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Summary
This thesis investigates some problems on nonlinear system identification,
parameter éstimation, and signal processing.
Random signal spectral analysis and system frequency response estimation
are studied from incomplete time series. Both recursive and direct estimators are

presented based on either an unbiased or minimum mean square error criterion.

Nonlinear system identification and parameter estimation are studied. A
quantisation technique is developed to give a clear geometrical interpretation for
structure detection and parameter estimation. A new concept, state amplitude dis-
tance between current and previous operating states, is introduced, and results in a
Variable Weighted Least Squares (VWLS) algorithm. A modified version makes
on-line application possible. Jump resonance is predicted by the VWLS algo-
rithm as one of the applications.

Self-tuning controllers, including a nonlinear general predictive controller
and a nonlinear deadbeat controller, are designed. A vector backward shift opera-
tor is defined to simplify the expression of the Hammerstein model, and is intro-
duced to analyse the general feedback controller design problem for nonlinear
plant described by the Hammerstein model. A fast root-solver developed facili-

tates nonlinear model treatment in on-line applications.

Theoretical results are confirmed by simulation studies.
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Preface

The motivation of the thesis stems from the importance of modelling,
identification, parameter estimation, and controller design for a wide range of
nonlinear systems whatever they are physical or social. The relevant problems in
nonlinear systems have been actively studied by many workers over a long
period, however present knowledge is incomplete due to the difficulties not
encountered in linear systems. For nonlinear systems, a complete and unified
theory is probably unattainable. Attention has historically therefore been
focussed on the analysis of special cases such as Van der Pol oscillators, relay
systems or systems consisting of a small number of linear dynamic elements with
connected static nonlinearities. In the thesis attention is paid to a wide range of

nonlinear systems.

To the end of identifying and controlling nonlinear systems as simply as
possible, some new methods are developed in the thesis. Both linearization and
nonlinear techniques are considered in the belief that the combination of the two

kinds of techniques will bring satisfactory results.
The thesis consists of five sections.

The first section concentrates on the problems of incomplete time series
analysis and modelling. It is not uncommon that a time series, such as an opera-
tional record of an industrial installation or market fluctuation statistics, has some
missing observations due to many reasons. Bard (1974) has classified the neces-
sary analysis as a kind of special nonlinear parameter estimation. However study
shows that it is appropriate to apply linear approximating techniques to the esti-
mation of Fourier amplitude, power spectral density, and frequency response
functions. Both recursive and direct algorithms are developed using either an
unbiased or minimum mean square error criterion. The properties of the resulting
estimators are discussed in detail. Chapter one studies the estimation of Fourier
amplitude and power spectral density of random processes. Chapter two considers

estimation of the system frequency response function.
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The second section studies several problems related to nonlinear system;
structure detection, parameter estimation, and jump effect prediction. A concept,
state distance or amplitude effect, results in some novel understanding and
approaches to the nonlinear problems even though the basic idea, used seldom in
nonlinear system identification, has been known for long time. In chapter three an
amplitude quantisation technique illustrates the relationship between system
structure detection and its parameter estimation in a set of three dimensional
spaces. There has not been found any publication for this concept and geometric
interpretation. Another interesting topic studied in chapter four is a weighted least
squares algorithm based on the nearness between the current state and previous
states, i.e. the amplitude distance between current state and previous ones, allow-
ing the approximation of the behaviour of a wide range of nonlinear systems. The
consideration of on-line applications leads to a modified parameter estimator. One
of the applications of the algorithm, the jump effect pxj:diction for nonlinear sys-
tems, is investigated in this chapter.

The third section designs two types of self-tuning controllers, the general
predictive controller and the dead-beat controller, for nonlinear systems described
by a combined Hammerstein + ARMA model. In chapter five a nonlinear general
predictive controller is designed in the form of a self-tuning algorithm, and a fast
root-solving routine is developed to find the inverse Hammerstein characteristic
parameters. In chapter six a nonlinear dead-beat self-tuning controller is designed
by a direct method which generalises a HARMA model with a new operator.
This simplifies the nonlinear dead-beat controller design to be the same as linear
dead-beat controller design. A general nonlinear feedback controller is also
presented based on the HARMA model.

The fourth section presents the conclusions of the thesis and contains the
bibliography.

The fifth section gives computer programs and the publications based on the

thesis.
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The thesis emphasizes the development of new concepts and the exploration
of potential applications. The validity and effectiveness of the theoretical results
are demonstrated with computer simulations. Hopefully experiments based on
laboratory tests and further work in real environments will be carried on in my

future work.



Section 1 Incomplete time series analysis and modelling

S1.1 Survey

In time series modelling and parameter estimation, a common situation is
met in which the measured sequence is not a complete set of the observations, but
the measurements corresponding to some time instants are missing, not known or

unreliable.

Missing data can arise from a number of causes, such as failure of recording
equipment, clerical errors, rejection of outliers, or because of an inability to
observe the phenomenon at certain times. The pattern of the missing data, i.e. the
distribution of the missing data position, may be in one of two categories, one
deterministic or periodic, as in the case, for example, of a single sensor which is
time shared to measure and record different processes, or a random or aperiodic

phenomenon as in the case of an unreliable sensor which fails intermittently.

One solution to the problem of uncertain observation is interpolation, which
estimates uncertain values using the known values and then reconstructs the time
series. The technique is used quite often in the statistical field, a number of
authors (Bard 1974; John and Prescott 1975; Jarrett 1978; Smith 1981) having
studied the problem and obtained some fruitful results. One common feature of
the previous authors work is the reliance on parametric models. However the
interpolating method has some disadvantages (Robinson 1983; Harris 1987).
Satisfactory results will be probably obtained by simple or complicated methods
of interpolating the missing values, followed by application of some standard
techniques to calculate such as parameters of ARMA model or power spectrum
density etc., only when discrete data are sampled at a very fast speed or when the
missing data points are infrequent. Furthermore data interpolation and fitting pro-
cedures cannot be easily incorporated into a computer program, particularly when
quite a few data values are missing, and to ensure good interpolation, interaction
between the program and the analysis is required which would often be not practi-
cable for many industrial systems. Douce and Zhu (1989) reported that the inter-

polating method is not always effective in frequency domain analysis. The
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simulation experiment in the section will demonstrate the point of view.

