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Abstract
The saddle-node bifurcation on an invariant circle (SNIC) is one of the
codimension-one routes to creation or destruction of a periodic orbit in a
continuous-time dynamical system. It governs the transition from resting
behaviour to periodic spiking in many class I neurons, for example. Here, as a
first step towards theory of networks of such units the effect of weak coupling
between two systems with a SNIC is analysed. Two crucial parameters of the
coupling are identified, which we call δ1 and δ2. Global bifurcation diagrams are
obtained here for the ‘mutualistic’ case δ1δ2 > 0. According to the parameter
regime, there may coexist resting and periodic attractors, and there can be
quasiperiodic attractors of torus or cantorus type, making the behaviour of even
such a simple system quite non-trivial. In a second paper we will analyse the
mixed case δ1δ2 < 0 and summarize the conclusions of this study.

Mathematics Subject Classification: 37Exx, 37N25, 37Gxx

(Some figures may appear in colour only in the online journal)

1. Introduction

The saddle-node on an invariant circle (SNIC) bifurcation is one of the basic scenarios for
creation of a periodic orbit in smooth continuous-time dynamical systems (number three in the
list of Andronov and Pontryagin [AP]). It goes under various other names, such as saddle-node
on a limit cycle (SNLC), homoclinic to a saddle-node, or saddle-node loop (though we reserve
the latter name for a codimension-2 case, e.g. Z points of [BGKM]).

Content from this work may be used under the terms of the Creative Commons Attribution
3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.
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The SNIC bifurcation is for example the scenario by which many class I neurons are
believed to make the transition from resting behaviour to periodic spiking [EK, RE] (this was
also proposed by RSM to the neurophysiologist Barlow in 1986). It underlies some regenerative
excitable chemical systems. It occurs in mechanical systems too, like the damped pendulum
with torque for sufficiently strong damping, or its Josephson junction analogue [LHM].

Mathematically, a SNIC for a Cr (r � 2) vector field Ẋ = V (X) on a manifold is an
elementary saddle-node (an equilibrium with a simple eigenvalue 0, no other eigenvalues on
the imaginary axis and non-zero quadratic coefficient in the null direction) with a trajectory
that is asymptotic to the saddle-node in both directions of time (‘homoclinic’) along the null
direction; it follows that the resulting invariant circle is Cr . Thus, taking a coordinate x along
the circle, with 0 representing the saddle-node equilibrium, and suitable orientation, the vector
field v on the circle satisfies

ẋ = v(x) = Cx2 + o(x2)

as x → 0 for some C > 0 and v(x) > 0 for x �= 0. Without loss of generality, by scaling
x we take C = 1. We denote the length of the circle (in the rescaled coordinate x) by L (an
alternative would be to scale the length of the circle to 1 and keep a general value of C).

Consider Cr perturbation of a SNIC by a parameter µ, with µ = 0 representing the
unperturbed case. By the elementarity condition, the invariant circle is normally hyperbolic and
so persists for all Cr -small perturbations. A parameter-dependent extension of the coordinate
x can be chosen so that the length of the circle remains L and the vector field on it is a Cr -small
perturbation of that for µ = 0. By a parameter-dependent shift of origin to remove the linear
term (using the implicit function theorem), the perturbed vector field has the local form

ẋ = a(µ) + b(µ)x2 + o(x2) (1)

for some smooth functions a, b of µ, with a(0) = 0, b(0) = 1.
It is convenient for later purposes to make b(µ) precisely 1 for µ small, by a coordinate

change X(x, µ) preserving the length L. This can be achieved as in appendix A. We will
suppose that a′(0) �= 0 and thus for small µ we can use a as parameter instead of µ, so without
loss of generality we have

ẋ = µ + x2 + o(x2) (2)

as x → 0. For µ < 0 it has two equilibria: a sink and a source (if the normal directions to the
circle are attracting, the case of most relevance, then in the full state space these are a sink and
a saddle). For µ > 0 the circle is a periodic orbit whose period T (µ) is asymptotic to π/

√
µ

as µ → 0, which spends all but a bounded amount of its period in any neighbourhood of 0.
An explicit example of a family with a SNIC bifurcation is

φ̇ = µ + 2(1 − cos φ)

on a circle of length 2π . Another artificial-looking but useful example is

ẋ = µ + x2

on the real line union a point at infinity, interpreted as the projective real line (set of lines �

through the origin in a plane); the projective real line is diffeomorphic to a circle with the
coordinate x representing the slope of the line �; one could write x = tan θ with θ considered
modulo π (half a revolution brings � to itself) and then

θ̇ = µ cos2 θ + sin2 θ

on a circle of length π , which is similar to the first example (put φ = 2θ ), see [Iz].
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The goal of this paper is to find what happens when two SNIC bifurcations are coupled.
This is step one towards finding how a network of class I neurons or Josephson junctions
behaves, as addressed for example in chapter 8 of [HI]. Although it sounds a simple problem,
we have not found a rigorous treatment in the literature and our analysis and its solution are
remarkably complicated. An example was treated numerically by [GK]. We treat the general
case from the point of view of determining the minimal structure that the bifurcation diagrams
must possess.

We identify two crucial coupling parameters δ1, δ2. We distinguish two principal cases:
‘mutualistic’, with δ1δ2 > 0, and ‘mixed’, with δ1δ2 < 0. The mutualistic case can be further
decomposed into ‘mutually excitatory’: δ1, δ2 > 0, and ‘mutually inhibitory’: δ1, δ2 < 0.
We analyse the simplest mutualistic cases in this paper, but even they turn out to be quite
complicated. In a companion paper, paper II, we will treat the mixed case and summarize the
conclusions of the study.

We will assume the uncoupled systems are Cr with r large enough that every operation
we will perform makes sense (r = 5 suffices). The coupling we treat is of the form of a
Cr -small perturbation to the vector field given by the product of two SNIC bifurcations. This
could represent the effect of gap-junction coupling (‘electrical synapse’) between neurons (for
an introduction to neuroscience see [NMW]). We will show in section 3.2 that gap-junction
coupling produces the mutually excitatory case. On the other hand, chemical synaptic coupling
requires further analysis, because it may involve adding additional degrees of freedom to
represent the effects of the neuro-transmitters and time delays to represent signal travel times.
The first consideration does not make much difference, because near the bifurcation the
timescale for the electric dynamics is longer than for relaxation of the channels in response to
the neuro-transmitters so the latter can simply be added into the normally hyperbolic directions.
The second makes the dynamics infinite-dimensional and although it is likely that again
the effects can simply be added into the normally hyperbolic directions, we did not pursue
this yet. Similarly, the coupling can model electrical coupling between Josephson junctions.
For an introduction to the theory and experiments on Josephson junction arrays, see [M, U],
respectively.

Our analysis uses heavily terminology and results from section 4 of [BGKM] (on
bifurcations for flows on a 2-torus) and some from [BM] (on coupling of a saddle-node periodic
orbit with an oscillator). In particular, we recall some key concepts right now. A Poincaré
flow on T

2 is one with a global cross-section, i.e. a transverse section such that every forward
and backward orbit crosses it. With respect to a choice of coordinates (x1, x2) on the universal
cover of the torus (i.e. consider T

2 = R
2/(L1Z×L2Z), where Lj are the lengths of the cycles

in the coordinate directions), the homology direction of a forward orbit of a flow on T
2 is the

limit of the unit vector in the direction of the vector V of (signed) numbers of revolutions in x1

and x2 as time goes to +∞ (or 0 if V does not go to infinity). The winding ratio is the homology
direction modulo reflection through 0. For a Poincaré flow, every orbit has the same homology
direction and it is non-zero. We denote Poincaré flows by P . A Cherry flow is one with a
homotopically non-trivial transverse section � and a direction of time such that the orbits of a
non-empty subset �′ return to � under the flow, the induced map g : �′ → � is continuous,
and limx→l g(x) = limx→r g(x) for all gaps [l, r] (components of �\�′). Every unbounded
orbit of a Cherry flow has the same non-zero homology direction. We denote Cherry flows
by C (in [BGKM], C denotes a larger class). If the homology direction of a flow is that of an
integer vector (p1, p2) with no common factors, we say the flow is partially mode-locked of
type (p1, p2). A flow is fully mode-locked if every orbit has homology direction 0 (equivalently
if every orbit is bounded on the universal cover). We denote fully mode-locked flows by F (or
FML). A non-contractible closed curve on the torus is called rotational.
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Figure 1. Bifurcation diagram in the parameter plane (µ1, µ2) for two uncoupled SNICs, with
global phase portraits.

2. Product system

Denote the coordinates of the two systems by xj , j = 1, 2, with lengths Lj for one revolution,
their parameters by µj and their (uncoupled) vector fields by

ẋj = vj (xj , µj ) = µj + x2
j + O(x3

j )

with vj (xj , 0) > 0 for all xj �= 0. We interpret the remainder term in at least C1, thus in
particular there are K > 0, M > 0 such that |vj − µj − x2

j | � K|xj |3, |v′
j − 2xj | � 3K|xj |2,

for |xj | � M .
It will be convenient to suppose that ∂vj

∂µj
� c > 0 for all xj , not just for xj near 0 (say

c = 1
2 ). This can be achieved by parameter-dependent coordinate changes Xj(xj , µj ) as in

appendix B.
The product of two circles is a 2-torus. We obtain the bifurcation diagram of figure 1

for the product system in the plane of µ = (µ1, µ2), with global phase portraits as indicated.
In the positive quadrant, the flow is smoothly conjugate to that of a constant vector field on
the unit torus which varies smoothly with parameters. For the conjugacy one can use the
fractions τj (xj ) of the period Tj traversed from a reference point (say xj = 0). The constant
vector field is (1/T1, 1/T2), and it has asymptotic expression (

√
µ1,

√
µ2)/π as µ → 0.

