) where the value of C is tuned in order to control the percentage of

censoring. These rather small sample sizes are often observed in survival datasets.

For each model, 100 independent datasets are simulated under each scenario. In all

cases, survival times are rounded to integers in order to reflect the usual inaccuracy

in the data recording process. The log-normal and the mixture models introduced

in Table 1 of the paper are fitted to each dataset. We use set observations with

εl = εr = 0.5 for non-censored observations. MCMC chains are run for 300,000

iterations with a burn-in period of 75,000 and thinning period equal to 50 (i.e. we

use 4,500 draws for the results presented here).

For AFT models, β is usually the parameter of interest. Its interpretation is

not affected by our mixing scheme. We compare the performance of different AFT-
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SMLN models based on the posterior median β̂. Under each scenario, the values of

β̂ over the 100 simulations are displayed. The value of β used to generate the data

is indicated by a horizontal line. The Bayesian model comparison criteria described

in Section 3.5 of the paper are applied to each dataset. We report the number of

times in which each model was chosen using DIC, BF and PsBF.

The choice between one of the three Jeffreys-rule based priors suggested in

this dissertation is not too critical when making inference about β. For each data-

generating model, all priors produced similar estimates of the regression parameters

when fitting the same model. Figures C.1-C.7 show the posterior median β̂ across

simulations, adopting the independence Jeffreys prior (which is the only prior that

produces a valid posterior for all our examples). Of course, the most accurate

estimations arise when the data provides more information, i.e. n = 500 and PC =

10%.

There are no major differences between log-normal datasets and those gen-

erated by a SMLN model with weak unobserved heterogeneity (log-Student t with

ν = 20 and log-exponential power with α = 1.8). In such cases, the log-normal model

correctly estimates β. In addition, fitting SMLN models to log-normal datasets is

harmless. The β estimates are concentrated around the true value, although they are

slightly more spread out when using a log-Laplace model (which has a very dispersed

mixing distribution and can accommodate log-normal tails less well). As expected,

if the data generating mechanism involves stronger unobserved heterogeneity, mix-

ture models tend to outperform the log-normal one. For those cases, SMLN models

produce more accurate estimates of β in terms of both bias and spread, especially

when PC = 70%. This is even the case when using a different mixing distribution

than the one that generated the data. These differences are largest for the log-

Laplace datasets and diminish for milder cases of unobserved heterogeneity, like the

log-logistic case.

Figures C.8 and C.9 summarize the results from the model comparison crite-

ria described in Subsection 3.5. Both types of independence Jeffreys priors produce

similar results as they only differ for the log-exponential power model. Hence,

we only display results under the Jeffreys and independence Jeffreys priors. The

performance of BF is better (and more in line with the other criteria) under the in-

dependence Jeffreys prior, except for the log-logistic data. Under the Jeffreys prior

and with log-normal data, BF assigns relatively little support to the log-normal

model when n = 100 (especially for the higher percentage of censoring). For k = 3,

the Jeffreys prior favours small values of σ2, much more than the independence Jef-

freys (the difference increases with k). When the dataset provides little information
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(small n and/or large PC), the prior has a strong influence on posterior inference.

We might, thus, underestimate σ2 and the fitted log-normal model will have too lit-

tle spread to accommodate the data, even though they were generated by the same

model. Predictive criteria are less affected by this. Overall, DIC, BF and PsBF

point in the same direction, largely successfully detecting the presence and absence

of unobserved heterogeneity. However, very mild forms of unobserved heterogeneity

(log-Student t with ν = 20, log-exponential power with α = 1.8) are often indistin-

guishable from the log-normal model. Stronger unobserved heterogeneity is more

easily detected (even when n = 100 and PC = 70%). In any case, jointly, these

criteria provide a confident assessment of the existence of unobserved heterogeneity.

Even in the worst scenario, the log-normal model is correctly detected more than

60% of the time if we use the independence Jeffreys prior.

Distinguishing between the different mixing distributions is a rather difficult

task but it can be achieved for large sample sizes. The percentages of correct

classification under each scenario are shown in Table C.1. The best results are

observed for the independence Jeffreys prior. In this case, we correctly classify data

generated by the log-Laplace model in at least 60% of the cases when n = 100 and

at least 82% of the cases for n = 500. With log-logistic datasets, the right model is

detected in at least 70% of the simulations with n = 500 under either prior. The

rate of correct detection is lower for the log-Student t and log-exponential power

models, for which an extra parameter needs to be estimated. For example, the

log-Laplace model is a frequent choice for log-exponential power data with α = 1.2.

The DIC and PsBF criteria do best overall: under both priors they lead to correct

classification of models with moderate or strong heterogeneity on the basis of 500

observations with low censoring in at least 57% of the cases.
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Figure C.1: SMLN simulation study. Boxplot of β̂ for log-normal data.
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Figure C.2: SMLN simulation study. Boxplot of β̂ for log-Student t data (ν = 5).
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Figure C.3: SMLN simulation study. Boxplot of β̂ for log-Student t data (ν = 20).
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Figure C.4: SMLN simulation study. Boxplot of β̂ for log-Laplace data.
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Figure C.5: SMLN simulation study. Boxplot of β̂ for log-exp. power data (α = 1.2).
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Figure C.6: SMLN simulation study. Boxplot of β̂ for log-exp. power data (α = 1.8).
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Figure C.7: SMLN simulation study. Boxplot of β̂ for log-logistic data.