Another more general solution is straightforward and derives the estimated
statistics directly by means of some criterion such as UNBiase (UNB) or
minimum Mean Square Error (MSE) without reconstruction of the time series.
The first of the advantages of the method is that less a priori knowledge of the
properties of the time series is needed than in the interpolating method. The
second advantage is its computational efficiency which is a key factor in the field
of real time analysis and processing. The third factor is that it has better accuracy
than some simple interpolating techniques in certain environments. The author
preference (Douce and Zhu 1988, 1989) is based on these three considerations,
which will be applied for analysis and estimation of Fourier transform, spectrum,
and frequency response in the section. It is noted that since 1962 (Jones 1962;
Parzen 1963), especially 1969 (Nahi) some useful results (Robert and Gaster
1980; McGiffin and Murthy 1980, 1981; Harris 1987) have been published in sig-
nal modelling and parameter estimation from time series with uncertain observa-
tions, by other sub-optimal methods. A good survey of some representative tech-
niques can be found in McGiffin and Murthy (1980).

The new method developed in the section for the estimation of Fourier
transform, power spectrum density and frequency response has general applica-
tions in many fields, including analysis of operational records of industrial
processes, market fluctuation data, or population statistics. The present study

concentrates on stationary time series.

In summary this section considers the spectrum analysis of finite duration
data where the available data contains one or more uncertain observations or
missing points. Both recursive and direct algorithms are developed using either
an unbiased or minimum mean square error criterion to obtain estimates of the
Fourier transform and the power spectrum density of the complete data record.
The analysis is extended to include frequency response identification of a wide

range of systems with missing data at the output.

It is shown that it is important to consider the position within the record as

well as the total number of the missing points. One result of a periodic
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distribution of the missing points is the production of a spurious periodicity in the
measured power spectrum. It is believed that this phenomenon has not been
reported previously.

A comparison of the new method with traditional techniques including sim-
ple interpolation method is presented, and simulation results demonstrate the
resulting improved performance.

A combination of the relevant techniques is suggested for the estimation of

power spectrum density and the frequency response function.



S1.2 List of notations

u system input, no missing observations.
X system output, no missing observations.
y system output, with missing observations.
X(Q), S=(Q), etc. amplitude and power spectra of x.

X estimate of X( Q) based on Y(Q ).

M number of missing points.

o2 variance of specified signal.

S,(Q) smoothed value of estimate of §,, (Q).
G(Q) system frequency response.

E[.] expectation.

X complex conjugate of X.

CM Covariance Method.

M Interpolation Method.

PM Periodogram Method.

UNB UNBiased or UNB criterion.

MSE Mean Square Error or MSE criterion.

Q harmonic frequency.

S1.3 List of figures and tables

Fig. 1.2.1 Recursive estimators -

Fig. 1.4.1 Spurious periodicity

Fig. 1.5.1 Spectrum estimates with 10% missing points (SYS 1)
Fig. 1.5.2 Spectrum estimates with 20% missing points (SYS 1)

Fig. 1.5.3 Spectrum estimates with 10% missing points (SYS 2)



Fig. 1.5.4
Fig. 1.6.1

Fig. 2.1.1
Fig.2.1.2
Fig.2.2.1
Fig. 2.4.1

Fig. 2.4.2

Fig. 2.4.3

Fig. 2.4.4

Table 1.5.1

Table 1.5.2

Table 2.4.1
Table 2.4.2
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Spectrum estimates with 20% missing points (SYS 2)

Spectrum estimation procedure

Closed-loop system
System with missing points at output
Recursive estimators

Frequency response estimates with 10% missing points
SYS 1)

Frequency response estimates with 20% missing points
SYS 1)

Frequency response estimates with 10% missing points

SYS2)

Frequency response estimates with 20% missing points
SYS 2)

Errors in spectrum estimation

Fit in spectrum estimation

Errors in frequency response estimation

Fit in frequency response estimation



Chapter 1  Fourier amplitude and spectrum estimates

1.1 Introduction

The Power Spectrum Density (PSD) is an important parameter in the
description of random process. There are two general methods currently available
for PSD estimation with uncertain observations. We call one the Covariance
Method (CM), the alternative technique the Periodogram Method (PM). A brief
introduction to CM and PM will be presented after a definition of the problem.

The time series, assumed zero mean and normally distributed, with no miss-

ing observations is written

X =X1, s Xyt XN , E=1,N

With missing observations, the series is written
Yi=Xx; . & ’ (1.1.1)
where g; =0 for a missing point and unity otherwise. This is a reasonable choice
when the time series has zero mean value. The missing data consists of M miss-

ing points, a member of this set being x,,. The incomplete time series y may be

recognised as the product of the original time series x amplitude modulated by

the function g;.

The discrete Fourier Transform (FT) of x; is
X(Q)= Y xi(cos iQ—jsiniQ)=Xp + jX; (1.1.2)
i=

where Q = %%’i with k integer .

The power spectral density is

S (@)= XQXT@D) (1.13)
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Alternatively, the power spectral denéity can be expressed in term of the

measured autocovariance function according to

S (Q) =Ry (0) + 225‘&“ (T)cos (Q) (1.1.4)

where

Re(®) = 'f;x,-x,-ﬂ for T 20 (1.1.5)
i=

The covariance method for spectral analysis with missing points (Jones

1962; Parzen 1963; McGiffin and Murthy 1980) uses eqn (1.1.1) to give
Ryy (1) = Ry (T).Rxx (1) (1.1.6)

Knowing the positions of the missing points, R,, (1) can be calculated, to give
=T
Ryy W= I:g)’iyiﬂ

Rep(0) = lgtgz 8ist (1.1.7)

Ifn(r)=£§ﬁ(% (1.1.8)

By eqn(1.1.8) computing N+1 covariances, consistent estimates can be
obtained as RA,,Jlr () converges to the true value as N —oo (McGiffin and Murthy
1980), then using eqn (1.1.4) the spectral density of x(t) can be estimated.