In particular, the flows in the positive quadrant are Poincaré flows with homology direction

(T2, T1)/

√
T 2

1 + T 2
2 which varies smoothly and at non-zero rate with the ratio µ1 : µ2. In the

negative quadrant, the flow is fully mode-locked, with four invariant circles (xj ≈ ±√−µj )
intersecting pairwise at four equilibria. We call phase portraits topologically equivalent to this,
basic tartan. The boundaries of the negative quadrant constitute two simultaneous saddle-node
bifurcations of equilibria (sne), which merge into a degenerate one at µ = (0, 0). In the bottom
right quadrant, the flow is a Poincaré flow of type (1, 0), with repelling and attracting periodic
orbits at x2 ≈ ±√−µj . Similarly, in the top left quadrant, we have Poincaré flow of type
(0, 1). The boundaries of the positive quadrant (minus the vertex 0) correspond to (elementary)
saddle-node periodic orbits (snp) (periodic orbits with a Floquet multiplier +1).
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Figure 2. Annuli A+
2 := {0 � x2 � 2

√−µ2} and A−
2 := {−2

√−µ2 � x2 � 0}, and resulting
homotopically non-trivial repelling and attracting sets C±

2 (drawn as C1 invariant circles here but
could take other forms as in figure 3).

3. Effect of weak coupling

3.1. First steps

The invariant 2-torus of the uncoupled system is normally hyperbolic for µ small enough,
so persists under small smooth perturbation [F], and the vector field on it is a small smooth
perturbation of the uncoupled case, in general µ-dependent. We restrict attention from now
on to a neighbourhood of µ = 0 where the above holds. Let us denote the perturbation size
in Cr , for some r � 2, by δ. In particular this implies that the changes to v1 and v2 and to
their first and second derivatives are at most δ (actually in appendix E we will require a bound
on the third derivative of the perturbation, which does not need to be as strong as δ but for
convenience we will assume that too).

The perturbed system is

ẋ1 = ṽ1(x1, x2) = v1(x1) + O(δ) with v1(x1) = µ1 + x2
1 + O(x3

1)

ẋ2 = ṽ2(x1, x2) = v2(x2) + O(δ) with v2(x2) = µ2 + x2
2 + O(x3

2).

For −(1/16K2) < µ2 < −δ we have ẋ2 < 0 on x2 = 0 and ẋ2 > 0 for |x2| � 2
√−µ2.

Let A±
2 be the annuli as shown in figure 2. Then, defining φ to be the flow of the above

differential system, C−
2 := ∩t>0φtA

−
2 and C+

2 := ∩t<0φtA
+
2 are homotopically non-trivial

attracting, respectively, repelling sets.
If we neglect the perturbation, C±

2 are just the circles x2 ≈ ±√−µ2 given by the zeroes
of v2. Under perturbation, we will find regions in which they persist to C1 invariant circles
(either periodic orbits or chains of connecting orbits between equilibria), regions in which they
are C0 invariant circles connecting equilibria but not necessarily C1, and in paper II regions in
which they are not even C0 circles. Figure 3 shows some possible forms for C±

2 .
We begin by taking µ2 � −2δ and showing in appendix C that the x2-nullcline consists

of two C1 graphs over x1, lying within 2
3

√−µ2 � ±x2 � 2
√−µ2 and having small slope (at

most δ/
√−µ2). The analogous result holds for the x1 nullcline when µ1 � −2δ.

In particular, in the region where both µj � −2δ, the nullclines intersect in precisely four
points. As the derivative of ṽ is close to diag (2x1, 2x2), they are two saddles, a source and a
sink, arranged just as for the unperturbed case. We leave out the detailed justification. The
invariant manifolds of the saddles leave close to horizontal and vertical and because of the
signs of the components of ṽ between the nullclines, they are obliged to fall into the source or
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(a) (c) (d)

(g)(e) (f )      

(b)

Figure 3. Some possible forms for the maximal invariant sets in the annuli. Only (d) and (g) are
C1. Case (f ) is not a C0 circle.

Figure 4. Some possible realizations of basic tartan in C1. The third one has C±
2 and C−

1 non-C1

circles.

sink in topologically the same way as for the unperturbed case. Thus when both µj � −2δ,
we continue to obtain a basic tartan phase portrait at the C0 level, though at the C1 level it
can take forms like those in figure 4. In particular, C±

2 , C±
1 are all at least C0 circles , but not

necessarily C1 because of the ways the saddle manifolds may meet at the source or sink.
Next we analyse µ1 � −2δ, µ2 � −Cδ for some C greater than 2 and prove that C±

2 are
C1 invariant circles there, using normal hyperbolicity theory. The normal linearized dynamics
for the unperturbed case

˙δx2 = v′
2(x2) δx2 ≈ ±2

√−µ2 δx2

is hyperbolic (repelling for +, attracting for −). The character of the tangential linearized
dynamics

˙δx1 = v′
1(x1) δx1

depends on the sign of µ1.
For µ1 � 0, although tangent orbits grow a lot for 0 < x1 � L1/2, the growth is all

cancelled out by contraction for 0 < L1 − x1 � L1/2, producing zero Lyapunov exponent.
Thus taking Fenichel’s approach [F] to normal hyperbolicity theory, time-averaged tangential
contraction or expansion rates are less than normal ones and so the circles persist to nearby C1

invariant circles on adding C1 small enough perturbation.
For µ1 < 0, there are two equilibria x1 ≈ ±√−µ1 on the invariant circles of the

unperturbed system, with Lyapunov exponents approximately ±2
√−µ1. All other orbits are

heteroclinic to these so have forward Lyapunov exponent −2
√−µ1 and backward Lyapunov

exponent +2
√−µ1. Thus tangential contraction or expansion rates are weaker than the normal

ones if µ2 < µ1 < 0 and so under this condition the circles persist to nearby C1 invariant
circles on adding C1 small enough perturbation for parameters in this region.

To quantify what counts as small enough perturbation, however, is not so easy. In
appendix D we show there is C > 2 such that the C1 invariant circles persist in at least
the region µ2 � −Cδ, µ1 � µ2 + (C − 2)δ, sketched in figure 5.
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- C - 2 

- C 

- 2 

x2 ≈ ±
√

−µ2

C  circles at 1

C  circles at 1

x1 ≈ ±
√

−µ1

Figure 5. There are C1 rotational invariant circles in the shaded areas.

A C1 invariant circle may either be a periodic orbit or a C1 string of connections between
equilibria. The case of periodic orbit happens for µ1 > Cδ (with µ2 < −Cδ) because then
ẋ1 > 0. The case of a C1 string of connections between equilibria happens for µ1 � −2δ

because then there are two equilibria in each annulus.
Outside the region where normal hyperbolicity theory applies, however, it could happen

that the attracting or repelling sets have the forms of figures 3(a), (b) respectively, or more
complicated, e.g. figures 3(e),(f ). Transition from C1 circle (figure 3(d)) to other phase
portraits of figure 3 would proceed via use of the fast direction to the sink (respectively source)
(figure 3(c)) or via node to focus transition leading to figure 3(e) and possible subsequent Hopf
bifurcation leading to figure 3(f ). For an example of such transitions see [BM].

Similar remarks hold for µ1 < −Cδ and vertical invariant circles (see figure 5).
For µ1 + µ2 > Cδ there is a global cross-section, e.g. (x1/L1) + (x2/L2) = 0, because

ṽ1 + ṽ2 > 0 everywhere in that region of parameter space. Thus we obtain Poincaré flows. The
homology direction goes continuously from (1, 0) to (0, 1) from the lower right to the upper
left, but generically locks to rational values. In fact it changes monotonically with a parameter
λ along the lines µ1 = (K/2) − λ, µ2 = (K/2) + λ, K constant (K > Cδ), because for the
unperturbed system the component of the derivative ∂v/∂λ in the direction v⊥ = (−v2, v1)/|v|
(using Euclidean norm |v| =

√
v2

1 + v2
2) is at least c(v1 + v2)/|v| (where c is as in section 2),

which is positive in this region, and small perturbation cannot change its sign, so increasing λ

turns the vector field in the positive (anticlockwise) direction. On the boundaries of the regions
of Poincaré flow of rational type (p, q) there is a saddle-node periodic orbit.

Putting the results of the previous two paragraphs together, we have a region of full
mode-locking which includes µ1, µ2 < −Cδ, we have a region of Poincaré flow of type
(1, 0) which includes µ2 < −Cδ, µ1 + µ2 > Cδ, and one of type (0, 1) which includes
µ1 < −Cδ, µ1 + µ2 > Cδ, and a region of Poincaré flows with homology direction varying
monotonically for µ1 + µ2 > Cδ. See figure 6.

For µ2 < −Cδ there are precisely two curves of saddle-node equilibria, graphs over µ2,
separating µ1 < −Cδ from µ1 + µ2 > Cδ and each creating a pair of equilibria on one of the
horizontal invariant circles. This is because the equations for a saddle-node equilibrium are
ṽ1 = 0, ṽ2 = 0 and det Dṽ = 0, which can be written approximately as µ1 ≈ −x2

1 , x2
2 ≈ −µ2,

4x1x2 ≈ 0; using the implicit function theorem, the second equation determines x2 as either
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2

1
0- C  C 

 C 

 - C 

C(1,0)

C(0,1)

P(1,0)

P(0,1)
Pw

P(1,1)

F

sne

snp

snp

sne

sne

sne

Figure 6. Bifurcation diagram of coupled system outside a triangle in parameter space. The phase
portrait in the fully mode-locked region F is C0-correct but generically takes C1 forms like those
of figure 4. Various phase portraits are possible in the regions of Cherry flow; see figure 13, for
example.

of two functions of (x1, µ1, µ2) near x2 = ±√−µ2 for µ2 < −Cδ; substituting these into the
third determines x1 ≈ 0 as one of two functions of (µ1, µ2); substituting for x2(x1, µ1, µ2)

and then x1(µ1, µ2) into the first provides µ1 ≈ 0 as either of two functions of µ2. Without
further hypotheses it is not possible to say which saddle-node bifurcation happens first (indeed
the curves could cross), but in between them the flow is Cherry flow of type (1, 0). Similarly,
there are two curves of saddle-node equilibrium in µ1 < −Cδ, graphs over µ1, in between
which we have Cherry flow of type (0, 1).

The phase portrait in the region µj � −Cδ, j = 1, 2, is a basic tartan as we already
discussed. It is not guaranteed to remain like this in the whole of the full mode-locked region,
however. For example, if the two sne curves in µ2 � −Cδ cross then it could easily happen that
to the left of this there is a heteroclinic bifurcation D → A01 (see figure 14 for the notation),
which would give rise to a skewed tartan (two invariant horizontal circles and two invariant
circles of type (1, 1)). Nevertheless, under generic hypotheses to be formulated at the end of
section 3.2 (δ1, δ2 �= 0), we will prove in section 4.3 that the phase portrait is a basic tartan in
all the part of the full mode-locked region with minj∈{1,2} |µj | � δ2(log 1/δ)4 for δ1δ2 > 0
(the case δ1δ2 < 0 will be addressed in paper II).