Table C.1: SMLN simulation study. Percentage of correct classification.
Jeffreys prior Independence Jeffreys prior

n Simulated PC=10% PC=70% PC=10% PC=70%
model DIC BF PsBF DIC BF PsBF DIC BF PsBF DIC BF PsBF

100

log-norm. 73 17 71 69 0 61 75 71 72 65 62 60
log-St. t (ν = 5) - - - - - - 11 0 10 5 1 6
log-St. t (ν = 20) - - - - - - 0 0 0 0 0 1
log-Lap. 75 58 73 66 38 65 72 73 68 62 62 60
log-e.p. (α = 1.2) 1 0 3 2 0 4 0 1 2 2 12 6
log-e.p. (α = 1.8) 2 0 3 4 0 3 5 4 7 2 13 1
log-log. 72 98 77 27 94 33 42 51 50 28 31 33

500

log-norm. 94 86 90 88 48 88 91 96 87 88 88 86
log-St. t (ν = 5) - - - - - - 61 20 62 23 8 26
log-St. t (ν = 20) - - - - - - 13 0 16 1 0 2
log-Lap. 91 96 90 85 83 87 89 94 87 82 85 82
log-e.p. (α = 1.2) 62 1 62 19 0 20 57 44 60 12 19 17
log-e.p. (α = 1.8) 23 0 26 1 0 3 21 8 22 1 5 3
log-log. 81 96 80 74 91 76 74 85 72 71 74 70
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Figure C.8: SMLN simulation study. Distribution of Bayesian model choice under
the Jeffreys prior. From darkest to lightest (and left to right): log-normal, log-
Laplace, log-exp. power and log-logistic.
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Figure C.9: SMLN simulation study. Distribution of Bayesian model choice under
the independence Jeffreys prior. From darkest to lightest (and left to right): log-
normal, log-Student t, log-Laplace, log-exp. power and log-logistic.
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Appendix D

MCMC chains for Chapter 4

Below, a summary of the convergence analysis for the MCMC chains used in Chapter

4 is provided. Trace plots (some of which are displayed below) provide a first visual

indication of both convergence and mixing. Respectively, z-scores and p-values are

displayed for the Geweke [1992] and the Heidelberger and Welch [1983] criteria.

Throughout, set observations are used for SMLN models. Instead, RMW models

are fitted on the basis of point observations.

Convergence of the MCMC chains was never a problem with the number

of iterations and burn-in used. Mixing is very good for models without an extra

parameter θ in the mixing distribution (e.g. log-logistic and RMW model with

exponential(1) mixing). When θ is unknown, reliable inference is produced through

the MCMC algorithm provided, but the chains are mixing a bit less well for some

of the parameters, requiring MCMC run lengths of the order used here.

D.1 VA lung cancer dataset

Table D.1: VA lung cancer data. For MCMC chains: total number of iteration (N),
thinning period (thin), burning period (burn) and update period for λi’s (Q).

Family Model N thin burn Q
SMLN all but log-logistic 400,000 20 200,000 1
SMLN log-logistic 400,000 20 200,000 10
RMW No mixing 600,000 50 150,000 1
RMW Exponential mixing 600,000 50 150,000 10
RMW Gamma mixing 600,000 50 150,000 2
RMW Inv-Gamma and Inv-Gauss mixing 1,200,000 100 300,000 5
RMW Log-normal mixing 1,200,000 100 300,000 2
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Table D.2: VA lung cancer data. Convergence diagnostics and ESS for log-normal
chains.

Jeffreys prior Ind. Jeffreys prior
Point Observations Set Observations Point Observations Set Observations
Geweke HW ESS Geweke HW ESS Geweke HW ESS Geweke HW ESS

β0 0.05 0.21 10000 -0.85 0.42 10000 0.93 0.19 10000 0.54 0.52 10334
β1 -0.57 0.87 10000 0.14 0.58 10846 -0.54 0.78 10000 0.11 0.65 10152
β2 -1.48 0.51 9526 -0.70 0.82 10000 -0.97 0.44 10000 0.94 0.98 10000
β3 -0.59 0.11 10000 0.54 0.63 10679 -1.08 0.67 10000 1.03 0.39 10000
β4 -0.07 0.52 10000 -0.23 0.77 10586 -0.65 0.71 10000 0.80 0.48 10000
β5 -1.05 0.62 9631 -0.80 0.58 10884 0.36 0.72 10000 -1.31 0.08 9739
β6 0.27 0.69 10590 -1.25 0.52 10000 -0.30 0.05 10000 0.49 0.59 10000
β7 0.67 0.62 10000 1.24 0.40 10000 -1.05 0.39 10000 -0.51 0.87 10000
β8 1.34 0.69 10174 0.06 0.67 10391 -0.10 0.65 10000 -0.64 0.99 9693
σ2 1.25 0.58 10000 0.91 0.64 10805 -0.87 0.15 10000 -0.34 0.92 10000

Table D.3: VA lung cancer data. Convergence diagnostics and ESS for log-Student’s
t chains.