The main drawback of this method is that different covariances are com-
puted with different accuracy since the variance of the estimate R (%) increases
with increasing t, and for a given 7 it decreases with increasing value of the
denominator of eqn(1.8) for R (1), thus for a given sequence with a particular
pattern of missing observations, determining the optimal 1’s to be used in com-
puting R;x (1) is a difficult problem and has not yet been studied (McGiffin and
Murthy 1980). Another disadvantage is that the CM is not statistically efficient
(McGiffin and Murthy 1980). The method can not be used if in case of
Ryg (1) = 0. Jones (1962) and Parzen (1963) proved the restriction for the case of

regularly missing observations.
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An alternative approach termed the periodogram method (Harris 1987) is
based directly on the measured power spectrum S,y (). This is defined by

S (@) = 12575,y (Q) (1.19)

where (N - M) is the number of non-zero terms in y(t). A obvious drawback is

that no consideration is given to the positions of the missing points.
In general, both the above estimators are sub-optimal, as shown later in this
chapter.

Furthermore a simple Interpolation Method (IM) may be used to obtain PSD

by the reconstruction of time series. The rule estimating missing value is given by

i + .
j= AT (1.1.10)

It can be expected that this IM gives good results for narrow-band signals,
on the other hand, it is unsatisfactory for wide-band signals. Therefore IM has

less generality and needs some advance knowledge of the time series.
The new estimator of the property ®, (for example the power spectral den-
sity) of the process giving the sequence x, is derived from the estimate of ©,

from the sequence y according to

A

6, =k O, (1.1.11)

where k is a frequency-dependent factor depending also on the position of the
missing points chosen to satisfy a criterion such as zero bias or minimum mean
square error. This real gain factor k can be expressed in terms of the true value of
©,, and hence both a recursive method and a direct method are introduced to
determine its value. Simulation studies show that the recursion introduced con-
verges rapidly for the wide range of examples considered whilst the direct method

gives the same results as the recursive one with a significant reduction in comput-

ing time.
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1.2 Estimator for Fourier transform

1.2.1 Unbiased estimate

The requirement for an unbiased estimator is given by
E[X-X]=E[Xz—k1Yr)+j(X;—k2¥1)] =0 (1.2.1)
that is
E[Xp—k1Yr]=0 and E[X;—k,Y;]1=0 (1.2.2)

In this special case k1 and k3 are unity since E[Xz] = E[Yz] = E[X;] = E[¥;] = 0.

1.2.2 Minimum mean square estimate

The MSE criterion is written in the form
E[X-X)X-X)"1=E[(Xg—k1YR)2+ (X;—k¥;)?] (1.2.3)

Differentiating with respect to k1, and setting the result to zero and noting that Y

is known,
E[XpYrl=k, Y@ (1.2.4)
that is
ky = _1?__’5[’;1?”“ (1.2.5)
and similarly
ky=L [ﬁ’ il (1.2.6)

Appendix Al.1 derives expressions for k1 and k, on the two assumptions:

(a) The missing points are separated such that the cross-correlation between

values at missing positions may be neglected, and

(b) The missing points are not too near the end of the record.
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The results are

o f 1(-12\/--Zcoszm Q) +fm

1 Yl?
_ fuE-EsintmQ) - £ an .
ky= le (1.2.7)
where
2
fl - E[XI?A';XI] = k3[YI§V+ le] (12.8)

where k3 will be determined in the calculation of the gain for PSD estimation. f ;
and v, can be estimated directly, and Y# and Y;? can be also expressed as the

functions of f ; and f ,, see appendix Al.1 for the details.

Eqn(1.2.7) and eqn(1.2.8) give a recursive form of estimator in which f is
updated from the current estimates of k;, k,, and k3 (with initial values
ki=kq=1, k3=w% assumed) according to eqn(1.2.8) and then k, and k, are

calculated, with k5 obtained from the PSD estimator. Therefore the estimators for
FT and PSD are connected recursively, as demonstrated in the block diagram as

shown in Fig. 1.2.1.

initial settings |
— f, " k1,k2 FT
b
i
— fq > ks ”  PSD
)
initial settings incomplete series

Figure 1.2.1 Recursive estimators
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1.3 Estimator for PSD

The reason for two gains being introduced adopted in the Fourier transform
estimator is that there are two independent variables, the real and imaginary parts,
in that criterion. However the PSD estimate is a real quantity, hence just one gain

k3 is set when compensates the measured PSD directly.

1.3.1 Unbiased estimate

Firstly UNB estimator is developed in term of
E[Xg+XP2)yk3(YR+YP)] =0 (1.3.1)

the gain k3 is

_ EXAXA _ N f
b= YRR T Ty (1.32)

the derivation is given in appendix Al.1.

1.3.2 Minimum mean square error estimate

Secondly MSE estimator is developed in term of minimisation of
E{[XR+XP) - k3(Yg+Y)]% (1.3.3)

Differentiating with respect to k3, and setting the result to zero and noting y is

known,

ks = E[XR+XP)YR+Y )
[(Y#+YP))*

_ EXRYR+XPYR+XRYP+X Y )
[(XR+YP)

_ [EXAHE XPNY Y 21+ 20E [Xp Y WAHE [X; Y  *HE [Xp Y 1I=HE [X; YR 11
(Y#H+YAP

(1.3.4)

where, for Gaussian signal (Godfrey and Jones 1986), it has

E[XgYR] = E [XfIYF+2(E [Xp YR1I?
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EXPYR) =E[XPIYR+2(E X, YR ])?
E[X@YAI=E XRIY+2(E [Xp Y/])?
EXPYPI=E [XPIYP+2[E [X, Y]] (1.3.5)

These above terms can be evaluated in terms of f 1, f 2, B1, 71 and y,. Appendix

Al.1 derives the detailed expressions for eqns (1.3.4) and (1.3.5).
1.4 Properties of the new estimators

1.4.1 Compensating factors in limiting cases

In this part, two special signals are selected for analysis, to indicate the
dependence of the estimators on the signal characteristics. E[YZ + Y/2] is used

instead of Y + Y22 for the following theoretical analysises.
The signals selected are white noise and a narrow-band signal.
1. White noise signal ( E(x) =0,62=1)
From eqn(A1.2), eqn(A1.3), and eqn(A1.12),
fi=1, f2=0, B1=1=0 (1.4.1)

First consider MSE FT estimator, from eqn(1.2.3)
v = EXRYg]
' TEA
£ 15T costm Q)+f
f 1(l2v-—ZEcos2m Q)+02Y cos?m Q+2f

_ E[X;Y;]

k2= E[Y/]

_ £ 15~ ZsinTm Q)7 2m
123 sintm Qyrogsintm Q-2f

(1.4.2)

Substitute eqn(1.4.1) into eqn(1.4.2), gives
ki=1 , k=1 (1.4.3)
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As mentioned before, the gains for UNB estimator are undefined. For the UNB
and MSE estimators k; =k2=1. The position and number of the missing data

have no effect on the estimator in the case.