Thus we have determined the principal features of the perturbed bifurcation diagram
outside the triangle in parameter space shown in figure 6.

3.2. Inside the triangle

To analyse what happens inside the triangle in parameter space of figure 6, we divide the torus
into the strips |x1| � η, |x2| � η for some η small, their intersection B and the complement
(figure 7).

The idea is that η should be small enough so we can accurately use second order
Taylor expansion of vj about xj = 0 inside the strip |xj | � η, yet considerably larger
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0

0

L       2

L    1 L    1

L     2

B

Figure 7. Strips and box B.

than
√

Cδ so that the effects of µ = (µ1, µ2) and δ outside the strips are relatively small,
in particular so that ṽj > 0 outside |xj | � η and there are no equilibria outside the
intersection box. We will start with η = kδ1/3 for a small constant k, which is the largest
that suffices for neglect of the cubic and higher terms compared with µ when µ is inside the
triangle, but we will at later stages reduce or increase it, so we leave η explicitly in most
formulae.

First we consider the vector field ṽ inside the intersection box B : |xj | � η for both
j = 1, 2. It is a small perturbation of ẋ1 = µ1 + x2

1 , ẋ2 = µ2 + x2
2 . Let us Taylor expand about

x1, x2 = 0.
The quadratic terms q(x) of ṽ can be transformed to X2

1 + ε1X
2
2, X

2
2 + ε2X

2
1 by putting

x = MX with M some near-identity matrix, depending on µ, determined by eliminating the
X1X2 terms in the quadratic part M−1q(x) of Ẋ and making its ‘diagonal’ coefficients be 1.
The idea is that the derivative of the map from the matrix elements M11, M12, M21, M22 to the
coefficients of the X2

1 and X1X2 terms in Ẋ1 and the X1X2 and X2
2 terms in Ẋ2 is near the

matrix diag(1, 2, 2, 1) which is invertible. Thus M comes out within δ of the identity (since δ

bounds the size of the perturbation to the quadratic terms in ẋ) and the coefficients εj above
are also of order δ. It is not strictly necessary to have reduced the quadratic terms in this way,
since the quadratic part of the perturbation would have turned out to be negligible anyway, but
it is tidier to eliminate terms when one can rather than have to bound their effects.

The above reduction of the quadratic terms can be equally well achieved with a global
coordinate change on the torus by using instead

x = X + (M − I )

[
k−1

1 sin k1X1

k−1
2 sin k2X2

]
,

with kj = 2π/Lj , which is within order δ of the identity. Conjugating by this changes the
vector field by order δ, which is the same size as the perturbation, so from now on we suppose
such a change of coordinates to have been made.

Now eliminate the diagonal linear terms of v by a shift of origin. This is straightforward
by completing the squares and produces a shift of order δ. Finally the effect of all the above on
the constant terms is to make constant terms (µ̃1, µ̃2) that are a near-identity diffeomorphism
from (µ1, µ2).
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Thus we are left with

Ẋ1 = µ̃1 + X2
1 + δ1X2 + ε1X

2
2 + HOT1 (3)

Ẋ2 = µ̃2 + X2
2 + δ2X1 + ε2X

2
1 + HOT2

for some coefficients δj and εj of order δ, where HOTj denotes higher order terms of the form
HOTj = fj (Xj ) + gj (X) with fj = O(X3

j ) and gj = O(δ|X|3).
We make the assumption that δj �= 0, in fact of size similar to δ (though for some purposes,

δj significantly larger than δ4/3 would suffice). Then the εj terms are negligible relative to the
δj terms. The tidy way to deal with this is to push the εj terms into the HOTj , so we shall
consider this done.

The signs of δj will play a crucial role. We say the coupling coefficient δj is excitatory if
δj > 0, inhibitory if δj < 0, by loose analogy with neuroscience. If both δj have the same sign
we say the coupling is mutualistic (mutually excitatory if both are positive, mutually inhibitory
if both are negative). If the δj have opposite signs we say the coupling is mixed.

Gap-junction coupling gives the mutually excitatory case δ1, δ2 > 0, because its effect is to
add current I = (V1 − V2)/R from neuron 1 to neuron 2, where Vj are their electric potentials
and R is the resistance of the junction (taking a linear model). This adds perturbation terms
V̇2 = (V1 − V2)/RC2, V̇1 = (V2 − V1)/RC1, where Cj is the capacitance of neuron j . Passage
through the near resting state of a neuron corresponds to increasing V , so the angle coordinate
xj for a SNIC neuron is oriented the same way as Vj near the saddle-node. Up to a shift
of origin of Vj , we have xj ∼ Vj/Kj for a positive scale factor Kj to make the quadratic
coefficient equal 1. So we read off that δ1 = K2/RC1K1, δ2 = K1/RC2K2, which are both
positive.

By reversing time and X1 if necessary, we can always take δ1 > 0, but one must remember
to reverse time at the end of the analysis, which interchanges attractors and repellors for example
(we will do this in section 5.2).

We shall switch notation back from µ̃j and Xj to µj and xj , but it should be
remembered that these are related to the original parameters and coordinates by a near-identity
diffeomorphism.

As a simple example, consider the family

Ẋ1 = λ1 − cos X1 + ε1 sin X2,

Ẋ2 = λ2 − cos X2 + ε2 sin X1

on R
2/(2πZ)2. Then for coupling parameters ε1, ε2 = 0, the first equation has SNICs for

λ1 = ±1 at X1 = 0, π , respectively, and the second equation has SNICs for λ2 = ±1
at X2 = 0, π , respectively. Our coordinate and parameter changes for the resulting four
cases are just shifts and scale changes. Our special parameters (δ1, δ2) for the four cases
λ1 = ±1, λ2 = ±1 are just (λ1ε1, λ2ε2).

3.3. Reduced system

In the triangle in parameter space (figure 6) and the box B (|xj | � η) in state space we study
the approximate vector field v̂

ẋ1 = µ1 + x2
1 + δ1x2, (4)

ẋ2 = µ2 + x2
2 + δ2x1.

Although the neglected higher order terms are small compared to µ and x2, they are not
necessarily small compared to δ1x2 and δ2x1, so one might ask why we retain the latter. The
idea is that all results inside the sub-box |x| � √

δ will be accurate (because the higher order
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x1
neutral saddle

0

saddle-node
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attracting node
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saddle-node

Figure 8. Curves where det = 0 or tr = 0 on the manifold of equilibria, considered as a graph
over (x1, x2) for the mutualistic case δ1δ2 > 0.

terms are dominated by the δ1x2 and δ2x1 terms there) and the results obtained outside this
sub-box will turn out insensitive to the higher order terms anyway, because the dominant ones
are of the form αjx

3
j in ẋj (rather than general cubics in both variables).

Its equilibria form the graph of a function from state space to parameter space:

µ1 = − x2
1 − δ1x2, (5)

µ2 = − x2
2 − δ2x1.

The type of the equilibrium is determined by the determinant and trace of the derivative Dv̂

of the vector field:

det Dv̂ = 4x1x2 − δ1δ2, (6)

tr Dv̂ = 2(x1 + x2).

In particular, the equilibrium is a saddle for det < 0, a sink for det > 0, tr < 0, and a source
for det > 0, tr > 0. The two branches of hyperbola in (x1, x2) where det = 0 correspond
to saddle-node equilibria, and the line where tr = 0 to neutral saddle or Hopf bifurcation
(according as det < 0, > 0). Figure 8 illustrates the mutualistic case δ1δ2 > 0. Note that
tr = 0, det > 0 is impossible in this case so the tr = 0 curve is all neutral saddle.

The approximations for these curves are good for |x| � √
δ. In fact they are good for

all |x| � η � 1. To see this, the dominant correction to the equation for a saddle-node
equilibrium is

4x1x2 − δ1δ2 = −6x1x2(α1x1 + α2x2).

Because of the factor x1x2 on the right, the correction has relative size O(η) and the saddle-node
curves perturb to 4x1x2 = δ1δ2(1 + O(η)). The tr = 0 curve deforms to approximately
x1 + x2 = − 3

2 (α1x
2
1 + α2x

2
2 ), which is a shift of at most O(η2).

The projection of the manifold (5) of equilibria to parameter space has fold curves where
the determinant is zero. To find their images in parameter space it is convenient to parametrize
the two branches of hyperbola. Here we make a separation of the analysis into the mutualistic
and mixed cases.

In this paper we study the mutualistic case. We will treat the mixed case in paper II.
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Figure 9. Curves of saddle-node equilibrium (full) and of neutral saddle (dashed) in parameter
space for δ1δ2 > 0 (drawn for δ1 = 0.5, δ2 = 0.3), also indicating the number of equilibria in the
regions they separate.

4. The mutualistic case

The mutualistic case is δ1δ2 > 0. By reversing time and the orientation of x1 and x2 if necessary,
we can take δ1 and δ2 > 0.

4.1. Analysis of equilibria

In the mutualistic case, we parametrize the saddle-node curves by

x1 = σ

2

√
δ1δ2eθ , (7)

x2 = σ

2

√
δ1δ2e−θ ,

with σ = +1 for the positive branch of the hyperbola of figure 8 and −1 for the negative
branch. It follows from (5) that the saddle-node curves project to

µ1 = − δ1δ2

4
e2θ − σ

2
δ1

√
δ1δ2e−θ (8)

µ2 = − δ1δ2

4
e−2θ − σ

2
δ2

√
δ1δ2eθ ,

which are drawn in figure 9.
Note that dµj/dθ , j = 1, 2, are non-zero along the σ = −1 curve, which we call the

outer saddle-node curve, µ moving from lower right to upper left as θ increases. They have a
common zero along the σ = +1 curve, however, at θ = θc where

e3θc =
√

δ1/δ2,

which causes it to have a cusp at

µ1 = − 3
4δ

4/3
1 δ

2/3
2 , µ2 = − 3

4δ
2/3
1 δ

4/3
2 ,

so we call it the cusped saddle-node curve. The position of the corresponding degenerate
equilibrium in state space then is

x1 = 1
2δ

2/3
1 δ

1/3
2 , x2 = 1

2δ
1/3
1 δ

2/3
2 .
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In the case δ1, δ2 > 0 we are considering here, it is topologically a saddle but with zero
exponent in the contracting direction. It can be useful to rewrite the position of the cusp as

µ1 = − 3
4δ1δ2e2θc , µ2 = − 3

4δ1δ2e−2θc , x1 = 1
2

√
δ1δ2eθc , x2 = 1

2

√
δ1δ2e−θc .