Ind. Jeffreys prior
Geweke HW ESS

β0 -1.91 0.34 10000
β1 -0.74 0.96 8874
β2 -0.58 0.77 9432
β3 0.17 0.49 10000
β4 1.26 0.15 10000
β5 0.03 0.52 9537
β6 0.63 0.48 10016
β7 1.82 0.70 9288
β8 0.09 0.46 10000
σ2 0.64 0.98 1799
ν 0.18 0.89 374

Table D.4: VA lung cancer data. Convergence diagnostics and ESS for log-Laplace
chains.

Jeffreys prior Ind. Jeffreys prior
Geweke HW ESS Geweke HW ESS

β0 0.36 0.34 10000 -0.04 0.78 10000
β1 0.28 0.57 10000 0.21 0.24 10000
β2 -0.61 0.63 10000 -0.77 0.90 10000
β3 0.59 0.40 10000 -0.23 0.90 9138
β4 0.14 0.59 10000 0.34 0.50 10000
β5 0.30 0.82 10371 -0.24 0.19 10470
β6 -0.44 0.94 9609 -0.90 0.46 10000
β7 -0.52 0.41 9268 0.29 0.97 10000
β8 0.37 0.86 10000 -0.20 0.22 10444
σ2 -0.71 0.22 10000 -0.98 0.58 10000
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Figure D.1: VA lung cancer data. Log-normal chains under the ind. Jeffreys prior
(set observations).
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Figure D.2: VA lung cancer data. Log-Student’s t chains under the ind. Jeffreys
prior.
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Table D.5: VA lung cancer data. Convergence diagnostics and ESS for log-exp.
power chains.

Jeffreys prior Ind. Jeffreys prior Type I Ind. Jeffreys prior
Geweke HW ESS Geweke HW ESS Geweke HW ESS

β0 0.13 0.97 481 -1.00 0.87 496 0.11 0.98 532
β1 -1.19 0.32 6776 0.30 0.70 7292 -1.36 0.54 7275
β2 0.01 0.96 6028 -1.06 0.51 6740 0.01 0.33 6786
β3 -0.99 0.59 3848 -0.82 0.95 4339 -0.73 0.37 4923
β4 -0.69 0.95 4445 -1.86 0.05 5303 1.36 0.24 4464
β5 -0.12 0.93 1557 1.82 0.68 1554 -0.26 0.56 1854
β6 -0.41 0.56 6827 0.90 0.63 8435 -0.62 0.36 7216
β7 0.04 0.98 633 0.92 0.89 606 -0.04 1.00 549
β8 -0.64 0.36 5570 -1.17 0.08 7005 0.86 0.85 6441
σ2 1.11 0.39 3494 -1.38 0.88 3893 -0.70 0.86 4129
α 0.87 0.64 3588 -1.23 0.97 3953 -0.29 0.67 4318

Table D.6: VA lung cancer data. Convergence diagnostics and ESS for log-logistic
chains.

Jeffreys prior Ind. Jeffreys prior
Geweke HW ESS Geweke HW ESS

β0 0.30 0.97 9674 -0.21 0.98 10000
β1 0.61 0.74 10000 -0.32 0.90 9548
β2 -0.93 0.33 10000 0.07 0.82 10000
β3 -0.45 0.82 10000 -1.06 0.89 10000
β4 -0.64 0.44 10000 0.51 0.86 10000
β5 -0.76 0.83 10000 0.15 0.94 10536
β6 -0.42 0.37 10155 -0.33 0.51 10545
β7 0.06 0.86 9696 0.09 0.81 10280
β8 1.57 0.53 10000 -0.32 0.19 10000
σ2 -0.74 0.33 9550 0.56 0.58 9626

Table D.7: VA lung cancer data. Convergence diagnostics and ESS for Weibull
chains.

γ ∼Gamma(4,1) γ ∼Gamma(1,1) γ ∼Gamma(0.01,0.01)
Geweke HW ESS Geweke HW ESS Geweke HW ESS

β0 0.13 0.87 1024 -0.60 0.45 1020 -0.33 0.83 1046
β1 1.85 0.21 7576 1.99 0.31 9000 0.88 0.15 9000
β2 -0.51 0.33 6358 -0.23 0.25 7480 0.38 0.57 7663
β3 0.23 0.63 7159 0.73 0.53 6208 0.18 0.48 6994
β4 0.32 0.84 7910 -1.04 0.10 7285 0.98 0.81 8094
β5 0.01 0.94 2149 0.87 0.32 2422 0.89 0.73 2221
β6 1.18 0.59 6751 0.57 0.28 8136 -0.48 0.95 6939
β7 -0.42 0.72 1123 0.29 0.51 1190 0.04 0.70 1208
β8 0.01 0.76 8547 -0.14 0.85 9000 -1.48 0.23 9000
γ -0.84 0.28 8628 0.22 0.57 9000 -0.86 0.31 7469
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Figure D.3: VA lung cancer data. Log-Laplace chains under the ind. Jeffreys prior.
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Figure D.4: VA lung cancer data. Log-exp. power chains under the ind. Jeffreys
prior.
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Figure D.5: VA lung cancer data. Log-logistic chains under the ind. Jeffreys prior.
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Figure D.6: VA lung cancer data. Weibull chains under Gamma(4,1) prior for γ.
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Table D.8: VA lung cancer data. Convergence diagnostics and ESS for RMW chains
with exponential(1) mixing.