Second consider UNB PSD estimator, substitute eqn(1.4.1) into eqn(1.3.2),

gives

k3= gy (1.4.4)
which is the same as the traditional PM.

Now consider MSE PSD estimator, from eqn(1.3.3)

tn = EIXRXPAYRYP)]
3 E[(Y2+Y2)?

_ EXRYRHXPYR+XRY 2+X Y (1.4.5)
E [TRR2Y T Y ] h

Substitute eqn(1.4.1) into eqn(1.4.5) with lengthy operation, gives

NWIN-M )+2[(-12\L—Zcos2m Q)2+( %—Esian Q)2+2(Ecosm Q sinm Q)?2]
30V -M-4(F-Foosm Q)T ~FsinTm Q)+4(Scosm Q sinm Q)7

- NWN-M)+ (N2 -2NM +2M?)
3(N-M)*-N? + 2NM

_ 2N2—3NM +2M?2
INT—4NM + 3M?

_2-3MIN +2 (N/M)? (L4.6)
2-4MIN+3 (NIM) B

From the analysis, UNB and MSE estimators depend only on the number of
missing points for a white noise signal, and the MSE PSD estimator is biased.
However there is no big difference when the number of missing data is small, for

instance M/N = 0.1, k3 = 1.1 in UNB, k3 = 1.06 in MSE. In particular they are
the same when M = 0.
2. Narrow-band signal

In this case
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fi1oee , 1 f2l, 1B, Im !, vl <R, Rispositive and finite
(1.4.7)

two limitating cases of the arguments, (1) ¥ cos?m Q=0 and Ysin?n Q=M and (2)
Y cos2m Q=M and ¥ sin?m Q=0, these both lead to Ycosm Q sinm Q=0.

First consider MSE FT estimator, substitute eqn(1.4.7) into eqn(1.4.2), to

give, in case (1)

in case (2),

Now consider UNB PSD estimator, substitute eqn(1.4.7) into eqn(1.3.1),

giving, in both cases,

- N __ 1
k3_m_ = TN (1.4.10)
Now consider MSE PSD estimator, substitute eqn(1.4.7) into eqn(1.4.5) with
lengthy operation, to give, in both cases,
2 2
N (V-2M 2[5 - costm Q) +(H -3 sinZm )]
3(N-2M P—4(5--2F cos?m Q)(F 23 sin?m O)

_ _N2-2NM +M?
NZ-4NM +6M2

1-4M /N + 6(MIN )? o

1.4.2 Spurious periodicity
An interesting property is the spurious periodic distribution of PSD over a
range of unimportant harmonic frequencies due to a periodic distribution of miss-

ing points. Consider a PSD estimator by PM with reference to eqn(1.1.9),

A

See = Jgz S
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= g E X -Xn XX, 1"
= NéM.[E (XX *)-2E (XR X +X1 Xoni WE Xn Xm)]
= Nén(fl(N—zMHE XmXm))
= w7z (N (Y =2M)Sce+M G2+ 2Ry, (t)cos (o)) (1.4.12)

where

Rn() =E[XpiXmjl » a=lmi-m;l , j=i-1 (1.4.13)
if Sy, has low-pass filter property , then

Ail,“nsn -0

or

S =0 , for h<Q<n (1.4.14)

where h is a measure of the cut-off frequency of the signal.

Eqn(1.4.13) becomes
So = 7v5V,[<s,‘2M+2R,,, (O)cosa) h <Q<x (1.4.15)

Clearly there exists a periodic spectrum at high harmonics segment, which con-

sists of a constant plus a cosine function. The period of the spectrum is

_ N _ .
Tm = E— TW y J =1 1 (1.416)

This follows since
cos (0Q) = cos (22K | k=0,..., N-I (1.4.17)

The frequency is

fu=LE0 =0 (1.4.18)

The average value is

oM _ oIMIN

N=M-T-MIN (1.4.19)
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From eqn(1.4.19), increasing the number of missing point increases the level of
the constant spurious estimated spectrum at high frequencies. A graphic presents
the analysis as shown in Fig. 1.4.1.

Another qualitative explanation of the phenomenon considers the periodic
missing points (of period P points) as a sampled version of original sequence x(i).
This sampled sequence is subtracted from x(i) to produce the observed sequence
y(i). The sampled sequence, sampled at the low frequency (1/P), introduces alias-
ing of the original signal, so that the original'tcxm at zero frequency produces
alias terms at the frequency 1/P, 2/P, etc. This is a periodic phenomenon, giving a
repetitive power spectrum, repeating over (N/P) harmonic frequencies.

It can be concluded that a spurious periodic spectrum appears at high har-
monics which is much smaller than main part of spectrum, its period and average
value being determined by the number and position of missing data. The
phenomenon is caused by periodically distributed missing points, and occurs for
any spectrum with band limited property, no matter whether low-pass or high-

pass.

PSD

N/(mi-mj)
2Rm/(N-M)

Var(x)M/(N-M)

frequency

Figure 1.4.1 | Spurious periodicity
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1.4.3 Direct estimators
A further development is that the recursive estimators may be modified to be
direct estimators by the substitutions
Xp =Yp + X0
X =Y+ X,y (1.4.20)
Appendix Al.2 presents the detailed derivations for the resulting estimators. It is
noticed that the recursive estimators use the variable substitutions like
YR =Xr —Xmr
Y1 =X; - X (1.4.21)
where Xz and X; are real values which are estimated recursively.