The approximations for the saddle-node curves are good for all |µ| � Cδ, because the
effect of the higher order terms is negligible anyway in |µ| � δ, and for the pieces of saddle-
node curve in −Cδ � µ1 � −Kδ2, K large positive, where µ1 ≈ −x2

1 , µ2 ≈ −δ2x1, we obtain

µ2 = −σδ2
√−µ1(1 + O(η)).

The analogous result holds for the pieces in −Cδ � µ2 � −Kδ2. In particular, the cusp in
the saddle-node curve is stable to small perturbation of a two-parameter family, so survives.

Readers versed in singularity theory will recognize the saddle-node curves in figure 9 as a
slice through the unfolding of a hyperbolic umbilic singularity [GG]. Indeed, define a mapping
ϕ from (x1, x2, δ1, δ2) to (µ1, µ2, δ1, δ2) by (5). Then its singularities (points where the rank of
Dϕ is less than 4) correspond to saddle-node equilibria and the origin to a hyperbolic umbilic
point. Because ϕ is a stable mapping, all small smooth enough perturbations of the 4-parameter
family of vector fields (4) have set of equilibria and singularity set smoothly equivalent to that of
(4). Any smooth 2-parameter family of vector fields near the case δ1 = δ2 = 0 has bifurcations
of the set of equilibria given by a slice through the unfolding of the hyperbolic umbilic.

Also shown in figure 9 is the projection of the curve of neutral saddles to parameter space
(Hopf bifurcation does not occur in the case δ1δ2 > 0), which is easily computed to be a parabola

(µ1 − µ2)
2 + (δ1 + δ2)(δ2µ1 + δ1µ2) = 0.

This is accurate, however, only for |µ| � δ; the effects of higher order terms can shift the
curve by order |µ|3/2, which becomes the same size as the distance (δ1 + δ2)

√|µ| between the
two sides of the parabola when |µ| approaches Cδ, so even allowing the possibility that the
two sides cross.

It is useful to calculate the position of the two other equilibria for parameter values on the
cusped saddle-node curve. By factoring out the known double root, they are found to be at

x1 = − 1
2

√
δ1δ2eθ + εδ

3/4
1 δ

1/4
2 e−θ/2 (9)

x2 = − 1
2

√
δ1δ2e−θ + εδ

1/4
1 δ

3/4
2 eθ/2

for ε = ±1, with ε = +1 giving a saddle, −1 a sink.
Furthermore, one can calculate the eigenvalues and eigenvectors for parameters on the

cusped saddle-node curve (and on the outer saddle-node curve, so we give both cases). The
second eigenvalue of the saddle-node is tr = 2σ

√
δ1δ2 cosh θ which is positive on the cusped

curve, and the null eigenvector has slope −σ
√

δ2/δ1eθ (by the slope of a vector v = (v1, v2)

we mean v2/v1). A useful trick to save work is to note that the derivative Dv is symmetric
with respect to the inner product

〈ξ, ζ 〉 = ξ1ζ1/δ1 + ξ2ζ2/δ2,

so the eigenvectors are perpendicular in this inner product. This implies that the product of
their slopes is −δ2/δ1. So for example, the slope of the second eigenvector of the saddle-node
is σ

√
δ2/δ1e−θ .

The eigenvalues λ and slopes s of the eigenvectors of any equilibrium are given by the
following expressions:

λ = x1 + x2 ±
√

(x2 − x1)2 + δ1δ2, (10)

s = 1

δ1

(
x2 − x1 ±

√
(x2 − x1)2 + δ1δ2

)
. (11)
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Figure 10. Nullclines for parameters inside the cusped saddle-node curve (δ1, δ2 > 0).

For the saddle which coexists along the cusped saddle-node curve, substitute the following
expressions into (10) and (11):

x1 + x2 = δ
3/4
1 δ

1/4
2 e−θ/2 + δ

1/4
1 δ

3/4
2 eθ/2 −

√
δ1δ2

(eθ + e−θ )

2

=
√

δ1δ2

(
2 cosh

θ − 3θc

2
− cosh θ

)
,

x2 − x1 = δ
1/4
1 δ

3/4
2 eθ/2 − δ

3/4
1 δ

1/4
2 e−θ/2 +

√
δ1δ2

(eθ − e−θ )

2

=
√

δ1δ2

(
2 sinh

θ − 3θc

2
+ sinh θ

)
.

The ways the equilibria connect within the box B are deduced by studying the nullclines
(e.g. figure 10 for the region inside the cusped saddle-node of equilibria curve), and by
computing the signs of the slopes of the eigenvectors at the equilibria from (10) and (11).
In particular, for δ1δ2 > 0, the source and sink are always nodes (not foci) and for δ1 > 0,
δ2 > 0 their fast and slow directions are as indicated on figure 11. Global connections will be
analysed in sections 4.3 and 4.4.

Thus the phase portraits in the box B for the various parameter regimes, in particular as
the parameters move along the cusped saddle-node curve, are as indicated on figure 11.

4.2. Transit map

Next, to aid in understanding the global dynamics, we consider the transit map from x2 = η

to x2 = L2 − η, restricting attention to those trajectories that remain within the strip |x1| � η.
This analysis is independent of the sign of δ2, so logically could be done in the previous section,
but it would have interrupted the presentation.

By the choice of η � √
Cδ and the restriction to the triangle in parameter space where in

particular |µ2| � Cδ, we have ṽ2 > 0 for x2 ∈ [η, L2 − η]. The transit map x1 �→ x ′
1 is given
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sne

sne

cusp

Figure 11. Phase portraits in the box for the indicated parameter regimes (δ1, δ2 > 0). The winding
ratio of the Poincaré and Cherry flows varies continuously between the extremes illustrated. Shading
near a saddle-node indicates its repelling half-plane.

by integrating

dx1

dx2
= ṽ1

ṽ2

from x2 = η to x2 = L2 − η. As a first approximation, take v1 = x2
1 in |x1| � η. To this level

of approximation the result is that

1

x1
− 1

x ′
1

= t2 =
∫ L2−η

η

dx2

ṽ2
, (12)

where t2 is the time taken, which may depend on x1, but is dominated by the ends of the
trajectory. At the lower end ṽ2 ≈ x2

2 (µ2 is negligible here because η � x2 � L2 − η), and at
the upper end ṽ2 ≈ (L2 − x2)

2 and so t2 ≈ (2/η). As an explicit example, if

v2(x2) =
(

L2

π

)2

sin2 πx2

L2
(13)

(which ∼x2
2 for x2 near 0 and ∼(L−x2)

2 for x2 near L2) then t2 = (2π/L2) cot(πη/L2) ∼ 2/η

for η � L2.
Thus inserting t2 ≈ 2/η into (12) the transit map is approximately

x ′
1 = x1

1 − 2x1/η
= ηx1

η − 2x1
, (14)

valid for those transits remaining in the strip, i.e. for −η � x1 � η/3. It takes the interval
[−η, η/3] to the interval [−η/3, η] and has a degenerate fixed point at 0. The slope is bounded
by 9. See figure 12.

The effects on the transit map of corrections to v1 and v2 at µ1 = µ2 = 0 are shown in
appendix E to be O(x2

1 log 1/η) and the effects of parameters µj and the perturbation δ for
|µj | � Cδ are shown to be O(δ/η).

For the approximate transit map (14),

x ′
1 − x1 = 2x2

1

η − 2x1
.

It follows that the transit map moves all points to the right by at least Kδ/η (some K > 0)
except when |x1| = O(δ1/2). Within |x1| = O(δ1/2) it moves points possibly left or right but
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Figure 12. Transit map (14).

by at most K ′δ/η, some K ′. The analogous result holds for the transit map from x1 = η to
x1 = L1 − η in the strip |x2| � η.

4.3. Extension of global dynamics into parts of the triangle

We can now describe the global dynamics in parts of the triangle in parameter space (figure 13),
leaving just a central region for analysis in section 4.4.

Firstly, there is K large such that for µ1 � −Kδ4/3 between the outer sne and lower
cusped sne curves, the two vertical circles C±

1 persist (though not necessarily C1). A sketch
of the proof is given in appendix F.

The invariant circles are periodic orbits above the outer saddle-node curve; the attracting
one gains a saddle and sink on crossing the outer saddle-node of equilibrium curve and the
repelling one gains a saddle and source on crossing the cusped saddle-node curve. Below the
cusped saddle-node curve, the study of the nullclines at the end of section 3.3 shows that the
equilibria connect in the box as in figure 11.

Similarly, we obtain the analogous results in a strip along the horizontal boundary of the
triangle. In the intersection of the union of these boundary strips with the region inside the
cusped saddle-node curve, the dynamics is fully mode-locked.

Everywhere above the outer sne curve the dynamics consists of Poincaré flows, because
there are no equilibria and there is a transverse section (e.g. take x1 = L1/2 where µ1 � µ2

or x2 = L2/2 where µ2 > µ1). The boundaries of the partial mode-locking strips are saddle-
nodes of periodic orbits (snp). In particular there is a curve of snp crossing the outer sne curve
and delimiting the lower right zone of type (1, 0) Poincaré flow, and an analogous one for type
(0, 1). By the analysis at the beginning of this subsection, the type (0, 1) snp curve leaves the
outer sne curve with |µ1| � Kδ4/3; but the most we can say for µ2 > −µ1 is that it remains
in µ1 � −Cδ. Similarly for the type (1, 0) snp curve.

It might be possible to obtain greater control over these snp curves as follows. Consider
type (0, 1), and take µ2 sufficiently positive. The Lyapunov exponent of a periodic orbit in
2D is λ = ∮

div v dt . In the regime considered, the orbit is a graph x1(x2), so this integral can

be transformed to λ = ∫ L2

0 (div v/v2) dx2. The change in x1 for an orbit segment making one
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Figure 13. Bifurcation diagram in parts of the triangle (δ1, δ2 > 0).

revolution in x2 is �x1 = ∫ L2

0 (v1/v2) dx2. The conditions for an snp are λ = 0, �x1 = 0.
In the uncoupled case this happens at x1 = 0, µ1 = 0. The derivative of λ with respect to
initial condition x1 on x2 = 0 is 2T2(µ2) which is large (T2(µ2) = ∫ L2

0 dx2/v2 is the period),
so under perturbation λ = 0 determines a nearby x1. The derivative of �x1 with respect to µ1

is T2, so �x1 = 0 determines a nearby µ1. Closer analysis, however, is required to determine
more precise bounds on the snp curve.

