
  

 

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap  

 

A Thesis Submitted for the Degree of PhD at the University of Warwick 

 

http://go.warwick.ac.uk/wrap/62723  

 

This thesis is made available online and is protected by original copyright.  

Please scroll down to view the document itself.  

Please refer to the repository record for this item for information to help you to 
cite it. Our policy information is available from the repository home page.  

 
 

 

 

http://go.warwick.ac.uk/wrap
http://go.warwick.ac.uk/wrap/62723


IDENTIFICATION & CONTROL OF

NONLINEAR SYSTEMS

A thesis presented for the degree of Doctor of Philosophy in
the Department of Engineering, University of Warwick, UK, by

Q.M. Zhu, B. Sc., M. Sc.

August 1,1989



IMAGING SERVICESNORTH
Boston Spa, Wetherby
West Yorkshire, LS23 7BQ
www.bl.uk

BEST COpy AVAILABLE.

VARIABLE PRINT QUALITY

http://www.bl.uk


Table of Contents

Acknowledgements i

Summary ii

List of published work based on the thesis III

Preface IV

SECTION 1 Incomplete time series analysis and modelling 1

SI.l Survey 1

S1.2 List of notations 4

S1.3 List of figures and tables 4

Chapter 1 Fourier amplitude and spectrum estimation 6

1.1 Introduction 6

1.2 Estimator for Fourier transform 9

1.2.1 Unbiased estimate 9

1.2.2 Minimum mean square error estimate 9

1.3 Estimator for PSD 11

1.3.1 Unbiased estimate 11

1.3.2 Minimum mean square error estimate 11

1.4 Properties of estimators .....:..............................................................................12

1.4.1 Compensating factors in limiting cases 12

1.4.2 Spurious periodicity 14



- 2-

1.4.3 Direct estimators 17

1.5 Experiment results 18

1.6 Discussion 27

1.7 Appendix :...... 29

Chapter 2 Frequency response estimation 34

2.1 Introduction 34

2.2 Estimator for frequency response 37

2.2.1 Unbiased estimate 37

2.2.2 Minimum mean square estimate 38

2.3 Properties of estimators 40

2.3.1 Closed-loop system 40

2.3.2 Spurious periodicity 41

2.3.3 Direct estimator "'........................................ 42

2.4 Experiment results 42

2.5 Appendix 50

SECTION2 System identification and parameter estimation 53

52.1 Survey 53

S2.2 List of notations 54

52.3 List of figures and tables 54

Chapter 3 Structure detection and parameter estimation 58

3.1 Introduction 58

3.2 Structure detection and parameter estimation 61



- 3 -

3.2.1 Structure detection 61

3.2.2 Parameter estimation 69

3.3 Simulation experiment 71

3.4 Conclusion 82

Chapter 4 A variable weighted least squares algorithm 83

4.1 Introduction 83

4.2 Parameter estimation 86

4.2.1 Off-line algorithm 86

4.2.2 Properties of algorithm 87

4.2.3 Modified (on-line) algorithm 89

4.3 Experimental results 90

4.4 Application -- Analysis of a saturating second order system 95

4.4.1 Jump resonances 95

4.4.2 Jump effect prediction 97

4.4.3 Simulation experiment 97

4.4.4 Step response experiment 103

SECTION 3 Self-tuning controller design 107

S3.1 Survey 107

S3.2 List of notations 111

S3.3 List of figures 111

Chapter 5 NLGPC design :........................................ 112

5.1 Introduction 112



-4-

5.2 Plant model and output prediction 114

5.3 Nonlinear general predictive controller 117

5.3.1 Controller design 117

5.3.2 Fast recursive root-solving 118

5.3.3 Self-tuning implementation 122

5.4 Simulation experiment 122

5.5 Conclusion 130

5.6 Appendix 131

Chapter 6 NLDBC design 134

6.1 Introduction 134

6.2 HCARIMA model and HCARMA model 135

6.3 General nonlinear feedback controller 138

6.3.1 Nonlinear feedback controller 138

6.3.2 Nonlinear deadbeat controller 140

6.3.3 NLDBC STC implementation 141

6.4 Simulation experiment 142

6.5 Conclusion 147

6.6 Appendix 147

SECTION4 Conclusions and bibliography 149

S4.1 Overall conclusions 149

S4.2 Bibliography 151

SECTION 5 Appendix 158



- 5 -

S5.1 Papers published 158

S5.2 Computer programs 181



i
Acknowledgement .

I am indebted to my supervisor, Professor J. L. Douce, for his
encouragement, technical guidance and inspiration; to Professor
K. Warwick for his encouragement and guidance in the self-
tuning control study; to Mr. A. Hulme for his help and advice
with use of the Prime computer, Sun station, and design of pro-
grams; to Mr. P. M. Obene for his fruitful discussion of many
problems; to colleagues in Control and Instrument Systems Cen-
tre, University of Warwick, for their collaboration; to Mr. R.
Kent and Mrs. V. Kent for their help in reading the draft thesis.

The project is funded by ORSA(Overseas Research Students
Awards) in part, and I am grateful for the associated financial
support.



ii

Summary

This thesis investigates some problems on nonlinear system identification,

parameter estimation, and signal processing.

Random signal spectral analysis and system frequency response estimation

are studied from incomplete time series. Both recursive and direct estimators are

presented based on either an unbiased or minimum mean square error criterion.

Nonlinear system identification and parameter estimation are studied. A

quantisation technique is developed to give a clear geometrical interpretation for

structure detection and parameter estimation. A new concept, state amplitude dis-

tance between current and previous operating states, is introduced, and results in a

Variable Weighted Least Squares (VWLS) algorithm. A modified version makes

on-line application possible. Jump resonance is predicted by the VWLS algo-

rithm as one of the applications.

Self-tuning controllers, including a nonlinear general predictive controller

and a nonlinear deadbeat controller, are designed. A vector backward shift opera-

tor is defined to simplify the expression of the Hammerstein model, and is intro-

duced to analyse the general feedback controller design problem for nonlinear

plant described by the Hammerstein model. A fast root-solver developed facili-

tates nonlinear model treatment in on-line applications.

Theoretical results are confirmed by simulation studies.
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Preface

The motivation of the thesis stems from the importance of modelling,

identification, parameter estimation, and controller design for a wide range of

nonlinear systems whatever they are physical or social. The relevant problems in

nonlinear systems have been actively studied by many workers over a long

period, however present knowledge is incomplete due to the difficulties not

encountered in linear systems. For nonlinear systems, a complete and unified

theory is probably unattainable. Attention has historically therefore been

focussed on the analysis of special cases such as Van der Pol oscillators, relay

systems or systems consisting of a small number of linear dynamic elements with

connected static nonlinearities. In the thesis attention is paid to a wide range of

nonlinear systems.

To the end of identifying and controlling nonlinear systems as simply as

possible, some new methods are developed in the thesis. Both linearization and

nonlinear techniques are considered in the belief that the combination of the two

kinds of techniques will bring satisfactory results.

The thesis consists of five sections.

The first section concentrates on the problems of incomplete time series

analysis and modelling. It is not uncommon that a time series, such as an opera-

tional record of an industrial installation or market fluctuation statistics, has some

missing observations due to many reasons. Bard (1974) has classified the neces-

sary analysis as a kind of special nonlinear parameter estimation. However study

shows that it is appropriate to apply linear approximating techniques to the esti-

mation of Fourier amplitude, power spectral density, and frequency response

functions. Both recursive and direct algorithms are developed using either an

unbiased or minimum mean square error criterion. The properties of the resulting

estimators are discussed in detail. Chapter one studies the estimation of Fourier

amplitude and power spectral density of random processes. Chapter two considers

estimation of the system frequency response function.
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The second section studies several problems related to nonlinear system;

structure detection, parameter estimation, and jump effect prediction. A concept,

state distance or amplitude effect, results in some novel understanding and

approaches to the nonlinear problems even though the basic idea, used seldom in

nonlinear system identification, has been known for long time. In chapter three an

amplitude quantisation technique illustrates the relationship between system

structure detection and its parameter estimation in a set of three dimensional

spaces. There has not been found any publication for this concept and geometric

interpretation. Another interesting topic studied in chapter four is a weighted least

squares algorithm based on the nearness between the current state and previous

states, Le. the amplitude distance between current state and previous ones, allow-

ing the approximation of the behaviour of a wide range of nonlinear systems. The

consideration of on-line applications leads to a modified parameter estimator. One

of the applications of the algorithm, the jump effect prediction for nonlinear sys-

tems, is investigated in this chapter.

The third section designs two types of self-tuning controllers, the general

predictive controller and the dead-beat controller, for nonlinear systems described

by a combined Hammerstein + ARMA model. In chapter five a nonlinear general

predictive controller is designed in the form of a self-tuning algorithm, and a fast

root-solving routine is developed to find the inverse Hammerstein characteristic

parameters. In chapter six a nonlinear dead-beat self-tuning controller is designed

by a direct method which generalises a HARMA model with a new operator.

This simplifies the nonlinear dead-beat controller design to be the same as linear

dead-beat controller design. A general nonlinear feedback controller is also

presented based on the HARMA model.

The fourth section presents the conclusions of the thesis and contains the

bibliography.

The fifth section gives computer programs and the publications based on the

thesis.
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The thesis emphasizes the development of new concepts and the exploration

of potential applications. The validity and effectiveness of the theoretical results

are demonstrated with computer simulations. Hopefully experiments based on

laboratory tests and further work in real environments will be carried on in my

future work.



Section 1 Incomplete time series analysis and modelling

Sl.l Survey

In time series modelling and parameter estimation, a common situation is

met in which the measured sequence is not a complete set of the observations, but

the measurements corresponding to some time instants are missing, not known or

unreliable.

Missing data can arise from a number of causes, such as failure of recording

equipment, clerical errors, rejection of outliers, or because of an inability to

observe the phenomenon at certain times. The pattern of the missing data, i.e. the

distribution of the missing data position, may be in one of two categories, one

deterministic or periodic, as in the case, for example, of a single sensor which is

time shared to measure and record different processes, or a random or aperiodic

phenomenon as in the case of an unreliable sensor which fails intermittently.

One solution to the problem of uncertain observation is interpolation, which

estimates uncertain values using the known values and then reconstructs the time

series. The technique is used quite often in the statistical field, a number of

authors (Bard 1974; John and Prescott 1975; Jarrett 1978; Smith 1981) having

studied the problem and obtained some fruitful results. One common feature of

the previous authors work is the reliance on parametric models. However the

interpolating method has some disadvantages (Robinson 1983; Harris 1987).

Satisfactory results will be probably obtained by simple or complicated methods

of interpolating the missing values, followed by application of some standard

techniques to calculate such as parameters of ARMA model or power spectrum

density etc., only when discrete data are sampled at a very fast speed or when the

missing data points are infrequent. Furthermore data interpolation and fitting pro-

cedures cannot be easily incorporated into a computer program, particularly when

quite a few data values are missing, and to ensure good interpolation, interaction

between the program and the analysis is required which would often be not practi-

cable for many industrial systems. Douce and Zhu (1989) reported that the inter-

polating method is not always effective in frequency domain analysis. The
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simulation experiment in the section will demonstrate the point of view.

Another more general solution is straightforward and derives the estimated

statistics directly by means of some criterion such as UNBiase (UNB) or

minimum Mean Square Error (MSE) without reconstruction of the time series.

The first of the advantages of the method is that less a priori knowledge of the

properties of the time series is needed than in the interpolating method. The

second advantage is its computational efficiency which is a key factor in the field

of real time analysis and processing. The third factor is that it has better accuracy

than some simple interpolating techniques in certain environments. The author

preference (Douce and Zhu 1988, 1989) is based on these three considerations,

which will be applied for analysis and estimation of Fourier transform, spectrum,

and frequency response in the section. It is noted that since 1962 (Jones 1962;

Parzen 1963), especially 1969 (Nahi) some useful results (Robert and Gaster

1980; McGiffin and Murthy 1980, 1981; Harris 1987) have been published in sig-

nal modelling and parameter estimation from time series with uncertain observa-

tions, by other sub-optimal methods. A good survey of some representative tech-

niques can be found in McGiffin and Murthy (1980).

The new method developed in the section for the estimation of Fourier

transform, power spectrum density and frequency response has general applica-

tions in many fields, including analysis of operational records of industrial

processes, market fluctuation data. or population statistics. The present study

concentrates on stationary time series.

In summary this section considers the spectrum analysis of finite duration

data where the available data contains one or more uncertain observations or

missing points. Both recursive and direct algorithms are developed using either

an unbiased or minimum mean square error criterion to obtain estimates of the

Fourier transform and the power spectrum density of the complete data record.

The analysis is extended to include frequency response identification of a wide

range of systems with missing data at the output.

It is shown that it is important to consider the position within the record as

well as the total number of the missing points. One result of a periodic
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distribution of the missing points is the production of a spurious periodicity in the

measured power spectrum. It is believed that this phenomenon has not been

reported previously.

A comparison of the new method with traditional techniques including sim-

ple interpolation method is presented, and simulation results demonstrate the

resulting improved performance.

A combination of the relevant techniques is suggested for the estimation of

power spectrum density and the frequency response function.



SI.2 List of notations
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system input, no missing observations.

system output, no missing observations.

system output, with missing observations.

amplitude and power spectra of x.
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number of missing points.
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smoothed value of estimate of S" (0).
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Chapter 1 Fourier amplitude and spectrum estimates

1.1 Introduction

The Power Spectrum Density (PSD) is an important parameter in the

description of random process. There are two general methods currently available

for PSD estimation with uncertain observations. We call one the Covariance

Method (CM), the alternative technique the Periodogram Method (PM). A brief

introduction to CM and PM will be presented after a definition of the problem.

The time series, assumed zero mean and normally distributed, with no miss-

ing observations is written

X =X It ... ,Xi, .•• , XN , i = 1,N

With missing observations, the series is written

Yi =x, . gi (1.1.1)

where gi = 0 for a missing point and unity otherwise. This is a reasonable choice

when the time series has zero mean value. The missing data consists of M miss-

ing points, a member of this set being xm• The incomplete time series y may be

recognised as the product of the original time series X amplitude modulated by

the function g i.

The discrete Fourier Transform (FT) of Xi is

X (n)= ItXi (cos in - j sin in) = XR + ,Xl (1.1.2)

where n =¥ with k integer.

The power spectral density is

Sxx (n)= X (n~· (n) (1.1.3)
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Alternatively, the power spectral density can be expressed in term of the

measured autocovariance function according to

(1.1.4)

where

fort ~o (1.1.5)

The covariance method for spectral analysis with missing points (Jones

1962; Parzen 1963;McGiffin and Murthy 1980) uses eqn (1.1.1) to give

(1.1.6)

Knowing the positions of the missing points, Rgg (t) can be calculated, to give

Ryy (t) = ~'tyjyj+'t

(1.1.7)

(1.1.8)

By eqn(1.1.8) computing N+l covariances, consistent estimates can be

obtained as R:a(t) converges to the true value as N ~oo (McGiffin and Murthy

1980), then using eqn (1.1.4) the spectral density ofx(t) can be estimated.

The main drawback of this method is that different covariances are com-

puted with different accuracy since the variance of the estimate Ra (t) increases
with increasing t, and for a given t it decreases with increasing value of the

denominator of eqn(1.8) for R"xx (t), thus for a given sequence with a particular

pattern of missing observations, determining the optimal r's to be used in com-

puting R;x:x(t) is a difficult problem and has not yet been studied (McGiffin and

Murthy 1980). Another disadvantage is that the CM is not statistically efficient

(McGiffin and Murthy 1980). The method can not be used if in case of

Rgg (t) = O.Jones (1962) and Parzen (1963) proved the restriction for the case of

regularly missing observations.
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An alternative approach termed the periodograrn method (Harris 1987) is

based directly on the measured power spectrum Syy (0). This is defined by

" NSxx (0) = N-M Syy (0) (1.1.9)

where (N - M) is the number of non-zero terms in y(t). A obvious drawback is

that no consideration is given to the positions of the missing points.

In general, both the above estimators are sub-optimal, as shown later in this

chapter.

Furthermore a simple Interpolation Method (1M) may be used to obtain PSD

by the reconstruction of time series. The rule estimating missing value is given by

(1.1.10)

It can be expected that this 1M gives good results for narrow-band signals,

on the other hand, it is unsatisfactory for wide-band signals. Therefore 1M has

less generality and needs some advance knowledge of the time series.

The new estimator of the property ex (for example the power spectral den-

sity) of the process giving the sequence x, is derived from the estimate of ey

from the sequence y according to

(1.1.11)

where k is a frequency-dependent factor depending also on the position of the

missing points chosen to satisfy a criterion such as zero bias or minimum mean

square error. This real gain factor k can be expressed in terms of the true value of

ex, and hence both a recursive method and a direct method are introduced to

determine its value. Simulation studies show that the recursion introduced con-

verges rapidly for the wide range of examples considered whilst the direct method

gives the same results as the recursive one with a significant reduction in comput-

ing time.
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1.2 Estimator for Fourier transform

1.2.1 Unbiased estimate

The requirement for an unbiased estimator is given by

(1.2.1)

that is

(1.2.2)

In this special case k} and k2 are unity since E[XR] = E[YR] = E[XJ] = E[YJ] = O.

1.2.2 Minimum mean square estimate

The MSE criterion is written in the form

(1.2.3)

Differentiating with respect to k It and setting the result to zero and noting that Y

is known,

(1.2.4)

that is

(1.2.5)

and similarly

(1.2.6)

Appendix ALI derives expressions for kl and k2 on the two assumptions:

(a) The missing points are separated such that the cross-correlation between

values at missing positions may be neglected, and

(b) The missing points are not too near the end of the record.
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The results are

f 1(if-~COS2mn) + f iYl
k} = Yi-

t l(if-1:sin2m!l) - f 211
k2 = Yf2 (1.2.7)

where

(1.2.8)

where k 3 will be determined in the calculation of the gain for PSD estimation. f 2

and "(I can be estimated directly. and Yit and Yr can be also expressed as the

functions of f 1 and f 2. see appendix A 1.1 for the details.

Eqn(1.2.7) and eqn(1.2.8) give a recursive form of estimator in which f 1 is

updated from the current estimates of kit k2, and k3 (with initial values

kl=k2=I,k3=(N~M) assumed) according to eqn(1.2.8) and then kl and k2 are

calculated, with k3 obtained from the PSD estimator. Therefore the estimators for

Ff and PSD are connected recursively. as demonstrated in the block diagram as

shown in Fig. 1.2.1.

initial seuings

f 2 k 1. k2 FT

I
I
f 1 k3 PSD

initialseuin !etc seriesgs mcomp

Figure 1.2.1 Recursive estimators



- 11 -

1.3 Estimator for PSD

The reason for two gains being introduced adopted in the Fourier transform

estimator is that there are two independent variables, the real and imaginary parts,

in that criterion. However the PSD estimate is a real quantity, hence just one gain

k3 is set when compensates the measured PSD directly.

1.3.1 Unbiased estimate

Firstly UNB estimator is developed in term of

(1.3.1)

the gain k 3 is

E [X;""Xl] s t ,
k3 = yjty? = f 1(N-2M)+<J2M (1.3.2)

the derivation is given in appendix ALI.

1.3.2 Minimum mean square error estimate

Secondly MSE estimator is developed in term of minimisation of

(1.3.3)

Differentiating with respect to k3, and setting the result to zero and noting y is

known,

k - E[(x;""xl)(Y/l+Yl)]
3 - [(Y~YJ2)]2

E [X;'Y ;""XrY /l+X;'Y /4xrY r]
=

[(Y~YJ2)]2

[E [X}]+£ [Xr]] [Y;""Y r]+2[[£ [XRYR]]4[£ [XI YI]]4[£ [XRYI]]4[E [XI YR]]2]
= [(yjtYJ2)]Z

(1.3.4)

where, for Gaussian signal (Godfrey and Jones 1986), it has
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E [XrY}] =E [Xr]Yj+2[E [Xl YR]]2

E [xjY r]=E [X}]Y r+2[E [XRYl ]]2

E [XrYr]=E [XrlYr+2[E [Xl Yl ]]2 (1.3.5)

These above terms can be evaluated in terms of f 1> f 2, 13t. "(1 and "(2. Appendix

ALI derives the detailed expressions for eqns (1.3.4) and (1.3.5).

1.4 Properties of the new estimators

1.4.1 Compensating factors in limiting cases

In this part, two special signals are selected for analysis, to indicate the

dependence of the estimators on the signal characteristics. E [Y} + Yrl is used

instead of Y} + Yr for the following theoretical analysises.

The signals selected are white noise and a narrow-band signal.

1. White noise signal ( E(x) = O,a2 = 1 )

From eqn(A1.2), eqn(A1.3), and eqn(Al.I2),

f 1 = 1 , f 2 = 0 , 131= "(2 :: 0 (1.4.1)

First consider MSE Ff estimator, from eqn(1.2.3)

!1(!f-Lcos2mO)+! iYl

= !1(?-2'Lcos2m 0)+CJ2'Lcos2m 0+2/ 2'Yl

k - E[XlYl]
2 - E [Yf2]

!1(-?-Lsin2mO)-f 2"(1
(1.4.2)

Substitute eqn(1.4.1) into eqn(1.4.2), gives

kl=1 , k2=1 (1.4.3)
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As mentioned before, the gains for UNB estimator are undefined. For the UNB

and MSE estimators k 1 = k 2= 1. The position and number of the missing data

have no effect on the estimator in the case.

Second consider UNB PSD estimator, substitute eqn(1.4.1) into eqn(1.3.2),

gives

(1.4.4)

which is the same as the traditional PM.

Now consider MSE PSD estimator, from eqn(1.3.3)

k - E[(Xi!+Xt-)(Yi!+Y[l)]
3 - E [(YJt+YJ2]2

E [XitY i!+Xt-Y it+X;Y ?+Xt-Y ?]
= E [Y/+2YJtYJ2+Yi] (1.4.5)

Substitute eqn(I.4.1) into eqn(I.4.5) with lengthy operation, gives

N (N -M )+2[( If- 'Lcos2m n/ +( If- 'Lsin2m n)
2
+2('Lcosm n sinm n)2]

k3=----------~---------,T------------------------
3(N-M )2-4( 1f-'Lcos2mn)( 1f-'Lsin2m n)+4('Lcosm 0 sinm 0)2

_ N(N-M) + (N2 - 2NM + 2M2)
- 3(N-M)2-N2+2NM

2N2 - 3NM + 2M2
= 2N2-4NM + 3M2

_ 2- 3MIN +2 (NIM)2
- 2-4MIN +3 (NIM)2 (1.4.6)

From the analysis, UNB and MSE estimators depend only on the number of

missing points for a white noise signal, and the MSE PSD estimator is biased.

However there is no big difference when the number of missing data is small, for

instance MIN = 0.1, k3= 1.1 in UNB, k3= 1.06 in MSE. In particular they are

the same when M = O.

2. Narrow-band signal

In this case
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f 1-+00 , I f 2 I , I ~1 I , I 11 I , I 12 I < R, R is positive andfinite

(1.4.7)

two limitating cases of the arguments, (1) Lcos2m 0=0 and Lsin2m O=M and (2)

Lcos2m O=M and Lsin2m 0=0, these both lead to LCosm 0 sinm 0=0.

First consider MSE FT estimator, substitute eqn(1.4.7) into eqn(1.4.2), to

give, in case (1)

(1.4.8)

in case (2),

k - N-2M - 1-2MIN k 1
1- N=4M - I=4MIN ' 2= (1.4.9)

Now consider UNB PSD estimator, substitute eqn(1.4.7) into eqn(1.3.1),

giving, in both cases,

k - N _ 1
3 - N-2M - 1-2MIN (1.4.10)

Now consider MSE PSD estimator, substitute eqn(1.4.7) into eqn(1.4.5) with

lengthy operation, to give, in both cases,

N2-'lNM +M2
= -=N..:.,,2,...._-4-=N:...:..M~+..:..6..:.:.M::.....,....2

= 1-2MIN + (MIN)2
1-4M IN + 6(M IN)2 (1.4.11)

1.4.2 Spurious periodicity

An interesting property is the spurious periodic distribution of PSD over a

range of unimportant harmonic frequencies due to a periodic distribution of miss-

ing points. Consider a PSD estimator by PM with reference to eqn(1.1.9),
A N-
Sxx = N-MSyy
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= NkE[X-Xm][X-Xmt

= Nk[E(XX·)-2E(XRXmR+XJXml)+E(XmX~)]

:: N!..M (j 1(N-2M)+E(XmX~»

:: Nk(N (N -2M)Sxx+M a}+2Rm (a)cos (an» (1.4.12)

where

(1.4.13)

if Sxx has low-pass filter property, then

or

Sxx :: 0 , for h < Q S 7t (1.4.14)

where h is a measure of the cut-off frequency of the signal.

Eqn(1.4.13) becomes

Sxx ::::Nk[cr}M+2Rm(a)coSan) h < n ~1t (1.4.15)

Clearly there exists a periodic spectrum at high harmonics segment, which con-

sists of a constant plus a cosine function. The period of the spectrum is

(1.4.16)

This follows since

cos (aQ) = COS(~) , k = 0, ... , N-l (1.4.17)

The frequency is

(1.4.18)

The average value is

a}M cr}MIN
N -M = I-MIN (1.4.19)
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From eqn(1.4.l9), increasing the number of missing point increases the level of

the constant spurious estimated spectrum at high frequencies. A graphic presents

the analysis as shown in Fig. 1.4.1.

Another qualitative explanation of the phenomenon considers the periodic

missing points (of period P points) as a sampled version of original sequence x(i).

This sampled sequence is subtracted from x(i) to produce the observed sequence

y(i). The sampled sequence, sampled at the low frequency (lIP), introduces alias-

ing of the original signal, so that the original term at zero frequency produces

alias terms at the frequency lIP, 2/P, etc. This is a periodic phenomenon, giving a

repetitive power spectrum, repeating over (NIP) harmonic frequencies.

It can be concluded that a spurious periodic spectrum appears at high har-

monics which is much smaller than main part of spectrum, its period and average

value being determined by the number and position of missing data. The

phenomenon is caused by periodically distributed missing points, and occurs for

any spectrum with band limited property, no matter whether low-pass or high-

pass.

PSD

N/(mi-mj)
2Rm/(N-M)

Var(x)M/(N-M)

frequency

Figure 1.4.1 Spurious periodicity
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1.4.3 Direct estimators

A further development is that the recursive estimators may be modified to be

direct estimators by the substitutions

(1.4.20)

Appendix A1.2 presents the detailed derivations for the resulting estimators. It is

noticed that the recursive estimators use the variable substitutions like

(1.4.21)

where XR and Xl are real values which are estimated recursively.

Summarying this section:

1.UNB estimators depend only on the signal characteristics and the number

of missing data. However this accords with the assumptions given previously.

2. MSE estimators depend on the signal characteristics and the number, but

also the position of missing data. Since MSE is a sort of quadratic criterion, the

terms for the gains include quadratic form such as (~- Lcos2m n/,
(Lcosm n sinm n)2 for PSD and Lcos2m o, Lsin2m n for Fourier transform.

3. The ratio MIN is an important parameter in the estimators. N/M is a

representative of Signal to Noise Ratio (SNR), since missing data introduce noise

into the analysis. Some of the estimators will fail when M /N~1/2, consistent with

the results of Jones (1962) and Parzen (1963).

4. A spurious periodic spectrum gives information about the distribution of

missing points. '.

5. The direct estimators reduce significantly computing time comparing with

recursive estimators. .
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1.S Experiment results

Three systems excited by Gaussian white noise have been studied to com-

pare the traditional and new methods for spectral analysis. The experiments have

been completed to examine the effect of smoothing over several blocks and over

adjacent frequencies on the resulting estimates.

Three quantitative measures of performance have been used for the com-

parison. The first one is the sum over all frequencies of the error squared between

the true spectrum with no missing points and the estimated spectrum with missing

points. This is a measure of bias, and is given by

;t(E (A )-E (A»2
e 1= ---NTT"""--- (1.5.1)

where A is the PSD calculated from time series without missing data and A is the

PSD estimated by either the UNB estimator or the MSE estimator from time

series with missing data. N is the time series length without missing data. The

second one is the sum over all frequencies of rnean square error, that is

~ E(A-A)2
e2 = _ctl_O_Tr- __

N (1.5.2)

The third one is a linear regression of the true spectrum on the estimated spectrum

again over all frequencies, given by

~E(A)E(A)
fit = ~-=o _

;t(E(A»2
(1.5.3)

In the all experirnents, a block length of 128 points has been used, and the

whole data length equals the length of one block multiplied by the number of

blocks, which is the data length used by CM. The missing points have been intro-

duced at positions 10, 20, , 120 firstly, that is ten percent of missing points in

the series, and then at 5, 10, , 120,which corresponds to twenty percent of miss-

ing points in the series. In those experiments each involving one block, smoothing

over two adjacent frequencies for system 1, and four adjacent frequencies for
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system 2 has been used to estimate the PSD for the calculation of kt, k2, k3. For

the experiments involving more blocks, the spectrum is smoothed over the blocks

for this calculation. A lag window (Bartlett) is used to smooth the covariance

function when the correlation method is used. In the experiment, expectation

operation E[.] concerned in theoretical derivation is replaced by smoothing opera-

tion ~ [.], Le. arithmetical averaging. Three particular systems have been con-

sidered.

1. First order system (SYS 1, narrow-band)

The system considered is

Xk = 0.9 Xk-t +Uk

in which Uk is a white noise normally distributed signal of unity variance and zero

mean value. Fig. 1.5.1 compares the errors in an experiment consisting of 1000

blocks with 10% missing points using traditional and the new methods, and

shows the true PSD and the estimated PSD with semilogarithmic axis to display

clearly the periodic phenomenon at high harmonics. Fig. 1.5.2 shows results with

20% missing points. The maximum errors in the traditional methods occur at zero

frequency, corresponding to the frequency of the peak value of the true spectrum.

2. Fourth order system (SYS 2)

The signal is produced by passing the previously defined white noise

through the process described by Harris (1987)

Yk-3 = 1.7143Yk-4 - 0.9048Yk-S + Uk

Yk = 1.0732Yk-t - O.9512Yk-2 +Yk-3

This produces a power spectrum with two pronounced resonances.

The periodogram method is again inferior to the correlation method, both

being worse than the new methods. Fig. 1.5.3 shows, with 10% missing points,

how the errors in spectral estimation vary with frequency, the frequencies of the

maxima corresponding to the resonant frequencies of the system. The maximum

of the error is approximately 10% of the true value. It demonstrates again the

periodic phenomenon predicted by theory. Fig. 1.5.4 shows the results with 20%
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missing points.

Ensembles of experiments, each of duration equal to one, five, ten and one

hundred blocks have been completed to investigate the new estimators perfor-

mances with comparison to the traditional estimators, Table 1.5.1 summaries the

results and shows the significant reduction in errors resulting from the new esti-

mators, UNB has the minimum bias and the subminimum mean square error,

MSE has the minimum mean square error and the subminimum bias, compared

with the other methods except 1M for SYS1 and SYS2. Table 1.5.2 lists the

ensemble average of the linear regression of the true on the estimated spectrum.

The new estimators substantially reduce the deviation of this factor from unity.

For above two systems, 1Mgives the best results for the considered methods

due to the narrow-band characteristics. The following SYS 3 is mainly selected to

check the 1Mgenerality.

3. First order system (SYS 3, wide-band)

The system considered is

x" = 0.1 X"-l + u"
The experiment shows that 1M is worse than UNB and MSE. The comparisons

have been recorded in Table 1.5.1 and Table 1.5.2.
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Fit in spectrum estimation

data length PM CM IM UNB MSE
(10% missing) fit fit fit fit fit
sysl 128 1.113 1.093 1.029 1.069 1.077
sys2 128 1.266 1.095 1.038 1.041 1.079
sys3 128 0.913 0.925 1.213 0.974 0.968

sysl 128*5 1.108 1.088 1.011 1.064 1.084
sys2 128*5 1.102 1.062 1.030 1.039 1.045
sys3 128*5 1.021 0.980 1.187 1.013 1.014

sysl 1280 1.097 1.070 0.995 1.010 1.014
sys2 1280 1.064 1.040 1.019 0.980 0.971
sys3 1280 1.013 1.012 1.070 1.008 1.009

sysl 12800 1.065 1.025 1.001 1.007 1.012
sys2 12800 1.038 1.031 1.013 1.021 1.027
sys3 12800 1.012 1.010 1.068 1.003 1.005

data length PM CM 1M UNB MSE
(20% missing) fit fit fit fit fit
sysl 128 1.239 1.095 1.041 1.079 1.107
sys2 128 1.270 1.259 1.041 1.163 1.215
sys3 128 0.823 0.829 1.247 0.912 0.913

sysl 128*5 1.223 1.089 1.008 1.067 1.087
sys2 128*5 1.217 1.184 1.039 1.155 1.100
sys3 128*5 1.165 1.154 1.225 1.083 1.091

sysl 1280 1.216 1.075 1.004 0.988 0.980
sys2 1280 1.193 1.068 1.032 0.970 0.941
sys3 1280 1.162 1.153 1.218 1.032 1.037

sys1 12800 1.202 1.031 1.002 0.991 1.015
sys2 12800 1.183 1.045 1.028 0.998 0.979
sys3 12800 1.015 1.011 1.098 1.009 1.011

Table 1.~.2



- 27 -

1.6 Discussion

From the simulation experiment, several common points may be noted

1. The shape and peak positions of estimated PSD by traditional PM or CM

are correct. However the errors vary at different harmonics, the largest errors

occur at peak positions. This arises since traditional methods use average gain

compensation, on the other hand, the new methods make use of varying gain

compensation, the more error the more compensation is given, therefore the better

results obtained.

2. The location of missing points has substantial influence on the errors

introduced by these missing points. Even though UNB estimator does not depend

on the position, it relies on the assumption that these missing points are ade-

quately separated.

3. An interesting and new spurious periodic spectral phenomenon has been

predicted and observed, caused by a periodic distribution of missing points. It is

noted that CM does not produce this phenomenon.

4. The effect of missing data is to introduce uncorrelated white noise into the

spectral analysis. Quantitative results are presented for the spectral density of this

noise background.

5. The new method presented with MSE has a further improvement com-

pared with a sort of subminimum MSE method developed by the authors in previ-

ous work (Douce and Zhu 1988). Specifically the new method has a revised

definition of the mean square error.

6. The same results have been obtained from both recursive and direct

operations by UNB and MSE estimators.

7. A combination of the techniques studied in the chapter is suggested for

the estimation of Fourier transformation and PSD as shown in Fig. 1.6.1.
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1.7 Appendix 1

A1.1 Recursive algorithm

For the estimation of Fourier transform and PSD. the compensating gains

depend on five factors I 1and f 2. 11. 12. and ~1' This section presents the detailed

definitions and derivations. Consider

E [Xi] = E C~:DiX) cos; Q cosj a]

= l',cos2jOLE[XiX)]COS (i -j)O-(Din2j oLE [XiX) ]sin (i -j)O)/2

and

. E [X?] =E [l',DiX) sini Qsinj a]

= l',sin2j OLE [XiX) ]cos (i - j )Q+(Din 2j OLE [XiX) ]sin (i - j )0)/2

(Al.l.!)

define

E [Xi]+E [Xl] =Nl',E [XiX) ]eos (i -j)O =N !1 (Al.1.2)

)/..;::.1 A

(Din2jOLE [xix)]sin (i -j)0)/2 = ~~ R ('t)sin ('to)sin 20)/2 =f 2 sin20
't

(A1.1.3)

where

(A1.l.4)

similarly the remaining terms are derived. which are

E [XR YR] = E [Xi-XRXmR]

=f 1(!f- l',cos2m O)+! 2 "f1 (A1.1.5)

where

E [XRXmR] = l',cos2m aLE [XiXm]COS(i -m )Q-(Din 2jm aLE [XiXm]sin (i - j)0)/2

=I lLcos2m 0-/211
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'Yl= (A1.1.6)

'r:sin 2m .0- ~ sin 2m .0, t > N /2
m m~+l

Din2m.o- ~ sin2m.o, t ~N /2
m m~t+l

E [Xl Yl ] = E [Xl-Xl Xm/ ]

=/1 (.!f-l)in2m .0)-/2 'Yl (AI.!.7)

E [Y;] = E [X;-'2XR XmR +XJR]

(A1.l.8)

where

(Al.l.9)

(A1.1.IO)

where

(Al.l.I1)

Define cross part

E [X/XR] =E [~:Djxjsini Ocosj 0]

= LcOS2j.oLE[Xjxj]sin (i -j)O+(Din 2jOLE [XjXj]COS (i -j)O)/2

(Al.1.I2)

noticing that

cos2j.o =cos2(N-j).o , cos2jQ-cos2(ND.) = sin2jD. (Al.l.13)



- 31 -

E [X/ YR] = E [X/XR -X/XmR]

= ~1-Y2-1 lLcOSmn sinmn (A1.1.14)

where

E [X/XmR] = Lcos2m!lL£ [xixm]sin (i-m )n+Q)in 2mnL£' [XiXm]COS(i -m )n)/2

= "(2+1 lLcosm n sinmn

'Y2=

t SNI2

(A1.1.I5)

~
l .. fl.;:.t ~R (t)sin (tn)~ ~ cos2m n - cos2m n),

m m +1
t > N 12

(A1.1.16)

E [YR Y/] =E [XRX/-XRXm/-X/XmR +XmRXm/]

= ~1-212+<J2Lcosmn sinmn (Al.1.17)

where

(A1.1.18)

It should be noticed that the parameters 12, ~1>11>and 12 are all much

smaller than11. therefore these have no important effect on the Fourier transform

and PSD estimates. Simulation results have confirmed this in detail.
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AI.2 Direct aJaorItlnn

The five facton /1 and /2, 11, "fl,and PI have been defined in the part A2.l.