γ ∼Gamma(4,1) γ ∼Gamma(1,1) γ ∼Gamma(0.01,0.01)
Geweke HW ESS Geweke HW ESS Geweke HW ESS

β0 0.56 0.91 440 -0.35 0.36 433 -1.01 0.10 452
β1 -0.59 0.69 5912 -0.50 0.87 5783 0.91 0.88 6158
β2 0.68 0.52 4256 -0.83 0.54 4510 -1.48 0.43 4447
β3 -0.21 0.76 3349 -1.54 0.54 3479 -0.37 0.68 3145
β4 -0.47 0.99 4398 -1.23 0.60 4046 -0.38 0.31 3629
β5 -1.28 0.65 1352 -0.03 0.12 1387 0.34 0.36 1307
β6 -0.20 0.80 4386 -1.88 0.37 4365 -1.46 0.57 4623
β7 -0.24 0.73 593 0.79 0.47 494 1.38 0.06 532
β8 -0.78 0.68 6409 0.66 0.85 6014 1.22 0.10 6471
γ -0.15 0.16 7254 1.02 0.90 7496 1.63 0.56 6890
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Figure D.7: VA lung cancer data. RMW chains with exponential(1) mixing under
Gamma(4,1) prior for γ.
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Figure D.8: VA lung cancer data. RMW chains with Gamma(θ, θ) mixing under
Gamma(4,1) prior for γ and a truncated exponential prior for cv with E(cv)=1.5
(left panels) and E(cv)=5 (right panels).
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Figure D.9: VA lung cancer data. RMW chains with Inv-Gamma(θ, 1) mixing under
Gamma(4,1) prior for γ and a truncated exponential prior for cv with E(cv)=1.5 (left
panels) and E(cv)=5 (left panels).
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Figure D.10: VA lung cancer data. RMW chains with Inv-Gaussian(θ, 1) mixing un-
der Gamma(4,1) prior for γ and a truncated exponential prior for cv with E(cv)=1.5
(left panels) and E(cv)=5 (right panels).
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Figure D.11: VA lung cancer data. RMW chains with log-normal(0, θ) mixing under
Gamma(4,1) prior for γ and a truncated exponential prior for cv with E(cv)=1.5 (left
panels) and E(cv)=5 (left panels).
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D.2 AA Bone Marrow Transplant dataset

Table D.13: AA Bone Marrow data. For MCMC chains: total number of iteration
(N), thinning period (thin), burning period (burn) and update period for λi’s (Q).

Family Model N thin burn Q
SMLN all but log-Laplace and log-logistic 400,000 20 200,000 1
SMLN log-Laplace 400,000 20 200,000 5
SMLN log-logistic 400,000 20 200,000 20
RME all but Inv-Gamma and Inv-Gauss mixing 600,000 50 150,000 1
RME Inv-Gamma and Inv-Gauss mixing 600,000 50 150,000 5

Table D.14: AA Bone Marrow data. Convergence diag. and ESS log-normal chains.
Jeffreys prior Ind. Jeffreys prior

Geweke HW ESS Geweke HW ESS
β0 -0.34 0.91 10000 0.14 0.88 10000
β1 -0.65 0.82 9246 0.34 0.58 10000
σ2 -1.22 0.11 10000 -0.36 0.33 10000

Table D.15: AA Bone Marrow data. Convergence diag. and ESS log-Student t
chains under ind. Jeffreys prior.

Geweke HW ESS
β0 0.90 0.92 9944
β1 -1.17 0.76 10000
σ2 -1.12 0.59 4254
ν -1.67 0.82 211

Table D.16: AA Bone Marrow data. Convergence diag. and ESS log-Laplace chains.
Jeffreys prior Ind. Jeffreys prior

Geweke HW ESS Geweke HW ESS
β0 1.60 0.46 6423 -0.61 0.31 6158
β1 -0.63 0.74 6837 0.20 0.49 6991
σ2 0.15 0.49 8974 1.83 0.52 9187

Table D.17: AA Bone Marrow data. Convergence diag. and ESS log-exp. power
chains.

Jeffreys prior Ind. Jeffreys prior Ind. I Jeffreys prior
Geweke HW ESS Geweke HW ESS Geweke HW ESS

β0 0.05 0.38 7027 0.86 0.29 6702 -1.40 0.86 6579
β1 -0.50 0.97 6844 -0.46 0.28 7317 0.27 0.32 6862
σ2 -0.99 0.33 6043 0.90 0.33 5401 -1.41 0.52 5851
α -1.55 0.22 5407 -0.31 0.92 5447 0.21 0.98 5457
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Figure D.12: AA Bone Marrow data. Log-normal chains under ind. Jeffreys prior.
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Figure D.13: AA Bone Marrow data. Log-Student t chains under ind. Jeffreys prior.
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Figure D.14: AA Bone Marrow data. Log-Laplace chains under ind. Jeffreys prior.
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Table D.18: AA Bone Marrow data. Convergence diagnostics and ESS for log-
logistic chains.