Secondly, we are now able to give the phase portraits for the Cherry flows in between the
outer and cusped sne curves near µ1 = −Cδ and µ2 = −Cδ. They are sketched in figure 13
for δ1, δ2 > 0, by analysis of the locations of the equilibria (see figure 11).

Lastly, we prove that, writing

νj = −µj ,

the phase portrait is a basic tartan in the part of the region bounded by the cusped sne curve
with both νj � δ2(log 1/δ)4.

To begin, in the region bounded by the cusped saddle-node curve, we name the saddles s

and t and the branches of the local invariant manifolds of the saddles A, B, C, D as shown in
figure 14(a). On the part of the boundary going to the left from the cusp (θ > θc), s becomes
a saddle-node, with A being in the null direction; on the part of the boundary going to the
bottom (θ < θc), t becomes a saddle-node, with C being in the null direction. At the cusp, B

merges with D. Away from the cusp (where there is ambiguity), we may continue to use the
labels for the branches of invariant manifold from the remaining saddle in the region between
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(a) (b)

Figure 14. (a) Labelling of the saddles s and t , their relevant branches of local invariant manifolds
A, B, C, D, and the sink p, also showing that the branch D from saddle s goes to the translated
sink p01 for (µ1, µ2) not too close to the cusp, and similarly B → p10. (b) Regions of parameter
space with the given connections.

the two saddle-node curves (namely C, D to the left, and A, B to the bottom). We denote the
sink (which is in the negative quadrant) by p. On the universal cover of the 2-torus we shall
refer to the translation of p by a vector (mL1, nL2) with m, n integer, as pmn, and similarly
for s, t , A, B, C, D.

For ν2 � δ2(log 1/δ)4, the branches A and D will be shown to be close to vertical for
|x2| � η = (log 1/δ)−1 (note the new choice of η), the transit map from x2 = η to L2 −η has a
similarly small effect, but D starts significantly to the left of A, so that D reaches x2 = L2 −η

to the left of A01.
To prove the near-verticality of A and D, note that they can be defined by

dx1

dx2
= v1(x1, x2)

v2(x1, x2)
, (15)

starting from the appropriate equilibrium point which we denote in generality by (xe
1, x

e
2), and

integrating in the appropriate direction of x2 (increasing for D, decreasing for A). Let us
consider the case of D. Then x1 considered as a function of x2 (which is true for η not too
large) is a fixed point of the map T defined by

T [x1](x2) = xe
1 +

∫ x2

xe
2

v1

v2
(x1(x

′
2), x

′
2) dx ′

2. (16)

The map T is a contraction in supremum norm on Lipschitz functions from [xe
2, η] to R

satisfying x1(x
e
2) = xe

1 with Lipschitz constant K , say, if η is sufficiently less than L2/2, so
achieved for δ small enough. Call its contraction constant λ < 1; it can be made as small as
we want by suitable choice of K and δ. To bound the distance of the fixed point of T from the
constant function x1(x2) = xe

1 it suffices to estimate the distance of the image of the constant
function from the constant function and divide it by (1 − λ).

Now v1(x
e
1, x2) and v2(x

e
1, x2) have a common factor (x2 − xe

2), and for x2 small the ratio
is approximately δ1/(x2 +xe

2). This approximation is not particularly accurate for larger x2 but
is good enough. Then∫ x2

xe
2

v1

v2
(xe

1, x
′
2) dx ′

2 ≈ δ1 log
x2 + xe

2

2xe
2

. (17)
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It follows that

x1(η) − xe
1 � kδ1 log

η + xe
2

2xe
2

, (18)

with k a little larger than (1 − λ)−1.
A similar bound is obtained for A, with xe

2 replaced by |xe
2|.

The effect of the transit of D from x2 = η to L2 − η is of order δ/η as in section 4.2.
Now to complete the analysis, the horizontal distance �x1 between the two equilibria for

given ν2 is at least that for the worst case of ν1, namely on the lower branch of the cusped
sne curve, because as ν1 increases from this, the ẋ1 nullcline rises, thereby separating the two
equilibria further. For this worst case, and taking ν2 significantly larger than δ2, the formulae
for the equilibria give

�x1 ∼ δ
3/4
1 δ

1/4
2 e−θ/2, (19)

with

ν2 ∼ 1
4δ1δ2e−2θ . (20)

Thus

�x1 ∼
√

2δ1ν
1/4
2 . (21)

On the sne curve, we also have the approximation

|xe
2| ∼ 1

2

√
δ1δ2e−θ ∼ √

ν2 (22)

for both equilibria (and this does not change much if µ1 is moved to the left). So the shifts in
D and A on reaching x2 = ±η, respectively, are from (18) at most approximately kδ1 log η

2
√

ν2
.

Our goal is attained if

δ1 log
η

2
√

ν2
+

δ

η
�

√
2δ1ν

1/4
2 . (23)

Choosing η = (log 1/δ)−1 (for which the value of the left hand side is of the same order as its
minimum, yet η → 0 as δ → 0), we obtain the sufficient condition

ν2 � δ2(log 1/δ)4, (24)

for D to pass to the left of A01.
Similarly, B passes under C10 if ν1 � δ2(log 1/δ)4. Hence we obtain the global

connections D → p01 and B → p10 in the regions indicated in figure 14(b).

4.4. Heteroclinic connections and consequences

To determine the structure of the bifurcation diagram in the remaining central region of
figure 13, we consider first the special case of systems which are symmetric with respect to
simultaneous interchange of x1 with x2 and µ1 with µ2, thus in particular δ1 = δ2 and L1 = L2.
Then by symmetry at the cusp we have Cherry flow of type (1, 1), but for ν2 � δ2(log 1

δ
)4, D

passes to the left of A01 as we just showed, so a curve of heteroclinic connection D → A01

must occur, as indicated in figure 15(a), separating the cusp from the region ν2 � δ2(log 1
δ
)4.

The curve of heteroclinic bifurcation leaves the lower branch of cusped sne curve tangentially;
this is a bifurcation not seen in [BGKM, BM] so we give it a new name, E point, and analyse its
generic unfolding in appendix G. Where the curve of heteroclinic bifurcation hits the leftward
branch of the cusped sne curve, we obtain the phase portrait of figure 15(b). This is called an
S point in the terminology of [BGKM], and it produces a ‘saddle-node fan’ of Cherry flows.
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(a) (b)

Figure 15. (a) Curve of heteroclinic connection D → A01, S-point and resulting saddle-node
fan between curves of rotational homoclinic connections s → s0,1 and s → s1,2 (in case n = 1).
(b) Phase portrait at the S-point.

(a) (b)

Figure 16. Crossing of curves of heteroclinic bifurcation makes a T -point on the diagonal in the
symmetric case. Two possibilities: (a), (b).

The range of winding ratios produced in the saddle-node fan depends on the copy of the sink p

to which B connects there. If B → p1n then the saddle-node fan generates all winding ratios
from (0, 1) to (1, n + 1). See figure 15(a) for the case n = 1.

By reflection symmetry there is an analogous curve of heteroclinic connection B → A10,
generating a saddle-node fan of all winding ratios from (1, 0) to (m+1, 1) if D → pm1. If there
is no other bifurcation along the lower cusped sne curve between the D → A01 heteroclinic and
this saddle-node fan, then n = 1, and we shall suppose this case for the next five paragraphs.

The curves of heteroclinic bifurcation D → A01 and B → C10 cross on the diagonal
at a T point (in the terminology of [BGKM]). Two ways this might happen are shown in
figure 16 (others with more crossings can be envisaged). We suspect only case (a) occurs but
despite much effort to prove that the curves of heteroclinic connection are roughly vertical and
horizontal we did not succeed. Nevertheless, let us concentrate attention on case (a), and we
will argue at the end that case (b) cannot occur.
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(a) (b)

Figure 17. T -point. (a) Phase Portrait. (b) Unfolding. The lines of heteroclinic connections that
emanate from the T point, B → Cn+1,n and D → An,n+1, n = 1, 2, . . ., accumulate on lines of
homoclinic connections B → A11, D → C11, respectively.

Figure 18. A sequence of S points accumulating onto an F point.

The phase portrait is shown in figure 17(a), and its unfolding produces a fan of curves of
heteroclinic and rotational homoclinic bifurcation and a partial mode-locking tongue, as shown
in figure 17(b). Note that in this symmetric case, x1 + x2 = δ1 for the two saddles, so both are
repelling; this makes the exponents of the saddles less than 1 (for a saddle with eigenvalues
−λ < 0 < µ, the exponent α = λ/µ), so the bifurcation diagram is the time-reverse of the
first case of figure 4.23(c) of [BGKM].

Now if we suppose the bifurcation diagram near the T point extends to the cusped sne
curve, then we obtain a sequence of saddle-node fans from each of the indicated curves of
heteroclinic connection (of which the first is the one we already found). They accumulate at
what we christen an F point as shown in figure 18; it is an analogue of the M point of [BGKM]
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Figure 19. Simplest bifurcation diagram around the cusp for δ1, δ2 > 0. The lines of heteroclinic
connections that emanate from the T point cross the sne curve at saddle-node fan points (S points)
and continue as lines of homoclinic bifurcations, forming boundaries of regions of Cherry flow of
type indicated. The dashed lines correspond to homoclinic bifurcations that use the other branches
of the manifolds of the remaining saddle.

Figure 20. A horn of coexistence of attracting equilibrium and periodic orbit, associated with K

and Z points (see [BGKM]).

but with its saddle-node of periodic orbits replaced by a rotational homoclinic connection. The
resulting bifurcation diagram is sketched in figure 19.