In this section, they will be used to derive a direct algorithm for the various esti-

mates. Consider two variable substitutions

XI == YI +Xliii

The remaining terms may be derived with the substitutions, which are

ElXRYR] =ElYit+XRXmR -XJR]

= ElY}] + (/1 - 02 )}:cos2mQ - I 211

(Al.2.t)

(Al.2.2)

where

E [XRXmR] = }:cos2mQI,E [XjXm]COS(i -m )Q-(Din2jm Q:EE [Xjxm]s;n (; -j)Q)/2

=I 1}:cos2mQ-I 211

(Al.2.3)

Similarly

ElXrY/] =E[Yjl+XrXm/ -xJi]
=E [YI] + (f 1 - 02 )}:sin2m n + f iYl (Al.2A)

where

(At.2.5)

E [XR YI] = E[X! YR] = E [YR Y! + X/XmR - XmRXm/]

= E [YR Y/] + "(2+ if 1 - (2)1:cosm Cl sinm Cl (A 1.2.6)
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where

E [XjXmR] = Lcos2m OLE [XjXm ]sin (i -m )O+(Din 2m OLE [XjXm]cos (i -m )0)/2

= 'Yx+-f lLcosm0 sinm .Q

(A1.2.7)

As mentioned in appendix A 1.1. f 2. ~1' 'Yl and 'Y2may be neglected in the calcula-

tions.
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Chapter 2 Frequency response estimation

2.1 Introduction

The importance of frequency response characteristics is well known for sys-

tem identification and controller design. The essence of frequency response esti-

mation is the estimation of cross-spectrum between input and output and input

auto-spectrum of a systeIl? This chapter studies the estimation of the frequency

response function from input and output data of a system in which there exist

missing points at the output. Formally speaking, as far as author know, there had

not been any published result until the authors' publication (Douce and Zhu 1988)

even though one can naturally borrow idea and techniques from power spectral

density estimation with missing data.

The definition of the frequency response estimation is given by, without

missing data,

(2.1.1)

With reference to Fig. 2.1.1, Svx is a cross-spectrum between input and output of

a system, SVII is a cross-spectrum between input to the system and input to the

plant, which equals to SIlU' the auto-spectrum of the system input, for open loop

systems.

G

H

Figure 2.1.1 Closed-loop system
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The problems studied are shown in Fig. 2.1.2. The modulating function

g(t,x) has been defined previously, with g(t,x) = 0 for a missing point and unity

otherwise.

~u---·~I G__~~ __~x~~·~~1g(_t~_)__ ~~~y-,
(a)

x
g(t,x)

y
G

H

(b)

~
x Y

G g(t,x)
c

L.....- H -
(c)

Figure 2.2.1 Systems with missing points

at output
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Problem 1: open loop system with missing data at output, shown in Fig.

2.1.2(a). This is the simplest case. Douce and Zhu (1988) defined the frequency

response estimate to be, with missing data at output,

(2.1.2)

where Svi is an estimate of Syx.

Problem 2: closed loop system with missing data at output, seen in Fig.

2.1.2(b). This presents for example the case in which the recording instrument

fails, but the sensor which generates the feedback signal is working normally. The

estimation procedure is the same as eqn(2.1.2).

Problem 3: A closed loop system with missing data at output, effecting the

feedback path, shown in Fig. 2.1.2(c). This is a case in which the recording instru-

ment and sensor fail simultaneously. A definition of the frequency response esti-

mation is given by

(2.1.3)

At present, we can not give a general rule to deal with this problem, the difficulty

being the estimation of the cross-spectrum SyC in which the missing data appears

at the plant input. However it can be solved under certain conditions such as unit

feedback (He l), corresponding to

(2.1.4)

As shown later, this is the same as eqn(2.1.2). The simplified situation, that is

unit feedback (H = 1), presents a heuristic solution to the problem in the chapter.

As mentioned above, the frequency response estimation mainly depends on

the cross-spectrum Svi no matter whether open loop or closed loop is considered.

The idea and techniques developed in PSD estimation with missing data are

developed further to solve the problems. Both recursive and direct estimators will

be considered with UNB or MSE performance criteria.
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2.2 Estimator for frequency response

2.2.1 Unbiased estimate

Firstly the UNB estimator is presented in term of real and imaginary parts

respectively, that is k4 and k5 are chosen to satisfy

* • AE [1m (U X) - kslm (U X)] = E [(URX/-U/XR) - kS(UR Y/ - U/ YR)] = 0

(2.2.1)

where Re and 1m denote the real and imaginary parts respectively. Solving the

linear equation set, gives

k4 - Ao _ N
- Al +A2 -7i/"=lJ

Bo N
kS=BI+B2 N-M (2.2.2)

where

Ao =E[URXR + U/XJ1

AI=E[URYR]

(2.2.3)

This important result demonstrates that the PM, derived on an ad-hoc basis

for spectral analysis, is, when the stated assumptions are satisfied, an unbiased

estimate of the cross-spectrum. It therefore leads to unbiased estimates of the sys-

tem frequency response.

Appendices A2.1 and A2.2 give the detailed derivations of these expres-

sions.
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2.2.2 Minimum mean square estimate

Secondly the MSE estimator is presented in term of minimisation of

E [CU· X - U· i)(u·X - tr i)· 1 (2.2.4)

Two kinds of gains can be obtained from this criterion. One directly com-

pensates the output Fourier transformation Y, and another one indirectly compen-

sates the cross-spectrum.

For the first case, let

(2.2.5)

differentiating eqn(2.2.5) with respect to k s, and setting the result to zero and not-

ing that u and y are known,

(2.2.6)

and similarly

k - E[SuuXIYI1 _ E[UitXIYI + U?XIY/]
5- SuuY? - UiY?+u?y? (2.2.7)

where

E [U;'XR YR] = U;'E [XR YR] + 2E [URXR ]UR YR

E[U?XRYR] = U;E[XRYR] + 2E[U/XR]U/YR

E [UjXI YI 1= UilE [XI Y/ 1+ 2E [URXJlUR YI

e [U;X/ Y/] = U?£ [X/ Yj] + 2£ [U/Xj lUj Y/ (2.2.8)

For the second case, let

U· i = k~e (U· Y) + jksIm (U· Y) (2.2.9)

differentiating eqn(2.2.1O) with respect to k4' and setting the result to zero gives

k - E [Re (U· X )Re (U· Y)]
4 - (Re(U' y»2

E [(URXR + U/X/ )(UR YR + U/ Y[)]= (URYR + UjYI)2
(2.2.10)
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and similarly

k - E [1m (U· X)/m (U· Y)]
5 - (1m (U· y»2

E [(URX/ - U/XR )(URY/ - U/ YR )]
= (URY/-U/YR)2

(2.2.11)

It should be noted that although the two derived gains have different values,

they will produce the frequency response estimate with minimum MSE, i.e. the

resultant estimate is the same since the same performance criterion is chosen.

Fig. 2.2.1 shows the recursive relationship of the estimators in block

diagram form.

" itiallJll settmgs
I

L •
f 2 k 1, k 2r ~GJ , ,itial settings

I
k4, kSr+ FRESP

I

r f 1 .~k 3 I PSD - f 3, f4 -I

initial settings incomplete series

Figure 2.1.2 Recursive estimators
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2.3 Properties of the new estimators

2.3.1 Closed-loop system

The first property concerns the equivalence between problem 2 and problem

3 when the system is unity feedback, (H=!). With reference to Fig. 2.1.2(c)

For no missing points,

u(t) = vet) -x(t) (2.3.1)

With missing points, it has

Um (t) = v (t) - Xm (t) = v (t) - x (t) + d (t)

= u(t) +d(t) (2.3.2)

where

d(t) = (1 - g (t ,x»x(t) (2.3.3)

may be recognised as a disturbance with values equal to the values at missing

points and zero otherwise, and is white noise due to the condition given in PSD

estimation that missing points are separated such that cross-correlation between

values at missing points may be neglected.

Let D be the Fourier transform of the disturbance d(t), from eqn(2.1.3), this

leads to

=E[V*X] I E[V* U]

= E[V* X]/E [V* U]

(2.3.4)

This the same as eqn(2.1.2), where

E[V* U]

= E [V* U +V* D ]

= E [V* U] +E [V* D]
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=E[V* U] + E[V* ]E[D]

= E[V* U] (2.3.5)
This follows since E[D] =O.

2.3.2 Spurious periodicity

The spurious periodic phenomenon predicted and observed in PSD estima-

tion is not presented in the frequency response estimate. With reference to appen-

dices A2.1 and A2.2, this can be proved by considering

= IE[(UR + jU/)«XR -XmR) - j(X/ -XmJ »] I

= IE [(UR + jU/)«XR - jX/) - (XmR - JXmJ»] I

= IGSyu 1- IE[(UR + jU/)(XmR - JXmJ)] I

= IGSvu I-c If3+jf41

= IGSyU I - c IG I (2.3.6)

where c is a constant. If frequency response G has low-pass filter property, then

lim G -+ 0n~7t (2.3.7)

or

G=O , h<Q<7t (2.3.8)
where h is the cut-off frequency. Hence there is no spurious periodic phenomenon

at high harmonics in frequency response estimation. However it may be proved

that this phenomenon is present in measured squared cross spectrum. Consider

IE[(U*Y)(U*Y)*]I = IE[(U*UY*Y)]I

= IE[(Ui+Ur)(Yi+Yr)]1

= IE[Ui]E[Yj] + 2E[URYR]

+ E [Ur]E[Yr] + 2E[U/Y/]

+ E [Ui]E [Yr] + 2E [UR Y/]
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+ E [UP]E [Yj] + 2E [U/ YR] I

= IE[(U;+ Ur)]E[(Y"r + Yp)] + 2[E [URYR] + E[U/ Y/] + E [UR Y/] +E[U/ YR]] I

(2.3.9)

Chapter 1 has demonstrated the spurious periodicity in E [(Yj + Y1)] from both

theory and experiment. E [(U; +Up)] is a constant for uncorrelated Gaussian

input signals. The terms E [UR YR] =E [U/ Y/] = E [UR Y/] = E [U/ YR] ~ 0 since

E [U· Y]~ 0 when n ~1t for low-pass filter systems.

2.3.3 Direct estimators

The third feature is that the recursive estimators may be modified to be

direct estimators by the same variable substitutions as eqn(1.4.19) in Chapterl,

This gives a significant saving in computing time. A detailed derivation is given

in appendix A2.2.

2.4 Experiment results

The three problems mentioned in the introduction have been studied with the

new methods, UNB and MSE, and traditional methods CM and 1M as comparis-

ons. The same performance criteria as used previously have been evaluated in

each case.

The error performances and linear fit defined in chapter 1 are modified to be

the measurements of magnitude instead of amplitude, to indicate both amplitude

and phase characteristics.

For SYS 1, Fig. 2.4.1 and Fig. 2.4.2 show the results in an experiment con-

. sisting of 1000 blocks with 10% missing points and 20% missing points respec-

tively, and compare the new methods, UNB and MSE, with the traditional method

CM to demonstrate the improved performances predicted in theory. Periodic

errors are found in the mean squared error due to periodic missing points.

For SYS 2, Fig. 2.4.3 and Fig. 2.4.4 again show significant improvements.
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Table 2.4.1 summarizes the results, from experiments with one, five, ten,

and one hundred blocks, to indicate the significant improvements in the reduction

of the errors. Table 2.4.2 shows the ensemble average of linear regression of the

true on the estimated frequency response function, the new estimators substan-

tially reduce the deviation of this factor from unity. The experiment again

confirms the restriction of interpolation method.
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Fit in frequency response estimation
data length CM IM UNB MSE

(10% missing) fit fit fit fit
sys1 128 0.78 1.092 1.023 1.024
sys2 128 0.707 1.068 0.784 0.789
sys3 128 0.837 0.824 0.891 0.890
sys1 128*5 0.874 1.009 0.981 0.980
sys2 128*5 0.811 1.064 0.973 0.969
sys3 128*5 0.910 1.099 1.045 1.052
sys1 1280 0.877 1.005 1.007 1.008
sys2 1280 0.813 1.016 0.987 0.983
sys3 1280 1.033 1.093 0.989 0.988
sysl 12800 0.899 1.001 1.002 1.003
sys2 12800 0.828 1.011 0.989 0.985
sys3 12800 1.044 1.082 0.994 0.992
data length CM IM UNB MSE

(20% missing) fit fit fit fit
sysl 128 0.323 1.099 0.460 0.456
sys2 128 0.242 1.092 0.604 0.584
sys3 128 0.792 0.789 0.858 0.855
sysl 128*5 0.707 1.013 0.946 0.945
sys2 128*5 0.647 1.082 0.969 0.963
sys3 128*5 0.810 1.137 0.924 0.922
sysl 1280 0.796 1.009 0.979 0.976
sys2 1280 0.723 1.036 0.974 0.971
sys3 1280 1.059 1.134 0.972 0.970
sysl 12800 0.797 1.002 1.002 1.003
sys2 12800 0.741 1.002 1.003 1.004
sys3 12800 1.053 1.114 0.990 0.989

Table 2.4.2
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2.5 Appendix 2

A2.1 Recursive algorithm

This part will define f 3, f 4, and derive some relevant terms in eqn(2.2.6)

and eqn(2.2.7). Consider

E [URXR] = E[LLUjXjcosiOcosjO]

= Lcos2 j OLE [UjXj lcos (i -j)O - (Din 2j OLE [UjXj lsin (i -j )0)/2

(A2.1.1)

similarly

E [U/X/] = Lsin2j OLE [UjXj ]eos (i -j)O + (Din 2j OLE [UjXj ]sin (i -j)0)/2

(A2.1.2)

define

(A2.1.3)

f 3 represents the real part of the cross-spectrum. Consider

E[U/XR 1=E[LLujXjsiniOeosjO]

= Lcos2jOLE [UjXj ]sin (i-j)O + (Din2j OLE [UjXj ]eos(i -j)0)/2

(A2.1.4)

similarly

E [URX/] = -Lsin2jOLE[ujxj]sin (i-j)O + (Din 2jOLE [UjXj]cos (i -j)0)/2

(A2.1.5)

define

(A2.1.6)

f 4 represents the imaginary part of the cross-spectrum.

The rest of the terms can be derived according to the definitions, which are
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(A2.1.7)

where

U/ Y/ = E [U/X/ - U/Xm/]

=/ 3(1f-Lsin2m Q) - /4Lcosm Q sinm Q (A2.1.8)

where

U/ YR = E [U/XR - U/XmR]

=/ 4(1f-Lcos2m Q) - / 3Lcosm Q sinm Q (A2.1.9)

where

UR Y/ = E [URX/ - URXm/]

= -/ 4~-Lsin2mQ - / 3LcosmQ sinmQ (A2.1.1O)

where

A2.2 Direct algorithm

This part will present a direct algorithm by the following substitutions

XR =YR +XmR

(A2.2.l)
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The remaining terms may be derived similarly, to give

E [URXR] = E [UR YR + URXmR]

= E [UR YR] + f 3Lcos2mn + f 4Lcosm!l sinm!l

where

E[URXmR] =f3Lcos2m!l - f 4Lcosm!l sinm!l

E [UIX/] = E [UI Y1 + UIXm/]

=E[U/Y1] + f3Lsin2mn+ f 4Lcosm!l sinmn

where

E [UIXR] = E [UI YR + UIXmR]

= E [UI YR] + f 4l:cos2m!l + f 3l:cosm o sinmn
where

E [URX/] = E [UR YI + URXm/]

=E[URYI] - f 4Lsin2m!l+ f3Lcosm!l sinm!l

where

(A2.2.2)

(A2.2.3)

(A2.2.4)

(A2.2.5)
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Section 2 System identification and parameter estimation

S2.1 Survey

The need for a system model in controller design for both linear and non-

linear system is well known. Critical points in system identification are the detec-

tion of system structure, the determination of the order of the system, finally the

estimation of the parameters of the system when a parametric model is suitable

for the description of the system. For linear system identification, many methods

have been developed successfully. The tutorial text book in theory and applica-

tion by Ljung (1987) gives a good survey and unifies many fundamental methods

as a set of tool boxes.

For nonlinear system identification there are two distinct methods, producing

either a linear approximating model or alternatively a nonlinear model. In the first

case structure detection is reduced to the order and time delay determination (Bil-

lings and Voon 1983). Many algorithms may be then used to estimate the

parameters of the systemmodels, and a linear covariance analysis of the residuals

can be applied to test the adequacy of the fitted model. The most popular linear

model is the Auto-Regressive Moving Average (ARMA) model which may be

used to approximate some system with mild nonlinearities around operating

points. However linear approximating model is inappropriate under some cir-

cumstances.

The second method has better accuracy but tends to be more complicated

and problem specific. Some representative parametric models have been studied

such as Hammerstein model (Narendra and Gallman 1966), Nonlinear Auto-

Regressive Moving Average model with eXogenous inputs (Leontaritis and Bil-

lings 1985), Bilinear model (Svoronos, Stephanopoulos, and Aris 1981, Fnaiech

and Ljung 1987), and nonlinear output affine model (Chen and Billings 1988), in

which attention was concentrated on parameter estimation with the assumption

that the system structure is known. Furthermore, traditional models like Volterra

(1930) or Wiener series (Wiener 1958, Billings 1980) have been studied for long

time, but the implications for controller design makes them inferior to those



- 54-

models mentioned above.

The parameter estimation of nonlinear models, particularly nonlinear models

which are linear in the parameters, have been studied in detail. However so far

nonlinear system structure detection has been only investigated by a few authors

(e.g. West 1965, Douce 1976, Billings and Voon 1983) due to the associated

difficulties.

In the section, attention is concentrated on parametric models. A concept

considered seldom in system identification and parameter estimation, amplitude

effect to nonlinear system, is introduced, in other applications even though it has

been known for a long time. Almost all authors paid attention to time functions,

that is the evolution of input and output series along time process. In the case of

system identification and parameter estimation, this is appropriate for linear sys-

tems. However it is well understood that the characteristics of nonlinear systems

depend on signal amplitude. Whereas nonlinear system identification and parame-

ter estimation should consider both time axis and amplitude axis, unfortunately

the latter is often ignored without any explanation in many publications.

In summary, chapter three presents a new method, regarding to amplitude

sampling, to detect the structure of a class of nonlinear systems and to estimate

the systems parameters. With the aid of multi-dimensional graphics a clear

geometrical interpretation is obtained. The nonlinear characteristic of the sys-

tems, dynamic or static, can be directly identified. Following the idea, a recursive

parameter estimation procedure is developed in which the parameters to be

estimated are the slopes on the corresponding projecting planes. The principle

and implementation of the method are explained in detail and a simulation experi-

ment confirms the validity and efficiency of the method.

Chapter four presents a variable weighted least squares algorithm according

to the amplitude distance between current state and previous states, which is

demonstrated to be appropriate for a wide range of nonlinear systems and the

same as ordinary least squares algorithm in linear cases. The idea leads to a vari-

able weight algorithm with for on-line parameter estimation. Jumping effect pred-

iction is investigated in order to check the off-line algorithm application. Several
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systems, typical and special, are chosen in the simulation experiment to confirm

the algorithms performance.

S2.2 List of notations

E[.]

Var[.]

Cov[.]

Integ[.]

Ave[.]

ARMA

NARMAX

expectation

variance

covariance

OLS

VWLS

PlO

Matlab

interger operation

arithmetic average operation

Auto-Regressive Moving Average

Nonlinear Auto-Regressive Moving Average with eXo-

genous inputs

Original Least Squares

Variable Weighted Least Squares

Proportional, Integral, and Derivative

Matrix laboratory package

S2.3 List of figures and tables

Fig.3.1.1

Fig.3.2.1

Fig.3.2.2

Fig. 3.2.3(al)

Nonlinear systems

3D quantisation space

First order systems

System (sysl) output Yi versus input Xi and previous out-

putji-l

Projecting plane of Yi and £i

Projecting plane of Yi and ji-l

System (sys2) output Yi versus input Xi and previous out-

putji-l

Fig. 3.2.3(a2)

Fig. 3.2.3(a3)

Fig. 3.2.3(bl)
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Fig. 3.2.3(b2)

Fig. 3.2.3(b3)

Fig.3.3.1(a)

Projecting plane of Yi and ii
Projecting plane of Yi and Yi-l

System (sysl) output Yi versus input ii and previous out- .

putYi-1

System (sys2) output Yi versus input ii and previous out-

putYi-1

Auxiliary variable (sysl) fa 1 versus input ii and previ-

ous output Yj-1

Projecting plane of fa 1 and ii

Projecting plane of fa 1 and Yi-1

Auxiliary variable (sysl) fa2 versus input Xi and previ-

ous output Yi-2

Projecting plane of f a2 and Yi-2

Auxiliary variable (sysl) la 1 versus input ij and previ-

ous input ij-1

Projecting plane of fb 1and ij-1

Projecting plane of Yi and ii
Projecting plane of Yi and Yi-l

Projecting plane of Yi and Yi-2

Projecting plane of Yi and Xi-l

Fig.3.3.1(b)

Fig. 3.3.2(a)

Fig. 3.3.2(b)

Fig. 3.3.2(c)

Fig. 3.3.2(d)

Fig. 3.3.2(e)

Fig. 3.3.2(f)

Fig.3.3.2(g)

Fig. 3.3.3(a)

Fig. 3.3.3(b)

Fig. 3.3.3(c)

Fig. 3.3.3(d)

Fig.4.2.1

Fig.4.3.1

Fig.4.4.1

Fig.4.4.2

Fig. 4.4.3(a)

Fig. 4.4.3(b)

Weighting geometric interpretation

Experimental systems

Frequency response curve showing jump resonance

Analysis of saturating second order system

Sinusoidal response with frequency increase

Sinusoidal response with frequency decrease
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Fig.4.4.4(a)

Fig.4.4.4(b)

Fig.4.4.5

Fig. 4.4.6(a)

Fig.4.4.6(b)

Model frequency response characteristics

System frequency response characteristics

Phase-plane response of the saturating system

Step response in one step prediction

Step response in multi step prediction

Table 3.3.1

Table 4.3.1

Recursive parameter estimation

Errors in one step prediction and model response
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Chapter 3 Structure detection and parameter estimation

3.1 Introduction

Structure detection and model validation tests are fundamental parts of most

identification procedures. It is often necessary to determine the structural form or

type of model representation which approximates, in the sense of some specified

criterion, to the process as the first step in system identification and finally tests

the chosen model fitness against the available input and output data. Whereas

structure detection involves the determination of the model form which will most

appropriately fit the data, model validity checks are designed to indicate the ade-

quacy of the fitted model. Most studies relating to these procedures assume that

the system under investigation is linear. Structure detection then reduces to the

problem of determining the model order and time delay of the system (Goring

and Unbehauen 1973).

This becomes rather complicated in the case of nonlinear systems, and few

authors have studied the problem. West (1965) considered nonlinear distortion

correlation by studying static nonlinear characteristics. By splitting the output

from the nonlinear element into two portions, one proportional to the input signal

and the other a distortion noise, West showed that there is no correlation between

the input and distortion signal whenever the input belongs to the separable class

of random process. Douce (1976) proved that the same property occurs for a

specific class of nonlinear dynamic systems. The nonlinear distortion can how-

ever, be detected by cross-correlating the residual with a test signal obtained by

passing the system input through a specifiednonlinearity and Douce developed an

identification procedure based on this result. Billings and Voon (1983) introduced

higher-order correlation functions as a simple method of computing measures of

nonlinearities, which were shown to avoid complicated computation. Billings

(1980) gives a good survey on nonlinear system identification.
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Billings and Voon (1983) defined structure detection as a method of detect-

ing nonlinearity and of distinguishing this from linear effects and additive noise.

Further, they defined model validity as testing terms in residuals which if ignored

will cause bias in the parameter estimates. There is no need in this latter case to

distinguish between linear, nonlinear or correlated noise effects since anyone of

these can introduce bias into the estimates. The structure detection and model

validation are usually distinct and iteration is needed to modify the model and its

parameters to produce a proper approximation of the system concerned.

One common feature of the representative techniques is that they mainly

consider time correlation characteristics of input and output signals. A potential

development is to study signal amplitude effects as an aid to nonlinear system

identification. This chapter aims, by a signal amplitude selection technique, to

detect the structure of the whole system concerned, including determination of the-position and characteristics of any nonlinearity, then to estimate the parameters of

the system.

Consider a general form of nonlinear system given by

Yi =1(Yi-1>··· ,Yi-na,Xi,··· ,Xi-fib) +£i (3.1.1)

where 1 is a single valued nonlinearity such as a polynomial ( Hammerstein

model, Wiener model ), saturation or relay, and Xi and Yi are the current input and

output respectively. £i is an uncorrelated disturbance with zero mean value and

variance Ot.
Two classes of the nonlinear systems have been studied as shown in Fig.

3.1.1.

For the first system, defined as sys1shown in Fig. 3.1.1(a), eqn(3.1.1) gives

Yi =bot (Xi) + ... + bflbl (Xi-fib) - a !Yi-l - ... - anaYi-na + £j (3.1.2)

For the second system, defined as sys2 shown in Fig. 3.1.1(b), eqn(3.1.1)

gives

(3.1.3)
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The work described in this chapter represents the results of preliminary stu-

dies, in that it is restricted mainly to first order systems. However it is suggested

that further study may demonstrate that the ideas have wider applicability.

x

<a)

x + Y
B .r= NL

-

A-a
0

(b)

-1 -na
A=a + a 1 z + ... + a z

0 na

-1 bnb Z
-nb

B- bO + b1 Z + ... +

Figure 3.1.1 Nonlinear systems
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3.2 System identification

3.2.1 Structure detection

Consider a simple form of eqn(3.1.1)

(3.2.1)

where the analytical form is unknown and the input and output signals are avail-

able.

A quantisation operation, including input and past output signal amplitude

quantisations and current output signal amplitude averaging, will be developed to

find the analytical expression to describe the system.

Let Xi and 1i-l denote quantisation variable of Xi and Yi-l respectively, that

IS

Xi ,Yi-l is quantized following time axis with data length n.

Xi ,1;-1 is quantized following amplitude axis with data length nx , ny.

Usually nx , ny «n, and

.. I t [nx (Xi - min (Xi»] 1X· = neg +
I max (Xi ) - min (Xi )

.. ny (Yi - min (y;) )
Yi-l = Integ [ 6' ) '6' ) ] + 1max i-mm i

Yi = Ave [Yi], for xi ,1i-l (3.2.2)

where Integ[.] denotes taking integer operation, Ave[.] denotes arithmetic average

operation, and max(.) and min(.) take the maximum and minimum of the series

respectively.

In fact the quantisation operation smoothes the corresponding signals within

a small area specified by Xi and ii-I. This method considers both time and ampli-

tude correlation characteristics of signals.

From jii, Xi and 1i-1o a 3D space is correspondingly built up, as shown in

Fig. 3.2.1. The structure detection and the parameter estimation will be carried

out based on this 3D space and the corresponding projecting planes.
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Yi

Figure 3.2.1 3D quantisation space

For the linear system

Yi = a lYi-l + b(}ti (3.2.3)

points on the 3D plot defined above all lie on the plane

Yi - alYi-l - boXi = 0 (3.2.4)

For nonlinear systems, points lie on a surface. Inspection of this surface can

reveal information about the location and characteristic of a nonlinear element

and the linear dynamic parameters within the system.

Two examples, both first order systems, as shown in Fig. 3.2.2, are selected.

The nonlinearity is saturation and the linear dynamics are

A = 1+ O.9z-1

B = 1 (3.2.5)

The input signal is a Gaussian white random signal with zero mean value

and variance 4. The data length of the input and output is set to 4000. The
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quanti sed data lengths nx and ny are set to 20 equally, hence the quantised area

consists of 20*20--400 small areas.

1
x r I y

_/ - of ,.,,-'
1

I

(a)

r-x 0 y...
1 - _/ 1-

1.12.-1

(b)

Figure 3.2.2 First oder systems

Two projecting planes Yi, Xi and Yi, Yi-I are defined as one of the planes per-

pendicular to ii-1 and Xi respectively in the 3D space. They will be used for the

linear dynamic parameter estimation of the systems.

The examples will be used to show directly several features on the 3D

graphic surface, including

1 System structure

2 Nonlinearity and its position
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Consider the plot shown in Fig. 3.2.3(al). This shows the output (vertical) as

a function of input and previous output of a system excited by white normal dis-

tributed noise. Quantisation has been introduced as described above, primarily to

render the plotting process simple within Matlab (a proprietary software pack-

age), with the additional advantage, not persued here, that disturbance effects are

reduced due to averaging when sufficient data points are available.

The horizontal plane, corresponding to Yi = 0, is used to indicate absence of

data pairs in the corresponding zi , Yi-l space.

Visual inspection of this plot indicates that Yi is a linear function of Y;-1 for

the range of signal amplitude available. Further, Yi is obviously a nonlinear func-

tion of :X;, with some evidence of the presence of a saturation characteristic for

large values of :Xi •

This dependence of the output on a signal variable (which may be a combi-

nation of system variables) is demonstrated by viewing plots such as Fig.

3.2.2(al) from a selected direction. This direction is defined by a vector perpen-

dicular to the dependant variable and to the selected independent variable.

In this example, the viewing direction is perpendicular to the:x; axis. Pro-

jecting the surface onto this plane gives the nonlinear relationship between Yi and
:X;, as shown in Fig. 3.2.3(a2).

Further, the angle or the slope of the projection relative to the Y;-l axis gives

the linear coefficient relating Yi to Yi-1> as shown in Fig. 3.2.3(a3). In summary,

Fig. 3.2.3(al) enables the system to be identified as

Yi = a lYi-l + bat (Xi) (3.2.6)

That is, the structure is as in Fig. 3.2.2(a).

Similarly consider the plot shown in Fig. 3.2.3(bl). Visual inspection of this

plot indicates that Yi is a saturating nonlinear function of both Yj-1 and:Xi for the

range of signal amplitude available.
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Figure 3.2.3(a1) System (sys l) output j, versus input X, and
previous output j.-I

l
I

I
0.5

I>:' 0

·0.5 r
I

I
-1

, ,----~.----------~--~----~--------~---., --5 -4 -3 -2 -1 o 2 4

Xi

Figure 3.2.3(a2) Projecting plane of Y; and Xi
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I;';

Figure 3.2.3(a3) Projecting plane of Y; and Yi-l

Figure 3.2.3(bl) System (sys2) output Yi versus input Xj and
previous outputYj_1
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Figure 3.2.3(b2) Projecting plane of Y; and xi
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-0.7 ·i ·..·..;..· + ..
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-0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

Figure 3.2.3(b3) Projectingplane of Yi and 1;-1
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The relationship between Yi and Xi shown in Fig. 3.2.3(b2) is the same as

the analysis for the first system, however the visual inspection has indicated, in

Fig. 3.2.3(bl), the nonlinearity depending on the combination of Yi-l and Xi,

saturation appears when I a lYi-l + boXi I > 1. Fig. 3.2.3(b3) is the projecting

plane Yi, Y;-I in case of I a lYi-l + boX; I < 1, this is convenient for parameter

estimation in linear area.

In summary, from Fig. 3.2.3(bl) the system structure is identified as

Yi =f (a IYi-l + boXi)

That is, the structure is as in Fig. 3.2.2(b).

It is learnt from the system structure given in Fig. 3.2.2 that the relationship

(3.2.7)

between output and input only depends on Yi and Xi, similarly the relationship

between output and past output only depends on Yi and Yi-l. Therefore the quanti-

sation algorithm may be used to distinguish the two types of nonlinear systems in

the 3D space. For system one, it is clear that the nonlinearity can only be visual-

ized from Yi, Xi projecting direction. For system two, it is found that the non-

linearity appears from both projecting directions Yi ,Xi and Yi , Yi -1. For linear sys-

tem, there are linear relationships viewed from the two projecting directions, this

is confirmed within the linear area in the 3D space.

The structure detection method developed from the simple cases is also

available for some more general cases. This is because the relationship between

input Xi and output Yi indicates the static nonlinear characteristic, leading to

detection of the static nonlinearity. The second reason is that the displayed rela-

tionship between past output Yi-l and output Yi indicates the presence or absence

of a nonlinear relationship, even though neglecting other terms leads to a poor

indication of the linear coefficient ai-I. Therefore the first step is used to detect

the linearity or nonlinearity of the systems, and if nonlinearity is detected then

further inspection is used to distinguish the two types of systems.
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3.2.2 Parameter estimation

For simple cases, system structure detection and parameter estimation are

simultaneously achieved. The parameters may be obtained, as mentioned above,

from the slope on the corresponding projecting planes, as shown in Fig. 3.2.3(a2,

a3, b2, b3). However the quantisation technique for the general case may not be

directly applied to obtain system parameters from the slopes on the projecting

planes as for first order systems. This is because for the general case (high order

systems) the variables not involved in building the 3D space affect the variables

in the 3D space, the slopes on the projecting planes in the 3D space are not true

representatives for the parameters to be estimated. It is argued that the technique

is still applicable, with some modifications.

Alternatively we divide the work, as mentioned in the last section, into two

parts, one for structure detection having been solved, another for parameter esti-

mation. The modified algorithm, by introducing auxiliary variables, generates a

set of equivalent first order systems, or a set of 3D spaces with the same proper-

ties as the first order systems. We have demonstrated that parameter estimates can

be directly obtained in the 3D space representing a fiist order system, hence the

problem for parameter estimation in general case may be solved. The implemen-

tation of the parameter estimation algorithm is based on the following argument,

which presents, by introducing auxiliary variables, a recursive procedure to esti-

mate parameters.

Argument

The quantisation algorithm developed from the first order system is also

available for high order system when a set of auxiliary variables are defined as

for sysl

!ale =Yi - . ~ ajYi-j - qf. bj! (Xi-j), k=l, ... ,na
J=fjt:Ic J~

for sys2
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f ale =. ~ ajYi-j + ~ bjxi-j, k=l, ... .na
,=f:j;tle J~

k=l, ... ,nb (3.2.8)

Proof: according to eqn(3.1.2), for sys1

According to eqn(3.1.3), for sys2

Yi =/ (aleYi-k +/ ale)

Yi =/ (bkXi-k +/ bk) (3.2.9)

These have the same form as the first order systems given in Fig. 3.2.2, therefore

a set of 3D spaces may be built up from the set of first order systems and the

parameters of the systems may be obtained directly by the quantisation algorithm

developed from the 3D spaces.

It should be noticed that f ale and / ble include the parameters to be estimated.

We use the most recent parameter estimates instead of the true parameters to cal-

culate f ale and f ble, then update the parameter estimates. Obviously this is a recur-

sive process, with the algorithm given by, for sys1

/ ble(r+ 1)= ble(r+ 1)/ (Xi-Ie) + bat (Xi)

for sys2
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Yi =!(ak(r+1)Yi-k +!ak(r+1»

Yi =!(bk(r+1)Xi-k +!bk(r+1» (3.2.10)

where r is a recursive time. The extensive simulation experiment has confirmed

the algorithm to produce correct estimates.

3.3 Simulation experiment

Two noise free second order nonlinear systems are selected with the dif-

ferent structures as shown in Fig. 3.1.1. The nonlinearity is saturation, and the

system linear dynamics are set to

A = 1- z-I + 0.3z-2

B = 1- 0.5z-1 (3.3.1)

The data length of the input and output is 4()()().The quantised data lengths

nx and ny are set to 20, hence the quantised area consists of 20*20=400 small

areas. A Gaussian random signal input with zero mean value and variance 4 is

chosen as input.

The horizontal plane, corresponding to Yi = 0, is used to indicate absence of

data pairs in the corresponding Xi, Yi-I space.

The first step is to detect the nonlinear system structure. Three variables, the

output Yi, past output Yi-l and input Xi are selected to build up a 3D space by the

quantisation operation given in eqn(3.2.2). The results are illustrated for the

open-loop system (sys1) in Fig. 3.3.1(a) and the closed-loop system (sys2) in Fig.

3.3.1(b).

First consider Fig. 3.3.1(a), Yi is a nonlinear function, with evidence of

saturation, of Xi and a linear function of Yi-l by visual inspection of this plot. It is

also found that Yi is a nonlinear function, with evidence of saturation, of ii-l and

a linear function of Yi-2 by visual inspection of the 3D space CYi, Yi-2, Xi-I) not

shown in the chapter. According to the discussion in section 3.2 the system is

identified as

Yi = a IYi-1 + a'lYi-2 +bof (Xi) + b tf (Xi-I) (3.3.2)
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where function f (.)denotes saturation for the specific system and the system

order is assumed known by someway.

Similarly the visual inspection of Fig. 3.3.1(b) indicates that Yi is a saturat-

ing nonlinear function both of Xi and ii-I' The same structure is also found in the

3D space (Yi, ii-2, Xi-l) not shown in the chapter. Hence the system is identified

as

(3.3.3)

The rule to determine the system structure characteristics in the 3D space is

sys 1 Nonlinearity (viewing perpendicular to plane Yi, Xi), linearity (view-

ing perpendicular to plane Yi, ii-I).

sys2 Nonlinearity (viewing perpendicular to plane Yi, ii), nonlinearity

(viewing perpendicular to plane Yi, ii-I)'
Linear system

Linearity (viewing perpendicular to plane Yi, Xi) linearity (viewing

perpendicular to plane Yi. i;-I), which is confirmed by visual inspec-

tion in linear area of the 3D space.