Summarying this section:

1. UNB estimators depend only on the signal characteristics and the number
of missing data. However this accords with the assumptions given previously.

2. MSE estimators depend on the signal characteristics and the number, but
also the position of missing data. Since MSE is a sort of quadratic criterion, the
terms for the gains include quadratic form such as (%’-—Zeoszm Q)z,
(X cosm Q sinm Q)2 for PSD and Y cos?m Q, ¥ sin?m Q for Fourier transform.

3. The ratio M/N is an important parameter in the estimators. N/M is a
representative of Signal to Noise Ratio (SNR), since missing data introduce noise
into the analysis. Some of the estimators will fail when M /N 21/2, consistent with
the results of Jones (1962) and Parzen (1963).

4. A spurious periodic spectrum gives information about the distribution of
missing points. -

5. The direct estimators reduce significantly computing time comparing with

recursive estimators.
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1.5 Experiment results

Three systems excited by Gaussian white noise have been studied to com-
pare the traditional and new methods for spectral analysis. The experiments have
been completed to examiné the effect of smoothing over several blocks and over

adjacent frequencies on the resulting estimates.

Three quantitative measures of performance have been used for the com-
parison. The first one is the sum over all frequencies of the error squared between
the true spectrum with no missing points and the estimated spectrum with missing

points. This is a measure of bias, and is given by

‘g)(E (A)-E(A))>

N (1.5.1)

where A is the PSD calculated from time series without missing data and A is the
PSD estimated by either the UNB estimator or the MSE estimator from time
series with missing data. N is the time series length without missing data. The

second one is the sum over all frequencies of mean square error, that is

éE@JF
=_LW__ (1.5.2)

The third one is a linear regression of the true spectrum on the estimated spectrum

again over all frequencies, given by

éEMEM)

‘g)(E A))?

In the all experiments, a block length of 128 points has been used, and the

(1.5.3)

whole data length equals the length of one block multiplied by the number of
blocks, which is the data length used by CM. The missing points have been intro-
duced at positions 10, 20, ..., 120 firstly, that is ten percent of missing points in
the series, and then at 5, 10, ..., 120, which corresponds to twenty percent of miss-
ing points in the series. In those experiments each involving one block, smoothing

over two adjacent frequencies for system 1, and four adjacent frequencies for
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system 2 has been used to estimate the PSD for the calculation of k1, k3, k3. For
the experiments involving more blocks, the spectrum is smoothed over the blocks
for this calculation. A lag window (Bartlett) is used to smooth the covariance
function when the correlation method is used. In the experiment, expectation
operation E[.] concerned in theoretical derivation is replaced by smoothing opera-
tion Y, [.], i.e. arithmetical averaging. Three particular systems have been con-
sidered.

1. First order system (SYS 1, narrow-band)

The system considered is
X =09 %1 +u

in which u; is a white noise normally distributed signal of unity variance and zero
mean value. Fig. 1.5.1 compares the errors in an experiment consisting of 1000
blocks with 10% missing points using traditional and the new methods, and
shows the true PSD and the estimated PSD with semilogarithmic axis to display
clearly the periodic phenomenon at high harmonics. Fig. 1.5.2 shows results with
20% missing points. The maximum errors in the traditional methods occur at zero

frequency, corresponding to the frequency of the peak value of the true spectrum.
2. Fourth order system (SYS 2)

The signal is produced by passing the previously defined white noise
through the process described by Harris (1987)

Yi-3=1.7143y;_4 — 0.9048y;_s + uy
¥Yie = 1.0732y,1 = 0.9512y;2 + yx-3
This produces a power spectrum with two pronounced resonances.

The periodogram method is again inferior to the correlation method, both
being worse than the new methods. Fig. 1.5.3 shows, with 10% missing points,
how the errors in spectral estimation vary with frequency, the frequencies of the
maxima corresponding to the resonant frequencies of the system. The maximum

of the error is approximately 10% of the true value. It demonstrates again the

periodic phenomenon predicted by theory. Fig. 1.5.4 shows the results with 20%
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missing points.

Ensembles of experiments, each of duration equal to one, five, ten and one
hundred blocks have been completed to investigate the new estimators perfor-
mances with comparison to the traditional estimators, Table 1.5.1 summaries the
results and shows the significant reduction in errors resulting from the new esti-
mators, UNB has the minimum bias and the subminimum mean square error,
MSE has the minimum mean square error and the subminimum bias, compared
with the other methods except IM for SYS1 and SYS2. Table 1.5.2 lists the
ensemble average of the linear regression of the true on the estimated spectrum.

The new estimators substantially reduce the deviation of this factor from unity.

For above two systems, IM gives the best results for the considered methods
due to the narrow-band characteristics. The following SYS 3 is mainly selected to

check the IM generality.
3. First order system (SYS 3, wide-band )
The system considered is
X =0.1 x5y + 1y

The experiment shows that IM is worse than UNB and MSE. The comparisons
have been recorded in Table 1.5.1 and Table 1.5.2.
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Fit in spectrum estimation

data length PM CM IM UNB MSE
(10% missing) fit fit fit fit fit
sysl 128 | 1.113 | 1.093 | 1.029 1.069 1.077
sys2 128 | 1.266 | 1.095 | 1.038 | 1.041 | 1.079
sys3 128 | 0913 | 0925 | 1213 | 0.974 | 0.968
sysl 128*S | 1.108 | 1.088 | 1.011 1.064 1.084
sys2  128*5 | 1.102 | 1.062 | 1.030 | 1.039 | 1045
sys3 128*5 | 1.021 | 0980 | 1.187 | 1.013 | 1.014
sysl 1280 | 1.097 | 1.070 | 0995 | 1.010 | 1.014
sys2 1280 | 1.064 | 1.040 | 1.019 | 0.980 | 0.971
sys3 1280 | 1.013 | 1.012 | 1.070 | 1.008 | 1.009
sysl 12800 | 1.065 | 1.025 | 1.001 1.007 1.012
sys2 12800 | 1.038 | 1.031 | 1.013 | 1.021 | 1.027
sys3 12800 | 1.012 | 1.010 | 1.068 | 1.003 | 1.005