Extending further in parameter space, where the resulting partial mode-locked tongues
cross the curve of neutral saddle (K points of [BGKM]), their boundaries are replaced
by curves of saddle-node periodic orbits, with a curve of rotational homoclinic connection
between the K point and a Z point (saddle-node loop) on the outer sne curve. We recall
from [BGKM] in figure 20, how K and Z points can produce a horn of coexistence of
attracting periodic orbit with attracting equilibrium. Calculation of the generic unfolding
of K points was given by Dumortier, Roussarie and Sotomayor [DRS] and of Z points by
Schechter [Sch].
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Figure 21. Extending further in parameter space for δ1, δ2 > 0, where the resulting partial mode-
locked tongues cross the curve of neutral saddle (K points), their boundaries are replaced by curves
of saddle-node periodic orbits, with a curve of rotational homoclinic connection between the K

point and a Z point (saddle-node loop) on the outer sne curve.

The resulting bifurcation diagram is sketched in figure 21. It might be that some of the
curves of heteroclinic connection cross the curve of neutral saddle before reaching the cusped
sne curve, which would make a slightly different picture.

For families that are not symmetric, but close to symmetric, the above conclusions continue
to hold. Simply the T point is not necessarily on the diagonal. Further away from symmetry,
however, various changes can occur. In particular, the T point could cross the neutral saddle
curve of figure 9, changing the exponent of one saddle relative to 1, producing other cases
of unfolding of the T point (see [BGKM]). Or it could happen that the first bifurcation on
sliding up the lower cusped sne is the saddle-node fan generated by B → C10 bifurcation,
with a D → A01 connection happening higher up. This would make the first saddle-node
fan cover all winding ratios from (1, 0) to (1, 1) and necessitate other changes, but eventually
there would be a T point (with different homotopy type of heteroclinic cycle), generating
a picture similar to the above (or one of its variants depending on the exponents of the
saddles).

To complete this section, we conjecture that case (b) of figure 16 cannot occur. Our reason
is that the E point at the end of the D → A01 curve produces flow of type (1, 1) just outside the
cusped region, whereas the (1, 1) tongue produced by the T point is contained in the quadrant
containing the cusp point, and it seems unlikely to us to see non-monotonicity of the winding
ratio on turning round the cusp.

5. Consequences for attractors

For applications the most important feature is attractors. We can deduce what bifurcations
happen to attractors in the mutually excitatory case by studying the bifurcation diagrams and
phase portraits of section 4. As mentioned, gap-junction coupling gives the mutually excitatory
case. To deduce those for the mutually inhibitory case, we must time-reverse the flows and
the orientations of x1 and x2.
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Figure 22. Attractors in the mutually excitatory case. There is an attracting equilibrium everywhere
inside the outer saddle-node curve. In the indicated strips there is an attracting periodic orbit of
the indicated homotopy type. The strips extend across the outer sne curve into two horns where
attracting equilibrium and periodic orbit coexist. Outside the outer sne curve the strips of periodic
attractors are interleaved by curves on which the whole torus has quasi periodic flow of given
homotopy type.

5.1. Mutually excitatory case

Corresponding to the bifurcation diagram of figure 21 for δ1, δ2 > 0, we obtain the types of
attractors indicated in figure 22.

In the whole of the region to the South–West of the outer sne curve there is an attracting
equilibrium. The region outside the outer sne curve is divided into strips where there are one
(or more) attracting homotopically non-trivial periodic orbits. This implies a periodic spiking
pattern of the pair of oscillators. There is one strip for each ratio of firing frequencies between 0
and ∞. In between the strips are curves on which the whole torus is an attracting quasiperiodic
flow. Each rational strip extends across the outer sne curve in two horns terminating on the
neutral saddle curve (except just one horn for the (0, 1) and (1, 0) strips). Thus in these
horns two attractors coexist: an equilibrium and a homotopically non-trivial periodic orbit.
This produces hysteresis effects. Deformations of figure 21 as mentioned towards the end of
section 4.4 will produce deformation of figure 22 but no qualitative change in this description
of the attractors.

5.2. Mutually inhibitory case

Time-reversing the results of section 4, we obtain figure 23 for the attractors corresponding
to the bifurcation diagram of figure 21 in the case δ1, δ2 < 0. The situation is simpler than
the mutually excitatory one. Inside the cusped sne curve there is an attracting equilibrium
and it attracts almost everything. The region outside the cusped sne curve is divided into
strips with an attracting periodic orbit of type (0, 1), (1, 2), (2, 3), . . ., (1, 0), (2, 1), (3, 2), . . .

and (1, 1) (which has the cusp cut out of it) and tongues for all other rationals, separated by



Interaction of two SNICs 3067

Figure 23. Attractors in the mutually inhibitory case. Inside the cusped saddle-node curve the
only attractor is an equilibrium. The region outside the cusped sne curve is divided into strips
where there is an attracting homotopically non-trivial periodic orbit, interleaved by curves with a
quasiperiodic attractor.

curves of quasiperiodic attractor. Outside the outer sne curve, the quasiperiodic attractor is
the whole torus, but in between the two sne curves it is a ‘cantorus’ (also known as Denjoy
counterexample or Cherry attractor).

There is no region of coexistence of attractors, except that there may be more than one
periodic orbit of given type.

The diagram may change significantly if figure 21 deforms in some of the ways described
towards the end of section 4.4. Which rational gets the cusp and which are strips rather than
tongues depends at least on the type of T point. But the overall result is roughly the same.

6. Conclusion

We have analysed the generic interaction of two dynamical systems with saddle-node on an
invariant circle (SNIC) bifurcation. We identified two key coupling parameters δ1 and δ2.
We studied the ‘mutualistic’ case δ1δ2 > 0 in detail. We found that even the simplest sub-
cases of this have fairly complicated bifurcation diagrams. We found that the attractors can
be equilibrium, homotopically non-trivial periodic orbit, quasiperiodic torus or quasiperiodic
cantorus and that in the mutually excitatory case, which is expected to be the relevant case for
gap-junction coupling, there are parameter ‘horns’ where attracting equilibrium and periodic
orbit coexist. The results are expected to be a useful guide to the study of the dynamics of
networks of class I neurons, Josephson junctions and other situations where SNIC bifurcations
occur.

Results for the mixed case δ1δ2 < 0, which turns out to be even more complicated, will
be presented in a separate paper.
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Appendix A. Coordinate change to make b(µ) = 1

We give here an example of a parameter-dependent coordinate change X(x, µ) on a circle,
preserving the length L, which makes the coefficient b(µ) = 1 in (1) for all small µ.

Let

X(x, µ) = x − α(µ) sin kx,

with k = 2π/L and |α| < 1/k for invertibility. Then

Ẋ = (1 − kα cos kx)(a(µ) + b(µ)x2 + o(x2))

and

X = (1 − kα)x + O(x3),

so

x = X/(1 − kα) + O(X3)

and

Ẋ = (1 − kα(1 − (k2x2/2)))(a + bx2) + o(x2) = (1 − kα)a

+
1
2k3αa + (1 − kα)b

(1 − kα)2
X2 + o(X2).

Now we choose α(µ) to make the coefficient of X2 equal 1. This is a quadratic equation for
α with a simple root near 0 because b is near 1.

Thus we obtain Ẋ = A(µ) + X2 + o(X2) for some function A, with A(0) = 0.

Appendix B. Coordinate change to make (∂v/∂µ) � c

We prove here that for a SNIC ẋ = v(x, µ) with form (2) and for c ∈ (0, 1), by a parameter-
dependent coordinate change X(x, µ) preserving the length L of the circle, we can make
(∂v/∂µ) � c for all x for µ small.

The vector field in the new coordinate X is given by Ẋ = Xx(x, µ)v(x, µ) (subscript
denoting partial derivative), with x(X, µ) determined by X = X(x, µ).

Using xµ = −Xµ/Xx , we obtain

∂Ẋ

∂µ
=

(
Xxµ − XxxXµ

Xx

)
v − vxXµ + Xxvµ.

Take X(x, 0) = x at µ = 0, and for all small µ keep X(x, µ) = x in a small interval |x| � δ

so as to preserve (2). First make (∂Ẋ/∂µ) � c′ for some c′ > c at µ = 0. At µ = 0

∂Ẋ

∂µ
= Xxµv − vxXµ + vµ =

(
Xµ

v

)
x

v2 + vµ.
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Choose a smooth function g(x) � c′, and g(x) = 1 in |x| � δ. Let

X = x + µv(x, 0)

∫ x

0

g(x ′) − vµ(x ′, 0)

v2(x ′, 0)
dx ′.

Then

∂Ẋ

∂µ
= g � c′.

To make sure that (∂Ẋ/∂µ) � c for small µ, we make the additional constraint on g that∫ L

0 ((g − vµ)/v2) dx = 0.

Appendix C. x2-nullclines for µ2 � −2δ

We show that for µ2 � −2δ the x2 nullcline consists of two C1 graphs x±
2 (x1) in 2

3

√−µ2 �
±x2 � 2

√−µ2, of small slope.
Let us treat the case x2 > 0. For 0 � x2 � 2

3

√−µ2 we have

ṽ2 � −|µ2| +
4

9
|µ2| +

|µ2|
2

+
8K

27
|µ2|3/2 = − 1

18
|µ2| +

8K

27
|µ2| 3

2 < 0

for |µ2| < (3/16K)2 (true, because we already assumed |µ2| < 1
16K2 ). We already showed

that ṽ2 > 0 for x2 � 2
√−µ2.

For 2
3

√−µ2 � x2 � 2
√−µ2, using ′ to denote ∂

∂x2
, we have

ṽ′
2 � 2x2 − δ − 3Kx2

2 � 4
3

√−µ2 − (
1
2 + 12K

) |µ2| �
√−µ2

for |µ2| � 4/(9(1 + 24K)2), which we will henceforth assume, as we are interested only in
small µ. So for each x1 there is a unique positive x2(x1) at which

ṽ2(x1, x2(x1)) = 0. (25)

Using the implicit function theorem, for each x̄1, x2(x̄1) extends to a C1 solution of (25) for
x1 in a neighbourhood of x̄1, thus, by uniqueness the function x2(x1) is C1.

Applying the chain rule to (25),

dx2

dx1
= − 1

ṽ′
2

∂ṽ2

∂x1

so ∣∣∣∣dx2

dx1

∣∣∣∣ � δ√−µ2
.

The case x2 < 0 is similar.

Appendix D. A region with C1 invariant circles

As the tangential dynamics expands a lot for 0 < x1 � L1/2 and then contracts a lot for
0 < L1 − x1 � L1/2, the first thing we do is introduce a new horizontal coordinate in which
the expansion and contraction are small.