It has been noted that the slopes or angles relative to the elemental plane i; .

i;-1 are not true representatives for the linear dynamic parameters of the systems

in the structure detection 3D space, however they may be used. as the initial

values for recursive parameter estimation confirmed by the following experiment.
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Figure 3.3.1(a) System (sysl) output j, versus input z, and
previous outpUtYI-l

Figure 3.3.1(b) System (sys2) output Y; versus input Xi and
previous output ji-1
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The second step is to estimate the linear dynamic parameters of the systems

identified in the last experiment. According to the algorithm presented in section

3.2.2, a set of 3D spaces, by introducing auxiliary variables, are chosen as

for sysl

space (fa 1Yi-I Xi)

space (fa2Yi-2Xi)

space (fbI Xi-I Xi)

where

for sys2

space (Yi Yi-I fa 1)

space (Yi Yi-2f aV

space (Yi Xi f bO)

space (Yi Xi-I fbI)

where

for estimation of a 1 and b 0

for estimation of a2

for estimation of b 1

fa 1=Yi - a1Yi-2 - b If (Xi-I)

f a2 =Yi - a IYi-I - b If (Xi-I)

fbI =Yi -aIYi-I-a1Yi-2 (3.3.4)

for estimation of a 1

for estimation of a 2

for estimation of b 0

for estimation of b I

f al = a1Yi-2 + boXi + b lXi-l

f a2 = a lYi-I + boXi + b lXi-I

fbO=alYi-l-a2Yi-2+blXi-l

fbl=alYi-I-a2Yi-2+boXi (3.3.5)

The initial values for the iteration are set to (a1 a2 bob 1)=(-0.4 0 1 0) for

the sys 1 and (a 1a 2 bob 1)=(-0.5 0 10) for the sys2. Parameters a I and b 0 are

chosen initially from the 3D space (Yi Yi-l Xi) used for the system structure detec-

tion in the first experiment. They are not true parameters but suitable initial set-

tings. Since no initial information is available for a2 and b I in the 3D space, their
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initial values are set to zero.

After five iterations using the last parameters estimated and the available

input and output data for new parameter estimation, the surfaces in the set of 3D

spaces arrive at steady state. Consider sysl, the resultant 3D spaces and project-

ing planes are shown in Fig. 3.3.2. Spaces if a 1Yi -1Xi) shown in Fig. 3.3.2(a) and

if a2 Yi-2 Xi) shown in Fig. 3.3.2(d) have the same shape, that is, fa 1 is a saturat-

ing nonlinear function of Xi shown in Fig. 3.3.2(b) and a linear function of Yi-l

shown in Fig. 3.3.2(c), ia2 is a saturating nonlinear function of Xi and a linear

function of Yi-2 shown in Fig. 3.3.2(e). The different angle of the projection rela-

tive to the Yi-l axis in planes fa 1Yi-l and 1a2 Yi-2 indicates the different parame-

ters estimated. In space if b 1Xi-l Xi), as shown in Fig. 3.3.2(0, the visual inspec-

tion indicates that fb 1 is a saturating nonlinear function both of Xi-l and Xi, this is

coincident with the system structure identified given in eqn(3.3.2) and Fig.

3.3.2(g) shows the resultant slope for the parameter b 1 estimate.

Similarly for sys2, four projecting planes, as shown in Fig. 3.3.3(a, b, c, d)

are obtained from their 3D spaces. The projecting planes Y;, la 1 and Yi, /a2 are

chosen in case of la lYi-l - a'2Yi-2 + bOXi + b lXi-II < 1, hence a linear characteris-

tic is displayed.

Table 3.3.1 summarises the recursive parameter estimating results for both

sys 1 and sys2.

Recursive parameter estimation
Sysl: open-loop

Est para." recursion 1 2 3 4 5 Real para.
41 -0.4 -0.6 -0.8 -0.9 -0.99 al =-1
42 0 0.1 0.2 0.25 0.3 a2=OJ
60 1 1 1 1 1 bo= 161 0 -0.22 -0.3 -0.4 -0.5 bl = -0.5

Recursive parameter estimation
Sys2: closed-loop

Est. para., recursion 1 2 3 4 5 Real para.
41 -0.5 -0.72 -0.93 -0.96 -0.98 al =-1
42 0 0.23 0.3 0.3 0.3 a2=OJ
bo 1 1 1 1 1 bo= 1
61 0 -0.3 -0.43 -0.48 -0.49 b, =-0.5

Table 3.3.1



-76 -

t~1

Figure 3.3.2(a) Auxiliary variable (sys 1) f ..l versus input
Xj and previous output Yi-l
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Figure 3.3.2(b) Projecting plane of f ..l and Xj



- 77-

I~

........... ; , ;

, !. , ······1······

·········r···················;·············· ~ : .

··"[···················!····················t··················1····················;···················1···

'"Ll .

-2.5~--:-=----:-----:~---:---:-'-:---....__----'--___j
-2 -1.5 -1 -O.S 0 O.S

-1.5

-2

1.5

Figure 3.3.2(c) Projecting plane of ia1 and 1;_1

2

Figure 3.3.2(d) Auxiliary variable (sysl) fa2 versus input
~ and previous output yi-2

I



-78 -

-0.2

o

................. "i" , ~ , ~" , , !.

0.2

-0.4

-0.6 .................. " ; ······I····················:····················~····· .

-0.8 .................+ ..; , ; 1. .;. '1' .

_1~ __ ~~--~--~~--~--~~--_L----~--_j
-2 -1.5 -1 -0.5 0 0.5 1.5 2

Figure 3.3.2(e) Projecting plane of ia2 and 1i-2

Figure 3.3.2(f) Auxiliary variable (sysl) Ilt1 versus input
Xi and previous input.fi-t



,~

- 79-

-4 -3 2

Figure 3.3.2(g) Projecting plane of!b 1 and Xi-!
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3.4 Conclusion

This chapter has introduced a potentially valuable method for nonlinear sys-

tem identification. When a system contains a nonlinear characteristic which is

piece-wise linear, then the display of output against input and past outputs is a

series of planes or hyper planes. For each linear region, a linear model can be

constructed. In simple cases, it is possible to determine the variables which affect

the nonlinear output signal, and the characteristics of the nonlinearity. Thus the

structure and parameters of the system can be found.

The idea introduced with reference to first order nonlinear systems have

been demonstrated with two second order examples.

This chapter is submitted as a novel idea prompting substantial further work.

Areas for further research include the automatic determination of the amplitude

range of validity of a linear model. For each range, the parameters of the linear-

ised model should be used, in terms of the angles of the elemental planes, to

determine the function affecting the nonlinear behaviour of the system. A projec-

tion of the surface onto the appropriate plane may enable the nonlinear charac-

teristic to be found.

Discussion has been limited to noise free systems. It is not clear how an

independent noise source will interfere with the analysis procedures proposed. It

is expected, however, that the effect of low variance disturbances can be minim-

ised by averaging and by careful choice of the quantisation amplitudes.

For the consideration of experiment three recommendations for input signal

Xi choice are

1 Input signal amplitude should include all nonlinearities in the range of

operation in order to identify system fully.

2 The input signal amplitude should not be too big in order to guarantee the

algorithm precision.

3 Properly set quantised data length nx in order to keep a trade off between

algorithm precision and computing time.
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Chapter 4 A variable weighted least squares algorithm

4.1 Introduction

Many papers have paid attention to nonlinear system identification, espe-

cially to parameter estimation (Narendra and Gallmann 1966, Bard 1974, Douce

1976 Svoronos, Stephanopoulos and Aris 1981, Leontaritis and Billings 1985,

Chen and Billings 1988) under the assumption that the system structure is known

or that the system can be approximated by a chosen model, from input and output

data. One significant reason parametric models are so popular is that the Propor-

tional Integral and Derivative (PID) regulator and most of the modem controllers,

such as the self-tuning controller, adaptive controller, optimal controller, etc., use

a parametric model. Thus, for a wide range of practical applications parametric

models are used in controller design.

A wide range of nonlinear systems can be represented by Nonlinear AutoRe-

gressive Moving Average models with eXogenous inputs (NARMAX) (Leontar-

itis and Billings 1985 a, b), and these have been successfully applied for self tun-

ing controller design. The model mainly involves the determination of the order

of the system, the variables to be employed and the estimation of the parameters.

In fact this is a type of generalised nonlinear regressive analysis model in linear

parameters.

It is well known that most control systems encounted in practice are non-

linear to some extent. However it may be possible to represent systems which are

perturbed over a restricted operating range by a linear model. In these cases an

AutoRegressive Moving Average (ARMA) model is commonly used with a com-

bination of least squares algorithms to estimate the parameters. This is generally

called a piecewise linearisation technique.

Least squares type algorithms, such as ordinary least"squares and weighted

least squares, are popular for use in both off line and on line parameter estima-

tion. The ordinary least squares algorithm is known to have optimal properties
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when the parameters are time invariant, however it is unsuitable for either track-

ing time-varying parameters or approximating nonlinear systems, and can give

biased parameter values. Thus considerable research effort has been directed

towards the development of modified versions of the algorithm. Research has led

to study of special weighting functions, where the weighting function is time

varying. The best known of these modified ordinary least squares algorithm is

exponential data weighting (Goodwin and Payne 1977) and the modified version

(Salgado, Goodwin, and Middleton 1988) with exponential resetting and forget-

ting when the excitation is poor. Another interesting idea in this regard is the vari-

able forgetting factor algorithm of Fortescue, Kershenbaum, and Ydstie (1981), in

which at each step a weighting factor is chosen to maintain constant a scalar

measure of the information content of the estimator. It has been shown that, for

nearly deterministic systems, such an approach enables the parameter estimates to

follow both slow and sudden changes in the plant dynamics. Approximations

allowing modelling of nonlinear systems has also been studied.

The algorithms mentioned above are particularly useful for dynamic perfor-

mance assessment in the presence of poor excitation.

In this chapter, a second order ARMA model is adopted to approximate a

wide range of nonlinear systems, and a Variable Weighted Least Squares

(VWLS) algorithm is developed with a suitable weighting choice to deal with

nonlinear characteristics. The weighting choice concerns the state amplitude dis-

tance between the current state and past states. This novel weighting is introduced

to handle the amplitude effects in nonlinear systems. This algorithm removes

some of the difficulties in nonlinear system structure detection.

First the background relevant to the new algorithm is presented.

Consider the modelling of a single-input-output nonlinear system by the

general expression

y (n) =f [y (n-1), y (n-2), ...u (n), u (n-l), ...] (4.1.1)

where u and y are respectively the input and output of the system, and fis an unk-

nown general nonlinear function.

.4
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Given a record of input-output signal UR, YR the response to a specific input

sequence UT is to be determined.

The basic technique is to linearise the system about the current, instantane-

ous operating point, to predict the output iT (n). For the known inputs,

uT(n), uT(n-I) ... and past outputs (known or predicted) YT(n-l),YT(n-2) ... the

amplitude distance in state space between this point and every point on the given

record of UR and YR is computed.

A weighted least squares technique is then used to calculate a linearised

model, with each set of data in the records uR, YR being weighted according to

the inverse square of this distance.

Dsing this linearised model, the predicted output iT (n) is obtained. This

weighting is repeated for each output point to be estimated.

The behaviour of a system described by a linear ARMA model is defined by

Y (t) = q>T(t)S + E(t) (4.1.2)

where

q>T(t) = [y (t-I), ... ,y(t-na), U (t), ... , U (t-nb)]

(4.1.3)

u(t) and y(t) are the system input and output respectively, E is a disturbance with

zero mean value and limited variance (12.

The standard Weighted Least Squares (WLS) algorithm is given by

e(t) = [R (t) ]-1f (t) (4.1.4)

where

R (t) = +A;~(t ,k) q>(k) q>T(k)

f (t) = !kso ,k ) q>(k) y (k) (4.1.5)

~(t ,k) is a time varying weighting function. The corresponding recursive form is

eCt) = 9(t-I) + R-ICt) q>Ct)[y Ct) - q>T(t) 9Ct-I) ]

,
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R (t) = A(t) R (t -1) + q,(t) <»T (t ) (4.1.6)

where the weighting sequence A(t) has the following property,

~(t ,k) = A(t)~(t-l,k) 1 -5:. k :s; t-l

~(t ,t ) = 1 0 < A s 1 (4.1.7)

this means

~(t ,k) = fr AU)
jk:~l

(4.1.8)

The weights take account of the time correlation of current data with past data,

that is the farther from current time the less weight, hence A(t) is usually called

forgetting factor. By applying the matrix inversion lemma, eqn(4.1.6) may be

simplified to a standard form given in many textbooks.

4.2 Parameter estimation

This part will presents both off-line and on-line VWLS algorithms and

analyse the properties of the off-line algorithm.

4.2.1 Off-line algorithm

A second order ARMA model is given by

y (t) = a LY (t-l) + alY (t-2) + bou (t) + b lU (t-l) + Co+ E(t) (4.2.1)

It may be written in vector form:

y (r) = q,T(t )9 + E(t) (4.2.2)

where

q,T (t) = [y (t-l), y (t-2), u (r ), u (t-l), 1]

(4.2.3)
The parameter vector is estimated by a VWLS algorithm

<3 = [R (t)J-lj (t) (4.2.4)

where
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R (t) = !~w (t .k )CP(k)cl{ (k )

f(t)=+ ~W(t,k>«k)Y(k) (4.2.5)

Equations (4.2.1) to (4.2.5), are the particular cases of the expressions given

in eqn(4.1.2) to eqn(4.1.5) in the introduction.

The critical novel point is the choice of the weight w(t.k). In principle. it

can be any non-negative function which decreases with increasing distance. In

practice. it is convenient to use a square law, with the maximum value limited for

sufficiently small distance, this is set to be

1 = (u (r ) - u (t-k »2 + (u (I-I) - u (t-k-l»2w(t ]C)

+ (y (I-I) - Y(z-k -1))2 + (y (1-2) - y (t-k-2»2 (4.2.6)

which is determined from the nearness of current state to the previously measured

states. That is, the more the weight is given, the smaller the amplitude distance

between current state and previous known states.

4.2.2 Properties of algorithm

Two properties of the VWLS algorithm are of fundamental importance.

First is noticed the similarity between the VWLS and Ordinary Least Squares

(OLS) techniques for linear systems, and secondly the geometrical interpretation

of the weight choice. These are now demonstrated.

1. For a time-invariant linear system, the YWLS algorithm is equivalent in

expected value to the OLS algorithm when the uncorrelated disturbance has zero
mean value.

Proof

According to the conditions given. it follows, from eqn(4.2.5),

E[R(t)] =E[R(I+1)]

E[f(t)] =E[f(t+l)] (4.2.7)

Substituting eqn(4.2.7) into eqn(4.2.4). produces
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(4.2.8)

where v denotes the parameter vector estimated by VWLS algorithm.

For OLS algorithm, it follows, from eqn(4.1.2) and eqn(4.1.3) (P(t ,k)=1)

(4.2.9)

where 0 denotes the parameter vector estimated by OLS algorithm. It may be

proved, Norton (1987), that both E[ 9y(t)] and E[ 90(t)] are unbiased esti-

mates for uncorrelated disturbance with zero mean value, hence

E [ ey (t) ] = E [ eo (t) ] = El (4.2.10)

For nonlinear systems eqn(4.2.7) does not hold.

It should be noticed that the OLS algorithm has the minimum covariance

property for linear time invariant systems when error is uncorrelated (Norton

1987). Therefore for the linear systems

(4.2.11)

For nonlinear systems eqn(4.2.11) does not hold.

2. The weight chosen for the state amplitude distance is the inverse of the

squared radius of a hypersphere with center at the current state (u(t), u(t-l), y(t-1),

y(t-2».

This may be understood by letting

R 2(t ,k) = (u (t) - u (t-k »2 + (u (t-1) - u (t-k-l»2

+ (y(t-l) - Y (t-k-l»2 + (y (t-2) - y (t-k-2»2 (4.2.12)

this is a hypersphere with radius R(t,k) and centre at (u(t), u(t-1), y(t-1), y(t-2».

The radius varies with differing previous states, but the centre is fixed. Therefore

the integration of the weights is determined by a set of radii of a concentric

hypersphere, that is

w(t,k) = R2(~ ,k) (4.2.13)

An example is shown in Fig. 4.2.1 for the simplest case of

R2(t ,k) = (u (t) - u (t-k »2 + (y (t-1) - y (t-k-1»2.
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u(t-k)

y(t-k-l)

Figure 4.2.1 Weighting geometric interpretation

4.2.3 Modified (on-line) algorithm

It has been shown that for the off-line algorithm, for every current state all

weights must be calculated, and the memory length increases with the growth of

data series. Hence the algorithm can not be directly written in recursive form.

However it is possible to apply the technique in a modified algorithm with the

aim of on-line implementation.

With reference to eqn(4.2.4) and eqn(4.2.5), the algorithm is given by:

where

9=[R(t)]-1!(t) (4.2.14)

R (t) = t :, kt-r (t ,k )cj)(k )cj)T (k )

!(t)= t:, kt_iw(t,k)cj)(k)y(k) (4.2.15)

This uses only a limited amount of past data, extending over i points, reduc-

ing the computation required at the trade off of a reduced data set leading to
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reduced accuracy. An alternative possibility, for time invariant systems, is to

smooth the gathered data, so that a new input and output measurement is com-

bined with other measured data which has similar values of all the states u(t),

u(t-l), y(t-l), y(t-2). The algorithm is similar to that..in eqn(4.2.15), the differ-

ences are

cpT(k)= [Y(k-l),y(k-2), ii(k), ii(k-l), 1] (4.2.16)

where - denotes the smoothed data.

4.3 Experiment results

Four representative systems as shown in Fig. 4.3.1 are selected for the simu-

lation study. These are

1 Second order linear system defined by

y (t) = a LY(t-l) +a2Y(t-2) + boll(t) + b-u (t-l) + Co (4.3.1)

where the parameters are set to (ab a2, bo, b-, co)=(1, -0.3, 1, -0.5, 2). This

example will be used to check the equivalence for the given performance cri-

terion between VWLS and OLS in linear case. Since OLS is optimal algorithm,

VWLS is also expected to have the same property when the variance of the dis-

turbance is small.

2 Static square defined by

y (t) = u2(t) (4.3.2)

which will be used to check the algorithm for a static nonlinearity; a very com-

mon situation in industrial areas.



u

- 91 -

u I - PS 2-'
I - ~-' 1- 0.32-1

2

(a)

u y

(b)

3

u

(c)

y -

1
x ~ __ I_~_/_:_'';..__2_- '----Jt---y ..~

+

C·3 .s ill (lA {t -O)f--_--!l++-+- ----J

x

1

+
t

(d)

Figure 4.3.1 Experimental systems

y



- 92-

3 First order lag after hysteresis defined by

y (r) =O.9y (t-l) +x(t)/8

!
3Sign (u «» Iu (t) I ~ 1

x(t) =
x(t-l) otherwise

sign (x) =!~~~g
-1 x < 0

(4.3.3)

which will be used to check the technique for a class of nonlinear systems

encountered in many engineering fields. It represents the cascade of a multi-

valued nonlinearity with a linear dynamic system.

4 Complex nonlinear defined by

y (t) = (O.8y (t-l) + x (t »* (1 + O.3sin (u (t-l»

!
Sign(U(t» lu(t)I~1

x(t) =
u (t) otherwise

(4.3.4)

which will be used to check the approximation for a complex nonlinear system.

Four input signals, sinusoid, Gaussian, step, and random amplitude steps are

available to demonstrate the model behaviour for different input signals

A noise signal is superposed on system input, that is

z (t) = u (t) + e(t) (4.3.5)

where u(t) is the input signal without contamination. This is a much worse case

than when an uncorrelated noise is superimposed on the system output. The vari-

ance of the noise £(t) is selected for each experiment.

Two working modes are (a) the one step predictor and (b) the model

response or so called multi-step predictor. The first one is given by

yet) =QLY(t-l) + QV' (t-2) + bou (t) + biu (t-l) + Co (4.3.6)

where'" denotes predicted value. The second one is given by
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jet) = atf(t-l) +a'J!(t-2) + bou(t} + b lU (t-l) + Co (4.3.7)

The criterion to evaluate the algorithm performance is a normalised output

error squared defined by

_ ~(y(t)-j(t)~
~- D2(t) (4.3.8)

An interactive simulation procedure is implemented in the matrix laboratory

package Madab. This includes a learning phase at the-beginning of the program

execution, in which the measured output is recorded as a function of past output

and current and past input values. The length of input and output data is usually

set to 800, the first 500 data points arc dedicated to the learning phase.

In order to prevent weighting factors from being very large, a limiter is used,

i.e.

w j_~a
w

wet) =
a _1 S:a

w

(4.3.9)

where a is a preset positive constant.

A comparison has been made with results using the OLS algorithm. Table

4.3.1 shows the resultant errors defined in eqn(4.3.8), in which el and e2 denote

one step prediction error and model response error respectively. This table

demonstrates the VWLS has better properties in both one step prediction and

model response for the concerned nonlinear systems, and is the same as OLS for

linear systems. For the linear system it should be noted that the OLS parameter

estimates arc expected to have lower variances for big disturbances due to its

minimum variance property, and hence lower error measures even though the

same error measures are obtained by the two algorithms with small disturbance in

the experiment.

J
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Predictor errors
Input: Gaussian

system OLS VWLS
el e2 el e2

1 0.000 0.001 0.000 0.001
2 0.521 0.522 0.108 0.111
3 0.023 0.225 0.017 0.191
4 0.047 0.238 0.024 0.111

Predictor errors
Input: sinusoid

system OLS VWLS
el e2 el e2

1 0.000 0.003 0.000 0.003
2 0.312 0.414 0.184 0.187
3 0.039 0.031 0.000 0.003
4 0.005 0.009 0.000 0.004

Predictor errors
Input: random amplitude step

system OLS VWLS
el e2 el e2

1 0.000 0.003 0.000 0.003
2 0.341 0.691 0.123 0.181
3 0.004 0.533 0.002 0.383
4 0.017 0.690 0.011 0.538

Predictor errors
Input: step

system OLS VWLS
el e2 e1 e2

1 0.000 0.002 0.000 0.002
2 0.552 0.566 0.482 0.486
3 0.000 0.012 0.000 0.011
4 0.000 0.033 0.000 0.023

Table 4.3.1
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4.4 Application--Analysis ofa saturating second order system

This part will analyse the behaviour, including frequency response and step

response characteristics, of a saturating second order system presented by Douce

(1963), as one of the applications of the VWLS algorithm.

4.4.1 Jump resonances

Jump resonance is one of the phenomena exhibited in nonlinear systems.

Some basic concepts are introduced before a 'new technique for the prediction of

jump resonance is introduced. Ogata (1970) summarised the phenomenon.

In carrying out experiments on the forced oscillations of a system with dif-

ferential equation,

m~:f+f 4ft + kx + k'x 3 =P cosOt (4.4.1)

where

p cosOt = forcing function (4.4.2)

one may observe a number of phenomena, such as multivalued responses, and a

variety of periodic motions (such as subharmonic oscillations and superharmonic

oscillations). These phenomena do not occur in the response of linear systems.

In carrying out experiments in which the amplitude p of the forcing function

is held constant, while its frequency is varied slowly and the amplitude x of the

response is observed, one may obtain a frequency response curve similar to that

shown in Fig. 4.4.1. Suppose that k' < 0 and that the forcing frequency 0 is low

at the start at point 1 on the curve of Fig. 4.4.1. As the frequency Q is increased,

the amplitude x increases smoothly and continuously until point 2 is reached. A

further increase in the frequency 0 will cause a jump from point 2 to point 3, with

accompanying changes in amplitude and phase. This phenomenon is called a

jump resonance. As the frequency 0 is increased further, the amplitude x follows

the curve from point 3 toward point 4. In performing the experiment in the other

direction, i.e., starting from a high frequency, one observes that as 0 is decreased,

the amplitude x slowly increases through point 3, until point 5 is reached. A'

;
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further decrease in n will cause another jump from point 5 to point 6, accom-

panied again by changes in amplitude and phase. After this jump, the amplitude x

decreases with n and follows the curve from point 6 toward point 1. Thus, the

response curve is actually discontinuous, and a representative point on the

response curve follows different paths for increasing and decreasing frequencies.

The response corresponding to the curve between point 2 and point 5 correspond

to unstable oscillations, and they can not be observed experimentally. One thus

sees that for a given amplitude p of the forcing function there is a range of fre-

quencies over which either of the two stable responses can occur. It is noted that

for jump resonance to take place, it is necessary that the damping term should be

small and that the amplitude of the forcing function should be large enough to

drive the system into a region of appreciable nonlinear operation.

frequency

Figure 4.4.1 frequency response curve showing
jump resonance
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4.4.2 Jump effect prediction

The new modelling technique has been evaluated by applying it to the pred-

iction of jump resonance, and comparing these predictions with experiments on

the system selected. The learning phase involves recording the system response to

a wide band zero-mean Gaussian signal so that a record is built up of system out-

put as a function of past values of the output and present and past values of the

system input.

A multi-step predictor as given in eqn(4.3.7) is used to obtain system output

response excited by a set of sinusoidal inputs with different frequency, the vary-

ing parameters in the model being estimated by the YWLS algorithm. A critical

point is that a learning phase proceeds from the real ststem before the multi-step

predictor is involved. When the multi-step predictor starts working, that is as the

computer simulation is initiated, the knowledge of the system kept in the learning

data file is available to guide the model parameter estimation and output predic-

tion.

4.4.3 Simulation experiment

In order to study the problem, a model is set up to describe a typical

amplifier-motor combination as shown in Fig. 4.4.2, reproduced from Douce

1963. The motor torque is assumed proportional to the voltage fed to the

amplifier. This linear relationship is obeyed only if the input voltage does not

exceed a limited value, due to overloading or saturation of some elements of the

system. This causes the system to operate in a nonlinear manner.

For a large input voltage, the output current from the amplifier remains

approximately constant, and the magnetic flux in the motor, limited by saturation

of the iron, attains its maximum value. Thus the motor torque, and the accelera-

tion of the motor, is independent of amplifier input voltage if this voltage is

greater than a particular magnitude. In this simple angular position-control sys-

tem, the linear equations are applicable only for small control signals.
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The schematic of the second-order position-control system is shown in Fig.

4.4.2(a). The motor produces a torque proportional to the amplifier input signal,

unless a torque is demanded greater than the maximum available. Let the magni-

tude of the control signal which is just sufficient to apply maximum motor torque

beh.

For lee I< h linear analysis is applicable, giving, with the usual notation,

d2fJo 2 2(9 e d90(fi2 =Wo (ee) =Wo i - 0 - T (ft) (4.4.6)

When the signal is equal to or exceeds h, the acceleration of the output has its

maximum value wlh. This gives the relationship between output acceleration

and control signal magnitude shown in Fig. 4.4.2(b).

I,

(I) The basic system.

OUT~UT ACCELL"ATION

SIGNAL

(b) Ch&raClerislic of the saturatiDl elemenL

"(c) Blodt cliapam.

Figure 4.4.2 Analysis of saturating second order system
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The block diagram of the system can now be constructed in Fig. 4.4.2(c).

This shows the nonlinear characteristic as a separate element, an essential step in

analysing the behaviour of any nonlinear system for any input.

Noting that the relationship between the output signal of the nonlinearity,

eo, and the input signal e, can be written as follows,

Ie, I S. h
e, > h
ei <-h

or

1eo = L( Ie, + h I - Ie, - hi) (4.4.7)

When the effect of saturation is considered, direct solution of the differential

equation is not possible in general and the superposition theorem is inapplicable

as well known. Therefore the response to a particular input can not be determined

from the known response to a different input signal. The method of analysis to be

adapted depends on the form of the input signal applied. In this case, the signal to

be considered is sinusoid. The discrete form of the experimental system is given

by

e 1= 9i (r ) - 90 (t -1)

ej

eo = h
-h

Iej I S. h
e, > h
ei <-h

or

1eo = "!"( Iei + h I - Ie, - hi) (4.4.8)

. .
90(t)=~eo +90(t-l)

(4.4.9)

which is a numerical algorithm to be implemented in computer program, where ~

is the sampling interval.
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In this first experiment, the length of data in the learning phase is set to 3000

points. Then Gaussian input is changed into a set of sinusoidal inputs and the

model output is predicted to obtain the corresponding frequency response charac-

teristics. The relevant experimental parameters are set as follows

Input signal Si = 1.5sinnt

Frequency range of input n = 0.01 * (27t)---Q.2* (27t)

0.01 *(2 7t)

100

T=0.2

b=l

Frequency change step

Data length per harmonic

System damping

Break: point of saturation

Height of saturation h=l
I

Fig. 4.4.3(a, b) shows the model response against time. The first 3000 data

points are generated from the system with a Gaussian input, for the learning

phase. The last 4000 data points are obtained by the VWLS algorithm for the

model response to a set of sinusoidal inputs with 200 data points per harmonic.

The gain of the frequency response characteristics is calculated by smoothing the

peak: values in the range of last 100 data points for the each frequency. Fig.

4.4.3(a) shows the model response for increasing input frequency and Fig.

4.4.3(b) shows the results with decreasing frequency.

Fig. 4.4.4(a) shows the model frequency response characteristic. The obvi-

ous jump resonance may be observed by comparing the characteristics for fre-

quency increasing and decreasing. Fig. 4.4.4(b) shows the system frequency

response characteristic. Comparison of these two figures shows good qualitative

agreement, particularly at high and low frequencies. The magnitude of the jump

effect is, however, appreciably smaller for the model- than for the true system.

Two reasons for this are proposed. First, the learning phase is unlikely to include

all amplitudes of states encountered in the sinusoidal input experiment, so linear

extrapolation is invoked fairly extensively. Second, the method uses locallineari-

sation. The jump effect is believed to be highly sensitive to the form of the non-

linear characteristic, and this smoothing is expected to reduce the magnitude of
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this effect.
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Figure 4.4.3(b) Sinusoidal responsewithfrequency decrease
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4.4.4 Step response experiment

The second experiment is carried out to check the validity of the VWLS

algorithm to predict the response of the saturating second order system, shown in

Fig. 4.4.1, to a step input.

Douce (1963) gave a detailed theoretical study of the response of the saturat-

ing second order system to a step input,which is summarised in Fig. 4.4.5 repro-

duced from Douce (1963).

PARABOLIC TRAJECTORIES
OUTSIDE THE LINEAR
REGIME

Figure 4.4.5 Phase-plane responseof the saturating system

With reference to Fig. 4.4.2, when a step of magnitude greater than h is applied,

maximum acceleration is applied initially, producing a parabolic trajectory on the

phase plane, until the system enters the linear regime. Form this time the

acceleration decreases, becoming zero when the trajectory cuts the line

x + TwoY =O.Deceleration ensues, and if the trajectory leaves the linear regime

it follows a further parabolic path.

A critical damped (Two = 2) system for small signal operation is selected in

the experiment. For linear system there is no overshoot at the output for a step

input with any amplitude. For the nonlinear system, Douce (1963) predicted that
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there will be overshoot at the output for a step input with sufficiently large ampli-

tude.

First 1000 data points as a learning phase are generated from random Gaus-

sian input with zero mean value and variance 25, in which the measured output is

recorded as a function of past output and current and past input values. Then

inputing a step signal with amplitude 50 to the system, the output response is

obtained in one step prediction mode given in eqn( 4.3.6) and model response or

multi-step prediction mode given in eqn(4.3.7) by the VWLS algorithm. The one

step prediction shown in Fig. 4.4.6(a) indicates fairly the output response proper-

ties both in transient and steady states. The model response shown in Fig. 4.4.6(b)

indicates errors in transient state and zero error in steady state. This is the worst

test condition to the VWLS algorithm due to using all predicted past outputs

instead of real past outputs for the model response calculation.
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Figure 4.4.6(a) Step responseof one step prediction
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Figure 4.4.6(b) Step response of multi-step prediction

4.5 Conclusion

This chapter has introduced a novel method to model nonlinear system

behaviour by the ARMA model with a weighted least squares algorithm.

The method involves a learning phase, during which input-output data is

recorded. Using a priori knowledge, or tests with this data set, the order of the

locally linearised model is determined.

To implement the model, for each time step the learning data is scanned, and

this data is inserted into the model for linearisation according to the distance

between the current state and each recorded state.

An interesting feature of the method is that the input data for the learning

phase can differ substantially from that used in the modelling phase. The same

modelling technique predicts two nonlinear phenomena which, to date, have been

examined using totally different techniques.
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The computer simulation studies have demonstrated the validity and

efficiency of the method.

The areas for further research include experiments in laboratory or real

environments and extension of the idea from the weighting choice to other typical

parameter estimation algorithms such as maximum likelihood estimation and

prediction error estimation.
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Section 3 Self-tuning controller design

S3.1 Survey

A general problem in control theory and application is to design control laws

or controllers which achieve better performance for any member of a specified

class of plants or processes. This naturally involves system identification and

parameter estimation which are often separate steps in the classical approach.

With the increase of control quality demand and complicated plant control, adap-

tive control strategy, a suitable combination of above steps, has been suggested,

studied, and tested in laboratories and real environments, and applied to solve real

problems for a few decades. In particular, a representative starting milestone that

may be recognised publicly was in year of 1958 when Kalman postulated the

design of a machine which adjusts itself automatically to control an arbitrary

dynamic process.

This section does not intend to give an exhaustive survey of the topic all-

round. A brief introduction to nearly a decade of development of relevant

branches, immediately highlight the subject---Self-Tuning Control (STC) for non-

linear systems.

In the 1960s, the appearance of modem control theory, such as state space

technique, Kalman filter theory and stability theory, was important for the

development of adaptive control. Some fruitful results in stochastic control, such

as dynamic programming (Bellman 1957, 1961), system identification and param-

eter estimation (Astrom and Eykoff 1971), and some fundamental contributions

by Tsypkin (1971, 1973), increased the understanding of adaptive control

development.

In the 1970s, there was a rapid and vigorous expansion both in theory and

applications. Various novel and applicable controllers, such as minimum variance

controller (Astrom 1970), general minimal variance controller (Clarke and

Gawthrop 1975), the pole-assignment controller (Wellstead, Prager and Zanker

1979), and pole-zero placement controller (Astrom and Wittenmark 1980), were

presented. Then many papers on the understanding, experimental studies and
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applications, and modified controllers based on the controllers were published.

Meanwhile people began to consider and test the application to various plants and

processes with the controllers. It is worthwhile to mention that Astrom and co-

workers made great contributions to this field. The period was a revolutionary

decade.

More recently, adaptive controllers entered a period of maturity. The advan-

tages of different adaptive controllers based on linear models have been com-

bined to build up some complex controllers such as the general predictive con-

troller (peterka 1984, Clarke, Mohtadi and Tuffs 1987), general pole placement

controller (Lelic and Zarrop 1987, Lelic and Wellstead 1987). Astrom in 1983

made a summary of the current development of adaptive control. Although

important theoretical results on stability and structure had been established, much

theoretical work still remained to be done. The advent of microprocessors and

industrial feasibility studies have contributed to a better understanding of the

practical aspects of adaptive control, and a number of adaptive regulators had

appeared on the market.

Astrom and Eykoff (1971), Clarke and Gawthrop (1979), Isermann (1982),

Astrom (1983), Seborg, Shah, and Edgar (1986), Gupta (1986), Midelleton,

Goodwin, Hill, and Mayne (1988), have also provided important reviews.

STC for nonlinear systems, one of the active branches of adaptive control,

has been given attention since 1980s. The critical point is adaptive controller

design based on a nonlinear plant model. Astrom and Wittenmark (1973) Clarke

and Gawthrop (1979), and Isennann (1982) all consider the problem of how to

run a self-tuner for long periods of time on a strongly nonlinear process. It is pos-

sible to construct algorithms similar to those developed from linear models as

long as the nonlinear model structure is linear in the parameters.

Fig. 3.1 shows the general STC system framework. The difference between

linear system STC shown in Fig. 3.1(a) and the nonlinear system STC shown in

Fig. 3.l(b) is the plant structure. Much more attention should be paid to the model

treatment instead of developing new control scheme for nonlinear systems.
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(b) STC scheme for nonlinear plants

Figure 3.1 STC schemes

Although Astrom and people mentioned above forecast the problem and

possible solution, almost no results were reponed untile Anbumani, Patnaik and

Sanna (1981), and Lachmann (1982) publications appeared, which improved con-

siderably the control performance with NLSTC fOT nonlinear plants.

Controller design, whatever the plant is linear or nonlinear, and controller is

traditional PID or modern STe, generally requires the following three procedures:

1 A proper model to approximate the plant.

2 A criterion for controller design and calculation of controller output based

on the criterion chosen.



- 110-

3 System test, such as stability analysis, output response to typical inputs, abil-

ity to suppress the system response to disturbance or noise.

The adaptive controllers studied in the section are of specified structure with

the parameter values to be selected and all variables are of sampled form for

implementation on digital computers.

In chapter five, a general predictive controller is designed based on a com-

bined Hammerstien + ARMA system model, which is termed NonLinear General

Controller (NLGPC). In chapter six, A NonLinear DeadBeat Controller is

designed, based on the same model as in chapter five, by a direct method in which

a new operator is introduced to simplify the design procedure to be the same as

for linear deadbeat controller design.
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Chapter 5 Nonlinear general predictive controller design

5.1 Introduction

Self-tuning control techniques are, in the main, based on the philosophy that

the system to be controlled can be regarded as being linear. To this end, the topic

is well developed both in term of theory and applications (Harris and Billings

(eds) 1985, Warwick (ed) 1988). For a large number of systems such a linearizing

approach is acceptable, any relatively small nonlinearities being effectively

linearized by the controller. The resulting performance is deemed to be satisfac-

tory but is nevertheless below that which would be expected, had the plant been

perfectly linear. In order to obtain improved control over systems with small non-

linearities or to deal with systems with stronger nonlinearities, whilst obtaining

the benefits of a self-tuning control method, it is necessary to take account of the

nonlinearities in an appropriate way.