data length PM CM M UNB MSE
(20% missing) fit fit fit fit fit
sysl 128 | 1.239 | 1.095 | 1.041 | 1.079 | 1.107
sys2 128 | 1.270 | 1.259 | 1.041 1.163 1.215
sys3 128 | 0.823 | 0.829 | 1.247 | 0912 | 0.913
sysl 128*5 | 1.223 | 1.089 | 1.008 | 1.067 | 1.087
sys2  128*5 | 1217 | 1.184 | 1.039 | 1.155 | 1.100
sys3  128*5 | 1.165 | 1.154 | 1.225 | 1.083 | 1.091
sysl 1280 | 1.216 | 1.075 | 1.004 | 0.988 | 0.980
sys2 1280 | 1.193 | 1.068 | 1.032 | 0970 | 0.941
sys3 1280 | 1.162 | 1.153 | 1218 | 1.032 | 1.037
sysl 12800 | 1.202 | 1.031 | 1.002 | 0.991 1.015
sys2 12800 | 1.183 | 1.045 | 1.028 | 0.998 | 0.979
sys3 12800 | 1.015 | 1.011 | 1.098 | 1.009 | 1.011

Table 1.5.2
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1.6 Discussion
From the simulation experiment, several common points may be noted

1. The shape and peak positions of estimated PSD by traditional PM or CM
are correct. However the errors vary at different harmonics, the largest errors
occur at peak positions. This arises since traditional methods use average gain
compensation, on the other hand, the new methods make use of varying gain
compensation, the more error the more compensation is given, therefore the better
results obtained.

2. The location of missing points has substantial influence on the errors
introduced by these missing points. Even though UNB estimator does not depend
on the position, it relies on the assumption that these missing points are ade-
quately separated.

3. An interesting and new spurious periodic spectral phenomenon has been
predicted and observed, caused by a periodic distribution of missing points. It is
noted that CM does not produce this phenomenon.

4. The effect of missing data is to introduce uncorrelated white noise into the
spectral analysis. Quantitative results are presented for the spectral density of this
noise background.

5. The new method presented with MSE has a further improvement com-
pared with a sort of subminimum MSE method developed by the authors in previ-
ous work (Douce and Zhu 1988). Specifically the new method has a revised
definition of the mean square error.

6. The same results have been obtained from both recursive and direct
operations by UNB and MSE estimators.

7. A combination of the techniques studied in the chapter is suggested for

the estimation of Fourier transformation and PSD as shown in Fig. 1.6.1.
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IM

New

Figure 1.6.1 PSD estimation procedure
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1.7 Appendix 1

Al.1 Recursive algorithm
For the estimation of Fourier transform and PSD, the compensating gains
depend on five factors f 1 and f 2, Y1, Y2, and B;. This section presents the detailed

definitions and derivations. Consider
E[X@1 = E[XYxixjcosiQ cosjQ]

=Y cosZj QY E [xixjlcos (i—j)Q—~(Xsin2j QY E [x; xj1sin (i—j )2)/2

and
E[XP) = E[EXx:x;sini Qsinj Q]
= Ysin2j QY E [x;x; cos (i—j )Q+(Esin 2j QFE [x;x; Isin (i ~j )2)/2
(AL.11)
define
EXRHE X2 = NXE [x;xjlcos i—/)Q=N £ (A1.1.2)

(S5in 2 QFE bxix;Jsin (=2 = (5 R @sin (tQ)sin 2Q)/12 = £ 5 5in 20

(A1.1.3)
where
R (1) = Ave (47 = estimate of E (X X;42) (A1.1.4)
similarly the remaining terms are derived, which are
E[XpYr]=E[X@-XrXmr]
= f 1(5-Fcos2m Qyef 2 1 (ALLS)

where
E[XgrXmr]l= Zcoszm QY E [x;xp]cos (i-m YQ—(Y sin 2jm QY E [x; X 1sin (i —j)2)/2

=f1YcosZmQ-f . m
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$:sin2m Q- j‘, sin2mQ, TSN/
m m2N-t+1

J

M=
—t 2N .
N sin2m Q- g sin2mQ, 1T>N/2
m +1

m

“

E[X;Y)1 = EXP-X; X ]

=f (G- Ssin?m Q)~f » v

E[YR) = E[XR-2XpXmr +X 0]

=f 1(%’-—22cos2m QH2f 2 11+0623 cos2m Q

where
E[X,21=06%Y cos?m Q
E[Y2) = E [XP-2X; Xy +X %]
= £ 1Y ~2Fsintm Q)-2f 2 Yi+02Esin?m Q
where

E[X]=02Ysin?m Q

Define cross part

E[X;Xp]=E[YXYxixsiniQcosj 2]

(A1.1.6)

(A1.1.7)

(A1.1.8)

(A1.1.9)

(A1.1.10)

(Al.1.11)

= Y cos2j QY E [x;x;1sin (i = Y+(Tsin 2j QY E [x;x; 1cos (i—j Y2

= IE;RA (D)sin31Q = B,
=

noticing that

cos2jQ =cos?(N—j)Q , cos?j Q—cosUN Q) =sin?jQ

(Al1.1.12)

(Al.1.13)
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E[X;Yr]1=E[X;Xgr-XXmnr]
= B1=Y2—f 13 cosm Q sinm Q (Al1.1.14)
where
E[X;Xmr] = Y.cos2m QY E [x; X Isin (i-m Y+ sin 2m QY E [x; X ]cos (i —m )2)/2

=Yp+f 13 cosmQ sinm Q

r

—1 4
'&l E @)sin (tQ)(Fcostm Q - ﬁ costmQ), TSNI2
T= m m2N~t+1
=1 (AL.1.15)
'f;‘ze‘ @sin 1) S cos2m Q - g; costmQ), 1>N/2
1= m met+l

E[XRrY[1=E[XrXi-XpXm]1=E[X;Yg] (Al1.1.16)

EYRY)=E[XpX;=Xg Xt =X Xopg +X g X 01 ]
= B1-2Y,+023 cosm Q sinm Q (A1.1.17)
where
E[Xp X1 = 02Y cosm Q sinm Q (Al1.1.18)
It should be noticed that the parameters f, By, 71, and ¥, are all much

smaller than f ;, therefore these have no important effect on the Fourier transform

and PSD estimates. Simulation results have confirmed this in detail.
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A1.2 Direct algorithm