Let v̄ be a positive C1 function of x1, close to v1, and write �v = v1 − v̄. Let
y1 = ∫ x1

0 dx/v̄(x) be the new horizontal coordinate. It has the interpretation of time from
x1 = 0 using the vector field v̄. From the horizontal dynamics ẋ1 = v1(x1) + O(δ) we obtain

ẏ1 = ẋ1

v̄
= 1 +

�v + O(δ)

v̄
.
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To evaluate horizontal expansion or contraction in y1,

˙δy1 = (�v′ + O(δ))

v̄
δx1 +

O(δ)

v̄
δx2 − v̄′

v̄2
(�v + O(δ)) δx1.

Using δy1 = δx1/v̄(x1) we obtain

˙δy1 =
[
�v′ + O(δ) − v̄′

v̄
(�v + O(δ))

]
δy1 +

O(δ)

v̄
δx2. (26)

The vertical dynamics ẋ2 = v2(x2) + O(δ) has linearization

˙δx2 = [v′
2(x2) + O(δ)] δx2 + O(δ) δx1 = [v′

2(x2) + O(δ)] δx2 + O(δ)v̄ δy1. (27)

Combining (26) and (27), the slope s = δx2/δy1 of a tangent vector evolves by the Ricatti
equation

ṡ = δy1 ˙δx2 − ˙δy1δx2

δy2
1

=
[
v′

2(x2) + O(δ) − (�v′ + O(δ)) +
v̄′

v
(�v + O(δ))

]
s + O(δ)v̄ − O(δ)

v̄
s2. (28)

Each O(δ) term in equations (26)–(28) is bounded by δ, because they represent sizes of
components of the perturbation or its first partial derivatives.

Let us specialize to the annulus A+
2 where v′

2 > 0. To deduce that C+
2 is a C1 circle, it

suffices to find conditions on (µ1, µ2, δ) such that a cone |s| � s0 is forward invariant and
vectors in it are expanded exponentially. The value s0 = √|µ2| will work. We show the
expansion property first.

For µ2 < −Cδ for C > 1 we can take the narrower backward invariant annulus with
boundaries x2 = √−µ2 ± δ (neglecting the O(x3

2) terms in v2 here and throughout, which
make small corrections but complicate the formulae). In this annulus v′

2(x2) � 2
√−µ2 − δ.

For slopes |s| � s0 = √−µ2, using δy1 = δx2/s we obtain from equation (27)

˙δx2

δx2
� 2

√
−µ2 − δ − δ − Bδ√−µ2

where B = sup |v̄|. By hypothesis, δ � |µ2|/C, so

˙δx2

δx2
� 2

√
|µ2|

√
1 − 1

C
− |µ2|

C
− B

C

√
|µ2| =

√
|µ2|

(
2

√
1 − 1

C
− B

C

)
− |µ2|

C
.

By increasing C a little above 1 +B2/4 if necessary, we can make this positive, indeed as close
as we like to 2

√|µ2|.
To make the cone |s| � s0 forward invariant we have to choose v̄. First treat the case

µ1 � |µ2|. Then we can take v̄ = v1. Since �v = 0 in this case, and without loss of generality
considering s > 0, from equation (28)

ṡ �
[

2
√

−µ2 − δ − 2δ −
∣∣∣∣ v̄′

v̄

∣∣∣∣ δ
]

s − Bδ − δ

µ1
s2.

Near x1 = 0, v̄ ∼ µ1 + x2
1 so (v̄′/v̄) ∼ (2x1/(µ1 + x2

1 )) which is at most 1/
√

µ1 (achieved at
x1 = √

µ1); outside a larger neighbourhood of 0, v̄′
v̄

is bounded independently of µ1. Thus on
s = s0

ṡ �
(

2
√

−µ2 − δ − 2δ − δ√
µ1

) √−µ2 − Bδ − δ

µ1
|µ2|
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Figure 24. A region with C1 invariant circles.

Using δ � |µ2|/C and µ1 � |µ2|, we see that at s = s0,

ṡ � 2|µ2|
√

1 − 1

C
− 2

C
|µ2| 3

2 − |µ2|
C

− B|µ2|
C

− |µ2|
C

.

Taking C a little larger than 1 + (1 + B/2)2, this is positive, indeed by increasing C we can
make it as close as we like to 2|µ2|.

Next we do the case µ1 < |µ2|, where we will find a constraint of the form µ1 greater
than some function of µ2. This time, we take �v to be the (negative) constant µ1 −|µ2|. Then
�v′ = 0 and v̄ � |µ2|. So (for s > 0)

ṡ �
[

2
√

−µ2 − δ − 2δ −
∣∣∣∣ v̄′

v̄

∣∣∣∣ (|µ2| − µ1 + δ)

]
s − Bδ − δ

|µ2| s2.

Near x1 = 0, v̄ ∼ |µ2| + x2
1 so v̄′/v̄ ∼ (2x1/(|µ2| + x2

1 )) is at most 1√|µ2| ; again it is bounded

uniformly outside a larger neighbourhood of 0. So at s = √|µ2|,
ṡ � 2

√
−µ2 − δ

√
|µ2| − 2δ

√
|µ2| − (|µ2| − µ1 + δ) − Bδ − δ.

This is non-negative if and only if

µ1 � |µ2| + (B + 2)δ + 2δ
√

|µ2| − 2
√

|µ2| − δ
√

|µ2|. (29)

This region is sketched in figure 24. Hence the cone |s| � s0 is forward invariant for those µ1

in (−|µ2|, |µ2|) satisfying (29).
The region (29) in which we have obtained a C1 circle has too complicated a formula to

carry around with us, but it contains a region of the form

µ2 �
{−C∗δ for µ1 � −2δ,

−C∗δ + µ1 + 2δ for µ1 � −2δ

as shown in figure 24, where C∗ is determined by the intersection of (29) with µ1 = −2δ. It
can be written compactly as µ2 � −C∗δ, µ1 � µ2 + (C∗ − 2)δ. We henceforth denote C∗

by C.
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Appendix E. Corrections to the transit map

To estimate the effects on the transit map of corrections to v1 and v2 and of the parameters µj and
the perturbation δ, we start from the explicit choice (13) of v2(x2) = (L2/π)2 sin2(πx2/L2),
and take v1 = µ1 + x2

1 in |x1| � η. Then

x1(t) = x1(0)

1 − x1(0)t
for µ1 = 0

=
√

µ1 tan
√

µ1t + x1(0)

1 − x1(0)√
µ1

tan
√

µ1t
for µ1 > 0

=
√−µ1 tanh

√−µ1t + x1(0)

1 + x1(0)√−µ1
tanh

√−µ1t
for µ1 < 0.

Since t2 ∼ 2/η and using
√

µ1 � η and x1(0) ∈ [−η,
η

3 ], we see that the effect of µ1 on
x ′

1 = x1(t2) is O(µ1/η).
To integrate ẋ2 = (L2/π) sin2(πx2/L2) + µ2 we put σ = − cot(πx2/L2) which for

x2 ∈ [η, L2 − η] increases from −σ0 to +σ0, where σ0 = cot(πη/L2) ∼ (L2/πη). Then

σ̇ = csc2 πx2

L2
· π

L2
ẋ2 = L2

π
+

π

L2
µ2(1 + σ 2) =

(
L2

π
+

πµ2

L2

)
+

πµ2

L2
σ 2.

So

t2 = 2π

L2
σ0 if µ2 = 0,

= 2√
(L2

π
+ πµ2

L2
)

πµ2

L2

tan−1

√√√√ πµ2

L2

L2
π

+ πµ2

L2

σ0 if µ2 > 0,

= 2√
(L2

π
+ πµ2

L2
)

π |µ2|
L2

tanh−1

√√√√ π |µ2|
L2

L2
π

+ πµ2

L2

σ0 if µ2 < 0.

The dominant change to t2 with µ2 comes from the Taylor expansions of tan−1 x ∼ x−(x3/3),
tanh−1 x ∼ x + (x3/3) rather than the (L2/π) + (πµ2/L2) terms. So for instance for positive
µ2 � η2,

t2 ∼ 2π

L2
cot

πη

L2
− 2

3

π3µ2

L3
2

cot3 πη

L2
∼ 2π

L2
σ0 − 2

3

π3µ2

L3
2

σ 3
0 ∼ 2

η
− 2

3

µ2

η3
.

The effect of a change �t2 in t2 on x ′
1, using the case µ1 = 0 and x1 ∈ [−η, η/3], is

�x ′
1 = x1

1 − x1(t2 + �t2)
− x1

1 − x1t2
= x2

1�t2

(1 − x1(t2 + �t2))(1 − x1t2)
= O(x2

1 �t2). (30)

So the effect of the change − 2
3 (µ2/η

3) to t2 is �x ′
1 = O(x2

1µ2/η
3).

Next we consider the change induced by deforming v2 to an arbitrary C3 vector field with
the same second order Taylor expansion and positive away from zero. We can write such a
deformation as α(x2) sin3(πx2/L2) for a bounded function |α(x2)| � α0. Then t2 is given by

t2 =
∫ L2−η

η

dx2

v2 + α sin3 πx2
L2

∼
∫

dx2

v2
−

∫
α sin3 πx2

L2

v2
2

dx2.
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The leading correction to t2 is

−
∫

α(x2) dx2(
L2
π

)4
sin πx2

L2

�
(

π

L2

)4

α0

[
− log(csc

πx2

L2
+ cot

πx2

L2
)

]L2−η

η

= 2

(
π

L2

)4

log(

√
1 + σ 2

0 + σ0) ∼ 2

(
π

L2

)4

α0 log
2L2

πη
.

Then using (30) the correction �x ′
1 = O(x2

1 log 1
η
).

The effect of a perturbation δ on ẋ1 is at most like changing µ1 by δ. By our previous
analysis this produces �x ′

1 = O(δ/η).
The effect of a perturbation δ on ẋ2 can be split into two parts. Firstly, there is a part

bounded by a multiple of sin3(πx2/L2) which can be absorbed into α so, assuming the C3

norm of the perturbation is O(δ), it changes α by O(δ) and the resulting change to �x ′
1 is

O(δx2
1 log(1/η)). Secondly, there is a part localized near the box which fits with expansion

(3), thus

δ2x1 + ε2x
2
1 + O(x3

2) + O(δ|x|3),
but whose O(x3

2) terms can be absorbed into α, so this has size at most δ2|x1|+ δη3. They have
an effect like µ2 so from (30) they produce �x ′

1 = O(|x1|2(δ2(|x1|/η3) + δ)).
Lastly the O(x3

1) terms in ẋ1 produce �x ′
1 = O(x3

1/η), because x1 does not change much
during the transit.