Because of the large number of different types of nonlinearity which can

occur in practice (Atherton 1975, Cook 1986), extending a basic linear control

scheme to account for all possibilities is not a realistic proposition and would

necessarily result in a toolbox approach which requires a certain amount of opera-

tor selection and therefore plant knowledge. A much more sensible way of tack-

ling the general problem is to employ a framework with which a large number of

nonlinear plants can be adequately modelled. The most appropriate solution as far

as self-tuning control is concerned (Anbumani, Patnaik, and Sarma 1981, Lach-

mann 1982, Agarwal and Seborg 1987), is to assume a"parametric plant descrip-

tion via a Hammerstein model which basically constitutes a linear ARMA system

model coupled with a polynomial of powers of the control input. By this means

the plant to be controlled is thought of as consisting of a linear part cascaded with

a nonlinear part. The ARMA model is then used to represent the linear part,

whereas the extra power polynomial approximates the nonlinear part, as shown in

Fig. 5.1.1. In fact such an underlying philosophy has been shown as sensible

within an adaptive control scheme.
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The feasibility of using a Hammerstein model based in adaptive controller

has been studied (Grimble 1985). This has highlighted a major problem in the use

of such models. This is the necessity for the on-line computation of a root solving

algorithm for every recursion of the controller updating procedure. Not only is

-this an extremely time consuming process, which can be a particular problem

when the sampling period is small, but also the accuracy of the root solving rou-

tine, which is needed to obtain a unique solution to the nonlinear plant model

polynomial, can be poor, and this can produce stability problems and usually

requires an odd number of polynomial roots in order to guarantee at least one real

root.

r- - - - - - - - - - - - _ - - - - -- - - - - - -,
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Figure 5.1.1 Model of plant characteristics

In this chapter an adaptive nonlinear controller is designed, based on the

Hammerstein model, in term of NLGPC. The controller has the flexibility of a

linear system form of General Predictive Control (GPC) (Clark, Mohtadi and

Tuffs 1987), but can also deal effectively with a range of nonlinear systems. The

design procedure entails two distinct parts, that is linear GPC design and polyno-

mial root-solving. The method is therefore indirect. The overall technique can

best be understood by reference to Fig. 5.1.1. Under the assumption that the

model approximates the plant concerned very well, then a linear controller is

designed to provide self-tuning GPC for the linear dynamic q+B lA of the plant,

which relates x(t), output of the plant nonlinear static part, to yet), the plant out-

put. The second step invokes a root-solving procedure, to calculate the inverse
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function of the nonlinear part NL, to find a controller output u(t). The intennedi-

ate variable x(t), which is the input to the linear part of the system, is not a

measurable quantity. However it may be estimated within the plant model due to

the separability of the process (Billings and Fakhouri 1978). Note if

x(t)=V(u )=ku(t), where k is a scalar gain, the overall control problem reduces to a

linear ope requirement.

The novel approach taken in the chapter is to employ a one or two step

Newton-Raphson iteration, for every recursion of the overall algorithm, in place

of a complex root solving routine. The technique makes use of the signal value

from the previous recursion of the algorithm, such that on-line computation is

significantly reduced to a few arithmetic operations. The second benefit in the

algorithm is that the variation of the controller output signal to be reduced from

one sample period to the next. This follows since each input signal is based on its

previous value so that the transmitted signal is filtered automatically. A positive

feature of this controller is therefore the reduction of control input swings.

5.2 Plant model and output prediction

Consider a class of plants described by Hammerstein model

Ay(t) = Bx(t-l) + Ce(t) (5.2.1)

where the polynomials A, B, and C are defined as,

x(t) = '0+ 'tu(t) + ... + 'nru-nr(t) = ,t'iui(t)

where q-l is the backward shift operator such that q-iy (t) = y (t-;), u(t) is the

(5.2.2)

plant input or controller output, yet) is the measured variable or system output.

e(t) is a disturbance affecting the system such that &(t)~(t), a=l-q-l, which

allows for nonzero offset on a zero mean, white noise signal ~(t) (Tuffs and
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Clarke 1985). This representation of the model disturbance comes from the con-

sideration in practice that two principal disturbances are encountered (Clarke,

Mohtadi and Tuffs 1987), random steps occuring at random times such as

changes in material quality and Brownian motion found in plants relying on

energy balance. x(t) is an intermediate variable which is the nonlinear static ele-

ment output or linear dynamic element input in the plant model.

The parameters ai, hi, and r, cab be estimated by an Enhanced Recursive

Least Squares (ERLS) approach (Kortamann and Unbehauen 1987), when the

plant model is continuously updated within a self-tuning controller. It can be

assumed initially that these are known or identified values, and the requirement

for them to be estimated can be reintroduced later specifically for adaptive con-

troller design purposes. Also, let C=1 for simplicity of explanation.

As a fundamental aspect of a predictive control-a.lgorithm, a prediction of

the plant output signal is required, which is based on information available at a

particular time instant. By considering merely the linear part of the plant

represented in eqn(5.2.1), a prediction of the output at time instant t+k is obtained

directly, based on information available at time instant t. For this purpose a

Diophantine identity is introduced (Clarke, Mohtadi, and Tuffs 1987, Owens and

Warwick 1988)

(5.2.3)

in which k ~ 1 and E", F" are unique polynomials for any given integer k and

polynomial A. Also E" is monic and of order ne = k -1 such that

Ej = 1+ e lq-l + ... + eneq-ne

and

(5.2.4)

where nf=na.

If now eqn(5.2.1) is multiplied throughout by q"Ek8 and the Diophantine

identity given in eqn(5.2.3) is made use of, it follows that

y (r+k) =BE,,8.x(t+k-l) +F"y (r) + E"c(t+k) (5.2.5)
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in which the disturbance terms present are all future values, this is due to the fact

that ne=k-l.

The optimal output predictor for the output signal at time instant t+k, made

at time instant t, is therefore

y(t+klt) =BEk8x(t+k-l) +FkY (t) (5.2.6)
It is thus an obvious point that from eqn(5.2.5) and eqn(5.2.6), the actual system

output can be regarded as

y(t+k) =y(t+klt)+EkE(t+k) (5.2.7)

However, at an instant t, it is possible to select a range of values k for w~ich an

output prediction can be made.

Assume that a set of output predictions is made from k=1 to N, where N ~ 1,

when the output eqn(5.2.5) may be rewritten in vector form

yT =GX +1 +E (5.2.8)

where

yT = [y(t+l) ... y(t+N)L

XT = [&x(t) ... &x(t+N-l)]

IT = ff (t+l) ... I (t+N)]

rl = [E 1£(t+l) ... EN£(t+N)] (5.2.9)

Further, the matrix G is of dimension N*N and has elements such that

go 0 0
gl go 0

gl 0
G= 0 (5.2.10)

0
gN-l gN-2 .... go

where gj is the coefficient in the integrated plant step-response, i.e. gj = hj from

(5.2.11)
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The vector GX in eqn(5.2.8) therefore represents a set of unknown values,

due to the vector X, at time instant t. Note that the signal x(t),and therefore <>x(r ),

is considered to be unknown until it has been calculated and applied, thus at the

instant that the output predictions are made, it is an unknown signal.

The vector fin eqn(5.2.8) represents a set of known values at time instant t,

such that each term in f is given by

f (t+k) = Fky(t) + hk (5.2.12)

in which

hk = (BEk - [ ho + h lq-l ... + hk_lq-(k-l)]j<>x (t+k-1) (5.2.13)

In the appendix 5.6.2, a detailed recursive algorithm is presented to implement

the operations, including initial value settings.

5.3 Nonlinear general predictive controller

5.3.1 Controller design

The design of the overall control input to be applied to the plant contains

two parts, that relating to the linear dynamic part of the plant and that relating to

the nonlinear static part of the plant. The linear part is considered firstly, and for

predictive control a cost function given by

J = ~[y(t+k)-W(t-k)]2+ ~A(k)[()X(t+k-1)]2 (5.3.1)

is employed in which N is the maximum prediction horizon, A(k) is a weighting

applied to the control inputs and wet) is a reference input signal, applied at time

instant t. Note that the control horizon and the output prediction horizon have

been selected as the same value, N. This is not a necessary requirement, in fact

other control horizon selections have been investigated elsewhere (Clarke,

Mohtadi, and Tuffs 1987, Warwick and Clarke 1988).

The control objective is to obtain a vector of future control inputs X which

will minimize the cost function in eqn(5.3.1). On taking the expected value of the

cost function J,
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E(J)=E[(GX +f +e- w)T(GX +f +e- W)+XTU] (5.3.2)

where A is a N*N diagonal matrix whose diagonal elements are

A(1), ... ,A(N) (5.3.3)

and

WT = [w(t+l) ... w(t+N)] (5.3.4)

By differentiating eqn(5.3.2) with respect to X and setting the result to zero,

a cost function minimum is given by the minimum mean square control

(5.3.5)

such that

x(t) =x(t-l) + gT (W - f)

where gT is the first row of (GT G + A)-lGT.

So the control signal x(t) is the signal required to be applied to the linear part

(5.3.6)

of the system, and which is based on a set of known future reference signals W

along with the known vector f.

5.3.2 Fast recursive root-solving

The signal x(t) obtained in eqn(5.3.6) is an intermediate variable acting as a

solution to the linear predictive controller problem. It remains for the nonlinear

part of the controller problem to be solved, and this is done directly, remembering

that x(t) is related to the control input to be applied to the plant, u(t), by the

definition given in eqn(S.2.2).

The nonlinear problem can be stated as, with reference to eqn(5.2.2), given

any signal x(t), at time instant t, and the appropriate coefficients (ri, i=O, 1,...,nr).

find the control input signal u(t).

With reference to Fig. 5.1.1 and eqn(S.2.2), the relationship between x(t) and

u(t) may be written as

x (t) = c»[u (t)] (5.3.7)
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where <1>(,) denotes a functional operator whatever it is linear or nonlinear, In this

case it expresses a polynomial for the Hammerstein model. The requirement is to

calculate the function inversion, Le.

U (t) = <I>-l[x (t)] (5.3.8)

which means that one of the Hammerstein polynomial roots must be found in

order to produce a possible control input signal u(t).

One suggested solution is provided by the Newton-Raphson recursive

method (Gerald 1987), whereby

[<I>(Un(t» - x (t )].
Un+l = Un - ~'(un (t ))

(5.3.9)

where the subscript n denotes the order of iteration, such that the (n+ l)th iteration

is obtained from the nth iteration, n ~ O.

Two problems occur when appling eqn(5.3.9) directly, The first is that

<I>'(un(t» :::0 in the neighbourhood of a solution. This is a critical point because in

practice it cannot be guaranteed that the derivative of the function will not

approximately equate with zero after any particular recursion due to model varia-

tion, the estimated error, and even an unsuitable initial value. The second problem

is the possibility of no real root of the polynomial existing, thus causing a break-

down of the algorithm.

In order to overcome these drawbacks, whilst retaining simplicity, an

improved root-solving approach based on eqn(5.3.9) has been developed. which

is explained as follows.

When <1>'(un (t » ::: 0, there exist two possibilities. Either Un (t) is a root which

satisfies the polynomial equation, or it is not. this can easily be checked by taking

account of ~(Un (t» - x (t), which will be within a preset small value, Le. approxi-

mately zero, if Un (t) is one of the roots. On the other hand, if Un (r ) is not a root

then a new alternative initial value is set and the recursion process is repeated. If

no real root exists or if several searches have been carried out with alternative
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initial values, a monitoring loop instructs the root-solving algorithm to stop and a

default value is taken such that u(t)=x(t)/ex, where exis a positive constant.

It is possible (Anbumani, Patnaik, and Sarma 1981) to restrict the polyno-

mial order to be odd, thereby ensuring that there is at least one real root. Unfor-

tunately this may introduce modelling error and restricts the types of the non-

linearities concerned. No such restriction is placed in the method described.

The solution to the second problem as mentioned above is to set the initial

value to be uo(t) = u(t-1), i.e. the initial value is equal to the previously applied

control input. This is a particularly suitable choice when the signal to noise ratio

of the plant is high and lor when the reference input changes are either small or

infrequent. In general it is found that with this initialisation procedure, the root-

solving procedure used here involves, in most cases, a single iteration of

eqn(5.3.9), each time a new solution is required. If the resultant solution does not

fit well, a further preset finite number of recursions depending on the sampling

period are carried out. If this is still not satisfactory, an alternative initial value is

tried, as described above.

Note that a standard, more complex, root-solving algorithm can, if desired,

be employed in order to obtain a solution. Care must be taken, however, where

on-line, real-time applications are involved, due to the computing time require-

ments. A flow diagram for the nonlinear plant part solution is shown in Fig. 5.3.1,

where it takes ri, u(t-1), and x(t) as input values, and u(t) as output value, at any

time instant. Four monitoring factors cl, c2, c3, and c4 are preset. cl is used to

control the iterating time of the algorithm, which is often chosen from a trade off

between solution accuracy and solution obtainability, c2 is a error measurement

that will determine the accuracy of the solution, c3 is a default value in case no

suitable root is found. c4 is used to check whether the derivative q,'(u (t» enters a

small region around zero, which is an indiction of either a possible solution or an

inflecting point of the polynomial curve.

Another suggested solution is to generate a look-up table from the relation-

ship x (t) = q,[u (t )], and then the controller output u(t) may be found for the given

x(t).
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(t) obtaine~ by eqn~.H}
n • 0, n .. 0

n - n + 1

un(t)-un_l(t)-~(u)/~'(u)

~(u)

default value
u(t) + X(t)/a

Return

Figure 5.3.1

n = 0, n = n +

No

Root-solving computational flow diagram
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5.3.3 Self-tuning implementation

The steps required to employ a self-tuning NLGPC on a plant described by a

Hammerstein model are as folloes during every sampling interval:

Step 1

Step 2

Sample the system output, (time instant t).

Update the plant model parameter estimates ai, b.,r, by

ERLS.

Step 3 Using the estimated model coefficients a., b, calculate linear

intermediate signal xft), This is a linear GPC design routine.

Calculate the controller output u(t) from xtt) with aid of a

root-solving routine.

Step 4

Step 5

Step 6

Apply the controller output u(t) to the plant input.

Update the input and output vector of the plant and store other

necessary data.

Wait for the next sampling instant before returning to step 1.Step 7

5.4 Simulation experiment

In order to investigate the usefullness of the NLGPC scheme, described

above, simulations have been carried out for particular systems. A comparison

with NonLinear DeadBeat Controller (NLDBC) on the same plant models is

included.

Two different nonlinearities are selected (Anbumani, Patnaik, and Sarma

1981),as described in eqn(5.2.2)

NLl: '0=1,'1=1,'2=-1,'3=0.2

NL2: '0=0,'1 = 1,'2 =0,'3 =-1

The nonlinear characteristics are shown in Fig. 5.4.1. For the linear dynamic part,

again two different models are selected with reference to eqnC5.2.2)

Ll: al=-O.9,bo=l,bl=2 (5.4.3)
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L2: at = -2.87, a2 = 2.74, a3 = -{).87

bo = 0.04, b t = 0.002, b2 = -{).037 (5.4.4)

This means that L1 is open-loop stable and non-minimum phase, whereas L2 is

open-loop unstable.

60~.----.-----~---.----~----~----~----.----........40 \\ , .

\NL2,
20 .l'-.\<~:,~. ............................; ;..

" ...............

·····..············t·

o ---.----~------~... '-- ... :-. ...

. ':"'>""-':
"
; "\\
,.... '" ...

-60~--~----~----~----~--~----~----~--~
-4 -3 -2 -1 o 2 3

u

Figure 5.4.1 Static nonlinearities

4

An ERLS estimator is used with fixed forgetting factor 0.95, and no noise is

introduced into the system, £(t)=O. In order to overcome the large initial input

signal deviations which occur during tuning, a relay providing unity magnitude

bang-bang control is employed for the first 10 samples. It is. further, assumed

within the estimator that the model structure is known.

In order to consider transient behaviour, a sequence of set-point value is

assigned as follows,
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Samples set point values

1-10 20

11-30 20

31-50 60

51-70 20

71-90 0

The cycle from 11-90 samples is then repeated periodically. In each of the

Figs. 5.4.2 to 5.4.5, the plots in 'a' show the control input signal u(t) as a continu-

ous line with the intermediate variable x(t) shown by a broken line. The plots

given in 'b' show the reference set-point signal as a continuous line with the

actual system output signal y(t) shown by a broken line.

Fig. 5.4.2 shows the behaviour of a nonlinear ..deadbeat controller when

operating on a system whose linear part is described by Ll and whose nonlinear

part is described by NLl. The dead time (transport delay) of the linear part in

each case is unity, as is defined in the original model eqn(5.2.1), further the order

of the B polynomial is also unity. It can be seen from Fig. 5.4.2b that following a

change in reference signal, the system output reaches the new set point value after

only 2 sample periods and no overshoot occurs. These results are those which

would be expected from a deadbeat controller operating on a purely linear plant

(Warwick 1986) whose characteristics are represented in Ll, the 2 sample periods

corresponding to the sum of the dead time are the order of the B polynomial, both

of which are unity.

It can also be seen that once initial tuning in of the parameter estimator has

occurred, after approximately 70 sample periods, operation of the overall con-

troller, including the root solver is satisfactory. It is assumed however that the

structure of both the linear and nonlinear system part is known exactly, hence for

Fig. 5.4.2, 1 a; parameter and 2 b, parameters are selected, along with 3 r,

parameters and ro being set to unity.

There is no reason to suggest why the indirect design method, described in

the chapter, would not be suitable for use with controller in which the control
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objective is of a type other than deadbeat, e.g. pole plicement or minimum vari-

ance control. Self-tuning control is therefore applicable to a wide variety of non-

linear systems, which can be regarded as separable, in the sense of the need for an

intermediate variable x(t) to be estimated. It must be pointed out though, that

·where noise affects the system. due to the cancelling effects of the deadbeat

action, the noise will be filtered by the open-loop denominator A. this means that

the system under control is required to be open-loop stable. otherwise noise

enhancement may result

Fig. 5.4.3 shows the behaviour of a nonlinear general predictive controller

when operating on a stable but nonminimum phase system, whose linear part is

described by LI and whose nonlinear part is described by NLI. The predictive

nature of the controller can be clearly witnessed in the plots. where advance

knowledge of a reference value change has allowed the actual output signal to

commence its distinct set value variation before the alteration in reference value

has occurred.

Fig. 5.4.4 and Fig. 5.4.5 show the behaviour of a NLGPC when operating on

an unstable plant whose linear part is described by L2 and whose nonlinear part is

described by NLI in the case of Fig. 5.4.4. and NL2 in the case of Fig. 5.4.5. Note

that 400 data points are plotted in these figures, rather than 200 as is the case for

Fig. S.4.2 and Fig. 5.4.3. Again, exact structural knowledge of the plant, i.e.

correct number of Qi , bi, and rt parameters, is assumed for parameter estimation

purposes, and the control weightings 'A.(k) are taken to be equal to zero.

The plots in Fig. 5.4.4b and Fig. 5.4.5b show that with the unstable open-

loop plants in question, NLGPC is still able to produce a stable, satisfactory out-

put response, although the initial tuning period is a lot longer than previously.

Also, as can be seen from Fig. 5.4.4a and Fig. 5.4.5a,-in order to provide a suit-

able controlling action. the control input signal has a high variance and rapid vari-

ations occur. A conclusion can be made that NLGPC is potentially suitable for the

control of nonlinear plants. However, controller quality is much more sensitive to

the choice of control weightings ')..(k). In fact, improper choice of ')..(k) may be

such that a stable closed-loop system response is not achievable, even when the
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controller parameters are finely tuned.
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5.5 Conclusion

In the chapter an indirect self-tuning controller has been presented for the

control, by means of either General Predictive Control or Deadbeat Control, of a

class of nonlinear systems which can be adequately modelled by Hammerstein

model. The simple Newton-Raphson root solver is in fact also applicable with

other control objectives such as pole placement or minimum variance output. In

fact the characteristics of the particular linear control objective, such as GPC, are

retained in the nonlinear controller and hence much more attention should be paid

to the nonlinear model treating technique.

The self-tuning controller described in the chapter will operate well whether

the system under control is linear or nonlinear, although in common with other

self-tuning control algorithms, a detailed theoretical analysis, in particular a

determination of the transient behaviour, is of little value except in some very

simple or specialised cases. The feasibility of NLGPC is therefore considered and

compared with NLDBC, by means of several simulation studies. These indicate

that not only can NLGPC be successfully applied for nonlinear system control,

but also that it can be applied in a relatively simple fashion.
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5.6 Appendix

5.6.1 Enhanced Recursive Least Squares estimator

An ERLS algorithm is used to estimate the parameters of the Hammerstein

model given in eqn(5.2.1) and eqn(5.2.2).

9(t+ 1) = 9(t) +L (t)[y (t) - ql (t )9(t)]

L(t) = 1+ {rgV!~r~I)cp(t)

P (t) = [P (t-I) - P (t-I~(t)(pT (t)P (t-l) ]/A.
I+Cp (t)P(t-l)CP(t)

where

9= [f300 f301 .. , f3nb 1 1302 .,. f3nb2 ... f30nr f3nbnr a 1 a2 '" ana]

cpT(t)= [1 u(t-I) .,. u(t-nb-I) u(t-I)2 u(t-nb-I)2 ...

u(t-l)nr ... u(t-nh-I)nr -yet-I) -y(t-na)]

Let rl=l, it follows that

hj = f3il

A is a forgetting factor to effect the convergence of the parameter estimates

and to cope with slowing time-varying plant. Sodestrom, Ljung and Gustavsoon

(1976) presented a way to choose this constant, for plants or processes with con-

stant parameters

A(t)=1

or

A(t+l) = 1..0 A(t) + (1- 1..0)

0.95 5: 1..0 = A(O) 5: 1
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For plant with slowly time varying parameters

A(t) = Ao, 0.85 s Aa s 1

The most suitable forgetting factor depends on the plant model and the kind of

disturbances. For the case of low order model and no stochastic disturbance, a

smaller value Aa (e.g. A.o=O.85)can be used to speed up the convergence of the

parameter estimates, otherwise Ao must be set to 1 to guarantee the accuracy of

the parameter estimates, and results in slow convergence of the estimates. There-

fore the choice of the forgetting factor is a trade off between convergence speed

and accuracy of the estimator.

The ERLS estimator is an unbiased for an uncorrelated disturbance

sequences. For correlated disturbance sequence, an Enhanced Recursive Max-

imum Likelihood (ERML) estimator is available which may be derived from

linear RML estimator.

5.6.2 Recursive computation of Diophantine equation (E, F) and polynomial

Gj(q-l)

1 Initialisation G= 1)

E l(q-l) = 1

Fl(q-l)=q(l-A)

G1(q-l) =B

where

CXo = 1, (Xna = -ana, (Xi = ai - ai-I> n (X= na + 1
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2 For j=1...N-l (N maximum prediction horizon)

Ej+l(q-1) = Ej (q-1) + fj(:lrj

Fj+1(q-1) = f (j+1)O + f (j+1)1q-1 + ... + f (j+1)iq+, i E [0, na]

f (j+1)i =f (j)i+1 - o,i+t!jO

f (j+1)na= -(J.nafjO

Gj+1(q-l)=Ej+1(q-l)B =g(j+l)O+g(j+1)1q-l+ ... +g(j+l)iq-i

g(j+1); =gji + fjobi-j, i E [0, nb+j]

with

bi-j = 0, i < j
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Chapter 6 Nonlinear deadbeat controller design-

6.1lntroduction

Most of the NLSTC design methods, using parametric models, are indirect

ones. The NLSTC design routine is, as shown in Fig. 5.1.1, to first construct a

linear STC from the relationship between x and y and then to calculate the inverse

function of the nonlinear part to obtain the controller output u, usually involving a

root-solving routine. The internal or intermediate variable x can be estimated due

to the assumption of the nonlinear plant model being separable, so that the inter-

mediate variable is a bridge connecting STC and NLSTC. If x=f(u)=ku, k is a

constant, that the STC design is derived for a linear system. By this method,

Anbumani, Patnaik and Sarma (1981), Lachmann (1982), and Grimble (1985)

presented several schemes for NLSTC design. On the other hand, a direct design

method results from an integration of the STC design idea and different model-

ling technique to produce the NLSTC output u directly without the requirement

for estimating the intermediate variable x. A few papers were published recently

using a direct design method in some special cases, and these obtained straight-

forwardly the NLSTC output u instead of estimating the intermediate variable x,

see Lachmann (1982), Agarwal and Seborg (1987), and Zhang and Lang (1988)

for details.

A large number of control systems are designed with the objective that the

response of the system should attain its desired value as quickly as possible. Such

a control system is called a minimum-time control system or a time-optimal con-

trol system (Kuo 1980). One of the typical forms in digital control system is so

called deadbeat controller, which combines fastest response to reference signals

with easy implementation in self-tuning algorithms.

Previous work concerned with deadbeat controller design mainly concen-

trates on the following aspects. Deadbeat regulators, either single variable (Tou

1964, Jordan and Korn 1980, Iserman 1981) or multivariable (Kaczorek 1982,

Chen, Chiang and Hsiao 1984, Beelen and Dooren 1988), are basic designs,

which emphasise the ability to follow step reference signal. The deadbeat



- 135 -

tracking design deals with the problem of following irregular reference signals

(Bradshow and Pooter 1976, Kucera 1980, Ichikawa 1989). Robust deadbeat

controllers (Zhao and Kimura 1986, Warwick 1986) describe many schemes to

overcome the drawbacks such as the excessive control signals to achieve the

fastest regulation speed and less robustness with respect to plant variations,

allowing a trade off between speed of response and robustness.

It should be noticed that all proposals mentioned above use a linear plant

model. However in a real environments linear model is not always proper due to

the existence of severe nonlinearities. Kaczorek (1982) mentions, without refer-

ence, that deadbeat control of bilinear and nonlinear systems has received consid-

erable attention, with no solutions given.

The purpose of the chapter is to design a general controller for a class of

nonlinear systems described by the Hammerstein model. The implementation of

a deadbeat controller, as an example, is studied with computer simulation.

6.2 HCARIMA model and HCARMA model

The Hammerstein model defined in eqn(5.2.1) is written in the alternative

form:

Ay (t) =Bx (t-l) + £(t) (6.2.1)

where the polynomials A and B are defined as,

A = 1+ a lq-l + ... + anaq-na

and

(6.2.2)

where t=O, 1,2, etc. are sampling instants, q-l is the backward shift operator such

that q-i y (r ) = y (t-i), u(t) is the plant input or controller output, y(t) is the meas-

ured variable or system output, £(t) is a either correlated or uncorrelated distur-

bance, and x(t) is an intermediate variable which is the nonlinear static element
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output or equal to the linear dynamic element input in the plant model.

Hammerstein-like CARIMA (HCARIMA) and Hammerstein-like CARMA

(HCARMA) models to be presented are alternative expressions of eqn(6.2.1) with

suitable modifications. Eqn(6.2.1) may be written in ve~tor form

AY =BX +E (6.2.3)

where

yT1*(1UJ+1)=[y(t)y(t-1) ... y(t-na)]

B1*(nb+l)=[bob1 ••• bnb]

XT l*(nb+l)= [x(t-1) x (t-2) ... x(t-nb-1)] (6.2.4)

and from eqn(6.2.2), x(t) may be written as a function of the vector U(t) as

x(t) =RU(t) (6.2.5)

where

R = [r0 r 1 ... rnr ]

UT(t) = [1 u(t) ... unr(t)] (6.2.6)

Hence

x = [RU(t-1) RU(t-2) ... RU(t-nb-l)] (6.2.7)

Substituting eqn(6.2.7) into BX in eqn(6.2.3), gives

BX =~U (6.2.8)

where

U = [1U(t-l) ... U(t-nb-1)] (6.2.9)

Furthermore eqn(6.2.9) may be expressed in the form
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131= [rl r2 r» ]bl = [1311 f31nr]

f3nb= [r 1 r z rnr ]bnb = [f3nb1 f3nbnT]

UT(t-I) = [u(t-I) u2(t-I) '" unT(t-I)]

UT(t-2) = [u(t-2) u2(t-2) ... unr(t-2)]

UT (t-nb-I) = [u(t-nb-I) u2(t-nb-l) ... UnT(t-nb-I)] (6.2.10)

The vector expression relating the system output Y, the controller output U

(instead of intermediate variable X) and disturbance e is built up through

eqn(6.2.3) to eqn(6.2.IO), to give

AY = f3U +e (6.2.11)

The HCARIMA or HCARMA model may be readily developed from eqn(6.2.Il),

in which the corresponding polynomial form is

Ay (t) = f3(z-I)U (t-I) + 1300+ e(t) (6.2.12)

where A, yet), U(t-I), 1300 and e have been defined above, and

f3(z-l) = 130+ f31z-1+ ... + f3nbz-nb (6.2.13)

Z-1 is a new defined vector backward shift operator, possessing the following pro-

perties

Z-IUT(t)= UT(t-I)= [u(t-I)u2(t-l) ... unT(t-I)]

(1 - z-l)UT (t) = UT (t) - UT (t-I)

-
=[u(t)-u(t-l) u2(t)-u2(t-l) ... unT(t)-unT(t-l)]

E(q-l)[(3(z-I)U(t)] =E(3(z-l)U(t), q-iz-i = z-{i+j)

(3(z-l)[E(q-l)U(t)] = (3(z-l)UE(t) (6.2.14)

where

and z-l = q-l for linear model.
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The HCARIMA model is defined when the disturbance E(t) = C ~(t )/0

Ay (t) = P(z-l)U (t-l) + Poo+ C ~(t)/o (6.2.15)

where

C = 1+ C lq-l + ... + cncq-nc

0=1 - q-l

and ~(t) is a uncorrelated random disturbance.

Similarly HCARMA model is defined to be

Ay (t) = P(z-l)U(t-l) + Poo+ C ~(t)

(6.2.16)

(6.2.17)

The model is linear in the parameters and nonlinear in input and output sig-

nals. Parameter estimates may be then handled easily by the ERLS algorithm

given in chapter five.

6.3 NLDBC and its STC implementation

6.3.1 Nonlinear feedback controller based on HCARMA model

The basic design of the NLDBC originates with the design of DBC in linear

systems. Consider a CARMA model

Ay (t) =q=Bu (r ) +C ~(t) (6.3.1)

where k ~ 1 is the integer part of the transport delay.

Clarke (1982) presented a general form of feedback controller for linear

plant described by CARMA model, it has

U(I) = Sf [Vw(t) - Y (I)] (6.3.2)

where

G =gO+glq-l+ +gngq-ng

F =1+/1q-l+ +/n[q-n[

(6.3.3)
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wet) is a reference input or so called setpoint sequence. The polynomial V is often

set equal to a constant, i.e. V = vo.

The controller parameters are given by

G =A

(6.3.4)

The polynomial S is assigned according to various performance.

Warwick (1986) presented several typical DBe design schemes by selecting

polynomial S, one of his selections was

V = 1, G =A, F =B(1)_q-kB (6.3.5)

the resultant controller is given by

u(t) = -z!&yU(t-k) + ~[W(t) -yet)] (6.3.6)

and the system output response is determined by

y (t) = q-k ¥W(t) + (S - fA-kB) [C ~(t) + 1300]

- B w(t-k)+ (B(~_~-kB)Cj:(t)-1f(T) (1 A ~ (6.3.7)

As stated in the introduction, the method of controller design based on a

linear model may be applied for nonlinear model given a suitable plant structure.

Consider the HCARMA model

Ay(t)=Z-k 13(z-l)U(t-l)+13oo+C~(t) (6.3.8)

A kind of general feedback controller is proposed for nonlinear plant described by

the HCARMA model in eqn(6.3.8), as follows

U(t) = Sf [VW(t) -yet)] (6.3.9)

where G, V, and Wet) are the same as for the linear system, U(t) is defined in

eqn(6.2.1O), and F is defined to be

F = f 0+f 1z-l + .. . +f "I z -nf

f 0 = ff 01 f 02 ... f Ow] = [1 1 ... 1]
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I 1 = [f 11 I 12 ... I Inr]

Ib/ = [fn/l I n/2 ... In/nr] (6.3.10)

Note the new backward shift operator z-1 has been introduced. Expanding

eqn(6.3.9) with the substitutions in eqn(6.3.11), gives

u(t)+u2(t)+ ... +unr(t)=-,~hU(t-i)+G[VW(t)-y(t)] (6.3.11)

Let

ex= -,~/i U(t-i) + G [VW (t) - y (t)] (6.3.12)

Eqn(6.3.11) becomes

u (t) + U2(t ) + ... + Unr (t) - ex=0 (6.3.13)

ex is known, which is thought of an innovation variable, therefore the controller

output u(t) may be determined from one of the real roots, usually the minimum

amplitude one, of eqn(6.3.13). The fast recursive root-solving routine has been

developed to overcome the problem of no real root and to speed up root-solving

for convenience of on-line application. Based on the direct controller in

eqn(6.3.9), typical NLDBC designs are readily implemented.

6.3.2 Nonlinear deadbeat controller

An example is selected to show the design procedure of the nonlinear dead-

beat controller. Let

V=l, G=A

F = S - z-k ~(z-l) = ~(1) - z-k ~(z-l) (6.3.14)

the NLDBC output u(t) is then obtained from

(6.3.15)

where

00= ~~jU(t-k-j)+ ~aj[w(t-j)-y(t-j)]
J~ J~
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al = ~ ~jl
J~

anT = ~ ~jnT
J~

(6.3.16)

Consequently, the system output response is obtained from

aly(t) + a2J'2(t) + anrynT (t) - <Xo = Jt~j W (t-k-j) - J~~jE (t-k-j) + ~(I)E (r)

(6.3.17)

where

WT(t) = [wet) w2(t) wnT(t)]

ET(t)=[*~(t) ~~(t)2 ~~(t)nr] (6.3.18)

6.3.3 NLPBC STC implementation

The steps required to employ a self-tuning NLDBC on a plant described by

HCARMA model are summarised as follows

At each sampling instant t,

Step 1

Step 2

Sample the system output.

Update the plant model parameter estimates by ERLS or

ERML.

Step 3 Calculate the controller output from eqn(6.3.1O) with aid of a

root-solving routine.

Step4

Step 5

Step 6

Apply the controller output to the plant input.

Update the input and output vector of the plant.

Wait for the next sampling instant before returning to step 1.
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6.4 Simulation results

The simulation is directed towards studying the direct designed NLDBC,

and features of its behaviour such as controller feasibility, reference input track-

ing, suppression of disturbances. The efficiency of the root-solving routine

presented in chapter five is also considered.

Two different polynomials are chosen for the static nonlinearities. These are

same as those in chapter five, namely

NL 1: x (t) = 1+ u (t) - U2(t ) + 0.2u 3(t )

that is

NL1: rO=I,rl=1,r2=-I,r3=0.2 (6.4.1)

and

NL2: x(t) = u (t) - u3(t)

that is

NL2: ro=0,rl=l,r2=0,r3=-1 (6.4.2)

the nonlinear characteristics are shown as in Fig. 5.4.1.

There different linear dynamic systems L1, L2, and L3 are chosen, L1

(Clarke, Mohtadi, and Tuffs 1987) is a non-minimuIl! phase plant, L2 is a first

order stable plant, L3 (Kurz, Isermann, and Schumann 1980) is a high order plant

with low pass behaviour and one zero outside of the unit circle of the z-plane.

L 1: A = 1- 0.9q-l, B = 1+ 2q-l

L2: A = 1- 0.9q-l, B = 1- 0.5q-l

L3: A = 1 -1.7063q-l + 0.958q-2 - 0.1767q-3

B = 1.86 + 4.86q-l + 0.78q-2 (6.4.3)

In order to overcome the large initial input signal deviations which occur

during tuning, a relay providing unity magnitude bang-bang control is employed

for the first 10 samples. It is, further, assumed within the estimator that the model

structure is known. An ERLS estimator is used with fixed forgetting factor 0.9 to
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speed up parameter estimates, and is initialized with parameters (1,0 ...0).

In order to consider transient behaviour, a sequence of set-point value is

assigned as follows,

Samples set point values

1-10 20

11-30 20

31-50 60

51-70 20

71-90 0

The cycle from 11-90 samples is then repeated periodically and 200 samples

in total are taken for every experiment. In each of Fig. 6.4.1 to Fig. 6.4.6, the

plots in 'a' show the set-point signal wet) in a continuous line with the actual sys-

tem output signal yet) shown by a broken line. The plots in 'b' show the control

input signal u(t) as a continuous line with the innovation variable a(t) shown as a

broken line.

The plots show that the NLDBC developed has the same properties as the

linear DBC. The efficiency of the root solver is demonstrated again.

The overshoots in Fig. 6.4.3(a) and Fig. 6.4.4(a) come from the fact 1~(1)1<

I~ol in nonlinear system similar to B(1) < bo in linear system. This can be under-

stood from eqn(6.3.7) by letting ~(t) = 0, B = bo + b Iq-I, and considering the

linear system

yet) = -J&yw(t-k) (6.4.4)

Before the set-point variation, we have w(t-k-1) = w(t-k-2) ...= O. There is a step

input at time t-k, and the corresponding system output yet) is determined by

y (t) = [bow(t-k) + b IW (t-k-l)]/B (1)

bo
= bo+ b

I
w(t-k) (6.4.5)

If bo > bo +bI> then yet) > w(t-k), which implies the presence of an overshoot.
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6.5 Conclusions

The introduction of a vector backward shift operator makes the HCARIMA

and HCARMA models resemble their corresponding linear ones. The nonlinear

controller design closely follows the linear controller design strategy. The new

controller design scheme generalises the linear controller design developed by

Clarke (1982).

The second advantage of the models is that the requirement for intermediate

variable estimation can be removed. However it should be noticed that a root

solver is still required whether indirect or direct design method is used. This is a

characteristic in nonlinear system controller design. The NLDBC was selected as

an example to show the model validity and efficiency.

Based on the developed models. some typical self-tuning controllers. such as

minimum variance, pole placement, and alternative forms, may be realized easily.

This will be reported in the near future. For some complicated self-tuning con-

trollers like general predictive controller and general pole-placement controller,

the model is still suitable. However the final controller output calculation

involves the solution of a set of highly complicated nonlinear equations.