Jeffreys prior Ind. Jeffreys prior
Geweke HW ESS Geweke HW ESS

β0 0.41 0.65 9136 -0.32 0.97 8916
β1 -1.33 0.23 9010 0.22 0.73 8871
σ2 -0.05 0.94 7700 -1.13 0.51 9005
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Figure D.15: AA Bone Marrow data. Log-exp. power chains under ind. Jeffreys
prior.
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Figure D.16: AA Bone Marrow data. Log-logistic chains under ind. Jeffreys prior.
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Figure D.17: AA Bone Marrow data. Exponential chains.
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Figure D.18: AA Bone Marrow data. RME chains with exponential (1) mixing.

Table D.19: AA Bone Marrow data. Convergence diagnostics and ESS for exponen-
tial chains.

Geweke HW ESS

β0 0.88 0.73 9000
β1 -1.69 0.65 9000

Table D.20: AA Bone Marrow data. Convergence diagnostics and ESS for RME
chains with exponential(1) mixing.

Geweke HW ESS

β0 -0.88 0.78 8544
β1 1.03 0.90 8520

Table D.21: AA Bone Marrow data. Convergence diagnostics and ESS for RME
chains with Gamma(θ, θ) mixing.
Prior E(cv)=1.25 E(cv)=1.5 E(cv)=2 E(cv)=5 E(cv)=10
for cv Gew. HW ESS Gew. HW ESS Gew. HW ESS Gew. HW ESS Gew. HW ESS

T. exp.
β0 0.61 0.34 7876 -1.20 0.11 7125 -0.53 0.18 8301 0.64 0.69 8308 1.05 0.74 8084
β1 -1.44 0.25 9000 0.55 0.82 9000 -0.02 0.43 9000 -0.46 0.34 8568 0.78 0.71 8336
θ -1.07 0.82 682 -0.64 0.58 405 0.62 0.48 1365 -0.66 0.92 415 0.63 0.06 952

Pareto
β0 -1.03 0.77 4633 -0.82 0.76 7146 1.05 0.86 5922 0.03 0.65 7546 -0.28 0.69 7678
β1 -0.67 0.50 9000 0.24 0.47 8591 0.45 0.60 7948 -0.30 0.73 8513 0.69 0.56 10531
θ -0.80 0.98 158 -0.41 0.64 833 0.84 0.10 304 -0.26 0.89 1651 0.57 0.68 577
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Figure D.19: AA Bone Marrow data. RME chains with Gamma (θ, θ) mixing under
a truncated exponential prior for cv. Left panels use E(cv)=1.25. Right panels use
E(cv)=10.

Table D.22: AA Bone Marrow data. Convergence diagnostics and ESS for RME
chains with Inv-Gamma(θ, 1) mixing.

Prior E(cv)=1.25 E(cv)=1.5
for cv Geweke HW ESS Geweke HW ESS

T. exp.
β0 -0.18 0.37 1166 -1.34 0.37 1598
β1 0.77 0.70 7710 -0.76 0.30 8430
θ -0.92 0.94 624 1.07 0.48 975

Pareto
β0 -1.22 0.72 1088 0.68 0.69 827
β1 -1.97 0.68 7952 1.06 0.20 8037
θ 1.24 0.54 718 -1.06 0.88 274

Table D.23: AA Bone Marrow data. Convergence diagnostics and ESS for RME
chains with Inv-Gauss(θ, 1) mixing.

Prior E(cv)=1.25 E(cv)=1.5 E(cv)=2
for cv Gew. HW ESS Gew. HW ESS Gew. HW ESS

T. exp.
β0 0.59 0.82 928 -0.46 0.48 1712 -1.03 0.55 1274
β1 0.61 0.17 7626 -0.48 0.51 7223 0.24 0.66 6747
θ 0.21 0.98 559 -0.97 0.29 1730 -1.78 0.81 1085

Pareto
β0 -0.54 0.28 581 -0.14 0.54 1110 -0.51 0.61 1608
β1 1.92 0.61 7573 0.20 0.76 7043 0.93 0.94 6493
θ -1.04 0.22 1247 0.42 0.64 962 -1.00 0.96 450
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Figure D.20: AA Bone Marrow data. RME chains with Inv-Gamma (θ, 1) mixing
under a truncated exponential prior for cv. Left panels use E(cv)=1.25. Right panels
use E(cv)=1.5.
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Figure D.21: AA Bone Marrow data. RME chains with Inv-Gauss (θ, 1) mixing
under a trunc. exp. prior for cv. Left panels: E(cv)=1.25. Right panels: E(cv)=2.

Table D.24: AA Bone Marrow data. Convergence diagnostics and ESS for RME
chains with log-normal(0, θ) mixing.
Prior E(cv)=1.25 E(cv)=1.5 E(cv)=2 E(cv)=5 E(cv)=10
for cv Gew. HW ESS Gew. HW ESS Gew. HW ESS Gew. HW ESS Gew. HW ESS

T. exp.
β0 1.51 0.61 7861 -0.70 0.21 6995 -1.67 0.32 5623 -1.30 0.89 4537 1.28 0.44 3518
β1 -0.66 0.97 7608 0.38 0.64 7083 0.89 0.75 6015 1.25 0.31 4536 -1.10 0.37 3841
θ -0.15 0.99 1561 -0.56 0.28 2527 -1.56 0.38 2208 -0.61 0.89 3229 0.34 0.73 2712

Pareto
β0 0.45 0.91 6634 -1.47 0.41 5032 -0.86 0.06 3971 -1.71 0.06 4211 0.10 3672 0.63
β1 -1.40 0.59 6637 0.00 0.78 5250 1.59 0.15 5689 -0.15 1.00 5136 -0.07 5085 0.85
θ -1.64 0.39 1303 -1.34 0.18 1240 -0.03 0.80 1946 -0.22 0.45 2285 0.12 1977 0.64
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Figure D.22: AA Bone Marrow data. RME chains with log-normal (0, θ) mixing
under a trunc. exp. prior for cv. Left panels: E(cv)=1.25. Right panels: E(cv)=10.