The effects of the different types of change are close to additive, so putting all this together,
and using |µj | � Cδ we obtain that the error in the transit map for µ1 = µ2 = δ = 0 is
O(x2

1 log(1/η)) and the effects of µj and δ on the transit map are O(δ/η).
Using the implicit function theorem to determine t2 as a function of x1(0), one can also

deduce that the corrections are small in C1.

Appendix F. Persistence of invariant circles for µ1 � −Kδ4/3

In this appendix we sketch the proof that there is K large such that for µ1 � −Kδ4/3 between
the outer sne and lower cusped sne curves, the two vertical circles C±

1 persist.
Let us treat the region inside the cusp first.
If δη � |µ1|, the flow is inwards, respectively, outwards, across the boundaries of the

strips √
|µ1| − δη − ε � ∓x1 �

√
|µ1| + δη + ε

in the box B (see figure 25), where ε is a small amount to take care of the remainder terms
in ẋ1. The equilibria all lie in these strips. The upwards unstable manifold D of the top left
saddle and the downward stable manifold A of the lower right saddle stay in the corresponding
strips until they exit the box (the notation for branches of saddle manifold is introduced in
generality in figure 14). The transit map moves D by O(δ/η) so if this is much less than

√|µ1|
then D arrives at x2 = L2 − η to the left of A. Because of the way the equilibria connect in
the box (figure 11) this implies that D goes to the sink and A to the source, thus forming our
two vertical invariant circles. The two conditions δη � |µ1|, δ

η
� √|µ1| can be achieved for

the greatest region of |µ1| if we choose η ∼ δ1/3 (a choice we have already found useful) and
then the conditions hold for |µ1| � Kδ4/3 for large enough K as claimed.

Next we treat the region between the outer sne and the upper cusped sne curves. The
lefthand strip contains a saddle and a sink and the saddle manifold D reaches x2 = L2 − η to
the left of −√|µ1| − δη − ε + O(δ/η). We now need to bound where the rightward branch
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D

A

(0,0)

B

Figure 25. Box B with strips
√|µ1| − δη − ε � ∓x1 � √|µ1| + δη + ε for parameters inside the

cusp with |µ1| � δη, µ1 < 0.

Figure 26. Box B with strip −√|µ1| + δη + ε � x1 � −√|µ1| − δη − ε and the backwards orbit
of (2

√|µ1|, η), for parameters between the outer sne curve and the upper cusped sne curve with
|µ1| � δη, µ1 < 0.

C ′ of stable manifold of the saddle goes. We claim that for |µ1| � δ2 it crosses x1 = 0 inside
the box and hence exits x2 = −η with x1 > 0 as in figure 26.

To sketch why this is so, make the approximations

ẋ1 = µ1 + x2
1 ,

ẋ2 = δ2(x1 +
√|µ1|)

near the saddle (x1 ≈ −√|µ1|, x2 ≈ +
√

δ2
√|µ1| − µ2). The first has solution x1(t) =

−√|µ1| tanh
√|µ1|t with origin of time chosen to correspond to x1(0) = 0. Then the second

equation is ẋ2 = δ2
√|µ1|(1 − tanh

√|µ1|t) which has solution x2(t) = x2(+∞) − δ2 log(1 +
e−2

√|µ1|t ). Thus x2(0) ≈
√

δ2
√|µ1| − µ2 − δ2 log 2 which is well inside the box for δ2 � η.

The principal correction to ẋ1 is δ1x2 but this is by the hypothesis δη � |µ1| small compared
to µ1. The principal correction to ẋ2 is x2

2 + µ2 − δ2
√|µ1|, but for t in the interval [0, +∞)

this makes a negligible change to x2.
Thus for δ/η � √|µ1|, D arrives to the left of C ′ and hence goes into the sink, making

an invariant circle C−
1 .

To complete the analysis of this case we construct a periodic orbit for C+
1 . The interval

J on x2 = +η between D and 2
√|µ1| under the backward flow exits x2 = −η by an interval

J ′ between C ′ and something a little to the right of +
√|µ1|. This is because ẋ1 = µ1 + x2

1

in backwards time contracts x1 >
√|µ1| towards

√|µ1| roughly like e
√|µ1|t . To estimate the

time t it takes x2 to flow backwards from +η to −η, use ẋ2 ≈ µ2 + x2
2 + δ2x1 and note that
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a b c

Figure 27. (a) Phase portrait for an E point; (b) Effects of unfolding parameters µ, ε;
(c) Bifurcation diagram.

|µ2| � δ2
√|µ1| between the sne curves and x1 � 2

√|µ1|, so |ẋ2| � 3δ2
√|µ1| + x2

2 . The
solution of ẋ = a2 + x2 is x(t) = a tan at so takes time ∼ π/2a to cross |x| � a. Hence x2

takes at least time 1/
√

3δ
√|µ1|. This time greatly exceeds 1/

√|µ1|.
The backwards transit map from x2 = −η to x2 = −L2 + η moves points of J ′ by O(δ/η)

so if this is less than
√|µ1| the interval J is mapped by the backwards flow strictly inside itself

and so has at least one attracting fixed point, making a periodic orbit. With some estimates of
its derivative we could establish uniqueness.

Appendix G. Unfolding of an E point

An E point is the codimension-two situation with an elementary saddle-node equilibrium
whose strong unstable manifold connects to the stable manifold of a saddle whose other branch
of stable manifold lies in the repelling half-plane of the saddle-node, forming a homotopically
non-trivial cycle (or the time-reverse of this situation). See figure 27(a).

It can be unfolded by a parameter µ to unfold the saddle-node equilibrium and a parameter
ε to displace the intersection of the stable manifold of the saddle with a transverse section �.
See figure 27(b). The resulting bifurcation diagram is shown in figure 27(c).

References

[AP] Andronov A A and Pontryagin L S 1937 Coarse systems Dokl. Akad. Nauk SSSR 14 247–50 (in Russian)
[BGKM] Baesens C, Guckenheimer J, Kim S and MacKay R S 1991 Three coupled oscillators: mode-locking,

global bifurcations and toroidal chaos Physica D 49 387–475
[BM] Baesens C and MacKay R S 2007 Resonances for weak coupling of the unfolding of a saddle-node

periodic orbit with an oscillator Nonlinearity 20 1283–98
[DRS] Dumortier F, Roussarie R and Sotomayor J 1987 Generic 3-parameter families of vector fields on the plane,

unfolding a singularity with nilpotent linear part. The cusp case of codimension 3 Ergod. Theory Dyn.
Syst. 7 375–413

[EK] Ermentrout G B and Kopell N 1986 Parabolic bursting in an excitable system coupled with a slow
oscillation SIAM J. Appl. Math. 46 233–53

[F] Fenichel N 1972 Persistence and smoothness of invariant manifolds for flows Indiana Univ. Math. J.
21 193–226 www.iumj.indiana.edu/IUMJ/fulltext.php?artid=21017&year=1972&volume=21

[GG] Golubitsky M and Guillemin V 1973 Stable Mappings and Their Singularities (Graduate Texts in
Mathematics vol 14) (Berlin: Springer)

http://dx.doi.org/10.1016/0167-2789(91)90155-3
http://dx.doi.org/10.1088/0951-7715/20/5/012
http://dx.doi.org/10.1017/S0143385700004119
http://dx.doi.org/10.1137/0146017
http://www.iumj.indiana.edu/IUMJ/fulltext.php?artid=21017&year=1972&volume=21


3076 C Baesens and R S MacKay

[GK] Guckenheimer J and Khibnik I 2000 Torus maps from weak coupling of strong resonances Methods
of Qualitative Theory of Differential Equations and Related Topics (American Mathematical Society
Translational Series 2, 200) ed L Lerman (RI: American Mathematical Society) pp 205–18

[HI] Hoppensteadt F C and Izhikevich E M 1997 Weakly Connected Neural Networks (Berlin: Springer)
[Iz] Izhikevich E M 2007 Dynamical Systems in Neuroscience (Cambridge, MA: MIT Press)
[LHM] Levi M, Hoppensteadt F C and Miranker W L 1978 Dynamics of the Josephson Junction Q. Appl. Math

36 167–98
[M] Mazo J J 2004 Localized excitations in Josephson arrays: I. Theory and modeling Energy Localisation

and Transfer ed T Dauxois et al (Singapore: World Scientific) pp 193–245
[NMW] Nicholls J G, Martin A R and Wallace B G 1992 From Neuron to Brain (Sunderland, MA: Sinauer)
[RE] Rinzel J 1998 Ermentrout, Analysis of neural excitability and oscillations Methods in Neuronal Modelling:

from Ions to Networks 2nd edn, ed C Koch and I Segev (Cambridge, MA: MIT Press) pp 251–91
[Sch] Schechter S 1987 The saddle-node separatrix-loop bifurcation SIAM J. Math. Anal. 18 1142–56
[U] Ustinov A V 2004 Localized excitations in Josephson arrays: II. Experiments Energy Localisation and

Transfer 2004 ed T Dauxois et al (Singapore: World Scientific) pp 247–71

http://dx.doi.org/10.1137/0518083

	1. Introduction
	2. Product system
	3. Effect of weak coupling
	3.1. First steps
	3.2. Inside the triangle
	3.3. Reduced system

	4. The mutualistic case
	4.1. Analysis of equilibria
	4.2. Transit map
	4.3. Extension of global dynamics into parts of the triangle
	4.4. Heteroclinic connections and consequences

	5. Consequences for attractors
	5.1. Mutually excitatory case
	5.2. Mutually inhibitory case

	6. Conclusion
	 Acknowledgments
	Appendix A. Coordinate change to make b()=1
	Appendix B. Coordinate change to make (v/) c
	Appendix C. x2-nullclines for 2-2
	Appendix D. A region with C1 invariant circles
	Appendix E. Corrections to the transit map
	Appendix F. Persistence of invariant circles for 1-K4/3 
	Appendix G. Unfolding of an E point
	 References