6.6 Appendix

In order to explain the procedure of NLDBC design with the direct method,

a simple NLDBC design by hand is selected by considering following model

Ay(t) =Bx(t-l) + ~(t)

A = 1 - 0.9 q-l

B = 1+ 2q-l

X (t) = 1+ U(t) - U2+O.2u 3(t) (A6.1)

the corresponding HCARMA model is

Ay (t) = ~(z-l)U(t_l) + ~ + ~(t) (A6.2)
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where

J30 = [rl r z r3]bo = [1 -1 0.2]

~l = [r} r2 r3]b} = [2 -2 0.4]

~oo = ro..(.. b, = 1.2,~
UT(t-I) = [u (t-1) u2(t-I) u3(t-I)]

UT(t-2) = [u (t-2) u2(t-I) u3(t-2)] (A6.3)

According to eqn(6.3.9), design the NLDBC by-letting V=I, G=I, and

F = ~(O) - z-l~(z-l)

(A6.4)

where

O{)= ~~jU(t-I-j)+ ~aj[w(t-j)-y(t-j)]
J~ J~

= [u(t-I) - u2(t-I) + 0.2u3(t-I)]

+ [2u(t-2) - 2u2(t-2) + 0.4u3(t-2)]

+ [Wet) -yet)] -0.9[W(t-I) -yet-I)] (A6.5)

Accordingly

3u(r) - 3u2(t) +0.6u3(t) - 0{) =0 (A6.6)

u(t) may be calculated by root-solving routine from eqn(A6.6) and will change

with the innovation variable O{).
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Section 4 Conclusions and bibliography

S4.1 Overall conclusions

This thesis has studied some problems in signal processing and nonlinear

system identification and control, leading to novel contributions in several areas

including: the effect of missing data position to spectrum analysis and frequency

response characteristic estimation; the exploration, using a geometric method, of

nonlinear system structure detection and parameter estimation; the importance of

signal amplitude selection in nonlinear system identification and the consideration

of nonlinear system self-tuning controller design with emphasis on the nonlinear

systems described by the Hammerstein model.

In summary:

In section one, a relative simple method has been presented for handling

data records with missing points, useful for the estimation of the Fourier

transform, power spectrum density and frequency response functions. Unlike pre-

vious techniques, the new method demonstrates the importance of the position of

missing points in the estimation process.

The effect of the periodic occurrence of missing points, leading to a periodic

error spectrum, has been predicted and observed in experiments.

Areas for further research include study of the effect of various distributions

of missing data position in signal analysis, investigation of parametric model esti-

mation from incomplete time series, and estimation of missing values.

In section two, the consideration of signal amplitude in nonlinear system

identification and parameter estimation has led to two novel results. One is the

technique of signal amplitude quantisation to detect the system structure and to

estimate the system parameters. Another is the VWLS algorithm, chosing weight-

ings by state amplitude distance. The 3D space has displayed rich information

about system characteristics.

Areas for further research include automatic determination of the amplitude

range of validity of a linear model for the given system, and application of the
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quantisation technique for identifying various nonlinear systems.

In section three, the studies, both theoretical and experimental, of nonlinear

STC controller design indicate that the attention should be paid to the technique

in model treatment, that is to give a suitable description form based on original

model, in order to facilitate the implementation of control schemes.

Areas for further research include a study of the validity of designing other

type of controllers with the HCARMA model, to borrow the idea developed in

section two to investigate the possibility of simplifying nonlinear controller

design.

The computer software package Matlab significantly simplifies program

design.

As stated at the beginning of the thesis, this research work emphasizes the

development of new concepts and exploration of potential applications, therefore

much more work must be carried on in the future in order to make it complete.
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Abstract. This paper considers the spectrum analysis of finite -duration data where the
avaliibie data contains one or more uncertain observations or missing points. A new
recursive method is developed using a mean -square error criterion to obtain estimates of
the Fourier transform and the power spectrum of the complete data record. This
technique is applied to. the estimation of the frequency response of linear systems for the
case in which the output data contains missing data.

It is shoWD that it is important 10 consider the position througb the record of the missing
points.

A comparison is presented of the results obtained using this new method and traditional
methods. demonstrating the improvements obtained.

NOTATION

Keywords. Spectral analysis. data reduction. missing values. system identification.

alternative technique the Periodogram Method (PM). A brief
introduction to CM and PM win be presented after a defUlitio.

· ul I - 1. N T1_ sari ... system Input. , of the problem.
· Xl Tlma series. system output. no missing 1

,
: obsarvat Ions. The time series. assumed normany distributed. with no missing
YI T1_ sarla s , system output with missing I observations is written

. obsarvat Ions. 'I
: 1.C(O),Sxx(O).atc. Amplitude and power spectra. XI = X,. •••xi... xN
· )(0) Est lute of )(m. based on Y(O).
, H Number of missing points.
·ax' Variance of specified signal.
S'yy(O) Smoothed val ue of Syy(O).
i CeO) SYltem frequency response funct ton.

INTRODUCTION

I In time series modeninl and parameter estimation. the situation
is considered in whicb the measured sequence is not a

,complete let of the observations. but the measurements
: correspondin, to some time instants are missin,. not known or
: unreliable.

The pattem of the uncertain observation may be in one of I

t_ cuel0ries. one deterministic or periodic. u In the case.
; for example. of a sinlle sensor whicb is time shared to
measure and record different processes. or a random or I

'aperiodic phenomenon. u in the case of ID unreUable sensor
.: which faUs Intermittently.

'1' One solution to the problem of unce.rtain observations is
. interpolation. whicb estimates uncertain values usin, the known

values and then reCODStructa the time series. Howe'IV. the
, lnterpolatlnl method ha some disadvantales (Harria. 1987) to
use. Another more leneral solution is more atraiJbtforward
and compensates the estimated values directly witbout
reconstruction of the time series. Attention will be paid to
techniques in the second catelory in this paper.

Since 1962 (Jones.1982; Parzen.1983). especially 1969 (Nahi).
i some useful results (Harria.1987; Roberts.1980; McGiffln.198,l)
have been obtained in sipl modellin, and parameter
estimation from time serlea with uncertain observationa. A
,oad IUrvey of some representative methods can be found in
McGUfin (1980).

Tbe Power Spectral Density (PSD) is aD important parameter
in the description of random processes. There are t_ ,eneral
methods currently available for PSD estimation with uncertaiD
observations. We call one the Covariance Method (CM). the

i=ltoN.

With missing observations. the series is written

I, Yi =
:j ~ere

(1.1)Xiii

gi = 0 for a missing point. and unity otherwise.

. The missing data consists of M missing points. a member of
this set being xm•

The discrete Fourier transform of xi is

N
t Xt(cos 10 - J sin 10) - XR + JXI
1-1

X(O) (1.2)

where 0 = 2"klN with k inteler.

The power lpectral density is

1
Sxx(O) - N X(O).x*(O)

Alternatively. the power spectral density can be expressed in
terms of the measured autoc:ovarianc:c function according to

NRxx(O) + 2t Rxx(r) COl (Or)
r-l

(1.3)

1 N-r
1:
1-0

for r > O.where
N-r

Estlmatea of XCO). SuCO)'Aetc. 9ued on Yj. the data with
missinl points. are written XCo). SxxCO). etc.

The covariance method for spectral analysis with missinl points
(Jones.1962; McGlffm.1980; Parzen.I963) IISCI equation (1.1) to
give



; ).)

Knowing the posmons of the missing points, Rgg<T) can be
calculated, to give the estimate

RXX(T) = RyyCT)/RggCT)

N-T
Ryy(T) - I-o YIYI+T'where

Using equation (1.3), the spectral density of
estimated.

x(t) can be

An alternative approach termed the periodogram method
(Harris,1987) is based directly on the measured power spectrum
Syy(f!). This is defined by

N

N-M
where (N-M) is the number of non-zero terms in )'(t).

For white noise, this estimator is unbiassed and minimum
variance. However, as shown below, an improved estimator
can be found when the original process is non-white.

THE NEW ESTIMATORS

The Fourier transform of Yt

- ~ \
1-1 XI

may be written

YeO) cos to I: xm cos nil
H

The estimate of X(f!) introduced in this paper is

X(f!) = k, YR + k2 j YI ,

where k, and k 2 ale chos.en to minimise the mean square
error, equal to E{(X-X).{X-X)·}. Both k, and 1e2 are
functions of the frequency O.

The mean square error of the estimate is

Differentiating with respect to le" and setting the result to
zero ,Ives

and similarly

E(X, y,l

Appendix t derives the expression for le,
Ulu~ptions:-

(a> The missing points are separated such that the
cross-correlation between values at missing positions may ,
be neglected, and

(b) The missing points are not too near the end of the
record.

on the two

of xN has zero effect on X,(O) for all values of O. and
a maximum effect on XR{O) since cos NO = 1.

From Appendix I,

k,
f, (N - 2I: cos2 mO)

M
(2.2)r, (N 4I: cos' mO) + 2I: cos' mOM M

The factor r, is the normalised spectrum. which is in
general not known a priori, given by

2 2
f, (]'2 E(~) - (]'2 • E(k: (rYI cos 10) 2) (2.3)

For white noise. t , is unity at all frequencies O. so that
Ie, Ii k2 • 1. This shows that a minimum mean-square
error estimate of the Fo~rier transform of a white process with
missing observations is X(O) = rYi (cos iO + j sin iO) .

The results presented later in the paper consider highly
coloured noise with no a priori information. In these cases aD
iterative process is used. in which f, is updated from the
current estimate of le, (with the initial value le, = t
assumed), according to equation (2.3) and equation (2.2) then
used to give le,.

In a similar manner, the power spectrum estimate SxxCf!)
may be written in terms of the measured Fourier components

1
N [k, Yi + k. y~l .

(2.1)
The result is derived in Appendix 2. giving

1 E(~) 2
k3 - 3 E(Y~I + 3 k2,

N f, _i r cos2 ail3 H
f, (N - 4r cos' ail) + 2r cos' all

M H
Similarly for le.. with cos 2 roO replaced by sin 2 mn
throughout.

I
The frequency response of a system Is estimated from
(smoothed) values of the input spectral density SuuC0) and
Sui(O) according to

A Sux(r!)
i G(O) - Suu(O)'

The estimate of X(f!) is chosen to minimise the meaD
squared error of the numerator term.

Let X = Ies YR + j K, YI where ks and k. are
chosen to minimise

Minimising with respect to Ies gives

E(UR2XRYR + UI2XRYR]
ks - E(UR'YR' + UI'YR']
Following the same procedures as in appendices 1 and 2 gives

[
2 2f,.E(SuuJ + Nau (f, + r!»).[ ~ - ~ cos2 mOl

The essential novel feature of the new method is that the
values of facton le, and Ie 2 depend on the position of
the missing point( I) in the record, The need for this
dependence can be demonstrated from the defining equation
(1.2) by considering a single missing point located at the end
of the record. that Is with I = N. By inspection. the value'

where

2
f, - &2 EICks YR)2)

y



! :..., I

2
f3 - (1u(1y Elks UR YR)

2
fs - (1u(1y Elks UI 'r'R)

Similarly for k,. with cos 2

throughout.
m!l replaced by sin? mn

EXPERIMENTAL RESULTS

Two systems have been studied to compare the traditional and
new methods for spectral analysis and for system identification.
Experiments have been completed to examine the effect of
smoothing over several blocks and over adjacent frequencies on
the resulting estimates.

For spectral density estimates. two quantitative measures of
performance have been used as comparators of the two-
methods. In the fIrSt. the sum over all frequencies of the
sum of error squared between the true spectrum with no
missing points and the estimated spectrum with missing points
using the PM. CM and new technique are compared.
Secondly. a linear regression of the true spectrum on the
estimated spectrum again over all frequencies has been
obtained. to compare the bias of the two methods.

11\ all experiments. a block length of 128 points has been
used. and the missing points bave been introduced at positions
10. 20. 30 .... 120. In those experiments eacb involving one
block. smoothing over four adjacent frequencies has been used
to estimate the power spectrum for the calculation of k. For
experiments in each involving more blocks. the spectrum is
smoothed over the blocks for this calculation. Lag windows
are used to smooth the covariance functions when the
.correlation method is used to estimate the frequency response.

First-order System

The system considered is

= 0.9 xk-I +

In which wk is a white noise normally distributed signal of
unity variance and zero mean value.

Fi,ure 1 compares the squared-error in the power spectrum
estimates in an experiment consisting of 1000 blocks using
.the traditional and new methods. The maximum error in the
traditional method occurs at zero frequency. This error is
equal to approximately 10% of the true value.

Ensembles of experiments. eacb of duration equal to one. two.
ten and one hundred blocks have been completed to investigate
the ensemble average of the sum of error squared over
frequency of the power spectrum estimates. Table 1
summarises the results and shows the significant reduction in
error resultin, from the new method. This Table also lists
the ensemble average of the linear regression of the true on
,the estimated spectrum. The new method substantially reduces
the deviation of this factor from unity.

TABLE 1 Errors in Spectral Estimates

Length ParlodogralD Corralat Ion Na. Method
of Data

Error Best fl t Error Bast Cl t Error Best fl t

128 777 1.118 573 1. 086 137 1.017

128x5 605 1.099 480 1.079 462 1.079

128x10 219 1.108 115 1.032 78 1.024

128x102 179 1.106 36 1.018 19 1.004

Fourth-order System

. The signal is produced by passing the previously defined white
noise through the process described by Harris (1987) .

Yk-3 = 1.7143Yk_4

Yk 1.0732Yk_l Yk-3O.9512Yk_2= +

This produces a power spectrum with two pronounced
resonances.

i
! Data bas been analysed for 128 x 103 points.
I periodogram method. this has been analysed using
I 128 paints. whilst for the correlation method a
window of length 128 points is introduced.

For the
blocks of
triangular

The periodogram method is again inferior to the correlation
method. both being worse than the new method. Figure 2
shows how the errors in spectral estimation vary with
frequency. the frequencies of the maxima corresponding to the
resonance frequencies of the system. The maximum error is
approximately I(lOA. of the true value. Numerical results of the
from of Table 1 demonstrate very similar quantitative
advantages of the new method.

Input-output data of the two systems as described above has
been used for frequency response estimation. The new method

,again shows Significantly superior results compared with the
. earlier methods. However in this case the periodogram
method is superior to the correlation technique.

TABLE 2 Errors in Frequency Response Estimates

Length Pe r IodogralD Correlat ion New Method
of Data

Error Best fit Error Best Ci t Error Best fit

128 133 1.02 199 0.86 133 1.02

128xS 39 1.004 112 0.86 38 1.003

128x10 17 1.003 108 0.88 16 1.003

128x102 1.8 1.003 95 0.90 1.7 1.002

Table 2 gives a quantitative comparison of the three methods
for the fourth order system. Figure 3 shows. for the same
system with 128 x 102 data points. the variation of magnitude
of error squared of the frequency response estimate withI frequency.
CONCLUSIONS

I
This paper has drawn attention to the effect of the location of
missinC points on the resulting spectral estimates. This effect
has not been considered iD detail In earlier papers. but it hu
a substantial influence on the errors introduced by these
missing points. Simulation studies have demonstrated the
improvement iD estimates of power spectral density and of
frequency response which follow when the position of the
missing points .is included in the analysis.
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DERIVATION OF THE POWER SPECTRAL DENSITY
ESTIMATE

The true and estimated power spectra are

APPENDICES N "R + X~
Appendix 1

- N
DERIVATION OF THE AMPLITUDE SPECTRUM ESTIMATE

k3 and k. are chosen to minimise separately the expected
value ofFrom equation (2.1). the estimate of the real part of the

amplitude spectrum is

XR(fl) = k, YR(fl)

E[XRYR)

E[Y~)

and

where k,-

This gives
E("R YRI

E(YR.I

XRYR - (LXI cos 10).(LxI cos 10 - LXm cos mn).
M

E(XRYRI - E(LxI cos 10)21-E(LxI cos 10 LXm cos mnl
H

E(Xi Yjl

E(Yjl

N
- Sxx - L2, H

r, q2 [ ;

Since XR and YR are zero mean normal variables.

cos2 mn E(Lxl xm cos
I

L cos2 mn ] .
M

+

3.[E(Y~I)2

The factor f, is equal to the ratio (power spectral density
at the frequency 0 ) .,. (variance of the process xi)'

Similarly YR - (Lxi cos 10 I:xm cos mn) 2
M

gives k,
1

3

Agam. assuming that the missmg points
separated such that

are adequately
N

With E("RI - 2" r, q2

IAppendix 1. the required
derivation applies for k ••

and using the expressions given m

result is obtained. An identical

E(YRI - q2 [ r, [ ;
An identical derivation gives
(cos mOl throughout.

2L cos2 mn] + L cos2 mO j'M H '
k 2 with (sin mO) replacing:

8
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Abstr.ct. A t~hniQu. is described for the adaptive control of nonlinrar systemA.
The method is b.a.d on a cOlllbin.dH._ratein ..ARMA avatem Wlodel, and le centred on "
Cen.r.l Predictive Control Sch.... Th. ov.r.ll procedure ia te...ed Nonlinear General
rredictive Control and eMploya a recuraively calculated control al,orlthm ~hich is
~i.ed at .akin. the technique applicable in • pr.ctical sense,

fn the Nonlinear General Predictive Controller deacribed, the nonlinear and I inertr
'1stem characteristics are tre~ted separatelv. r0 this end a simple r00~ s0lvln~
")(erClse. dependent on operation within a recuraive, tunln, alaorlthm. IS pmploy ..·j -o
find the inverse Hammerstein characteristic para..eters which forlllthe nonlinear prt.t.
It la shown th.t the a•.e Hammeratein procedure can be used to (orm a Nonlinear D~ad
Beat Controller, and the resui ts of such a controller in operation '1r!!comp'Ired WI til
~hose of the Nonlinear General Predictive Controller.

Keywords. Adaptive control; nonline.r control syste.. ; predictive control: discr ..te
~lme systeme; self-.djuatinl systelll•.

INTRODUCTION

As the employment of computer based adaptive con-
trol sehellle.become • .ar. wid.ly acceptable, in •
pr.ctic.l .en•• , .0 controll.r. ~.t beco-. ~r.
vers.tile in t.....of the type. of plant on which
th.y e.n b. operat.d, In particul.r, ••If-tunin.
control techniqu •• ar. b••ed on the philo.ophy
~h.t the sy.t.. to be controll.d can b. r••arded
e•••nti.llv, •• bein. line.r, For a larce number
~r sy.te••• uch an appro.ch i•• ccept.ble, any
rel.tively ·sm.ll' nonlinearitt •• , aueh ••
sttctlon .nd mtnor hy.t.re.i., b.ln•• fe.ctiv.ly
lin••rized by the controll.r. Tht. r.ault. in •
p.rfo....nc. which i. d..-ed to be .11 ri&ht, but
which i. n.v.rth.l ••• w.ll below th.t Which would
b•• xp.cted, h.d the plant been p.rf.ctly 11n••r.
In ord.r to arrive .t .uch i.provad control over
.y.t... with ...11 non11neariti .. or to de.l
effici.ntly with .tronc1J nonlinear .,e~,
whil.t r••pina the benefits of •• elf-tunin. con-
trol .l.orlth., the nonJin ..ritie• .ust be t.ken
care of ln an appropriate fashion,

A lar,. n~ber of dlffennt typee ot nonlinearity
can occur ln practice (Atherton, 1875; Cook. 1888'
which ..ana that the e.tenaiOft ot a b..ie 11n...
~ontrol .ch_ to _t tor all poaaU,Uit1 .. i.
not. r••li.tic proposition and would nec...arily
r••ult in • bank ot poaaibl. contro11.rw which
require .n e1.-.nt ot operator ••lection and hence
• re••onabl. depth of plant knowied••, A.are
s_ibi. approach to the ..... 1_ i. to _101 a
rr..awork with which a larae IUlber of nonlinear
plant. con be ..... tel' "'Ued. rt h.. been
round th.t the .alt .uitabl. solution within the
ri.ld of s.lf-tunine control 1. the u.e of • para-
m.tric plant de.cription vi•• ~rat.in .od.l
(~nbUIII.nland Co-Work ...., 1911; Lachmann, 1982:
"I.rv.l .nd S.bora, 19171. Thi. IIOdel b•• ic•.uy
~on.titutes • lin.ar ARMA ayet.. .adel coupl.d
..ith a polynotaial .!Cpr .... d ln po •• r. of the con-
~rol input, lIythis .._ the plant to be con-
~roll.d 1. thoucnt at .. conaL. tin. of • lin.ar

part ca.c.ded with a nonlinear part. The ARMA
mod.l 1s then used to r!!present th!! linear port,
whereas the e)(tr. power polynomIal anpro)(lm~t~s
the nonlinear part. In fact such an lInderiYlng
philoaophy h•• been shown as senlllble "'Ithln a"
adaptive control .che.. (AnbUllleniand Co-Wnrkers,
1981; Lach••nn, 19821.

An .daptive nonline.r control scheme is described
1n tht. p.p.r with the H.mmerstein lIIodel~A • cen-
tr.l the...in a control alllorith..whiC'h is a non-
11n••r forlllof aeneraUsed Predictiv~ con er-ot. The
re.ultant controller retains the flexibility of
the line.r ayat.. Ganer.l Predictive Control for.
(Clark•• nd Co-Workera, 19871, and y~t also h:lll
the .biUty to de.l effectively with a !ar"e n..mher
a! nonllnear .y.t.... The ov.raJl controll~r d~sign
procedure involve. two distinct part~, suC'h that
the ..thad i. indir.ct, one de. Un. wlth the line.r
.le-.nt •• nd the oth.r with thl"nonlin ...r eLe_nts.
On the .aau.ption that the computer b~••d .ad.l nf
the plant i•• lood repre.ent.tlon of the .ctu.l
plant, • 11n.ar controller ill d8!liln~d tn provltif'
a.lf-tuninl (Jen.r.l Predictive Control for the
linear p.rt plant .ad.l rel.tine pseudo-input x(t)
to actu.l plant output y(e) . The inv.r... (u""Uon
ot the nonlin ••r part t. then found, In ord~r to
obt.in the actual plant input .iln.l u( t }. Th ..
lnc.r.adlat. pseudo-input x(t', 1. the input tn
the Unear part .y.ca. .nd .ho th .. output nr the
nonline.r p.rt .yat.. , it 1~ thf'refore nr)t a
....ur••bl. quantity, althoulh it c~n be I"stimated
.ithin the model due to the proceBa .~pornbilitv
(IIUlin... nd 'akhouri, 19713). It;ill·<IOrthnnUn.
th.t i! the actual ayat.. prov•• to be, t~ nl L
intent. and PUrp08H, line.r,1I1)the nv~ral1 control
probl... reduc .. to • 11ne.r IJen'lralrr''!dicttve
Control r.quir_t, and this red'Jction property
i•• 1.0 f'xhibit.d by the controller d"scrihed hrr~.

The fe.aibillty of H~...ersteln m~df'l based adaptlv"
controllers h.1Ibeen studied tn ~n ~.r'!nt (f;rimhl...
1985), and th1a haa hilhlianted • m".Ior proPiclIIIn
the u•• of such modeLs ~s b"inq th" n .. ,. .... Slt\· fnr
the on-lin. computation of ,.root salvIna 'lll1;ocltl,m



~vpry r~cursion of ~hp controller updatin~ prc-
~~d~r~_ Net only is !his an extr~m@lv ti;~ con-
suming process. which can be ~ particular problem
when the samplin2 period is small. but also the
a::aracj of the root solVIng routIne. which is
needed to obtain a unique aolution to the non-
lln~ar plant model polynomial. can be poor. can
produce stability problems and usually requires an
odd number of polynomial roots.

:n rnis paper a novel approacn 19 taKen by the em-
ployment of ~ ",mple onl!step Newton-Raphson Ite-
ratIon. every rl!cursionof the overall algorithm.
ln place ~f ~ c~mplex r~ot solving routine. The
technique ~ake. use of signal values from the pre-
VIOU. recursion of the algorithM auch thst on-line
computation tiMe is reduced to that necessary for
a few multiplicationa and additiona. The end re-
sult is that. becau.e each input .il"al applied is
based on its previously employed value. the tran~-
mitted signal is filtered a. it is applied to the
plant. thus input .1anal v.ri.tion., fro- one
s~ple period to tha next, are reduced. A poaitive
feature of the controller i. thererore the re-
duction of control input .wi~. which are often
not realiaabla in practice due to actuator 11.ita-
tiona (Payne, 198&; Warwick, 1988).

Detaila or an i~le ..ntation .tudy are given to
show how the nonlinaar adaptive General Predictive
Controller can be realiaed, in • practicel sense.
and perforManca relult. indicate how the ..thod
cOMPere. with another adaptive control ache..
b..ed on the .... approach to dealinl with non-
linear tendenciea but with a different central
control obJactiv.. An adaptive nonlin.ar Dead-
beat Controller wae chosen for this purpose. in
order to ahow the flexible nature of the control
approach.

PLANT JIlDlL

It ls assumed that the plant to be controlled can
be adequately repre.ented by the 5150 discrete-
time Hammerstein model of the form:

Ay(t) • Bx(t - 1) + Celt) (l)

where the polyna.ial. A, 8 and C are defined aa.
-n

A • 1 + a,q-' + + an q a.......
•

8 • b, • b,q-' • ...... • \, q '""b
(2)'

-n
C. 1 + c,q-' + ••••••• + c q C

ne
in which q-' i. the un1t backward .hift operator, '
.uch th.t q_i,(t) • ,It - 1). Al.o I,(t) : ttt)
1. the .,.tee OUtput MqI,I8IICa Md '.It) : tnt 18I
a di.turbanca arrectinl tha .y.t.. whereby
'aCt) • r(t), •• 1 - q-', which allo•• ror non-
.ero orr.et on •• ero ..an, white nolae .1anal,

,Turr. and Clarke OMS).

The inter.adiata variable, K(t), i. the nonlinear
el.-.nt output and the linear ele.ant input. and
i. derined by

• (t) • (3)

~ra (uCt) : tttl i. the .yate. input aequenc.,
and 1a the aequance actually applied to the plant

It can ba not.d that the tran.port delay, rel.tinl
input to output in the .y.ta. ~del or eq. (1), ls
liven aa unity - this i. done only to eaae the
followlnl explanation of the controller. in

g-::oner31 thro techni1'j~ ,jp,?-~:: P.! .',rvs ""l"_~ .,~,:
~p~cl{ic tI'1nsport j~l~Y

fn th~ ~d~ptiv. ~"ntr~ll~r ~p~rrl~pd ~n ~his r~r.r
the par emet er-s 'Y

i
• at' b\ and i ndeen r- 1 can 0'-

estim8t~d by an enhancerl rprursiv~ least SQ~ar~g
pr~cedure fKortmann and Unhph~!J~n. 1987; Shah ~nrl
Cluett. 19811)...hen tne plant m,~,j .. l is "ontin\J~""I'..
upd~ted within a self-tunlnR algorithm. It is ppr-
h::\pos e a s t e r- h(1\tr'~ver. for +-tu.. rf'l"~~r .." i n i t i a l l .
c orisi der- these parameters as b("lthfixed and 1<"","
0r id@ntified valu~s, ttl~ r~Qulrem~nt for tnpm '_0
he recursively estimated can then be reIntroduced
at a later time. apecifically for adapt1ve control-
ler purposes. To simplify the explanation thoURh.
it will be considered that C ~ 1. i.e.
ci ~ 0 : i a 1•.... nCo noting that the method
can readily cope with colored noise. should this
occur. Naturally, this means that when the recur-
sive eatimator 1. employed. the Cl parameters need
not be included in the estiMation procedur~.

PREDICTIVE CONTROL

Althouch the intention of thi. paper is to pri-
.arily put forward the concept of a particular
adaptive controller for nonlinear systeMS, never-
theless a linear adaptive control algorith. is
central to the th.... Mainly because of its posi-
tive attributea and widespread application possi-
bilitiea. a predictive control Method haa been
selected 1n the rirst instance. and this is now
described.

A prediction of the plant output signal 15 reQuirrd
as a fundaMental aspect of the controller con-
sidered. and thi_ is ba.ed on information available
at a particular tiMe instant. By conaidering
..rely the linaar part oC the plant repre.ented in
eq. Ill, a prediction of the output aignal at time
inatant t + k i. directly obtained. based on infor-
mation available at tlme instant t. where the ln~~x
k indicates k sample periods in th .. fU~lJr... For
thia purpo.a a diophantine identity ia introduced
1000na and Warwick. 1988).

( 4)

where k ~ 1 and 'k' "k are polynomials which are
unique Cor any liven prediction horilon k and plant
polyn_ial A•• uch that

-na+ f q
na

! • 1 -, -Ck-llk • elq + •••••••• + ek_1q (5)

If MW sq. (1) 1.... ltipl1ad throupout by
kq Ek' and the diophantine identity. eq. (4), i_

.ade use or. it rollow. that

y(t + k) • BEk'x(t + k - I) + Fkylt) + Ek<lt + k)
(6)

'in wh1ch the disturbance teMl_ Ekdt + k ) are all
,future valu••, fr_ tt.e t, due to the fact that
the Ik polynOMial ia of order k - 1•
The optimal prediction of the output sianal at time
inatant t + k, ..de .t tiMe inatant t. is therefore

y (t + kit) • BE 4 x(t + k - 1) + I'kY(t )k_ (7)

where yet + kit) indicatea the predicted value of
the actual output slgna1 y(t + k). given the in-
forMation available up to and including that at
time instant t.
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function [rc,xm1)=dbc2(tempy,pm,phi,c)
format compact
clc;clg;
% the function started 20/3/1989.
% this function is used to design directly
% a deadbeat controller with an algorithm given by
%
% B(l)U(t)=B*U(t-k) + A*[W(t)-y(t))
n=length(pm); rc=O;
nb=c(1);na=c(2);
am(1)=1;am(2:na+1)=pm(n-na+l:n,1)';
for i=1:3

rc=[rc,sum(pm(2+(i-1)*(nb+1) :1+i*(nb+1),1)'));
end
xm1=pm(2:n-na,1)'*phi (2:n-na, l)+am*tempy' i



As an as~de. it is easy to see from eQs. (6) and
"). that the actual system output can oe r"q:arded
'15

.; ,~ • K) = v (t • k I Cl + F.. c I t • k 1 1'31

:': is t:hou~h, possible at any time instant t , ':'J
~~lect a rqnqe of values K for ~hich an output
predict10n ~an be made. Assum~n~ that a set of
0UtPUt pr~dictions are to be made. from k = 1 to
k • N, where Nil. then eQ. (6) can oe written ~n
vector form as

'l • G~ + f • ! (9)

i n .h,Ch l ;y(t. i ! , ....... ylt. Nil

;r • (6~(t). 6x(t + 1)•...• 1x(t +

and

N - 1) J
(10)

• 2)••..• fIt. N»)(f(t. 1). fIt
+ 1I.E, dt. 2)........

ENdt + N»)
notinl that IT indicates the transpose of 'l'

In eQ. (9). the matrix G is of dimenSion N x Nand
t,as el~m~nts such that

g, 0 " ••..•..•...••.... 0

", g,
<,

s, <,G z
0

(11) 0

"N-l gN-2 <, g,

where the ~i parameters are obtained from the inte-
grated plant step-response, i.~. "i = hi:

(12) ,

The vector G! 1n eq. (9) represents a set of un-
known valuea. due to the i vector. at·time instant
t - the elementa in G are-themaelves assumed to be'
known. if the plant ia known or available from
parameter estimations in the adaptive case. Note
also that the silnal x(t). and therefore 6x(t). is
unknown until it h.. been c.lculated by meana of
the control allorithm and .ub.equently applied to
the plant. thus at the instant that the output pre-
diction. are made. it i. an unknown eignal

The vector f in eq. (9) repreaenta a set of known
value. at tr.. inatant t•• uch that the individual.
ter.. in ! are ,iven by

(13) .

where
- (8· [h h -I -(k-ll). ~. <Ok - ,. ,q •.•••• + h

k
_
1

}

.h(t+k-l) (14),

So. the vector ot tuture output al",al. l. can be
conaldered. fro. eq. (9). to conaiat at tlme in-
atant t of a vector of unknown ailnala Gx. a
vector of known aianale !. and a vector of noise
ai",a1a !.

CONTROLLER DESIGN

The overall control al.orithM de.i~n is made up of'
two distinct parta. connected by means of the
intermediata variable x(t). and relatln~ to firstly
the linear aysteM part and secondly the nonlinear
.yat.. part. the linear part i. consldered first ••
snd for predictive control a finite horizon cost
function can be written aa:

/ ()::.)

il N

J [y (t • k 1 - v t ~ • ~ ) )' I Lk I.

i .t X ~ t • 1,,; _ 1) 11

·....here f~ 1.S the maXlmum o r e d i c t rco n o r Lz c n .. :\ r, .~

~ refl!rence input s i ana L, app Li ed .::Jt: "',l""'~ i ns r an r
t , and l(k) is a cosri nz appLi ed '.0 r.he con tr ol
inputs. It is '.North noting r ha t ...~(> ou t pu t. nn1
control input horizons have boch been sel~cted as
N. this is by no means a necessary reQuirement, in
fact other control horizon sel'!ctions for linear
General Predictive Controllers have been inve.ti-
gated elsewhere (Clarke and Co-Work~rs, 1987:
Warwick and Clarke. 1988).

The control objective is to obtain a vector of
future control inputs x which will minimize the
expected value of the cost function (15). flowthe
expected value of J is

EIJI • EI(G~ + f T -
• • - ~) (G~ • ! •!. - ~)

T -
+ ! ~~I ( 16)

,where E{.) si~nifies the ~xp~ct:e~ va lue , an d ~ is
an N x N d iaaonaI ma t r i x .n0S<'II'1!;]~onal.,1~m..nt5
are: ~(1). ..... I (N). A Iso

vT • [v(t • 1). v(t • 2). ( 17)

denotes the future set of ref..rence input values ,
i.e. the required trajectory.

By differentiating eq. (16) with respect to ~ and
equating the result to zero, a cost function m1nl-
mum ia given by the optimal control
- T -, T
~ s (G C +~) G (~ - r) ( 18)

such that the first row of this equation can also
be written 8S

() ( ) _T( _)x t • x t - 1 + a ~ - ~

~here iT is the first row of (GTe + ~)-' CT.

(19)

The control signal x(t) is the si~nal which. if
the system was linear. would be applied as the
control input. It i8 b••ed on a set of known
future reference signals v alonl with the known
vector f. aa can be seen from eq. (19). In fact
the aignal xCt). obtained in eq. (18). is an
inter_dista variable. found as a solution to the
linear predictive controller problem. It remains
for tha nonlinear part of the controller problem
to be aolved. whlch 18 done directly, r_berin;
that the control .1lftal applied to the actual
(nonlinear) plant. ult) ia related to x(t) by
meana of eq. (3)

The nonlinear problem. can in thia case. be atated
o sa: liven any aianal x(t). at time instant t. and
'tha sppropriate coeffiCients Yi : i ,,0 ..... ny •
Ifind the control lnput al",al u(t).

,Fro. eq. (3) it can be noted that

x(t) •• Iu(t)' (20)

where .(.) denotes a functional operetor. in
thia case a HamMerstein model polynomial.

However. we actually requ~re:
OJ 1 ~) = t {)((t) ) 1;>1 I

~hiCh means that a root of the Hammerstein model
poiynomlal must be found 1n oreer to produce a
possible signsl ult).

A simple solution to the polynomial can ~n fact



~- ,
i ..;) _-'

~e found by the Newton-Raphson rec~rsive method
'erald. 1978). whereoy

l)\U"ft)) - xct)j
, ~) ~ 11 (t)

.. L n I' [u (t))
(22)

....n i cn ':"r.~ subsc r i p t; n -i~notes the ordf!r of ite-
c~tion. s~cn that the (n. l)th iteration is
:c~ained fro~ the nth l:~ration, n ~ 0, and

"fu (t) I
n

fu (t) I
n

A discussion of implementation policies with re-
~~rd to thl~ ~l~orithm. including initial value
3electlon and avotding problem areas. is carried
out in the following section.

CONTROLLER IMPLEMENTATION

The adaptive discrete-ttme controller described ln
thls paper requires the followlnl course of action
every aample period:
1. !Jpdate a recursively estimated model of the

plant.
Z. Calculate XltJ via eq. ll9}, uSlng the estt-

mated model parameters.
3. Calculate u(t} to be applied as the (n+l}th

iteratton of eq. (22). It is suggested here
~hat n : 0 will suffice.

d. Apply u(t).
However. several problems occur when applying eq.
(22), the first being that .'Iunltll ·0 in the
neighbourhood of a solution. This is an extremely
criticsl point becauae in practice lt cannot be
guaranteed that the calculated function derivative
will not approximately equate with zero after any
particular recursion. due to model variatlon,
estimation error and even an unsuitable initial
value. Another probl.. ls the possibility of no
real root of the polynomial existlng, thus causing
alaorithm breakdown. In order to overcome these
problems, whilst retainin, stability, the fol-
lowina possibilities arise.

'~en .'(unlt)1 .0 it 111either the case that
unIt) is a root which aatiafiea the polynomial or
it is not. Thi. can easily be checked by takinl
account of .Iunlt). -x(t), which will be within a
preset small value, l.e. approxi..tely zero, if
unit) 1s a root. However, if unIt) i. not a root
than a new alternative initlal value is .-ployed
and tha recursion proc..a i. r..,..ted. It no real,
root ex1sts and/or if several searches have baen
carried out with alternative lnitial values, a
MOnitorinl loop instructs the root solver to etop
end a default is taken .uch that ult) • xltl/o,
where a ls a positive constant,

The polynomisl order can, if it ls so desired, be
rntrictad to an odd rwMMr, thereby ansurin, that
there is at la..t one real root (~i and C0-
Workers. 1981). This procedure csn thou,h intro-
duce modellina errors and certainly restrict. the
type of nonlinearity which can be considered. In
this paper therefore, no euch re.triction i.
placed on the Method described.

The initial control input sl,nal value for eq.(22)'
is taken as u,(t) • ult - ll, l.e. the initial
'1aluefor the iterative start up at time instant t
l~ equal to the control input actually applied at
~lme instant t - 1. This ia an extremely auitable
,choicewhen reference tnout chanaes are either
smail or infrequent and/or when the algna1 to
noise ratiO of the plant 1s high. Yn general lt
is found that with this initiali.ation procedure,
only one or two iterations of eq. (22) are nor-

~allv r~Quired before a ~ood aporoXlmation of 'hp
solution root is obtain~d. In "he ~l~orlthm pre-
s4?nted in +nis paper, "r.~ root s""l\!in~ prr:'!r:::-.tj!Jr-
.'moLoyed involves only a 3in~te l~"ration nf ~~.