D.3 Cerebral palsy dataset

Table D.25: Cerebral palsy data. For MCMC chains: total number of iteration (N),
thinning period (thin), burning period (burn) and update period for λi’s (Q).

Family Model N thin burn Q
SMLN all but log-Laplace and log-logistic 400,000 20 200,000 1
SMLN log-Laplace 400,000 20 200,000 5
SMLN log-logistic 400,000 20 200,000 20
RMW No mixing 600,000 50 150,000 1
RMW Exponential mixing 600,000 50 150,000 10
RMW Gamma mixing 600,000 50 150,000 2
RMW Inv-Gamma and Inv-Gauss mixing 1,200,000 100 300,000 5
RMW Log-normal mixing 1,200,000 100 300,000 2

Table D.26: Cerebral palsy data. Convergence diag. and ESS for log-normal chains
Jeffreys prior Ind. Jeffreys prior

Point Observations Set Observations Point Observations Set Observations
Geweke HW ESS Geweke HW ESS Geweke HW ESS Geweke HW ESS

β0 0.64 0.91 9515 -0.22 0.47 8510 1.22 0.26 9636 1.64 0.12 9515
β1 0.84 0.97 4462 -1.13 0.35 4864 0.73 0.82 4786 0.93 0.51 5210
β2 -0.35 0.69 7209 -0.72 0.27 7966 0.58 0.92 7704 -1.37 0.44 9109
β3 0.42 0.47 9574 -1.65 0.70 10012 -0.17 0.32 10000 0.42 0.51 10000
β4 -0.84 0.92 9677 0.99 0.40 9341 -1.08 0.42 10000 -1.62 0.11 10000
σ2 0.42 0.81 4271 -0.64 0.47 4536 1.14 0.57 4333 0.95 0.50 4482
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Figure D.23: Cerebral palsy data. Log-normal chains under the ind. Jeffreys prior
(set observations).

Table D.27: Cerebral palsy data. Convergence diagnostics and ESS for log-Student’s
t chains

Ind. Jeffreys prior
Geweke HW ESS

β0 -0.69 0.64 9702
β1 0.29 0.16 2617
β2 -1.26 0.94 6144
β3 0.48 0.60 9968
β4 0.43 0.59 9632
σ2 -0.77 0.83 468
ν -0.74 0.99 125

Table D.28: Cerebral palsy data. Convergence diagnostics and ESS for log-Laplace
chains

Jeffreys prior Ind. Jeffreys prior
Geweke HW ESS Geweke HW ESS

β0 0.42 0.92 4036 0.92 0.68 3803
β1 -0.77 0.70 314 0.03 0.48 329
β2 0.07 0.88 1967 0.52 0.23 1853
β3 -0.10 0.75 6212 -0.09 0.81 8181
β4 -0.72 0.93 3880 -1.19 0.54 3285
σ2 -0.65 0.71 568 0.20 0.29 625
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Figure D.24: Cerebral palsy data. Log-Student’s t chains under the ind. Jeffreys
prior (set observations).
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Figure D.25: Cerebral palsy data. Log-Laplace chains under the ind. Jeffreys prior
(set observations).

Table D.29: Cerebral palsy data. Convergence diagnostics and ESS for log-
exponential power chains

Jeffreys prior Ind. Jeffreys prior Type I Ind. Jeffreys prior
Geweke HW ESS Geweke HW ESS Geweke HW ESS

β0 1.12 0.39 588 -0.87 0.28 600 1.01 0.37 584
β1 1.27 0.29 935 -0.41 1.00 1162 -1.80 0.39 942
β2 0.45 0.86 2811 0.64 0.35 2964 -1.19 0.49 2790
β3 1.63 0.14 6374 0.71 0.16 6851 -0.71 0.62 5997
β4 -1.28 0.29 456 0.74 0.28 568 -0.92 0.33 568
σ2 0.01 0.79 972 0.80 0.09 956 -0.49 0.87 989
α -0.55 0.34 960 0.89 0.08 1031 0.11 0.70 941
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Figure D.26: Cerebral palsy data. Log-exponential power chains under the ind.
Jeffreys prior (set observations).

Table D.30: Cerebral palsy data. Convergence diagnostics and ESS for log-logistic
chains

Jeffreys prior Ind. Jeffreys prior
Geweke HW ESS Geweke HW ESS

β0 0.90 0.62 7557 -1.31 0.51 7224
β1 0.89 0.85 2426 -0.13 0.50 2324
β2 0.26 0.66 5582 -0.64 0.49 5784
β3 1.11 0.94 8661 1.88 0.51 8122
β4 -0.53 0.76 7293 1.10 0.60 6907
σ2 0.59 0.93 2807 0.25 0.32 2851
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Figure D.27: Cerebral palsy data. Log-logistic chains under the ind. Jeffreys prior
(set observations).
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Figure D.28: Cerebral palsy data. Weibull chains under Gamma(4,1) prior for γ.