The five factors f; and f 2, Y1, Y2, and B; have been defined in the part A2.1.
In this section, they will be used to derive a direct algorithm for the various esti-
mates. Consider two variable substitutions

Xp =Yp +Xmr
X; =Y +Xp (A1.2.1)
The remaining terms may be derived with the substitutions, which are
E[XpYR1=E[Y@ +XpXmr - X/ir]
=E[YRl1+(f1-06%)Ycos?mQ - f o1 (A1.22)

where

E[XgXmr 1= Y cos?m QY E [xixpm Jcos (i —m YQ—T sin 2 jm QI E [x;xp Isin (i —j )Q2)/2

=f1Ecostm Q-f 21

E[X2R] =023 cos?mQ (A1.2.3)

Similarly
EX;Y)=E[Y?+ XX - X3)
=E[YP)+(f1-02)TsinZmQ + f o7 (A1.2.4)
where
E[X%]= 0623 sin?mQ (A1.2.5)

EXpY=EIX;YRI=E[YrY; + X;Xng — XmrXm]

=E[YrY1+ 72+ (f1 - 69)YcosmQ sinm Q (A1.2.6)
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where
E [X;Xnr ] = Y c0s2m QY E [X; X Isin (i —m YQ+(Tsin 2m QY E [x; X cos (i —m )Q)/2

= Yo+f 1D .cosm Q sinm Q

E [Xnr Xm ] = 023 cosm Q sinmQ (A1.2.7)

As mentioned in appendix Al.1, f, B1, 71 and 1, may be neglected in the calcula-

tions.
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Chapter 2  Frequency response estimation

2.1 Introduction

The importance of frequency response characteristics is well known for sys-
tem identification and controller design. The essence of frequency response esti-
mation is the estimation of cross-spectrum between input and output and input
auto-spectrum of a system. This chaptér studies the estimation of the frequency
response function from input and output data of a system in which there exist
missing points at the output. Formally speaking, as far as author know, there had
not been any published result until the authors’ publication (Douce and Zhu 1988)
even though one can naturally borrow idea and techniques from power spectral

density estimation with missing data.
'I"he definition of the frequency response estimation is given by, without
missing data,
G =8,./S,, (2.1.1)
With reference to Fig. 2.1.1, S, is a cross-spectrum between input and output of

a system, S,, is a cross-spectrum between input to the system and input to the

plant, which equals to S, , the auto-spectrum of the system input, for open loop

systems.

V_.Q_& G i

Figure 2.1.1 Closed-loop system
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The problems studied are shown in Fig. 2.1.2. The modulating function

g(t,x) has been defined previously, with g(t,x) = 0 for a missing point and unity

otherwise.
u X
— G ™ gtx) >
(@
v X y
G g(t.x) >
H
®
v X Yo
G > g(tx) >
C
H 3
(©)

Figure 2.2.1 Systems with missing points

at output
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Problem 1: open loop system with missing data at output, shown in Fig.
2.1.2(a). This is the simplest case. Douce and Zhu (1988) defined the frequency

response estimate to be, with missing data at output,

G =8,,/5, (2.1.2)

%]

where S, is an estimate of S,y .

Problem 2: closed loop system with missing data at output, seen in Fig.
2.1.2(b). This presents for example the case in which the recording instrument
fails, but the sensor which generates the feedback signal is working normally. The

estimation procedure is the same as eqn(2.1.2).

Problem 3: A closed loop system with missing data at output, effecting the
feedback path, shown in Fig. 2.1.2(c). This is a case in which the recording instru-
ment and sensor fail simultaneously. A definition of the frequency response esti-

mation is given by

G=S,1/S,; (2.1.3)

At present, we can not give a general rule to deal with this problem, the difficulty
being the estimation of the cross-spectrum S, in which the missing data appears
at the plant input. However it can be solved under certain conditions such as unit

feedback (H=1), corresponding to

G=8,/8, 2.1.4)

As shown later, this is the same as eqn(2.1.2). The simplified situation, that is

unit feedback (H = 1), presents a heuristic solution to the problem in the chapter.

As mentioned above, the frequency response estimation mainly depends on
the cross-spectrum S,; no matter whether open loop or closed loop is considered.
The idea and techniques developed in PSD estimation with missing data are
developed further to solve the problems. Both recursive and direct estimators will

be considered with UNB or MSE performance criteria.
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2.2 Estimator for frequency response

2.2.1 Unbiased estimate

Firstly the UNB estimator is presented in term of real and imaginary parts

respectively, that is k4 and k5 are chosen to satisfy
E[Re(U*X) —k4Re (U* X)) = E[(UpXg+U;X;) — ko(Ur Yr + Uy ¥1)] =0
ElImU*X)~ksim (_U'X)] =E[(UrX;-U;Xp) - ks(UpY = Ui Yg)] =0
2.2.1)

where Re and Im denote the real and imaginary parts respectively. Solving the

linear equation set, gives

k=_ 80 _ N
ATA YA, T NM
_ Bo _ N

where
Ag=E[UrXg +UX;)
A =E[UrYg]
Ax=E[UY/]
Bo=E[UrX; - UiXg]
By =E[U;YR]
B, =E[UrY/] (2.2.3)
This important result demonstrates that the PM, derived on an ad-hoc basis

for spectral analysis, is, when the stated assumptions are satisfied, an unbiased

estimate of the cross-spectrum, It therefore leads to unbiased estimates of the sys-
tem frequency response.
Appendices A2.1 and A2.2 give the detailed derivations of these expres-

sions.
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2.2.2 Minimum mean square estimate

Secondly the MSE estimator is presented in term of minimisation of
E[U*X -U*X)U*X -U*X)"] (2.24)

Two kinds of gains can be obtained from this criterion. One directly com-
pensates the output Fourier transformation Y, and another one indirectly compen-

sates the cross-spectrum.