~l each time a ne... so l ut i on i s ~"'n'Hr~(i.do· ...·!~'J~lr·.
~f the solution, at a pnr ti cu Lar t::'"":f' i n s r an t , ,")r-';

~~t:" fit: '~ell the po l ync= i a l l~ --:·:~st:l::"n. 1. !':r"';o,"r
preset number of i t er-at i ons ':3n ['~ = a r r r e d 01lt- "r-n

actual number dependin~ on tne lnter-5am~le P~;l~d
available. If the solution is still not good. an
alternative initial value is applied. as described
earlier.

To summarize. the nonlinear G"neral Pr"dictivp Con-
troller described her~ ~onststs of the foilnwln~
~eQuence of events durtng every sample perlod. the
plant under control beina periodically sampled.
1. Sa.ple plant output (at ti~e instant tl.
2. Updata plant model coerficient estimatea usin~

enhanced recursive l.sst squares. Note: both
the linear part coeffiCients ai' bl and the
nonlinear part coefficients 'i are updated.

3. Usin. the estimated linear model coefficients
3i• bi' calculate the linear lnt~rmpdtate Sl~-
nai x(e) frOlleq. (19).

d. Uslnl the sln,le-i teration Ijewton-Raphson method
eq. (22). calculate the actual plant control
input u(t) from the esttmated nonlinear model
coefficients Yi and x(tl.

S. Apply u(t) to the plant input.
6. Store all appropriate data and coefficient

estimate values.
7. Wait for samplina clock pulse then go to 1.

IMPLEMENTATION STUDIES

In order to investlgate the usefulness of the non-
linear General Predictive Controller. described in
the previous section, the control of a plant with
distinct linear and nonlinear parts was simulated.
The aame plant w.s also placed under the control of
a nonlinear Deadbeat controller. based on the same
nonlinear part desl1" features. in order to show
the leneral applicability of the method.

With reference to eqs. (1) and (2) the linear
systea part was re,arded as conaistin, of:

A • 1 - 0.9 q-' and B • 1 + 2 q-I

whilst the nonlinear part was reaarded as con-
slstin, of:

xlt) • 1 + ult) - u'lt) + 0.2 u',lt)

such that the linear part ls open-loop .table and
non-tdniaUIIIphase.

An enhanced nonlinear.syst.. RLS par...ter asti..-
tlon procedure w.s .-ployed, with a fixed for..t-
tina ractor or 0.95. al.o no noi.e wa. introduced
into the system, e(t) • O. Further, it was assuaed
within the par...ter eatimator. that the .adel
structura was known.
In order to consider tran.ient behaviour, a se-
quence of set-point reference values was aa.iIMed
as follow.:

Samples Reference
1-10 20

11-30 20
31-50 'i0
51-70 20
71-90 0

The cycle 11-90 samplea was then repeated periodi-
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Fi~ures Land 2 show the behaviour of a nonlinear
~@n@ral Pr~dictlve Controller ~lth N = 10 and
I(~I = C" f"r alI k , :h~ pr-e d i c t t ve nature of the
controller can be clearly seen In the plots, _here
,dvance Knawled~e of a reference value change has
~llowed f~r the actual output slqnal to commence
its distinct set value variation before the
actual alteration in reference value has occurred.
This has resulted in an overshoot free output res-
ponse once the initial tuning ,in period has been
passed.

,i~ures 3 ,nd 4 show the behaviour of a nonlinear
Deadbeat Controller when operatlng on the plant
model described. It can be aeen that follow1ng a
change In reference sianal. the syate. output
reaches the new .et-point artar only 2 s.-pla
periods and no overshoot occurs. Thesa result.
ara those which would ba axpected rrOll a Deadbeat
Controller oparating on a purely linaar plant
(Warwick. 19861. tha 2 •.-pl. periods corres-
ponding to the SUIII of the dead ti_ and the order
of the B polynomial. both or which are unity.

CONCLUSIONS

Adaptive control has been shown to be an extremely
useful tool for certain time varying systems,
~hese systems have, in the .ain, been regarded as
linear. In this paper a self-tuning control algo-'
rithm has been preeented, which. is based on
either General Predictive or Desdbeat control,
and which deala with .any typea of nonlinear
system, i.e. those eyatem. with nonlinearitie.
which can be adequately repreaented within a
Hammerstein model. The major computational root-
solving problems that are inherent with such an
algorithm were avolded by the us~ 0f A ~imple one
step Newton-Raphaon root solv.r. In ract .uch an
approach can be taken with the employment of dif-
ferent type. of linear part control algorith~,
e.g. pole place .. nt or opti .. l. The characteri-
stic. of any particular linear control objectiva.
e.l. Gener.l Predictive Control, ara ret.ined in
the nonlinear controller and hence much .ore
attention can be paid to the nonlinear ~odellin,
technique.

Tha adaptive controller daacribad in thi. paper
oparate. erficiently whathar the sy.t .. under con-
trol is linear or nonlinear. however a datailad
theoretical analy.i. or controll.r b.haviour.
particularly traneient behaviour. i. or littla
value e.capt in .~ very epecltlc c.... - thl.
i. a COMmOn point with .alr-tun1nc control allO-
rithM.. Tha rea.ibility at the nonlinear General
Pradictive Controller wa. thar.rore inva.tiaat.d
alon .. lda a nonlin.ar Deadbeat Controllar. by
Meana of .ome .imulation .tudia •• re.ult. rra.
the.e .nd others indicat. that both controll.rs
can not only be vary .ucc ••• fully appliad to non-
lin.ar .y.t.... but &l.o that the, can ba appli.d
in a relativ.ly .iMpl. fa.bion.
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ABSTRACT

This paper considers the spectrum analysis of finite duration records where the
available data contains one or more uncertain observations or missing points. A new

direct method is developed using an unbiased or minimum mean square error criterion to
obtain estimates of the Fourier transform and the power spectrum density of the complete
data record. The analysis is extended to include frequency response identification of a
wide range of systems with missing data at the output.

It is shown that it is important to consider the position within the record as well as

the total number of the missing points. One result of a periodic distribution of the

missing points is the production of a spurious periodicity in the measured power spectrum.

It is believed that this phenomenon has not been reported previously.

A comparison of the new method with traditional techniques is presented, and
simulation results demonstrate the resulting improved performance.

Keywords
Spectral analysis, Data reduction, Missing values, Frequency response.

Notation

u

x

y

X(D),SxxCD),etc.
A

X

M

CTX2

SyyCO)
GCO)

E[.]

x*
CM

PM

UNB

MSE
D

system input, no missing observations

system output, no missing observations

system output, with missing observations

amplitude and power spectra

estimate of X(D) based on Yen)

number of missing points
variance of specified signal

smoothed value of SyyCD)
system frequency response

expectation
complex conjugate of X

Covariance Method

Periodogram Method
UNBiased or UNB criterion
Mean Square Error or MSE criterion

harmonic frequency
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1. Introduction

In time series modelling and parameter estimation, a common situation is met in
which the measured sequence is not a complete set of the observations, but the
measurements corresponding to some time instants are missing, not known or unreliable.

Missing data can arise from a number of causes, such as failure of recording
equipment, clerical errors, rejection of outliers, or because of an inability to observe the
phenomenon at certain times. The pattern of the missing data, Le. the distribution of the
missing data position, may be in one of two categories, one deterministic or periodic, as
in the case, for example, of a single sensor which is time shared to measure and record
different processes, or a random or aperiodic phenomenon as in the case of an unreliable
sensor which fails intermittently.

One solution to the problem of uncertain observation is interpolation (Bard 1974;
John and Prescott 1975; Jarrett 1978; Smith 1981), which estimates uncertain values using
the known values and then reconstructs the time series. However, all the authors rely on
parametric models of the process, which is not always desirable in frequency domain
analysis. The methods become quite complicated when adjacent missing values are
encountered.

Other preferred methods do not reconstruct the original time series from the given
observations, but introduce direct compensation of the measured statistics. These require
less a priori information, and may require less computation effort than interpolation
techniques. Notable contributions include Jones (1962), Parzen (1963), Nahi (1969),
Robert and Gaster (1980), McGiffin and Murthy (1981), and Harris (1987). A good
survey can be found in McGiffin and Murthy (1980). The earlier methods are outlined to
permit quantitative comparisons to be made with the new :technique introduced in this
paper.

There are two general methods currently available for Power Spectral Density (PSD)
estimation with uncertain observations. We call one the Covariance Method (CM), the
alternative technique the Periodogram Method (PM). A brief introduction to these will be
presented after a definition of the problem.

The time series, assumed normally distributed, with no missing observations is written

x Xl' .•. , xi, ... , xN I,N.

With missing observations, the series is written

y (1.1)

where gi = 0 for a missing point and is unity otherwise. The missing data consists of M
missing points, a member of this set being xm·

The discrete Fourier transform of x is

X(m
N
r Xt(cos in - j sin in)
i-I

where n
2rk
N

with k integer.

The power spectral density is

X(n)X* (n)

N

2
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Alternatively, the power spectral density can be expressed in terms of the measured
autocovariance function according to

N
Rxx(O) + 2L RXX(T)cos(DT)

T-1
{1.2)

where
1

N
N-r
L XjXj+T
i-I

for T > O.

The covariance method for spectral analysis with missing points (Jones, 1962; Parzen,
1963; McGiffin and Murthy, 1980) uses eqn.(1.1) to give

Knowing the positions of the missing points, Rgg( T) can be calculated to give

N-T
Ryy(T) L Y1Yi+ri-I

N-T
Rgg(T) [ gigj+r

i-I

~ Ryy(r)
RXX(T) Rgg(T) {1.3)

~ By eqn.(1.3) computing N + 1 covariances, consistent estimates can be obtained as
Rxx( T) converges to the true value as N -+ 00 (McGiffin and Murthy, 1980), then using
eqn.{1.2) the spectral density of x(t) can be estimated.

The main drawback of this method is that different covariances are computed with
different accuracy since the variance of the estimate RxX<T) increases with increasing T,
Clnd for a given r it decreases with increasing value of the denominator of eqn.(1.3) for
Rxx( T), thus for a given sequence with a particular pattern of missing observations,
determining the optimal T'S to be used in computing RxX<T) is a difficult problem and has
not yet been studied (McGiffin and Murthy, 1980). Another disadvantage of this method
is that the estimate is not statistically efficient (McGiffin and Murthy, 1980).

An alternative approach termed the periodogram method, denoted PM, (Harris, 1987)
is based directly on the measured power spectrum SyyCO). This is defined by

where (N - M) is the number of non-zero terms in yet).

In general, both the above estimators are sub-optimal, as discussed later in this
paper.

The new estimator of the property ex (for example the power spectral density) of
the process giving the sequence x, is derived from the estimate of ey from the sequence y
according to

~
ex k ey

where k is a frequency-dependent factor chosen to satisfy a criterion such as zero bias or
minimum mean square error. This real gain factor k .depends on the true value of ex'
A recursive method was introduced to determine its value in the authors' previous work
(Douce and Zhu, 1988). in which simulation studies sh~wed that the. recursion i~trodtJced
converges rapidly for the wide lange of examples considered. A direct meth-ou .....itl t>".:

3

-----------------------



presented to obtain the same results with significant reduction of computing time in this
paper, accompanied by revised criteria for the specification of the gain factor k.

2. Estimator for Fourier Transform

The Fourier transform X is conveniently estimated from the ",observed data y using the
MSE criterion. Writing X = (XR + j XI> the estimate is X = k 1 YR + k 2 j YI
where k, and k 2 are chosen to minimise

E [(X - X) (X - X)*] .

Differentiatin& with respect to k, and k2t and setting the differentials to zero gives

k, and (2.t)

The appendix derives expressions for k 1 and k 2 on the two assumptions, used
throughout the paper:

(a) The missing points are separated such that the cross-correlation between values at
missing positions may be neglected, and

(b) The missing points are not too near the end of the record.

k, [
YR + Y1 - (N-M)0'2 ]

1 + L cos2 roO(N - 2M) )'R

where the summation is over the missing points. A similar expression holds for k 2' with
YR 2 replaced by YI2 and cos2m!l by sin2m!l.

3. Estimator for PSD

The reason for the introduction of two gains in the Fourier transform estimator is
that there are two independent variables, the real part and imaginary part, in the
criterion. However, the PSD estimator is a real variable, hence just one gain k 3 is
required. First, the UNB estimator is developed to satisfy

Using the results developed in the Appendix, the gain k 3 is

E[XR + xp
)'2 + )'2
R I

N [ Mu2 ]
N _ 2M 1 - )'2 + )'2

R I

Secondly, the MSE estimator is developed to minimise

Differentiating with respect to k 3 and setting the result to zero gives

E[(X2 + X2)()'2 + y2)]
R I R I

Evaluation of this expression involves the fourth order moments of the normal zero
mean random processes XI, XR' etc. The general result

E [ A 2 ] • E [ B 2 1 + 2 ( E [ AB 1 ) 2



is used extensively. The method is outlined in the Appendix. In terms of the known
second moments, the result is

(E[XR]+E[XI])(YR+YI)+2{(E[XRYRJ)2+(E[XIYIJ)2+(E[XRYrJ)2+(E[XrYRJ)2)
3 [y2 + y2]2

4. A Property of the PSD Estimation

The estimators developed in this paper give an estimated power spectrum of
magnitude proportional to the measured power spectrum at the same frequency. However,
missing points also give rise to spectral components at frequencies differing from the
components present in the original time series. In particular, periodic missing points lead
to a spurious component in the measured power spectrum which is periodic with respect
to frequency.

One qualitative explanation of this phenomenon considers the periodic missmg points
(of period P points) as a sampled version of the original sequence xCi). This sampled
sequence is subtracted from xCi) to produce the observed sequence y(i). The sampled
sequence, sampled at the low frequency (lIp), introduces aliasing of the original signal, so
that the original term at zero frequency produces alias terms at the frequencies lip, 2/p,
etc. This is a periodic phenomenon, giving a repetitive power spectrum, repeating over
(Nip) harmonic frequencies. This is clearly seen in figure 2, at high frequencies where
the true power spectral density is small.

5. Frequency Response Estimation

The importance of the frequency response characteristics is well known for system
identification and controller design. The essence of frequency response estimation is the
estimation of the cross-spectrum between input and output and input auto-spectrum of a
system. This part studies the estimation of the frequency response function from input
and output data of a system in which there exists missing points at the output. Formally
speaking, as far as authors know, there had not been any published result until the
authors' publication (Douce and Zhu, 1988) even though one can naturally borrow ideas
and techniques from power spectral density estimation with missing data.

The definition of the frequency response estimation is given by, without missing data,

where Sux is the measured cross-spectrum between input and output of the system and
Suu is the measured auto-spectrum of the system input.

With missing points, the cross spectrum has to be computed using an estimated value
for X based on Y. The estimate is selected to give an unbiased estimate of the cross
spectrum or to give a minimum mean squared error in the resulting cross-spectrum
estimate.

Considering first the UNB estimator, the parameters k , and ks are chosen to
separately ensure that real and imaginary parts of the error in the cross spectrum estimate
are zero. that is

E(Re(U*X) - k4Re(U*Y)]
E[rm(U*X) - ksrm(U*Y)]

o E[(URXR+urXI) - k4(URYR+UrYr)]
E[(URXI-UrXR) - ks(URYr-UIYR)]o

Define f 3 from

N L E[utXj] cos(i-j).
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Then
I ,
I

Nf3 - LL E[uimj) .(eosin eosjn + sinin sinjn)

Nf3 - LL E[uimj).eos(i-j)n

Nf 3 - Mf 3'

By substitution, k4 N and similarly for ks'N - M '
This important result demonstrates that the PM, derived on an ad - hoc basis for

spectral analysis, .is, when the stated assumptions are satisfied, an unbiased estimate of the
cross-spectrum. It therefore leads to unbiased estimates of the system frequency
response.

Second, consider the MSE estimator, in which the function

E[ (U*X - U*X) (u*X - u*)()* J

" "with XR = k4 YR and XI = ks YI is minimised with respect to k4 and ks'

Differentiating with respect to k , and ks leads to

and
E[U~XIYI + UIXIYIJ

U2y2 + U2Y2
R I I I

As previously noted, these higher order moments can be expressed in terms of second
order moments, and the details proceed as before. Lengthy expressions result, which are
not reproduced here.

6. Experiment Results

Two systems excited by Gaussian white noise have been studied to compare the
traditional and new methods for spectral analysis. The experiments have been completed
to examine the effect of smoothing over several blocks and over adjacent frequencies on
the resulting estimates.

In all experiments a block length of 128 points has been used. When the record
contains more than one block, spectral estimates are obtained by smoothing over all
blocks. When only one block is involved, spectral estimates are smoothed over adjacent
frequencies, using two frequencies for system 1 (defined below) and four for system 2.
When analysing the data using correlation function techniques, the whole record is used,
with a Bartlett window.

Three quantitative measures of performance have been used for the comparison. The
first one is the sum over all frequencies of the error squared between the true spectrum
with no missing points and the estimated spectrum with missing points. This is a measure
of bias and is given by

el
11" "n_o(E(A) - E(A»2

N

6



The second one is the sum over all frequencies of the MSE, that is

e2

11" ~
L E(A-A)211-0

N

The third one is a linear regression of the spectrum on the estimated again over all
frequencies, which is given by

fit

11" ~

n_oE(A)E(A)
11" ~
L (E(A»2
11-0

The first order system (SYS 1) considered is

in which uk is a white noise normally distributed signal of unity variance and zero mean
value.

The fourth order system (SYS 2) is the process described by Harris (1987), grvmg an
output produced by passing the previously defined white noise through the process
described by

Yk-3 1.7143 Yk-4 - 0.9048 Yk-5 + uk

Yk 1.0732 Yk-1 - 0.9512 Yk-2 + Yk-3
This produces a power spectrum with two pronounced resonances.

A wide range of experiments have been undertaken to test the improvements of the
proposed methods. In this printed paper, a small selection of typical results is presented.

Table 1 shows the results for power spectrum estimation with 10% missing points,
regularly spaced. The columns list the values of the criteria defined above for four
techniques. The rows are for increasing lengths of record for the two systems.

In all experiments, it is noted that

(a) The UNB method has the smallest measured bias (e1), and the fit is closest to unity,
and

(b) The MSE has, as predicted, the smallest measured mean squared error (e2).

(c) Both methods are, on all criteria presented, superior to the traditional CM and PM
techniques.

In frequency response estimation, it has been shown that the PM method, previously
used only for spectral analysis, corresponds to the UNB technique, and hence only three
techniques have been compared. Table 2 demonstrates the numerical comparison in tests
with 20% missing points. The new methods demonstrate their expected advantages, with
both greatly superior to the CM method.

For system 2, Figure 1 shows the various estimates, using a record length of 1000
blocks. It is notable how the CM method is unique in introducing very large errors at
low frequencies.

Figure 2 refers to the same experiment, in which the error squared for each method
is plotted against frequency. This demonstrates the previously mentioned large errors of
the CM, and also shows clearly the periodic errors due to periodic missing points.

7



7. Conclusions

This paper presents a relatively simple method for handling data records with missing
points, useful for the estimation of Fourier transforms, power spectral densities and
frequency response functions. Unlike previous techniques, the new method demonstrates
the importance of the position of missing points in the estimation process.

The effect of the periodic occurrence of missing points, leading to a periodic error
spectrum, has been predicted and observed in experiments.

Extensive simulation studies show the superiority of the method compared with two
previous techniques.
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APPENDIX

For convenience, define

sr , (ALI)

and let

where MR is the real part of the transform of the missing points.

From the definition,

2XR - LL Xi Xj cos iO cos jO .

Throughout the paper, summations with respect to i and j are taken over the whole
record, i, j = 1 to N. Summations with respect to m involve only the M missing points.

2XR - L cos2jO L XtXi-j cos(i-j)O ~ L sin2jO L XiXf-j sin(i-j)O .

Taking expectations, the second term is negligible, since E[XiXi-j] is even, whilst sin(i-j)
is odd. Similarly

Also,

E[XI] ~ L s in? jn L E[xiXi_j] cos(i-j)O

f, L E[XiXi_j] cos(i-j)O .

E[~l YR + E[2XR MR - MRl

with LL[xixml cos iO cos mO ~ f, L cos2 mO .

Similarly, assuming adequate separation between missing points,

E[MRl ~ u2 L cos2 mO.
Similar results hold for E[XIMd etc., with sin 2 mn replacing cos 2 mf].

Combining the above equations

Nf, Nf,
sr, + 2Mf, - Mu2 or ka f,(N-2M) + Mu2ka

Substituting for f, from (ALI)

N
[ 1 -

Mu2 Ika N-2M y2 + y2
R I

To determine k, and k2' note that

Substituting these terms into equation (2.1) elimination of f, and k3 gives the
required result.
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dala IaIgth PM CM UNB MSE

(10'10 IIIiAiq) .1 e.2 fiI .1 e.2 ftt .1 cl fil e1 cl fil

1)'11 128 50.39 IOS.9 1.113 46.&8 83.01 1.093 12.01 22.98 1.069 13.17 21.12 1.077

')'12 128 2600 5942 1.266 2S07 SOOO 1.08S 1871 4191 1.041 2009 4001 1.079

IYII 128·S S.031 10.36 1.108 4.912 9.957 1.088 1.934 8.:JAS 1.064 2.8S2 8.201 I 1.084

.ys2 128·5 553.0 1261 1.102 370.1 1220 1.062 114.3 1032 1.039 317.9 1022 1.045

1)'11 1280 3.679 7.147 1.097 3.!iS2 6.!i94 1.070 0.993 3.760 1.010 1.687 3.S30 1.014

1)'12 1280 284.2 1233 1.()64 190.2 1117 1.040 167.4 94S.1 0.910 170.2 900.' 0.971

1)'11 12100 2.7982 S.912 1.()6S 0.941 ".102 1.02S 0.137 2.OIS 1.007 O.15S 1.7S1 1.012

1)'12 12100 231.1 1197 1.03. 166.7 900.9 1.031 21.40 709.1 1.001 34.01 668.1 1.010

Table 1 Errors in spectrum estimation
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I '

data length CM UNB MSE
(20% missing) e1 e2 fit e1 e2 fit e1 e2 fit
sys1 128 18.17 5219 0.323 2.872 5.137 0.460 2.929 4.997 0.456
sys2 128 183.4 372.4 0.242 14.43 19.28 0.604 15.84 18.55 0.584
sys1 12S*5 I 7.694 20.66 0.707 0.275 1.417 0.946 0.278 1.175 0.945
sys2 12S*5 88.67 143.2 0.647 4.306 19.47 0.969 4.542 IS.15 0.963
sysl 1280 5.404 12.93 0.796 0.120 1.322 0.979 0.131 1.311 0.976
sys2 12S0 18.30 41.45 0.723 l.417 8.267 0.974 l.646 5.616 0.971
sys1 12800 3.611 8.317 0.797 0.026 1.177 l.002 0.028 l.128 1.003
sys2 12800 14.29 25.71 0.7405 0.038 7.625 1.003 0.057 5.007 1.004

Table 2 Errors in frequency response estimation
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85.2 Computer programs

85.2.1 Computer and program language:

The computers used for the work in this thesis were the Prime computer

installation and the Sun Workstation network in the Engineering Department,

University of Warwick.

The programs originally written ib Fortran 77 were translated into

MATLAB. The final version of the all programs was written in MATLAB.

85.2.2 What is MATLAB?

MATLAB (Moler, Little and Bangert 1987) is an interactive program to help

with scientific and engineering numeric calculations. The name MATLAB stands

for matrix laboratory. Originally written in Fortran for mainframe computers, it

provides easy access to matrix software developed by the LINP ACK and

EISPACK projects. Together, LINPACK and EISPACK represent the state of the

art in software for matrix computation.

MATLAB is an interactive system whose basic data element is a matrix that

does not require dimensioning. This allows solution of many numeric problems in

a fraction of the time it would take to write a program in a language like Fortran,

Basic, or C. Furthermore, problem solutions are expressed in MATLAB almost

exactly as they are written mathematically.

MATLAB has evolved over more than half a decade with input from many

users. In university environments it has become the standard instructional tool

used in introductory courses in applied linear algebra, as well as advanced courses

in other areas. In industrial settings, MATLAB is used for research, and to solve

practical engineering and mathematical problems. Typical uses include general

purpose numeric computation, algorithm prototyping, and solving the special

problems with matrix formulations that arise in disciplines like automatic control

theory, statistics, and digital signal processing (time-series analysis).



- 182 -

The highly optimized, second generation MATLAB that runs on IBM and

other MS-DOS compatible personal computers is called PC-MATLAB. On larger

computers, like Sun Workstations and VAX computers, the modern version of

MATLAB is called PRO-MATLAB. On the Macintosh, it is MacMATLAB.

Entirely written in the C language, MATLAB is a complete "integrated" system,

including graphics, programmble macros, IEEE arithmetic, a fast interpreter, and

many analytical commands.

S5.2.3 MATLAB files or M-files

An M-file consists of a sequence of normal MATLAB statements, possibly

including references to other M-files. One use of M-file is automate long

sequences of commands. Such file are called script files or just scripts. A second

type of M-file provides extensibility to MATLAB. Called function files or just

functions, they allow new functions to be added to the existing functions. Much

of the power of MATLAB derives from this ability to create new functions that

solve user-specific problems.

S5.2.4 Interactive simulation experiment

All the simulation experiments follow the same interactive structure as

shown in Fig. 5.2.1. The tasks in either script or function are explained at the

beginning and suitable comments are given for some critical lines.
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Begin

y

n

Quit

Script 1

Choice

Script2

Function base:

function 1

function m

Figure 5.2.1 Flowe chart for interactive simulation

Scriptn
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S5.2.5 List of computer programs

Section one

Scripts:

miss1:

miss2:

Section two

Scripts:

nondet:

testn1:

testn2:

nident:

Comments

PSD and frequency response estimations by PM, CM,

UNB(recursive), and MSE(recursive).

PSD and frequency response estimations by PM, 1M, UNB(direct),

and MSE(direct).

system identification by amplitude quantisation (aq).

parameter estimation of system one by aq.

parameter estimation of system two by aq.

parameter estimation by VWLS algorithm.

frequency response of a nonlinear system consisting of a second

order linear dynamic and a saturation static.

jmp: frequency response prediction of the system given in the program

"jump" by VWLS algorithm.

jump:

Functions:

ingen:

sysout:

model:

fit:

jumod:

generate inputs.

generate outputs from given inputs and plants.

generate model responses.

parameter estimatior with VWLS.

jump resonant model.
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jfit2: parameter estimator of jump resonant model.

Section three

Scripts:

nlgpc:

nldbc:

Functions:

plant:

paraest:

root:

diopeq:

condes:

dbcl:

dbc2:

nonlinear general predictive controller (gpc).

nonlinear deadbeat controller (dbc).

plants.

parameter estimator.

root solver.

Diophantine equation solver.

gpc designer.

indirect dbc designer.

direct dbc designer.



Apr 17 23:10 1989 miss1.m Page 1

format compact
clc;clg; % clear windows
% the script started 18/10/1988.
% this is used to analyses Power Spectrum Density (PSD)
% with missing data in a time series and to
% estimate FREquency reSPonse (FRESP)
% with missing data in output series.
% two sorts of estimators, UNBised and Mean Square Error,
% are built up to compare with traditional ones such
% as Periodogram Method and Covariance Method .
% square bias, MSE, and linear FIT are calculated as
% measurements for the comparison.
%
%
%
%
%
%
%
%
%
%
%
% fr1, an1, FRESP (amplitude and phase ) from y
% fr2, an2, ---- from ym by PM
% fr3, an3, --------------- UNB
% fr4, an4, --------------- MSE
% frS, anS, --------------- CM

x, input
y, ouput without missing point
ym, ouput with missing points

psd from y
-------- ym by

psdy,
psdum,
psdyc,
psdyi,
psdyn,

PM
CM
UNB
MSE

load batmis1 % consideration of batch job
while 1

clc;
n=input('n>O enter,n<-O quit');
if n<=O;break,end
'l,initialisation'
'2,generate input and output data fft, psd,weights'
'3,FRESP,MSE,FIT calculation'
'4,plots'
i-input('your choice'};
if i--1

clc;clg;
istart-l;
ifin-input('length of one block');
nbl-input('no. of block');
m-input('no. of missing points');
rnisp-input('distr. of mp.,unif.-l; arb.-def.'):
clear a
for t-l:4

a(t)-input('y(t)-a(l)*y(t-l)+
a(2)*y(t-2)+y(t-3),y3-a3*y4+a4*y5+x')

end
w-input('window for CM, dn.-O; Bartlett-1');
wI-input ('lag length of window');
if nbl--l

mv-input('l<order of moving aver. filter<5');
end
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ps=input('open loop=1, closedl=2, closed2=3'):
clear wf wq wind
for j=l:wl

for i=l:ifin
wf(i,j)=cos(2*pi*(i-l)*(j-l)/ifin):
wq(i,j)=sin(2*pi*(i-l)*(j-l)/ifin):

end
wind(j,l)=l-(j-l)*w/wl:

end
elseif i==2

clc;clg;
pl=input('batch job? y=1 n=default');
if pl-=1

k=O;clear mp; % locate missing points
yp=ones(ifin,l):

for t=1:m
if misp==1

k=k+floor(ifin/m);
mp(t)==k;

else
mp(t)=input('missing position= ');

end
yp(mp(t),l)=O;

end
rm=xcorr(yp); % Par zen weigth for CM
clear cw sw nl f w1 ;
cw(ifin,l)~O:sw(ifin,l)=O:cs=cw:
for t-l:ifin

wl(t,l)=ifin/(ifin-m);% traditional weight
% as initial value
% of new weight

nl(t,l)""ifin:
f(t,1)-(t-1)/ifin;
for j-l:m

cl-cos(2*pi*mp(j)*(t-l)/ifin);
s1-sin(2*pi*mp(j)*(t-l)/ifin):
cw(t,1)-cw(t,1)+c1A2:
sw(t,l)-sw(t,1)+slA2:
cs(t,l)-cs(t,l)+cl*s1:

end
end
w3-wl: w2-wl:w4-wl:wS-w1: g3=wl: g4-wl;gS-w1;
gl-wl:g2-wl;
cwl-nl/2-2*cw;cw2-nl/2-cw;sw1-nl/2-2*sw;sw2-nl/2-sw;
sw3-nl/2+sw;
rand (,normal' )

clear u ucm x xcm xu xx y yl yi ym ys ycm ycp xcm;
yl(ifin+5,l)-O:yh-y1;

clear trl tr2 tr3 tr4 fr1 fr2 fr3 fr4 :
clear psdx psdy psdym psdyi psdyn f1 f2 f3 f4 ;
trl(ifin,l)-O:tr2-trl:tr3-tr1;tr4-tr1;
frl-trl;fr2-trl;fr3=trl:fr4=trl:frS=trl;
anl-trl;an2-tr1;an3-trl;an4-trl;anS-trl;
psdx-trl; psdy-trl; psdym-tr1: psdyi-trl:
psdyn-trl; psdyc-trl;
psdxc-trl; temp-[anl an2 an3]: xu-trl;



Apr 17 23:10 1989 miss1.m Page 3

cv=O:cvx=0:stx=0:sty=0:pyc=tr1:amp5=tr1:
csp=tr1:qsp=tr1:
fl=tr1:f2=f1;f3=f1:f4=fl:gfl=f1;gf2=f1;gf3=fl;
gf4=fl:
pmsel=fl:pmse2=fl;pmse3=fl:pmse4=fl:
fmse1=f1:fmse2=f1:fmse3=fl;fmse4=f1:
phmse1=f1:phmse2=f1;phmse3=fl;phmse4=f1;
for tl=l:nbl
if ps==l

for t-6:ifin+5
x(t-5,1)=rand:
u(t-5,1)=x(t-5,1);

yl(t-3,1)-a(3)*yl(t-4,1)+a(4)*y1(t-5,1)+x(t-5,1);
y1(t,1)=a(1)*yl(t-l,1)+a(2)*yl(t-2,1)+yl(t-3,1);

y(t-5,1)=y1(t,1); % without missing point
ym(t-5,1)-y1(t,1); % traditional
yi(t-5,1)-yl(t,1): % interpolation

end
for t"'l:m

ys(t,l)-ym(mp(t),l); % real missing values
ym(mp(t),l)=O:
yi(mp(t),1)-(yi(mp(t)-1,1)+yi(mp(t)+1,1»/2;
ys(t,2)-yi(mp(t),1): % interpolate values

end
else if ps--2 % feedback without missing point

for t-6:ifin+5
x(t-5,1)-rand :
yhl(t-5,1)=yh(t,1):
u(t-5,l)-x(t-5,1)-yh(t,l);

yl(t-3,1)-a(3)*yl(t-4,1)+a(4)*y1(t-5,1)+u(t-5,l);
yl(t,1)-a(1)*yl(t-l,1)+a(2)*yl(t-2,1)+yl(t-3,1);

y(t-5,1)-yl(t,1): % without missing point
% with missing point

ym(t-5,1)-yl(t,1)*yp(t-5,1);
yh(t+l,l)=.2*yh(t,1)+y1(t,l);

end
elseif ps--3 % feedback with missing point input

for t-6:ifin+5
x(t-5,1)-rand :
yhl(t-5,1)-yh(t,1);
u(t-5,1)-x(t-S,1)-yh(t,1);

yl(t-3,1)-a(3)*yl(t-4,1)+a(4)*yl(t-S,1)+u(t-5,1);
yl(t,1)-a(1)*yl(t-l,1)+a(2)*yl(t-2,1)+yl(t-3,1);

y(t-S,l)-yl(t,l); % without missing point
% with missing point

ym(t-5,1)-yl(t,1)*yp(t-5,1):
%feedback with missing point

yh(t+l,1)-.0*yh(t,1)+ym(t-5,1):
end

end
tempx-fft(x); % input x's fft
rex-real(tempx);
irnx-imag(tempx);
tempu-fft(u);
tempy-fft(y); % output y's fft
rey-real(tempy);
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imy=imag(tempY)i
tempym=fft(ym)i % output ym's fft
reym=real(tempym)i
imym=imag(tempym)i
tempyi=fft(yi)i % output yi's fft
px=abs(tempx).A2/ifini % psd estimations
py=abs(tempy) .A2/ifini
pym=abs(tempym) .A2/(ifin-m)i
pyi=g3.*abs(tempym) .A2/ifini
pyn=w3.*pym*(ifin-m)/ifin;

psdx=(tl-l)*psdx/tl+px/tl;
psdy=(tl-l)*psdy/tl+py/tl;
psdym=(tl-1)*psdym/tl+pym/tl;
psdyi=(tl-l)*psdyi/tl+pyi/tl;
psdyn=(tl-l)*psdyn/tl+pyn/tl;

% fresp estimations
trl=(tempy.*eonj(tempx» ./ifin;
frl-(tl-l)*frl/tl+trl/tl;

tr2=(tempym.*eonj(tempx»/(ifin-m);
fr2=(t1-1)*fr2/tl+tr2/t1i

t3-g4.*reym+sqrt(-I)*g5.*imym;
tr3-t3.*eonj(tempx)/ifin;
fr3-(t1-1)*fr3/tl+tr3/t1;
t4-w4.*reym+sqrt(-I)*w5.*imym;
tr4-t4.*eonj(tempx)/ifini
fr4-(t1-1)*fr4/tl+tr4/t1;

if ps--3
pss-l; % weights for case 3 by em

else
%for case 1,2 by em

xu-(t1-1)*xu/tl+eonj(tempx) .*tempu/tl;
end
evl-ifin*eov(ym)/(ifin-m);
ev-(tl-l)*ev/tl+evl/t1;

rif-2*(wl.*reym) .*(w2.*imym)/ifini
f2-(tl-l)*f2/tl+rif/tli
fl-psdyn; yy-psdyn*ifin;yy(1,1)-yy(1,1)/2;
cf3-(rex.*w4.*reym+imx.*w5.*imym)/ifini
f3-(t1-l)*f3/t1+ef3/t1;
ef4-(imx.*w4.*reym-rex.*w5.*imym)/ifin;
f4-(tl-l)*f4/t1+ef4/t1; ,

gfl-psdyi;
gf2-(t1-1)*gf2/tl+2*(gl.*reym) .*(g2.*imym)/(ifin*t1);
gf3-(t1-l)*gf3/t1+(rex.*g4.*reym+imx.*g5.*imym)/(ifin*tl);
gf4-(tl-l)*gf4/tl+(imx.*g4.*reym-rex.*gS.*imym)/(ifin*tl);
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if nbl==1 % moving average filter for one block
tw=1;
for j=1:ifin-mv+1

yy(j,l)=tw*sum(yy(j:j+mv-l,l»/mv;
f1(j,1)=tw*sum(f1(j:j+mv-l,1»/mv;
f2(j,1}=tw*sum(f2(j:j+mv-l,1»/mv;
f3(j,1)=tw*sum(f3(j:j+mv-l,1»/mv;
f4(j,1)=tw*sum(f4(j:j+mv-1,1»/mv;
gf1(j,1)-tw*sum(gfl(j:j+mv-l,1»/mv;
gf2(j,1)-tw*sum(gf2(j:j+mv-l,1»/mv;
gf3(j,1)=tw*sum(gf3(j:j+mv-1,1»/mv;
gf4(j,1)=tw*sum(gf4(j:j+mv-1,1»/mv;

end
end

% new weight (mse) for psd
ymr-f1.*cw1+cv*cw+2*f2.*cs;
ymi-fl.*swl+cv*sw-2*f2.*CSi
ymi(l,l)-O; ymr(1,1)=fl(1,1)*(ifin/2-m)+cv*m/2;
yrymr-f1.*cw2+f2.*CSi yiymi=f1.*sw2-f2.*cs;
yiymi(1,1)-0; yrymr(1,1)afl(1,1)*(ifin/2-m/2)i
yrymi-f2.*sw3-f1.*cs; yiymr=f2.*cw2-fl.*cs;
yrymi(1,1)-O;yiymr(1,1)-O;
ymrymi-f2.*(ifin/2-cw+sw)-2*fl.*cs+cv*cs;
ymrymi(1,1}=0;
c3=4*yrymi.A2;

w3_yy.*(ymr+ymi)+2*(yrymr.A2+yiymi.A2+yrymi.A2+yiymr.A2)i
w7-3*(ymr+ymi) .A2-4*ymr.*ymi+4*ymrymi.A2;
w3-w3./w7; w3(ifin/2,1)-w3(1,1);