Table D.31: Cerebral palsy data. Convergence diagnostics and ESS for Weibull
chains.

γ ∼Gamma(4,1) γ ∼Gamma(1,1) γ ∼Gamma(0.01,0.01)
Geweke HW ESS Geweke HW ESS Geweke HW ESS

β0 0.27 0.65 4089 -1.88 0.46 3907 -0.78 0.78 3761
β1 1.37 0.25 8522 0.38 0.74 8985 0.81 0.40 8522
β2 -0.35 0.56 9000 0.00 0.75 9000 1.28 0.08 9000
β3 1.41 0.57 8957 1.14 0.31 8728 1.40 0.82 9000
β4 -0.29 0.72 4094 1.73 0.39 3970 0.56 0.72 3865
γ -1.20 0.22 9000 -0.71 0.40 9000 -1.03 0.68 9000

Table D.32: Cerebral palsy data. Convergence diagnostics and ESS for RMW chains
with exponential(1) mixing.

γ ∼Gamma(4,1) γ ∼Gamma(1,1) γ ∼Gamma(0.01,0.01)
Geweke HW ESS Geweke HW ESS Geweke HW ESS

β0 0.15 0.36 2548 0.18 0.98 2486 0.89 0.23 2372
β1 0.29 0.81 8651 -0.86 0.09 9000 -0.06 0.85 8561
β2 -0.01 0.99 7941 -0.97 0.92 8918 0.77 0.33 8208
β3 0.05 0.30 8568 0.84 0.53 9000 0.71 0.49 8675
β4 -0.26 0.35 2553 -0.14 0.98 2525 -0.94 0.19 2342
γ 1.27 0.25 9126 -0.07 0.32 9000 0.16 0.66 8539
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Figure D.29: Cerebral palsy data. RMW chains with exponential(1) mixing under
Gamma(4,1) prior for γ.
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Figure D.30: Cerebral palsy data. RMW chains with Gamma(θ, θ) mixing under
Gamma(4,1) prior for γ and a truncated exponential prior for cv with E(cv)=1.5
(left panels) and E(cv)=5 (right panels).
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Figure D.31: Cerebral palsy data. RMW chains with Inv-Gamma(θ, 1) mixing under
Gamma(4,1) prior for γ and a truncated exponential prior for cv with E(cv)=1.5 (left
panels) and E(cv)=5 (left panels).
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Figure D.32: Cerebral palsy data. RMW chains with Inv-Gaussian(θ, 1) mixing un-
der Gamma(4,1) prior for γ and a truncated exponential prior for cv with E(cv)=1.5
(left panels) and E(cv)=5 (right panels).
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Figure D.33: Cerebral palsy data. RMW chains with log-normal(0, θ) mixing under
Gamma(4,1) prior for γ and a truncated exponential prior for cv with E(cv)=1.5
(left panels) and E(cv)=5 (right panels).
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Appendix E

Appendix for Chapter 5

Figures E.1 to E.8 of this Appendix summarize a descriptive analysis of the PUC

dataset. In terms of population compositions, these Figures confirm strong levels

of heterogeneity between different programmes of the PUC. As described in Section

5.2, this suggest the need of modelling each programme independently. In addition,

Figures E.9 to E.16 display the continuous component associated to the posterior

distribution of the regression coefficients for some of the science programmes where