% new weight (unb) for psd
g3-ifin*gf1./(gf1*(ifin-2*m)+cv*m);

% new weight (mse) for Fourie transform
rn-(f1.*cw2+f2.*cs);rd-(f1.*cw1+cv*cw+2*f2.*cs);
in-(fl.*sw2-f2.*cs);
id-(fl.*swl+cv*sw-2*f2.*cs+.0001);
wl-rn./rd;w2-in./id;

% new weight(mse) for fresp real part
uryr-ifin*f3/2;
urymr-f3.*cw2+f4.*cs;
urymr(1,1)-f3(1,1)*(ifin/2-m/2);
uiyr-ifin*f4/2;
uiymr-f4.*cw2-f3.*cs;
cl-urymr.A2+uiymr.A2;
w4-psdx.*rn+2*(uryr.*urymr+uiyr.*uiymr);
w7-psdx.*rd+2*c1;
w4-w4./w7; w4(ifin/2,1)-w4(1,1)i

% new weight (mse) for fresp imago part
uryi--ifin*f4/2;
urymi--f4.*sw2-f3.*cs;
uiyi-ifin*f3/2;
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uiymi=f3.*sw2-f4.*cs:
c2=urymi.A2+uiymi.A2:

w5=psdx.*in+2*(uryi.*urymi+uiyi.*uiymi):
w7=psdx.*id+2*c2:
w7(1,1)-1: w7(ifin/2,1)=1:
w5=w5./w7:
w5(1,1)=1: w5(ifin/2,1)=1:

rn=(gfl.*cw2+gf2.*cs):
rd=(gfl.*cwl+cv*cw+2*gf2.*cs);
in=(gf1.*sw2-gf2.*cs):
id=(gf1.*sw1+cv*sw-2*gf2.*cs+.0001):
gl=rn./rd:g2-in./id:

% new weight (unb) for fresp real and imago parts
g4-ifin/(ifin-m):
g5-g4:
if nbl--l

psdyi-g3. *abs (tempym) .A2/ifin:
psdyn=w3.*abs(tempym) .A2/ifin:

fr3=(g4.*reym+sqrt(-1)*g5.*imym) .*conj(tempx)/ifin;
fr4=(w4.*reym+sqrt (-1)*w5.*imym) .*conj(tempx)/ifin;
end

pmsel-(tl-l)*pmsel/tl+(py-pym) .A2/tl:
pmse2-(tl-l)*pmse2/tl+(py-pyi) .A2/tl:
pmse3-(tl-l)*pmse3/tl+(py-pyn) .A2/t1:
pmse4-(tl-l)*pmse4/tl+(py-pyc) .A2/tl:

% mse calculation
% psd

% amplitude (fresp)
fmsel-(tl-l)*fmsel/tl+(trl-tr2) .*conj(trl-tr2)/tl;
fmse2-(tl-l)*fmse2/tl+(trl-tr3) .*conj(trl-tr3)/tl:
fmse3-(tl-l)*fmse3/tl+(trl-tr4) .*conj(trl-tr4)/tl:
fmse4-(tl-l)*fmse4/tl+(trl-amp5) .*eonj(trl-amp5)/tl:

% phase
phmsel-(tl-l)*phrnsel/tl+(angle(trl)-angle(tr2» .A2/tl;
phrnse2-(t1-1)*phrnse2/tl+(angle(trl)-angle(tr3» .A2/tl:
phrnse3-(tl-l)*phrnse3/tl+(angle(trl)-angle(tr4» .A2/tl:
phrnse4-(tl-l) *phmse4/tl+ (angle (trl)-phase5) .A2/tl;

xcrn«tl-l)*ifin+l:tl*ifin,l)-x:
ucrn«t1-1)*ifin+l:tl*ifin,1)-u:
ycm«tl-l)*ifin+l:tl*ifin,l)-ym:
ycp«tl-l)*ifin+l:tl*ifin,l)-yp:

end

rm-xcorr(ycp):
xy-[xcm ycrn]:
xuc-[xern ucrn]:
xx-[xcm xern]:
wfq-[wf wq]; l-ifin*nbl:
[pyc,ternp]-frsp(l,wind,wfq,wl,rrn,xy);
psdyc-pyc:
fr5-temp(:,1):an5-atan2(ternp(:,3),ternp(:,2»:
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[pyc,temp]=frsp(l,wind,wfq,wl,rm,xuc);
fxu=temp(:,1):axu=atan2(temp(:,3),temp(:,2»;
[pyc,temp]=frsp(l,wind,wfq,wl,rm,xx);
fxx=temp(:,1);axx=atan2(temp(:,3),temp(:,2»;

i"'sqrt(-l);
fxu-fxu.*exp(i*axu);fxx=fxx.*exp(i*axx);
fr5-fr5.*exp(i*an5);

else
save batmisl

end

elseif i==3
clc; clg % fresp estimations, mse, fit

% amplitude squared bise
efl=«frl-fr2) .*conj(frl-fr2»/ifin;
ef2..«frl-fr3) .*conj (frl-fr3» /ifin;
ef3= «frl-fr4) .*conj (frl-fr4» /ifin;
ef4-( (frl-fr5) .*conj (frl-fr5» /ifin;
el-sum(efl), e2=sum(ef2), e3=sum(ef3), e4=sum(ef4)

% fresp
if ps--3

frl-frl./(psdx-frl);fr2=fr2./(psdx-fr2);
fr3-fr3./(psdx-fr3);fr4=fr4./(psdx-fr4);
fr5-fr5./(psdx-fr5);

else
frl-frl./xu;fr2-fr2./xu;
fr3-fr3./xu;fr4-fr4./xu;
fr5-fr5./xu;

end
% phase

anl-angle(fr1);an2-angle(fr2);an3=angle(fr3);
an4-angle(fr4);an5-angle(fr5);

% amplitude
frl-abs(frl);fr2-abs(fr2);fr3=abs(fr3):
fr4-abs(fr4);frS-abs(frS);

% psd squard bise
bisl-«psdy-psdym) .A2)/ifin;
bis2-«psdy-psdyi).A2)/ifin;
bis3-«psdy-psdyn) .A2)/ifin;
bis4-«psdy-psdyc) .A2)/ifin;
bs1-sum(bisl);bs2-sum(bis2);
bs3-sum(bis3);bs4-sum(bis4);

% psd mse
pml-sum(pmsel)/ifin;pm2-sum(pmse2)/ifin;
pm3-sum(pmse3)/ifin;pm4-sum(pmse4)/ifin:

% amplitude mse
fm1-abs(sum(fmsel»/ifin, fm2-abs(sum(fmse2»/ifin
fm3-abs(sum(fmse3»/ifin, fm4-abs(sum(fmse4»/ifin
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% phase squared bise
ea1= ((an1-an2) ."2)/ifin; ea2= «anl-an3) ."2}/ifin;
ea3= ((an1-an4) ."2)/ifin; ea4= «anl-anS) ."2}/ifin;
eel=sum(ea1),ee2=sum(ea2),ee3=sum(ea3),ee4=sum(ea4)

% phase mse
ph1=sum(phmse1)/ifin;ph2=sum(phmse2}/ifin;
ph3=sum(phmse3)/ifin;ph4=sum(phmse4}/ifin;

% fit psd
plm=(psdy'*psdym)/(psdym'*psdym};
pli=(psdy'*psdyi)/(psdyi'*psdyi);
pln-(psdy'*psdyn)/(psdyn'*psdyn);
plc=(psdy'*psdyc)/(psdyc'*psdyc);

% fit amplitude
amlm-(frl'*fr2)/(fr2'*fr2)
amli-(frl'*fr3)/(fr3'*fr3)
amln-(frl'*fr4)/(fr4'*fr4)
amlc-(fr1'*frS)/(frS'*fr5)

% fit phase
alm-(an1'*an2)/(an2'*an2)
ali-(an1'*an3)/(an3'*an3)
aln=(an1'*an4)/(an4'*an4)
alc-(an1'*an5)/(an5'*an5)

pause
elseif i--4

clc,clg
plot(f,frl,'-',f,fr2,'*',f,fr3,' :',f,fr4,'-.',f,frS,'+')
title('fresp amp: true - ,pm *,unb :,mse,-.,cm +')
pause
plot(f,efl,'*',f,ef2,' :',f,ef3,'-.',f,ef4,'+'}
title('amp bis: pm *, unb :, mse -.,cm +')
pause
plot(f,anl,'-',f,an2,'*',f,an3,':',f,an4,'-.',f,an5,'+')
title('fresp ang: true -,pm *,unb :,mse -.,em +'}
pause
plot(f,eal,'*',f,ea2,' :',f,ea3,'-.' ,f,ea4,'+')
title('ang bis: pm =, unb :, mse -.,cm +')
pause

plot(f,psdy,'-',f,psdym,'*',f,psdyi,':',f,psdyn,'-.',f,psdye,'+'}
title('psd: true -,pm *,unb :,mse -.,cm +')
pause
plot(f,bisl,'*',f,bis2,':',f,bis3,'-.',f,bis4,'+')
title('psd bis: pm *,unb :,mse -.,cm +'}
pause

else
'wrong number given, reset your choice 1,2,3,4'

end
end
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psdy,
psdum,
psdyc,
psdyi,

% psdyn,
%
%
%
%
%
%

format compact
clc;clg; % clear windows
% the script started 18/10/1988.
% this is used to analyses Power Spectrum Density (PSD)
% with missing data in a time series and to estimate
% FREquency reSPonse (FRESP) with missing data
% at output series.
% two sorts of estimators, UNBised and Mean Square Error,
% are built up to compare with traditional ones such
% as Periodogram Method and Interpolation Method.
% square bias, MSE, and linear FIT are calculated as
% measurements for the comparison
% direct estimate and recursive estimate are checked with
% UNB and MSE.
%
%
%
%
%
%
%
%
%

x, input
y, ouput without missing point
ym, ouput with missing points

psd from y
-------- ym by PM
-------------- 1M
-------------- UNBMSE

fr1,
fr2,
fr3,
fr4,
fr5,

an1,
an2,
an3,
an4,
an5,

FRESP (amplitude and phase ) from y
---- from ym by PM same as UNB
--------------- UNB
--------------- MSE
--------------- 1M

%load batmis3 % consideration of batch job
while 1

clc;
n=input('n>O enter,n<-O quit'):
if n<-O:break,end
'l,initialisation'
'2,generate input and output data fft, psd,weights'
'3,FRESP,MSE,FIT calculation'
'4,plots'
i-input('your choice'):
if i--1

clc;clg;
istart-1:
ifin-input('length of one block'):
nbl-input('no. of block');
m-input('no. of missing points');

misp-input('distr. of mp., unif.-1, arb.-def.');
clear a
for t-1:4

a(t)-input('y(t)-a(l)*y(t-l)+
a(2)*y(t-2)+y(t-3),y3-a3*y4+a4*y5+x')

end
if nbl--1

mv-input('l<order of moving aver. filte~<5'):
end
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elseif i==2
clc;clg;
pl=input('batch job? y=l n=default');
if pl-=l

k=O;clear mp; % locate missing points
yp=ones(ifin,l);

for t=l:m
if misp==l

k=k+floor(ifin/m);
mp(t)=k;

else
mp(t)-input('which is missing position');

end
yp(mp(t),l)=O;

end
rm=xcorr(yp); % Parzen weigth for CM
clear cw sw nl f w1 ;
cw(ifin,l)-O;sw(ifin,l)=O;cs=cw;
for t=l:ifin

wl(t,l)=ifin/(ifin-m);% traditional weight
% as initial value
% of new weight

nl(t,l)-ifin;
f(t,l)-(t-l)/ifin;
for j-l:m

cl-cos(2*pi*mp(j)*(t-1)/ifin);
sl-sin(2*pi*mp(j)*(t-1)/ifin);
cw(t,l)-cw(t,1)+clA2;
sw(t,l)-sw(t,1)+slA2;
cs(t,l)-cs(t,l)+cl*sl;

end
end
w3-wl; w2-wl;w4-wl;w5-w1; g3-wl; g4-wl;g5-wl;
gl-wl;g2-wl;
cw1-nl/2-2*cw;cw2-nl/2-cw;swl-nl/2-2*sw;
sw2-nl/2-sw;sw3-nl/2+sw;
rand ('normal' )

clear x y y1 yi ym ys ; yl(ifin+5,1)=O;
clear trl tr2 tr3 tr4 frl fr2 fr3 fr4 ;
clear psdx psdy psdym psdyi psdyn f1 f2 f3 f4 ;
trl(ifin,1)-O;tr2-tr1;tr3-tr1;tr4=tr1;tr5=tr1;
fr1-trl;fr2-trl:fr3-tr1;fr4-tr1;fr5=trl;
an1-tr1;an2-trl;an3=tr1:an4-trl;an5=trl;
psdx-tr1; psdy-tr1; psdym-trl; psdyi-trl;
psdyn-tr1: psdyc-trl:
psdxc-tr1; temp-[an1 an2 an3];
cv-O;cvx-O;stx-O;sty-O;pyc-tr1;amp5-trl;csp=tr1;
qsp-trl;
fl-trl;f2-fl;f3-f1;f4-fl;gf1-fl;gf2=fl;gf3=f1;
gf4-fl;
pmsel-fl:pmse2-fl;pmse3-fl:pmse4-fl;
fmse1-fl;fmse2-fl:fmse3-fl;fmse4-fl:
phmsel-fl;phmse2-fl;phmse3-fl;phmse4=fl;
dri-O;drr-O;dii-O;
for tl-l:nbl

for t-6:ifin+5
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x(t-5,1)=rand:
yl(t-3,1)-a(3)*yl(t-4,1)+a(4)*yl(t-5,1)+x(t-5,1):
yl(t,1)=a(1)*yl(t-l,1)+a(2)*yl(t-2,1)+yl(t-3,1):

y(t-5,1)ayl(t,1): % without missing point
ym(t-5,1)=yl(t,1): % traditional
yi(t-5,1)=yl(t,1): % interpolation

end
for t=l:m

ys(t,l)=ym(mp(t),l); % real missing values
ym(mp(t),l)aO:
yi(mp(t),1)=(yi(mp(t)-1,1)+yi(mp(t)+1,1»/2:
ys(t,2)=yi(mp(t),1); % interpolate values

end
tempx=fft(x); % input x's fft
rex=real (tempx) i
imx=imag(tempx):
tempy-fft(y); % output y's fft
rey"real(tempy);
imy=imag(tempY)i
tempym~fft(ym); % output ym's fft
reym-real(tempym):
imym-imag(tempym):
tempyi-fft(yi); % output yi's fft

px-abs(tempx).A2/ifin; % psd estimations
py"abs(tempy).A2/ifin;
pym-abs(tempym) .A2/(ifin~m);
pyi-g3.*pym*(ifin-m)/ifin;
pyn-w3.*pym*(ifin-m)/ifin;
pyc-abs(tempyi) .A2/ifin: %im
psdx-(tl-l)*psdx/tl+px/tl;
psdy-(tl-l)*psdy/tl+py/tl;
psdym-(tl-l)*psdym/tl+pym/tl:
psdyi-(tl-l)*psdyi/tl+pyi/tl:
psdyn-(tl-l)*psdyn/tl+pyn/tl;
psdyc-(tl-l)*psdyc/tl+pyc/tl; %im

% fresp estimations
trl-(tempy.*conj(tempx» ./ifin;
frl-(tl-l)*frl/tl+trl/tl;

tr2-(tempym.*conj(tempx»/(ifin-m);
fr2-(tl-l)*fr2/tl+tr2/tl;

t3-g4.*reym+sqrt(-1)*g5.*imymi
tr3-t3.*conj(tempx)/ifin;
fr3-(tl-l)*fr3/tl+tr3/tl;
t4-w4.*reym+sqrt(-1)*w5.*imym;
tr4-t4.*conj(tempx)/ifin;
fr4-(tl-l)*fr4/tl+tr4/tl;

trS-(tempyi.*conj(tempx»/ifin; %im
fr5-(tl-l)*fr5/tl+tr5/tl;

% mse calculation
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cv1=ifin*cov(yrn)/(ifin-rn);
cv=(t1-1)*cv/t1+cv1/t1;

rif=2*(w1.*reyrn) .*(w2.*imyrn)/ifin;
f2=(t1-1)*f2/t1+rif/t1;
f1=psdyn; yy=psdyn*ifin;yy(1,1)=yy(1,1)/2;

cf3=(rex.*w4.*reyrn+irnx.*w5.*irnyrn)/ifin;
f3=(t1-1)*f3/t1+cf3/t1;
cf4=(irnx.*w4.*reym-rex.*wS.*irnyrn)/ifin;
f4=(tl-l)*f4/tl+cf4/t1; ,

gf1=psdyi;
gf2=(t1-1) *gf2/t1+2* (gl.*reyrn).*(g2.*imyrn)/(ifin*t1);
gf3=(tl-l)*gf3/tl+(rex.*g4.*reym+irnx.*gS.*imym)/(ifin*t1);
gf4=(tl-l)*gf4/tl+(irnx.*g4.*reym-rex.*g5.*irnyrn)/(ifin*tl};

dri=(t1-1)*dri/t1+(reym.*irnyrn)/t1; %direct"operation
drr=(t1-1)*drr/t1+reyrn.A2/tl;
dii=(tl-l)*dii/tl+imyrn.A2/t1;

if nbl--1 % moving average filter for one block
tw=l;
for j-l:ifin-rnv+l

yy(j,l)-tw*surn(yy(j:j+rnv-l,l»/rnv;
fl(j,1)-tw*surn(f1(j:j+rnv-l,1»/rnv;
f2(j,1)-tw*sum(f2(j:j+mv-l,1»/mv;
f3(j,1)-tw*sum(f3(j:j+mv-1,1»/rnv;
f4(j,1)=tw*surn(f4(j:j+rnv-l,1»/rnv;
gf1(j,1)-tw*sum(gfl(j:j+rnv-l,1»/rnv;
gf2(j,1)-tw*surn(gf2(j:j+mv-l,1»/mv;
gf3(j,1)-tw*sum(gf3(j:j+mv-l,1»/mv;
gf4(j,1)-tw*surn(gf4(j:j+rnv-l,1»/mv;

end
end

% new weight (mse) for psd
yrnr-fl.*cw"1+cv*cw+2*f2. *cs;
ymi-fl.*swl+cv*sw-2*f2.*cs;
ymi(l,l)-O;
ymr(1,1)-fl(1,1)*(ifin/2-rn)+cv*rn/2;
yrymr-fl.*cw2+f2.*cs; yiyrni-fl.*sw2-f2.*cs;
yiyrni(l,l)-O; yryrnr(1,1)-fl(1,1)*(ifin/2-rn/2);
Yryrni-f2.*sw3-fl.*cs; yiymr-f2.*cw2-fl.*cs;
yryrni(l,l)-O;yiyrnr(l,l)-O;
ymrymi-f2.*(ifin/2-cw+sw)-2*fl.*cs+cv*cs;
ymrymi(l,l)-O;
c3-4*yryrni.A2;

w3-yy.*(yrnr+yrni)+2*(yryrnr.A2+yiyrni.A2+yryrni.A2+yiyrnr.A2);
w7-3*(yrnr+yrni).A2-4*yrnr.*ymi+4*yrnryrni.A2;
w3-w3./w7; w3(ifin/2,1)-w3(1,1};

% new weight (unb) for psd
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g3=ifin*gf1./(gfl*(ifin-2*m)+cv*m);
% new weight (mse) for Fourie transform

rn=(f1.*cw2+f2.*cs);rd=(f1.*cwl+cv*cw+2*f2.*cs);
in=(fl.*sw2-f2.*cs);
id-(fl.*swl+cv*sw-2*f2.*cs+.OOOl);
w1=rn./rd;w2=in./id;

% new weight (mse) for fresp real part
uryr=ifin*f3/2;
urymr=f3.*cw2+f4.*cs;
urymr(1,1)=f3(1,1)*(ifin/2-m/2);
uiyr=ifin*f4/2;
uiymr=f4.*cw2-f3.*cs;
cl=urymr.A2+uiymr.A2;

w4=psdx.*rn+2*(uryr.*urymr+uiyr.*uiymr):
w7=psdx.*rd+2*c1;
w4=w4./w7; w4(ifin/2,1)=w4(1,1);

% new weight (mse) for fresp imago part
uryi=-ifin*f4/2;
urymi=-f4.*sw2-f3.*cs;
uiyi=ifin*f3/2;
uiymi=f3.*sw2-f4.*cs;
c2=urymi.A2+uiymi.A2;
w5-psdx.*in+2*(uryi.*urymi+uiyi.*uiymi);
w7-psdx.*id+2*c2;
w7(1,1)-1: w7(ifin/2,1)=1:
w5=w5./w7:
w5(1,1)-1: w5(ifin/2;1)=1;
rn-(gfl.*cw2+gf2.*cs):rd=(gf1.*cwl+cv*cw+2*gf2.*cs);
in-(gfl.*sw2-gf2.*cs);
id=(gf1.*sw1+cv*sw-2*gf2.*cs+.0001):
gl-rn./rd;g2-in./id:

% new weight (unb) for fresp real and imago parts
g4-ifin/(ifin-m):
g5-g4;

if nbl--l
psdyi-g3.*abs(tempym) .A2/ifin:
psdyn-w3.*abs(tempym) .A2/ifin:
fr3-(g4.*reym+sqrt(-1)*g5.*imym) .*conj(tempx)/ifin:
fr4-(w4.*reym+sqrt(-1)*w5.*imym) .*conj(tempx)/ifin;
tr3-fr3;tr4=fr4:

end
pmse1-(tl-l)*pmsel/tl+(py-pym) .A2/tl; % psd
pmse2-(tl-1)*pmse2/t1+(py-pyi) .A2/t1:
pmse3-(tl-l)*pmse3/tl+(py-pyn) .A2/tl:
pmse4-(tl-l)*pmse4/tl+(py-pyc) .A2/tl;

% amplitude (fresp)
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fmsel=(tl-l)*fmsel/tl+(trl-tr2) .*conj(trl-tr2)/tl:
fmse2=(tl-l)*fmse2/tl+(trl-tr3) .*conj(trl-tr3)/tl:
fmse3=(tl-l)*fmse3/tl+(trl-tr4) .*conj(trl-tr4)/tl:
fmse4=(tl-l)*fmse4/tl+(trl-tr5) .*conj(trl-tr5)/tl:
phmsel=(tl-l)*phmsel/tl+(angle(trl)-angle(tr2» .A2/tl; % phase
phmse2=(tl-l)*phmse2/tl+(angle(trl)-angle(tr3» .A2/tl;
phmse3=(tl-l)*phmse3/tl+(angle(trl)-angle(tr4» ~A2/tl;
phmse4=(tl-l}*phmse4/tl+(angle(trl)-angle(tr5» .A2/tl;

end
else

save batmis3
end

elseif i==3
clc; clg % fresp estimations, mse, fit

psddu=(drr+dii-cv*m)/(ifin-2*m): % direct operation
d3=psddu-CVi
dl=psddu*ifin.*{drr+dii)+2*{(drr+d3.*cw) .A2+(dii+d3.*sw) .A2+2*(dri+

d3.*cs) .A2);
d2=3*(drr+dii) .A2-4*drr.*dii+4*dri.A2;
dl=dl./d2i .
psddm=dl.*(drr+dii)/ifin:

% amplitude squared bise of fresp
efl=«frl-fr2) .*conj(frl-fr2»/ifin;
ef2=«frl-fr3) .*conj(frl-fr3»/ifin;
ef3=«frl-fr4) .*conj(frl-fr4»/ifin;
ef4=«frl-fr5) .*conj(frl-fr5»/ifin;
el=sum(efl) ,e2-sum(ef2) ,e3=sum(ef3),e4=sum(ef4),

% fresp
frl-frl./psdx;fr2-fr2./psdxi
fr3-fr3./psdx:fr4-fr4./psdx:
fr5-fr5./psdxi

% phase
anl-angle{frl):an2-angle(fr2):
an3-angle(fr3):an4=angle{fr4)i
an5-angle(fr5};

% amplitude
frl-abs(frl)ifr2=abs(fr2);fr3=abs(fr3)i
fr4-abs(fr4)ifr5-abs(fr5)i

% psd squard bise
bisl-({psdy-psdym) .A2)/ifini
bis2-{(psdy-psdyi) .A2)/ifin:
bis3-{{psdy-psdyn) .A2)/ifini
bis4-({psdy-psdyc) .A2)/ifini
bsl-sum{bisl)ibs2-sum{bis2)i
bs3-sum{bis3};bs4-sum{bis4)i

% psd mse
pml-surn{pmsel)/ifin:pm2=sum{pmse2)/ifin;
pm3-surn{pmse3)/ifini pm4=sum{pmse4)/ifini

% amplitude mse
fml-abs{sum{fmsel»/ifin,fm2=abs(sum{fmse2»/ifin
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fm3=abs(sum(fmse3»/ifin, fm4=abs(sum(fmse4»/ifin
% phase squared bise

ea1=«an1-an2) .A2)/ifin; ea2=«an1-an3) .A2)/ifin;
ea3=«an1-an4) .A2)/ifin; ea4=«an1-an5) .A2)/ifin;
ee1=sum(ea1);ee2=sum(ea2);ee3=sum(ea3)iee4=sum(ea4)i

% phase mse
ph1=sum(phmse1)/ifin;ph2=sum(phmse2)/ifin;
ph3=sum(phmse3)/ifin;ph4=sum(phmse4)/ifin;

% fit psd
plm=(psdy'*psdym)/(psdym'*psdym);
pli=(psdy'*psdyi)/(psdyi'*psdyi);
pln-(psdy'*psdyn)/(psdyn'*psdyn)i
plc=(psdy'*psdyc)/(psdyc'*psdyc)i

% fit amplitude
amlm=(fr1'*fr2)/(fr2'*fr2)
amli=(fr1'*fr3)/(fr3'*fr3)
amln=(fr1'*fr4)/(fr4'*fr4)
amlc=(fr1'*fr5)/(fr5'*fr5)

% fit phase
alm=(an1'*an2)/(an2'*an2);
ali-(an1'*an3)/(an3'*an3);
aln-(an1'*an4)/(an4'*an4)i
ale-(an1'*an5)/(an5'*an5)i

elseif i--4
cle,elg
plot(f,fr1,'-',f,fr2,'*',f,fr3,' :',f,fr4,'-.' ,f,fr5,'+')
title('fresp amp: true - ,pm *,unb :,mse,-.,cm +')
pause
plot(f,ef1,'*',f,ef2,' :',f,ef3,'-.' ,f,ef4,'+')
title ('amp bis: pm *, unb :, mse -.,em +')
pause
plot(f,an1,'-',f,an2,'*',f,an3,' :',f,an4,'-.' ,f,an5,'+')
title('fresp ang: true -,pm *,unb :,mse -.,cm +')
pause
plot(f,ea1,'*',f,ea2,' :',f,ea3,'-.' ,f,ea4,'+')
title('ang bis: pm *, unb :, mse -.,em +')
pause

plot(f,psdy,'-',f,psdym,'*' ,f,psdyi,':' ,f,psdyn,'-.',f,psdy~,'+')
title('psd: true -,pm *,unb :,mse -.,cm +')
pause
plot(f,bis1,'*',f,bis2,' :',f,bis3,'-.',f,bis4,'+')
title('psd bis: pm *,unb :,mse -.,em +')
pause

else
'wrong number given, reset your choice 1,2,3,4'

end
end
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format compact
clc;clg; % clear windows.
% the script started 1/10/1988.
% this detects nonlinear systems structure based on input
% and output data, by a quantisation algorithm, to
% give illustrations both within three dimensional
% space and in particular project planes.
% uncorrelated nomarl noise (O.,vn) can be superposed on
% input and output if required.
%
%load batdet2 % consideration of batch job.
while 1

clc;
n=input('n>O enter,n<=O quit ');
if n<=O;break,end
'l,initialisation'
'2,generate ipt'
'3,generate opt and quantization'
'4,plot 3D surface and 2D project curve'
i=input('your choice ');
if i===l

clc;clg;
elseif i-=2

clc;clg;
ipt=5;
'set ipt signal'
,1,sinusoid'
'2,Gaussian'
'3,step'
'4,random amplitude step'
ipt-input('your choice ');
istart-input('starting point of data series ');
ifin-input('final point of data series <4000 ');
x1-ingen(ipt,istart,ifin);

x-x1(istart:ifin);
clc;clg;
,set sys. para.'
'l,linear follows nl.'
'2,closed loop system with jumping effect'
j=input('your choice');
if j--1

'l,first or second order lag saturation'
'2,- - - - - - - - - - - - - relay'
'3,- - - - - - - - - - -output-inputA3'
'4,- - - - - - - - - - - linear'
istype=input('your choice ');
c-linel(j);

elseif j--2
jl-j;

else
c-line3(j);

end
clc;clg:
'set quant. control'
sl-input('starting point of polt');
s2-input('final point of plot');
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nr=input('set amp. quan. range of xCi) and y(i-1)');
ax=input('set axes control para.');

elseif i==3
clc,clg
clear zl z2 z3 znl zn2 zn3;
pl=input('batch job? yes=l, no=default');%open-loop sys.
if j==l

y1=sysoutl(istype,istart,ifin,x,c);
else

y1=sysout2(1,istart,ifin,x,c); % closed-loop sys.
end
y=y1(istart:ifin);

if pl-==l
x1==x(sl:s2);
·x2=x(sl-1:s2-1);
y1=y(sl-1:s2-1);
y2=y(sl-2:s2-2);
z=y(sl:s2);

k1=nr/(max(x1)-min(x1»;k2=nr/(max(y1)-rnin(yl»);
k3-nr/(max(x2)-min(x2»;k4=nr/(max(y2)-min(y2));
i1=round(k1*(x1-min(x1»+1);j1=round(k2*(yl-rnin(y1»+1);
j2~round(k3*(x2-min(x2»)+1);j3=round(k4*(y2-min(y2»+l);
for t1==1:nr

for t2=1:nr
ind=find{i1==t1&j1==t2);
zl(t1,t2)=sum{z{ind»;zn1{t1,t2)=length{ind);
if znl(t1,t2)-=O

zn1(t1,t2)=1;
end
ind-find(i1==tl&j2==t2);
z2(t1,t2)=sum(z(ind);zn2(tl,t2)=length(ind);
if zn2(tl,t2)==O

zn2(tl,t2)=1;
end
ind-find(i1==t1&j3==t2);
z3(t1,t2)=sum(z(ind»;zn3(tl,t2)=length(ind);
if zn3(t1,t2)==O

zn3(t1,t2)=1;
end

end
end

zl-zl./znl;temp-zeros(2*ax+nr); temp(ax+l:ax+nr,ax+l:ax+nr)=zl;
zl...temp;
z2-z2./zn2;temp(ax+l:ax+nr,ax+1:ax+nr)=z2;z2=temp;
z3-z3./zn3;temp(ax+1:ax+nr,ax+1:ax+nr)=z3;z3=temp;
else

save batdet
end

else if i--4
clear pxO px1 py1 py2 pdO pd1;

k-round(ax+nr/2)+1; n=(max(x)-min(x)/(nr-1);
pxO-z1(ax+1:ax+nr,k);
hxO-min(x):n:max(x); n=(max(y)-min(y»/(nr-1);
py1-z1(k,ax+l:ax+nr);
hyl-min(y):n:max(y);
py2-z3(k,ax+l:ax+nr);
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pxl=z2(k,ax+l:ax+nr);

mesh(zl) %coordinate (x,yl,y)
title('sys. opt y(i) versus ipt xCi) and previous opt y(i-l)')
pause
pl=input('do you want to store the plot, yes=l,no=default')
if pl==l

meta plotn
end
mesh(zl')
title('sys opt y(i) versus ipt xCi) and previous opt y(i-l)')
pause
if pl==l

meta plotn
end
plot(hxO',pxO)
grid
title ('projeting plane of y(i) and xCi)')
xlabel (,x (i),)
ylabel('y(i)' )
pause
if pl===l

meta plotn
end
plot (hyl' ,pyl)
grid
title ('projecting plane of y(i) and y(i-l)'}
xlabel('y(i-l)')
ylabe 1 (,y (i),)
pause
if pl==l

meta plotn
end
mesh(z3) %coordinate (x,y2,y)
title('sys opt y(i) versus ipt xCi) and previous opt y(i-2)')
pause
pl-input('do you want to store the plot, yes=l,no=default')
if pl"-l

meta plotn
end
mesh (z3')
title('sys opt y(i) versus ipt xCi) and previous opt y(i-2)')
pause
if pl--l

meta plotn
end
plot(hyl',py2)
grid
title ('projecting plane of y(i) and y(i-2)')
xlabel('y(i-2)')
ylabel('y(i)')
pause
if pl--l

meta plotn
end
mesh(z2)%coordinate (x,xl,y)
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title('sys opt y(i) versus ipt xCi) and previous ipt x(i-1)')
pause
pl=input('do you want to store the plot, yes=l,no=default')
if pl==l

meta plotn
end
mesh(z2')
title('sys opt y(i) versus ipt xCi) and previous ipt x(i-1)')
pause.
if pl==l

meta plotn
end
plot (hxO',pxl)
grid
title ('projecting plane of y(i) and x(i-1)')
xlabel('x(i-l)')
ylabel('y(i)')
pause
if pl==l

meta plotn
end

else
'wrong number given,reset your choice 1,2,3,4,5'

end
end
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format compact
clc,
% the script started 15/11/1988 .
% the script is used to eatimate system parameters
% by recursive procedure after
% detection of nonlinear system (sys1) done by 'nondet.m'
load batdet
clear zl z2 z3 zn1 zn2 zn3
x1=x(sl:s2); %set up coordinates
x2=x(s1-1:s2-1);
yl=y(sl-1:s2-1);
y2=y(sl-2:s2-2);
z=y(sl:s2);
tal=z+c(4)*y2-c(2)*x2;
tbl=z+c(3)*y1+c(4)*y2;
ta2=z+c(3)*yl-c(2)*x2;

%quant. gains
kl=nr/(max(xl)-min(xl»;k2=nr/(max(y1)-min(yl»;
k3=nr/(max(x2)-min(x2»;k4=nr/(max(y2)-min(y2»;
il=round(kl*(xl-min(xl»+1);jl=round(k2*(yl-min(yl»+1);
j2-round(k3*(x2-min(x2»+1);j3=round(k4*(y2-min(y2»+1);
for t1=1:nr

for t2=1:nr
ind=find(il==tl&jl==t2);
z1(t1,t2)=sum(ta1(ind»;znl(tl,t2)=length(ind);
if zn1(tl,t2)==O

zn1(tl,t2)=1;
end
ind=find(il==tl&j2==t2);
z2(tl,t2)=sum(tbl(ind»;zn2(tl,t2)=length(ind);
if zn2(t1,t2)==O

zn2(tl,t2)=1;
end
ind=find(il==tl&j3==t2);
z3(t1,t2)-sum(ta2(ind»;zn3(tl,t2)=length(ind);
if zn3(tl,t2)==O

zn3(tl,t2)==1;
end

end
end

z1-z1./znl;temp=zeros(2*ax+nr); temp(ax+l:ax+nr,ax+1:ax+nr)=zl;
zl...temp:
z2-z2./zn2;temp(ax+l:ax+nr,ax+l:ax+nr)-z2;z2=temp;
z3-z3./zn3;temp(ax+l:ax+nr,ax+l:ax+nr)=z3:z3=tempi
save batdetl
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format compact
cle,
% the script started 15/11/1988 .
% the script is used to eatimate system parameters
% by recursive procedure after the
% detection of the nonlinear system (sys2) done by 'nondet.m'
load batdet
clear z1 z2 z3 zn1 zn2 zn3

x1=x(s1:s2);
x2=x(S1-1:s2-1);
yl=y(s1-1:s2-1);
y2=y(s1-2:s2-2);
z=y(sl:s2);

tal=yl+(e(4)*y2+c(2)*x2)/e(3);
ta2=y2+(c(3)*yl+c(2)*x2)/e(4);
tbl=x2+(e(3)*yl+e(4)*y2)/c(2);