dropouts and late graduation are more often seen.
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Figure E.1: PUC dataset. Distribution of students according to sex. The lighter
area represents the proportion of male students.
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Figure E.2: PUC dataset. Distribution of students according to region of residence.
The lighter area represents the proportion of students from the Metropolitan area.
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Figure E.3: PUC dataset. Distribution of students according to educational level
of the parents. The lighter area represents the proportion of students for which at
least one of the parents has a higher degree (university or technical).
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Figure E.4: PUC dataset. Distribution of students according to type of high school.
From darkest to lightest, colored areas represent the proportion of students whose
high school are: private, subsidized private and public, respectively.
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Figure E.5: PUC dataset. Distribution of students according to funding. From
darkest to lightest, colored areas represent the proportion of students who have:
scholarship and loan, scholarship only, loan only and no aid, respectively.
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Figure E.6: PUC dataset. Distribution of students according to their selection score.
The lighter area represents the proportion of students with a selection score of 700
or more, which is typically considered a high value (the maximum possible score is
850).
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Figure E.7: PUC dataset. Distribution of students according to their application
preference. The lighter area represents the proportion of students who applied in
second or lower preference to their current degree.
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Figure E.8: PUC dataset. Distribution of students according to the gap between
High School graduation and admission to PUC. The lighter area represents the
proportion of students who have no gap.
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Figure E.9: PUC dataset. For Chemistry students: posterior density (given that
the corresponding covariate is included in the model) of some selected regression
coefficients: region (β2), parents’ education - with degree (β3), high school - private
(β4) and high school - subsidized private (β5). A vertical dashed line was drawn at
zero for reference. The prior in (5.24) was adopted for the model space.
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Figure E.10: PUC dataset. For Chemistry students: posterior density (given that
the corresponding covariate is included in the model) of some selected regression
coefficients: funding - scholarship only (β6), funding - scholarship and loan (β7) and
funding - loan only (β8). A vertical dashed line was drawn at zero for reference.
The prior in (5.24) was adopted for the model space.
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Figure E.11: PUC dataset. For Mathematics and Statistics students: posterior
density (given that the corresponding covariate is included in the model) of some
selected regression coefficients: sex (β1), region (β2), parents’ education - with degree
(β3) and high school - private (β4). A vertical dashed line was drawn at zero for
reference. The prior in (5.24) was adopted for the model space.
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Figure E.12: PUC dataset. For Mathematics and Statistics students: posterior
density (given that the corresponding covariate is included in the model) of some
selected regression coefficients: high school - subsidized private (β5), funding - schol-
arship only (β6), funding - scholarship and loan (β7) and funding - loan only (β8). A
vertical dashed line was drawn at zero for reference. The prior in (5.24) was adopted
for the model space.
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Figure E.13: PUC dataset. For Mathematics and Statistics students: posterior
density (given that the corresponding covariate is included in the model) of some
selected regression coefficients: ranking (β9), preference (β10) and gap (β11). A
vertical dashed line was drawn at zero for reference. The prior in (5.24) was adopted
for the model space.
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Figure E.14: PUC dataset. For Physics students: posterior density (given that
the corresponding covariate is included in the model) of some selected regression
coefficients: sex (β1), region (β2), parents’ education - with degree (β3) and high
school - private (β4). A vertical dashed line was drawn at zero for reference. The
prior in (5.24) was adopted for the model space.
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Figure E.15: PUC dataset. For Physics students: posterior density (given that
the corresponding covariate is included in the model) of some selected regression
coefficients: high school - subsidized private (β5), funding - scholarship only (β6),
funding - scholarship and loan (β7) and funding - loan only (β8). A vertical dashed
line was drawn at zero for reference. The prior in (5.24) was adopted for the model
space.
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Figure E.16: PUC dataset. For Physics students: posterior density (given that
the corresponding covariate is included in the model) of some selected regression
coefficients: ranking (β9), preference (β10) and gap (β11). A vertical dashed line
was drawn at zero for reference. The prior in (5.24) was adopted for the model
space.
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Appendix F

Probability density functions

Gamma: Gamma(a, b)

fX(x) =
ba

Γ(a)
xa−1 e−bx x > 0, a > 0, b > 0. (F.1)

Generalized Inverse Gaussian: GIG(a, b, p)

fX(x) =
(a/b)p/2

2Kp(
√
ab)

xp−1 exp{−1

2
(ax+ b/x)} x > 0, a > 0, b > 0, p ∈ R. (F.2)

Inverse Gamma: Inv-Gamma(a, b)

fX(x) =
ba

Γ(a)
x−a−1 e−

b
x x > 0, a > 0, b > 0. (F.3)

Inverse Gaussian: Inv-Gauss(a, b)

fX(x) =

√
a

2π
e
a
b x−

3
2 exp{−1

2
(
a

b2
x+ a/x)} x > 0, a > 0, b > 0. (F.4)

Multivariate normal: Normalp(a,B)

fX(x) = (2π)−
p
2 (det(B))−

1
2 exp

{
−1

2
(x− a)′B−1(x− a)

}
x ∈ Rp, a ∈ Rp and

(F.5)

B is a symmetric positive semi-definite matrix of dimension p.

Multivariate Student t: Student tp(d, a, B)

fX(x) =
Γ((d+ p)/2)

Γ(d/2)
(dπ)−

p
2 (det(B))−

1
2

[
1 +

1

d
(x− a)′B−1(x− a)

]−(d+p)/2

,

(F.6)
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x ∈ Rp, d > 0, a ∈ Rp and B is a symmetric positive semi-definite matrix of dimen-

sion p.

Normal: Normal(a, b2)

fX(x) = (2πb2)−
1
2 exp

{
− 1

2b2
(x− a)2

}
, x ∈ R, a ∈ R, b2 > 0. (F.7)

If X ∼ Normal(a, b2) then Y = eX ∼ log-normal (a, b2).

Student t: Student t(d, a, b2)

fX(x) =
Γ(d/2 + 1/2)

Γ(d/2)
√
b2dπ

[
1 +

(x− a)2

b2d

]−( d
2

+ 1
2

)

, x ∈ R, a ∈ R, b2 > 0, c > 0.

(F.8)

Reducing to a Cauchy distribution when d = 1. If X ∼ Student t(a, b2) then

Y = eX ∼ log-Student t(a, b2).

Uniform: Unif(a, b)

fX(x) =
1

b− a
, x ∈ [a, b], a ∈ R, b ∈ R, a < b. (F.9)

Weibull: Weibull(a, b)

fX(x) = abxa−1 e−bx
a
, x > 0, a > 0, b > 0 (F.10)

Reducing to the exponential and Rayleigh distributions when b = 1 and b = 2,

respectively. If X ∼ Weibull(a, b) then Y = log(X) ∼ Gumbel(−a−1 log(b), a−1).
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