%quant. gain
kl=nr/(max(xl)-min(xl»;k2=nr/(max(tal)-min(tal»;
k3=nr/(max(tbl)-min(tbl»;k4=nr/(max(ta2)-min(ta2»;
il=round(kl*(xl-min(x1)}+1);jl=round(k2*(ta1-min(tal}}+l};
j2=round(k3*(tbl-min(tb1}}+1);j3=round(k4*(ta2-min(ta2»+1);
for tl=l:nr

for t2=1:nr
ind=find(il-=tl&jl==t2};
zl(tl,t2)=sum(z(ind»;znl(tl,t2)=length(ind);
if znl(tl,t2)==O

znl(tl,t2)=1;
end
ind=find(il==tl&j2==t2};
z2(tl,t2)=sum(z(ind»;zn2(tl,t2)=length(ind);
if zn2(tl,t2)==O

zn2(tl,t2)=1;
end
ind=find(il==tl&j3==t2};
z3(tl,t2)=sum(z(ind»;zn3(tl,t2)=length(ind);
if zn3(tl,t2)==O

zn3(tl,t2)-1;
end

end
end

z1=zl./znl;temp=zeros(2*ax+nr); temp(ax+l:ax+nr,a~+1:ax+nr)=z1;
z1=temp;
z2=z2./zn2;temp(ax+1:ax+nr,ax+l:ax+nr)=z2;z2=temp;
z3=z3./zn3;temp(ax+l:ax+nr,ax+l:ax+nr)=z3;z3=temp;
save batdet2



i
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format compact
clc;clg; % clear windows.
% the script started 1/7/1988.
% this models nonlinear or linear systems as a linear one ,
% ym(t)=bO*x(t)+b1*x(t-1)-a1*ym(t-1)-a2*ym(t-2)+cO,
% by Weighted least Squres (WLS) , which the weights
% are determined according to nearness of current
% state to previous states.
% uncorrelated nomarl noise (O.,vn) can be superposed on
% input if required.
% iprog = 1, one step prediction;
% = 2, model response.
% plots and estimated parameters show are inclusive either.
%
% both off line and on line algorithms are available.
%
while 1

clc
n=input('n>O enter,n<=O quit ');
if n<=O;break,end
'l,initialisation'
'2,generate input'
'3,generate output'
'4,model estimation'
'5,plot model response or one step prediction and input'
i=input('your choice ');
if i==l

clc,clg,
elseif i==2

clc,clg,
ipt=5;
'l,sinusoid'
'2,Gaussian'
'3,uniform'
'4,step'
'5,random amplitude step'
ipt-input('your choice ');
istartcinput('starting point of data series ');
ifin-input('final point of data series <4000 ');
x1-ingen(ipt,istart,ifin);

x-xl(istart:ifin);
noi-input('input noise? y=l, n-default');
if noi--l

v-input('variance- '); v-sqrt(v);
rand('normal')
z-x+v*rand(l,istart:ifin);

else
z-x;

end
elseif i--3

clc,clg,
'l,linear'
'2,output-inputA2'
'3,first order lag hysteresis'
'4,complex nonlinear'
'5,closed system with jumping effect'
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istype=input('your choice ');
[yl,c]=sysout(istype,istart,ifin,z);

y=y1(istart:ifin);
noi=input('output noise? y=l, n=default');
if noi==l

v=input('variance= '); v=sqrt(v);
rand ('normal' )
y=y+v*rand(l,istart:ifin);

end
elseif i==4

clc,clg,
'l,one step prediction'
'2,model response'
iprog=input('your choice '};
wc=input('weight choice, lim. data=l, default otherwise'};
ifwc==l

d=input('weight range>4');
end
ies=input('starting point of para. est. '};
ief=input('final point of para. est. '};
p1=input('batch job? y=l, n=default');
if pl-=l

if wc==l
const";'[iprog,d];
[ym,prn,erols,erwls]=rnodell(const,ies,ief,x,y};

else
[ym,prn,erols,erwls]=mode12(iprog,ies,ief,x,y};

% store model state and parameter table
pm=pm(:,ies+3:ief):
x1-x(ies+3:ief)' ;y1=y(ies+2:ief-1)';
x2-x(ies+2:ief-l)' ;y2-y(ies+l:ief-2)':
table=[xl,x2,yl,y2];
save jumtab2 table pm

end
else

save batnid
end

elseif i==5
clc;clg;clear k xp yp ympi
s1=input('starting point of plot ');
s2=input('final point of plot ');
k...sl:s2;
xp-x(sl:s2);
YP"'y(sl:s2);
ymp=ym(sl:s2):
plot(k,xp','-',k,yp','o',k,ymp','*') % plots
grid
title('true y , est. ym , input x versus time t')
xlabel ('time t')
ylabel('x,ylo,yml*')
pause
pl-input('store the plots? yes=1, no=default ')
if pl-a1

meta ploide
end
'mean square errors'
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erols,erwls
pause

else
'wrong number given,reset your choice 1,2,3,4,5,6'

end
end
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format compact
clc; clg; % clear windows.
% the script stareted 7/4/1989.
% this studies jumping effect of a nonlinear system which
% consists of
% a second order linear dynamic and a saturation static
%
while 1

clc;
n=input('enter>O,quit<=O');
if n<=O;break,end
'1,initialisation ,ipt. and opt. generation'
'2,plot of opt. amp. versus freq.specified'
i=input('your choice');
if i==1

'set sys. para. ?'
n1=input('yes=1,no=default');
if n1==1

damp=input('damp=');
b=input('break point of saturation');
h=input('height of saturation');
h=h/b; clc

end
'set input signal ?'
n1=input('yes-1,no=default');
if n1==1

amp=input('amplitude of sinusoid');
rg1=input('min freq.');
rg2=input('max freq.');
dr-input ('dir. of freq. inc-1 dec=-1');
step=input('step of freq. change');
sp=input('sampling interval');
ns-input('no. of samples');

end
clear f fr yf yfm w;
y(2)-O;y1(2)-O:y2=[]:

pl=input('batch job, pl=1, normal pl=default');
if pl--1

t1"1; t2=0:
if dr....1

t3-1:
fr(t3)=rgl-step: fl=rgl: f2=step: f3=rg2:

else
t3-ceil«rg2-rg1)/step)+3;
fr(t3-1)~rg2+step; fl=rg2: f2=-step; f3=rg1;
step=-step;

end
for t4=f1:f2:f3

t3=dr+t3;
if dr==l

fr(t3)-fr(t3-1)+step; f(t3-1)=fr(t3):
else

fr(t3-1)=fr(t3)+step: f(t3-1)=fr(t3-1);
end
w=2*pi*f(t3-1);

for t-l:ns % one sinewave
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t2=t2+sp;
t1=tl+l;
r=amp*cos(w*(t2-sp»;
x(t1)=r;
e1=x(t1)-y(t1-1);
e2=el-damp*yl(tl-1);
if abs(e2»1

u=sign(e2);
else

u=e2;
end
y1(tl)=sp*u+y1(tl-l);
y(t1)=sp*y1(t1)+y(t1-1);

end
yfm(t3-1)=(abs(max(y(t1-100+l:tl»)+ ...

abs(min(y(t1-lOO+l:tl»»/(2*amp); %freq
end

else
save bajmp

end
elseif i...=2

plot (x)
xlabel('time t')
ylabel('sys ipt')

pause
plot(y)
xlabel('time t')
ylabel('sys opt')

pause
pl-input('store the plot? yes-l,no=default');
if pl...-1

meta jmp2
end
plot (f,yfm)
grid
title('sys. freq. respon.')
xlabel('freq.')
ylabel ('amp.')
pause
if pl...-l

meta jmp2
end

else
'wrong number given, reset your choice'

end
end
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format compact
ClCi clgi % clear windows.
% the script stareted 7/4/1989.
% this studies jumping effect of a nonlinear system
% which consists of
% a second order linear dynamic and a saturation static .
% a certain length of data (ipt and opt) has been
% collected from
% real system excited by Gaussian input in experiment.
% a set of sinewaves is used to predicted the corresponding
% output by VWLS, which the weights are calculated from
% the whole data including experimental ones.
while 1

ClCi
n=input('enter>O,quit<=O');
if n<=O;break,end
'l,initialisation ,ipt. and opt. generation'
'2,plot of opt. amp. versus freq.specified'
i=input('your choice');
if i==l

'set input signal ?'
n1=input('yes=1,no=default');
if n1==l

amp=input('amplitude of sinusoid');
rgl=input('min freq.');
rg2=input('max freq.');
dr=input('dir. of freq. inc=l dec=-l');
step=input('step of freq. change');
sp=input('sampling interval'); %sp=O.5 or 1.
ns-input('no. of samples'); %ns=200 or 100.

end
clear f fr yf yfm w;

pl-input('batch job, pl=l, normal pI-default');
if pl-=l

load jdat2 %experimental data ipt/opt
es=length(x); %experimental data length
est=es;t2=0;
if dr--l

t3=l;
fr(t3)=rg1-step; fl=rgl; f2=step; f3=rg2;

else
t3=ceil«rg2-rgl)/step)+3;
fr(t3-l)=rg2+step; fl=rg2; f2=-step; f3=rgl;
step=-step;

end
for t4=fl:f2:f3

t3=dr+t3;
if dr--l

fr(t3)-fr(t3-1)+step; f(t3-1)=fr(t3);
else

fr(t3-1)=fr(t3)+step; f(t3-1)=fr(t3-1);
end
w-2*pi*f(t3-1);

for t=l:ns % one sinewave
est=est+l;t2=t2+sp;
r=amp*cos(w*(t2-sp»;
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x(est)=r;
[y(est) ,pm(est-es,:) ]=jumod(x,y,est);

end
yfm(t3-1)=(abs(max(y(est-100+1:est)))+ ...

abs(min(y(est-100+1:est))))/(2*amp);
end

else
save bajmp

end
elseif i==2

plot (x)
xlabel ('time t')
ylabel('sys ipt')

pause
plot(y)
xlabel('time t')
ylabel('sys opt')

pause
pl=input('store the plot? yes=l,no=default');
if pl==l

meta jmp2
end
plot (f,yfm)
grid
title('sys. freq. respon.')
xlabel('freq.')
ylabel ('amp. ')
pause
if pl==l

meta jmp2
end

else
'wrong number given, reset your choice'

end
end
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function x = ingen(inp,is,ifi)
format compact
clc;clg; % clear windows
% the function started 27/6/1988.
% generate four input signals
% inp 1, sinusoid;
% 2, Gaussian;
% 3, uniform;
% 4, step;
% 5, random amplitude steps.
%
% is start input point .
% ifi final input point .
% input signal is stored in x(:,1).
%
clear Xi x(ifi)=Oi
if inp==l

a=input('give amplitude of sinusoid ')i
p=input('give period of sinusoid(>2) ');
temp==2*pi/p;
for t=is:ifi

x(t)=a*sin«t-is)*temp)+x(t);
end

elseif inp==2
rand ('normal' )
v=input('give variance (>0) ');
v=sqrt (v) ;
for t=is:ifi

x(t)=v*rand+x(t);
end

elseif inp==3
rand ('uniform' )
v=input('give variance(>O)');
v=1*v;
for t=is:ifi

x(t)=v*(rand-.5)+x(t);
end

elseif inp==4
a=input('give step amplitude ');
for t-is:is+4

x(t)=O.+x(t);
end
for t...is+5:ifi

x(t)=a+x(t);
end

elseif inp="'5
v--l, 0;
max--1.0;
while v<- O. I max<- O.

v-input('give variance of step >0');
max-input('O< max. integer step interval <50 ');

end
v=sqzt; (v) ;
t3-is:
for t2-1:ifi-is+l

a-v*rand:
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rand ('uniform' )
1=max*rand+1;
rand ('normal' )
if 1<1

1=1;
end
if l>max

l=max;
end
for t4=t3:t3+1-1

if t4<= ifi
x(t4)=a+x(t4);

end
end
t3=t3+1;

end
else

'wro~g number given, reset input signal type 1,2,3,4'
end
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function [y,c] = sysout(sys,is,ifi,x)
format compact
clc; % clear windows
% the funtion started 28/6/1988.
% generate system output from predetermined input signal
% sys 1, linear [ bO+bl*z(-1)]/[aO+al*z(-1)+a2*z(-2)];
% 2, output=input"2;
% = 3, first order lag after hysteresis
% ------------
% I 3 --1--- I -------------------
% x 1-11 I 11 I I I y
% -->1 ----1-----1--->1 (1/8)/[1+.9*z(-1») 1---->
% I I I I I I I
% 1-3---1-- I -------------------
% -----------
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
% is = starting point of data series.
% ifi - final point of data series.
% x(:,l) - input signal generated from function ingen.
% c(:,l) - linear system parameters,
% c(1,1)=bO,c(2,1)-bl,c(3,1)=aO,c(4,1)=al,c(S,1)=a2.

_)

and system.

4, complex nonlinear.
-I 1<------
I I .8*z(-1) I I

I 1 I --- I ----------- I
x (t) I 1/ I v I Y (t)

------>1 ---1---- I---->+-----------------X---->
I I / I I "-
I I ---- 1-1 I
I -------------
I
I --------------
I I I V I
1--> I . 3sin (x(t-l» 1--->+-----------------

I I 'X' multiplication
--------------- '+' summation

1

= 5, nonlinear closed-loop system

I 1 I --- I
x (t) I II I I I

--+-+->1 ---1---- 1---->1 lis 1---->
t ~ I / I I I I I
I I I ---- 1-1 I ------- I
I I ------------- I
I I 1--------1 II ---------1 damp I~-------------
I I I
I --------

I y (t)
l/s 1------>

I I
--------- I

I
I
I
I
I
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%
% system output is stored in y(:,l).
%
clear y; y(l,ifi)=O.;
if sys==l

, [bO+b1*z(-1»)/[aO+a1*z(-l)+a2*z(-2»)'
c(1,1)=input('bO');c(2,1)=input('b1');c(3,1)=input('aO');

c(4,1)=input('a1');c(S,1)=input('a2');
ga=c(1,1)/c(3,1);gb=c(2,1)/c(3,1);gc=c(4,1)/c(3,1);
gd=c(S,1)/c(3,1);
y(is)=ga*x(is);
y(is+1)=ga*x(is+1)+gb*x(is)-gc*y(is);
for t=is+2:ifi

y(t)=ga*x(t)+gb*x(t-1)-gc*y(t-1)-gd*y(t-2);
end

elseif sys==2
for t=is:ifi

y(t)=x(t)"2;
end

elseif abs(sys)==3
for t=is:ifi

if abs(x(t»>=l.O % hysteresis
sys=3*sign(x(t»;

end
if t==is

y(t)=.9*y(t)+sys/8;
else

y(t)=.9*y(t-1)+sys/8; % first order lag
end

end
elseif abs(sys)==4

for t=-is:ifi
temp-x(t);
if abs(temp»l.

temp=sign(temp):
end
if t ..-is

y(t)=(.8*y(t)+temp)*(1.+.3*sin(x(t»);
else

y(t)=(.8*y(t-l)+temp)*(1.+.3*sin(x(t-1»):
end

end
elseif sys=-S

clear yl;yl(l+is)=O;
y(l+is)=O;
damp-input('damp=');
h...l;
for t-is+l:ifi

el"'x(t)-y(t-l);
e2-el-damp*yl(t-l);
if abs(e2»1

u"'sign(e2);
else

u-e2;
end
yl(t)-O.5*u+yl(t-l);
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y(t)=O.5*y1(t)+y(t-1);
end

else
'wrong number given,reset system type 1,2,3,4'

end



Jun 19 23:16 1989 model.m Page 1

function [ym1,pm,eo,ew]=mode12(iprog,is,ifi,x,y)
format compact
clc;clg; % clear windows.
% the function started 29/6/1988.
% obtain model parameters by a function fit(n,iwp,noise,x,y).
% generate model response
% ym(t)=bO*x(t)+b1*x(t-1)-a1*ym(t-1)-a2*ym(t-2)+cO,
% or one step prediction
% ym(t)=bO*x(t)+b2*x(t-1)-a1*y(t-1)-a2*y(t-2)+cO.
% compare WLS with OLS by mean square error between system
% output and model output or predictive output.
%
%
%
%
%
%
%
%
%

iprog = 1 , one step prediction;
= 2 , model response.

is = starting point of data series.
ifi = final point of data series.
x = input signal
y = system output.

model output or one step predictive
% is stored in ym(:,1) and ys(:,1)
% estimated parameters by WLS and OLS
% and ps(1:5,1) respectively.
%
%
%
%
%
%
%
%
%

output by WLS and 01S
respectively .
are stored in pm(1:5,:)

t= I 2 3 ... k

bO bO bO ...bO bO
bl bi bL, .. bl bl

pm(I:5,t)= al al aL ..al ps(1:5,I)=a1
a2 a2 a2 ...a2 a2
cO cO cO ...cO cO

clear ym yml; ym(1,4000)=O; ym1=ym;
ys-ym.; ys1"ym1;
t.emp= [ 0 . , 0 • , 0 . , 0 . , 0 . ] , ;
pm(:,4000)=temp;
ps= fit (ifi,2,1,x,y); % obtain OLS parameters.
for t-is+3:ifi

if t-=is+3
for tl-l:2

ym.(tl)-y(tl);yml(tl)=y(tl);
ys(tl)=y(tl);ysl(tl)=y(tl);
errsq(tl)=O;err(tl)=O;

end
errsq(3)-O;

end
pml- fit2(t,1,1,x,y); % obtain model parameters.
pm (:,t )=pml,;

ym (t)=pm (1,t) *x (t)+pm (2,t) *x (t-1) ...
-pm(3,t)*y(t-l)-pm(4,t)*y(t-2)+pm(5,t);

ys(t)-ps(l,1)*x(t)+ps(2,I)*x(t-l) ...
-ps(3,l)*y(t-l)-ps(4,1)*y(t-2)+ps(5,1);

yml (t)=pm (1,t) *x (t)+pm (2,t) *x (t-1) ...
-pm(3,t)*yml(t-I)-pm(4,t)*yml(t-2)+pm(5,t);

ysl(t)=ps(l,l)*x(t)+ps(2,I)*x(t-l) ...
-ps(3,1)*ysl(t-I)-ps(4,l)*ysl(t-2)+ps(5,I);
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errsq(1)=(y(t)-ys(t»A2+errsq(1):
errsq(2)=(y(t)_ym(t»A2+errsq(2):
err(1)=(y(t)-ys1(t»A2+err(1}:
err(2)=(y(t)-ym1(t»A2+err(2}:
errsq(3)=y(t)A2+errsq(3}:

end
eo=errsq(1}/errsq(3): % OLS MSE for prediction
ew=errsq(2)/errsq(3); % WLS MSE for prediction
eo1=err(1)/errsq(3); % OLS MSE for model response
ew1=err(2)/errsq(3); % WLS MSE for model response
eo=[eo,eol];ew=[ew,ewl];
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function p=fit2(n,iwp,noise,x,y)
format compact
clc;clg; % clear windows
% the function started 29/6/1988.
% estimate model parameters (bO,b1,a1,a2,cO) using data up
% to time n-1.
% system is approximated by model
% y(t)=bO*x(t)+b1*x(t-1)-a1*y(t-1)-a2*y(t-2)+cO
% weighted Least Squares or ordinary LS estimator is used.
%
%
%
%
% noise
%
%
% estimated parameters are stored in p(:,l)=[bO,b1,a1,a2,cO]'.
%
% first find weights stored in w(:,l),
% model state sl=x(n),s2=x(n-1),s3=y(n-1),s4=y(n-2)
%
z=[x(3:n-1)' ,x(2:n-2)' ,y(2:n-2)' ,y(1:n-3)');
s=[x(n),x(n-l),y(n-l),y(n-2»);
tmp=ones(n-3,1);
a1= [z(:,1) ,z (:,2) ,-z (:,3) ,-z (:,4),tmp) ,;

n = system present time.
iwp = 1 , weighted LS estimator;

default, ordinary LS estimator.o , noise free at input;
= 1 , noise superposed on input.

if iwp==l
wx=(max(x(1:n»-min(x(1:n»)A2;wx=1/wx; %scaling
wy=(max(y(1:n-l»-min(y(1:n-l»)A2;wy=1/wy;
wsc=[wx,wx,wy,wy);ws=tmp*wsc;

s=tmp*s; e=z-s; e=e.*ws;
w=sum(e' .A2) ;
i=find(w<=.OOOl); [n1,n2)=size(i);
for t-1:n2

w(i(t» ....OOOl;
end
w=tmp' ./w;

% for noise free case omit second limit on weight.
if noise'"""'l

av=sum(w)/(n-4);
temp=lOO*av;
i=find(w>temp);
[nl,n2)-size(i);
for t=1:n2

w(i(t»=temp;
end

end
else

w=tmp'; % ordinary weights.
end
% build up matrices.
sw==sqrt(w);
twl-[sw;sw;sw;sw;sw);
bl=al;
al-twl.*al; a-al*al';
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L

ty=y(3:n-1)' .*w'; b=b1*ty;

p=a\b; % obtain model parameters.
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function [ym,pm]=jumod(x,y,ifi)
format compact
clc % clear windows.
% the function started 29/6/1988.
% obtain model parameters by a function jfit(n,iwp,noise,x,y).
% generate model response
% ym(t)=bO*x(t)+b1*x(t-l)-al*yrn(t-I)-a2*yrn(t-2)+cO
% to predict jump resonance characteristics.
% is = starting point of model prediction.
% ifi = final point of model prediction.
% x = input signal
% y = system output.
%
% model output obtained by VWLS is stored in yrn.
%
% estimated parameters by VWLS is stored in pm(1:5,:).
%
%
%
%
%
%
%
%
%
%
for t...ifi:ifi

pml-jfit(t,l,x,y); % obtain model parameters.
pm=pml' ;

% one step prediction.
ym-pm(I)*x(t)+pm(2)*x(t-I)-pm(3)*y(t-I)-pm(4)*y(t-2)+prn(S);

t- 1 2 3 ... k

bO bO bO ...bO
bl bl bL, .• bl

pm(1:5,t)= al al aL ..al
a2 a2 a2 ...a2
ca cO cO ...cO

end
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function p=jfit2(n,noise,x,y)
format compact
clc % clear windows
% the function started 29/6/1988.
% estimate model parameters (bO,bl,al,a2,cO)
% using data up to time n-l.
% system is approximated by model
% y(t)=bO*x(t)+bl*x(t-l)-al*y(t-l)-a2*y(t-2)+cO
% Weighted Least Squares or ordinary LS estimator is used.
%
% n = system present time.
% iwp 1, weighted LS estimator;
% default, ordinary LS estimator.
% noise 0, noise free at input;
% = 1 , noise superposed on input.
%
% estimated parameters are stored in p(:,1)=[bO,bl,al,a2,cO)'.
%
% first find weights stored in w(:,l),
% model state sl=x(n),s2=x(n-l),s3=y(n-l),s4=y(n-2)
%
z=[x(3:n-l)' ,x(2:n-2)' ,y(2:n-2}' ,y(1:n-3)');
s= [x(n),x (n-l),y (n-1),y (n-2»);
tmp=ones(n-3,1);
a1= [z(:,1) ,z (:,2),-z (:,3),-z (:,4),tmp) ,;

s=tmp*s; e=z-s; w=sum(e' .A2);
i-find(w<-.OOOl); [nl,n2)=size(i);
for t'""1:n2

w(i(t» ....OOOl;
end
w=tmp' ./w;

% for noise free case omit second limit on weight.
if noise ......l

av-sum(w)/(n-4);
temp"100*av;
i=find(w>temp);
[nl,n2)=size(i);
for t-l:n2

w(i(t»=temp;
end

end
% build up matrices.
sw=sqrt (w);
twl=[sw;SW;SWiSW;SW]:
b1=al:
a1-twl.*al; a-al*al';
ty=y(3:n-l)' .*w'; b-bl*ty;

p=a\b: % obtain model parameters.
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format compact
clc;clg; % clear windows.
% the script started 15/3/1989.
% this program is used to study General Predictive Control
% in NL system, which the plant can be modelled as
% Hammerstein one. the GPC strategy is shown as follows,
% the scheme is to obtain x by linear GPC design, and then
% to calculate u by a root-solver, therefore this is
% an indirect design method.
%
%
% --->ICon.Desil<-----1 Estil<---------------------

I I I I mat I ID I
I I I or I _V_ I
I I 1__ 1 I
I I" J
I I 1 I
I V I I

W I I I U I I IX 1 I I I Y
---1-0-->1 Contro. 1----1-1 NL 1--1 B/A 1--0------1--->

"1 1 I I 1 1 I
I
I
I

-------------------------------------1

%
%
%
%
%
%
%
%
%
%
%
%
%
%
while 1

clc;
n=input('n>O enter,n<=O quit ');
if n<=O;break,end
11,initialisation'
'2,process running'
'3,plots'
i=input('your choice ');
if i--1

clc;clg;
ns-input('lenght of sample');
'nl part of Hammerstein model,1,2'
nl-input('nl1-a1+u+a2u"2+a3u"3;nl2=u+a3u"'3');
'linear part of Hammerstein model,a,b'
na-input('order of a-1+a1q(-1)+ ...+anaq(-na)');
for i=1:na+1

a(i)"'input('=')
end
nb=input(' order of b=bO+b1q (-1)+ ...+bnbq (-nb) ,);
for i=1:nb+1

b(i)=input('=')
end
'settings of ERLS estimator'
lamd=input('forgetting factor');
clc,
temp=input('initial values of normal matrix');
nm-3*(nb+1)+na+1;
p-temp*eye(nm);
v-input ('noise variance');
v=aqr t; (v) i
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'settings of controller'
c1=input('control weighting');
n2=input('max. output horizon');
nu=input('control horizon');
td=input('time delay');
dn=input('default no. of sample at start >=10');
'settings of root-solver'
c3=input('derivative mornitoring factor')
c4=input('root solution accuracy')
ite=20*ones(1,20);itd=ite(1:10);
w(1:10}=itd; %settings of setpoint sequence
temp(1:20)=ite;temp(21:40)=3*ite;
temp(41:60)=ite;temp(61:80)=0*ite;
while length(w)<ns

w= [w,temp) ;
end
w=w(1:ns+n2);
crot=[c3,c4);x=zeros(1,4);y=x;du=zeros(1,dn+l);
ab=[b,a);pm=zeros(l,nm);pm(l)=b(l);pm=pm' ;
xm=du; phi=[); u=zeros(1,4+dn+l);

elseif i==2
clc;clg;
u(4)=1;rand('norma1');
for t=4:ns

cot=[nb,na,t,lamd,nl);cs=[nb,na,n2,nu,cl,t);
[y1,x1)=plant(u,x,y,ab,cot);
x(t)-x1;y(t)~yl+v*rand;

%generate system output y(t) and
%intermediate variable x(t)

% parameter estimates
[paset,pm,phi,p)=paraest(u,y,pm,p,cot);
bm=paset(1:nb+1); % polynomial b
am=paset(nb+2:nb+2+na); % polynomial a

% nonlinear part r
rm=paset(nb+na+3:length(paset»;
if t>dn

[g,gl,wf)=diopeq(w,y,du,cs,paset);
[xml,du(t)]=condes(gl,xm(t-l),wf,n2,t);
xm(t)=xm1;
utl=u(t);
ut=root(utl,xm1,rm,crot);
u(t+td)=ut;

else
if w(t+1»=y(t)

u(t+td)-l.O;
else

u (t+td)=-1. 0;
end

end
end

elseif i-=3
sp=input('length of plot');
plot ([w(1:sp) ,,y (1:sp) ,))
xlabel('time period'),ylabel('signal magnitude')
text (.6, .9,' reference',' se')
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) i

text(.6, .8,'- - - plant output' ,'sc')
pause
plo=input('store plot=1, otherwise default');
if plo==l

meta chapS
end
plot([u(1:sp)',xm(1:sp)')
xlabel('time period'),ylabel('signal magnitude')
text(.6,.9,' control input','sc')
text(.6, .8,'- - - intermediate variable','sc')
pause
if plo==1

meta chapS
end
pause
,model para.'
am,bm,rm, pause

else
'wrong number given,reset your choice 1,2,3,4,5'

end
end
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format compact
clc;clg; % clear windows.
% the script started 15/3/1989.
% this program is used to study DeadBeat Control in NL
% system, which the plant can be modelled as Hammerstein
% one. the DBC strategy is shown as follows, the scheme 1
% is to obtain x by linear DBC design, and then to calculate
% u by a root-solver, therefore this is an indirect design
% method. the scheme 2 is to obtain directly u, i.e.
% so called direct method.
%
%
%
%
%
%.
%
%
%
%
%
%
%
%
%
%
%

--->ICon.Desil<-----1 Estil<---------------------
1 1 1 1 mat liD I
I I I or I _V_ I
I I 1__ 1 I
I I'" I
1 1 1 I
I V I I

W I I I U I I IX I I I I Y
---1-0-->1 Contro. 1----1-1 NL 1--1 B/A 1--0------1--->

"1 1 I I 1 1 I
I
I
I

---------------- --1

while 1
clc;
n=input('n>O enter,n<-O quit ');
if n<=O;break,end
'1,initialisation'
'2,process running'
'3,plots'
i=input('your choice ');
if i-==1

clc;clg;
ns-input('lenght of sample');
'nl part of Hamrnerstein model,1,2'
nl-input('nll-al+u+a2u"2+a3u"3;n12=u+a3u"3');
'linear part of Harnrnerstein model,a,b'
na=input('order of a=l+alq(-l)+ ...+anaq(-na)');
for i=l:na+l

a(i)=input('=')
end
nb=input('order of b=bO+b1q(-1)+ ...+bnbq(-nb)');
for i-l:nb+l

b(i)-input('-')
end
'settings of ERLS estimator'
lamd=input('forgetting factor');
clc,
temp-input('initial values of normal matrix');
nm-3*(nb+l)+na+l;
p-ternp*eye(nm);
v=input('noise variance'):
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v=sqrt(v);
'settings of controller'
c1=input('controller magnitude clamper');
td=input('time delay');
dn=input('default no. of sample at start >=10');
'settings of root-solver'
c3=input('derivative mornitoring factor');
c4=input('root solution accuracy');
ite=20*ones(l,20);itd=ite(1:10);
clear w
w(l:lO)=itd: %settings of setpoint sequence
temp(1:20)=ite:temp(2l:40)=3*ite:
temp(4l:60)=ite;temp(6l:80)=O*ite;
while length(w)<ns

w=[w,temp):
end
w=w(l:ns);
crot-[c3,c4):x-zeros(1,4);y=x;du-zeros(1,dn+1);
ab=[b,a);pm-zeros(1,nm);pm(2)=b(1);pm=pm' ;u=zeros(1,4+dn+1);
xm=du;phi-[);
db=input('indir. method=l, dir. method=2');

elseif i-...2
clc;clg;
u(4)-l;rand('normal');
for t...4:ns

cot=[nb,na,t,lamd,nl);
[yl,xl]-plant(u,x,y,ab,cot);
x(t)-xl;y(t)-yl+v*rand:

%generate system output yet) and
%intermediate variable x(t)

% parameter estimates
[paset,pm,phi,p)=paraest(u,y,pm,p,cot);
bm-paset(1:nb+l); % polynomial b
am-paset(nb+2:nb+2+na); % polynomial a

% nonlinear part r
rm-paset(nb+na+3:length(paset»;
if t>dn

tempx-xm(t-td:-1:t-nb-td);
tempy-w(t:-l:t-na)-y(t:-l:t-na):
if db""-l

xm(t)-dbcl(tempx,tempy,am,bm,cl);
utl-u (t);
utaroot(utl,xm(t),rm,crot);

else
utl-u (t);
[rc,xm(t»)-dbc2(tempy,pm,phi,cot):
ut-root(utl,xm(t),rc,crot):
if abs(ut»cl

ut-cl*sign(ut)end . .
end
u(t+td)-ut:

else
if w(t+l»-y(t)

u (t+td)-1. 0:
else
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u(t+td)=-1.0;
end

end
end

elseif i===3
sp=input('length of plot');
plot ([w ( 1 :sp) ,,y (1 :sp) ,])
xlabel('time period'),ylabel('signal magnitude')
text (.6, .9,, reference' ,'sc')
text(.6, .8,'- - - plant output','sc'}
pause
plo=input('store plot=l, otherwise default');
if plo==l

meta chap6
end
plot([u(l:sp)',xrn(l:sp)'])
xlabel('time period'},ylabel('signal magnitude')
text (.6, .9,, control input',' se' )
text(.6, .8,'- _.- innovation variable' ,'se')
pause
if plo==l

meta chap6
end
pause
,model para.'
am,bm,rm, pause

else
'wrong number given,reset your choice 1,2,3,4,5'

end
end
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function [yl,x1]=plant(u,x,y,ab,c}
format compact
clc;clg;
% the function started 15/3/1989
% this function generates an output yet) of nl system
% and intermediate variable x(t) from input u(t),
% which consists of a nonlinear element single-valued
% followed by a linar dynamic element
nb=c(1};na=c(2};t=c(3};nl=c(5};
b=ab(1:nb+l):a=ab(nb+2:nb+2+na);
if nl==l

x(t)=1+u(t)-U(t)A2+.2*u(t)A3;
else

x(t)=u(t)-u(t)A3:
end
xl=x(t):
tempx=x(t:-l:t-nb):tempy=y(t-l:-l:t-na);
yl=tempx*b'+tempy*a(2:na+l)';
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function [theta,pm,phi,p]=paraest(u,y,pm,p,c)
format compact
clc;clg; % clear windows.
% the function started 15/3/1989.
% This function estimates parameters of Hammerstein
% model by an Enhanced Recursive Least Square method,
% Parameters estimated are stored in am(i),bm(i),
% rm(i) which are separated from original
% parameter vector.

nb=c(1);na=c(2);t=c(3);lam=c(4);nl=c(5);
tempu=u(t:-1:t-nb);
phi=[1,tempu,tempu.A2,tempu.A3,-y(t-1:-1:t-na»)' ;
leng=length(pm');
l=p*phi/(l+phi'*p*phi); %
p=(p-(p*phi*phi'*p)/(l+phi'*p*phi»/lam;
pm=pm+l*(y(t)-phi'*pm);

% parameter are separated
bm=pm(2:nb+2,1)';
am(2:na+1)=pm(2+(nb+1)*3:leng,1)' ;am(l)=l;
theta=[];
for i=2:4

theta-[theta;pm«i-2)*(nb+1)+2: (i-1)*(nb+1)+1,1)');
end
rm(2:4)=(theta*bm'/(bm*bm'»';
rm(l)=pm(l)/sum(bm);
theta=[bm,am,rm];
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function u1=root(u1,xm1,r,c)
format compact
clc;clg;
% the function started 15/3/1989
% this subprogram solves one of a polynomial roots by
% Newton-Raphson method, the root is stored in u1 and u2.
i3=0;i4=0;df=1;
c3=c(1);c4=c(2);x2=1;u2=u1; % best value c3=O.5, c4=1
while df<20
i=0;x2=abs(x2)+c3+1;

while abs(x2»c3 % derivative check
i=i+1;
temp1=[1,u1,u1~2,u1A3];
temp2=[l,2*ul,3*u1A2];r2=r(2:4);
xl=r*templ'-xm1;x2=r2*temp2';
if abs,(x2»c3 % derivative check

u2=u1-x1/x2;
ul=u2;

end
if i"'-5

x2"'0;
end

end
u1=u2;x1=r*[1,u2,u2A2,u2A3]'-xm1;
if abs(x1»c4 % root accuracy check

u1=xm1/(5+i3); u2=u1;
i3=i3+5;i4=i4+1;
if i4--10

i3=-70;
end
if i4..·20

df-30;
u2=xml/20;ul=u2;

end
else

df-30;
end

end



Apr 17 22:11 1989 diopeq.m Page 1

function [g,g1,wf]=diopeq(w,y,du,c,pa)
format compact
clc;clg;
% the function started 15/3/1989
% this function gives solution of Diophantine equation
% by recursive method the equation has form like
%
% 1=E*A*Delt + qPow(-j)*F
%
% where Delt = 1-qPow(-1)
% qPow(-j) means q to the minus j

% the second role is to build up matrix G.
nb=c(1);na=c(2);n2=c(3);nu=c(4);c1=c(5);t=c(6);
bm=pa(1:nb+1);am=pa(nb+2:nb+na+2);
e(1)=1;%initialize polynomial e
adelt(2:na+1)=am(2:na+1)-am(1:na);
adelt(1)=1;adelt(na+2)=-am(na+1);
f=-adelt(2:na+2);%initialize polynomial f
eb=bm;eb(nb+1+n2)=O;
g3=bm(2:nb+1);g3(nb+1+n2)=O;
for j=1:n2

e(j+1)=f(1); % e
f(1:na)=f(2:na+1)-adelt(2:na+1)*e(j+1);% f
f(na+1)=-adelt(na+2)*e(j+1);
for j1=1:nb+1+j

if jl>=j+l
eb(j1)=eb(j1)+f(1)*bm(jl-j);

end
end

g2-eb(j+1:nb+1+j);
wf(j)=g2*du(t-l:-l:t-nb-l)'+f*y(t:-l:t-na)';
wf(j)=w(t+j)-wf(j);%difference between setpoint

%and predicted step response
end
g=eb(1:n2)'; g3-g; %build up matrix 9
for i=1:n2-1

g4(i)-O;g4(i+l:n2)-g3(1:n2-i);
g"[g,g4'];

end
g-g(:,1:nu);% consideration for control horizon

% build up matrix "g'*g-c1*unit"
unit-eye(nu);g1-g'*g-c1*unit;
gl-inv(g1)*g';
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function[xm1,du]=condes(g1,xm2,wf,n2,t)
format compact
clc;clg;
% the function started 15/3/1989
% the function calculates the intermediate variable
% x(t) by linear gpc design% procedure, which
% will be used to find nlgpc controller output u(t)
% by root-solving routine (root.m).
xm3=g1(1, :)*wf';
xm1=xm2+xm3;
if abs(xm1»100

xm1=100*sign(xm1);
end
du=xm1-xm2;
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function xml=dbcl(x,y,am,bm,cl)
format compact
clciclgi
% the function started 20/3/1989.
% this function is used to design indirectly
% a deadbeat controller with an algorithm given by
%
% X(t)=B*X(t-k)/B(l) + A*[W(t)-Y(t»)/B(l)
xm1=bm*x'+am*y';
bs=sum (bm);
if abs(bs)<=O.Ol

bs=O.Ol*sign(bs)i
end
xm1=xml/bsi
if abs(xml»=cl

xm1=cl*sign(xml)i
end
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function [rc,xm1)=dbc2(tempy,pm,phi,c)
format compact
c1ciclgi
% the function started 20/3/1989.
% this function is used to design directly
% a deadbeat controller with an algorithm given by
%
% B(l)U(t)=B*U(t-k) + A*[W(t)-y(t»)
n=length(pm)i rc=O;
nb=c(1)ina=c(2)i
am(1)=1;am(2:na+1)=pm(n-na+1:n,1)' ;
for i=1:3

rc=[rc,sum(pm(2+(i-l)*(nb+l) :1+i*(nb+1),1)'»)i
end
xm1=pm(2:n-na,1)'*phi(2:n-na,1)+am*tempy' ;
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