For the first case, let
X =kqYp +ksY; (2.2.5)

differentiating eqn(2.2.5) with respect to k4, and setting the result to zero and not-

ing that u and y are known,

_ E[SwXpYr] _ E[URXpYg + UPXgYp]

b=— yF =T U+ U? (2.2.6)

and similarly

_ E[SwXY1] _ E[URXY; +UPX; Y]

bs=—g Y7 = URYET U (2.2.7)

where
E(URXrYr]=URE[XrYr1+2E[UrXg1Ur Yz
E[UPXrYRr]=UPE[XpYRr1+2E (U Xp1UYR
E[URX; Y11= UREX,Y/] +2E [Ur X;1UR Y|
E[URX;Y;] = URE X Y] + 2E U1 XU Yy 2.2.8)
For the second case, let
U*X =k4Re(U*Y) + jksim(U*Y) 2.2.9)

differentiating eqn(2.2.10) with respect to k4, and setting the result to zero gives

ka = E[Re(U*X)Re(U*Y)]
4 Re(T*Y))?
_ E[(UrXg + Ui X1)(UpYg + UrY;)]  (2.2.10)

(UpYg + UrYp)?
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and similarly
ke= E[ImU*X)ImU"*Y)]
3 (ImU*Y))?
- E[(UpXr — U Xg Y URrY; - U;YR)] (2.2.11)

(UrYr = UrYp)?

It should be noted that although the two derived gains have different values,
they will produce the frequency response estimate with minimum MSE, i.e. the

resultant estimate is the same since the same performance criterion is chosen.

Fig. 2.2.1 shows the recursive relationship of the estimators in block

diagram form.
initial settings
L f 2 ki1.,k >
1 2 FT initial settings
> k4, ks || FRESP
r f1 k3 " PSD fs,f4

initial settings incomplete series

Figure 2.1.2 Recursive estimators
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2.3 Properties of the new estimators

2.3.1 Closed-loop system

The first property concerns the equivalence between problem 2 and problem

3 when the system is unity feedback, (H=1). With reference to Fig. 2.1.2(c)
For no missing points,
u@)=v(@e)-x@) (2.3.1)
With missing points, it has
Un(B)=v () =X () =v () —x()+d ()
=u(t)+d() (2.3.2)
where
d@#)=01-g@x)x() (2.3.3)

may be recognised as a disturbance with values equal to the values at missing
points and zero otherwise, and is white noise due to the condition given in PSD
estimation that missing points are separated such that cross-correlation between
values at missing points may be neglected.

Let D be the Fourier transform of the disturbance d(t), from eqn(2.1.3), this

leads to
G =818,
=E[V*'X]1/E[V*U]
=E[V*XVE[V*U]
=8,: 1 Su (2.3.4)
This the same as eqn(2.1.2), where
E[V*U]
=E[V*U +V*D]

=E[V*U]+E[V*D]



-41 -

=E[V*U]+E[V*]E[D]
=E[V*'U] (2.3.5)

This follows since E[D] = 0.

2.3.2 Spurious periodicity

The spurious periodic phenomenon predicted and observed in PSD estima-
tion is not presented in the frequency response estimate. With reference to appen-

dices A2.1 and A2.2, this can be proved by considering
IE[U*YTH
= E[(Ug +jUI)(XR = Xmr) = j (X1 =X )]
= |E[(Up +jUN(&Xr = JX1) = Xmg = jXmu))]|
= 1GSy | = |E[(Ug + jUD)®Xmr ~ X))
=1GSy | —c\f3+if
=1GSy | —c G| (2.3.6)

where ¢ is a constant. If frequency response G has low-pass filter property, then

th,nnG —0 2.3.7)

or
G=0 , h<Q<mn (2.3.8)

where h is the cut-off frequency. Hence there is no spurious periodic phenomenon
at high harmonics in frequency response estimation. However it may be proved

that this phenomenon is present in measured squared cross spectrum. Consider
IE[U*Y)YU*Y)Y' )l = |IE[(U*UY*Y)]I
= |E[(Ug+UPXR+YPA)]I
= |E[URIE[YR] + 2E [Up Yp]
+E[UAE[YP] +2E (U Y]

+E[URIE(Y) +2E [UrY,]
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+E[UPIE[Y@ + 2E[U; YR]!
= |E[(UR + UPE[(Y@ +YP)] + 2[E[UrYR1+E(U;Y1]1+E[Ug Y1+ E[Us Y1l
2.3.9)

Chapter 1 has demonstrated the spurious periodicity in E[(Y# + Y/2)] from both
theory and experiment. E[(Ug + UP)] is a constant for uncorrelated Gaussian
input signals. The terms E[UrYr]1=E[U;Y;1=E[UgrY;}=E[U;Yg] — O since

E[U*Y]- 0 when Q —= for low-pass filter systems.

2.3.3 Direct estimators

The third feature is that the recursive estimators may be modified to be
direct estimators by the same variable substitutions as eqn(1.4.19) in Chapterl.
This gives a significant saving in computing time. A detailed derivation is given

in appendix A2.2.

2.4 Experiment results

The three problems mentioned in the introduction have been studied with the
new methods, UNB and MSE, and traditional methods CM and IM as comparis-
ons. The same performance criteria as used previously have been evaluated in
each case.

The error performances and linear fit defined in chapter 1 are modified to be
the measurements of magnitude instead of amplitude, to indicate both amplitude
and phase characteristics.

For SYS 1, Fig. 2.4.1 and Fig. 2.4.2 show the results in an experiment con-

 sisting of 1000 blocks with 10% missing points and 20% missing points respec-
tively, and compare the new methods, UNB and MSE, with the traditional method
CM to demonstrate the improved performances predicted in theory. Periodic

errors are found in the mean squared error due to periodic missing points.

For SYS 2, Fig. 2.4.3 and Fig. 2.4.4 again show significant improvements.
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Table 2.4.1 sufninarizes the results, from experiments with one, five, ten,
and one hundred blocks, to indicate the significant impfovements in the reduction
of the errors. Table 2.4.2 shows the ensemble average of linear regression of the
true on the estimated frequency response function, the new estimators substan-
tially reduce the deviation of this factor from unity. The experiment again

confirms the restriction of interpolation method.
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Fit in frequency response estimation

data length CM | IM | UNB | MSE
(10% missing) fit fit fit fit
sysl 128 | 0.78 1.092 | 1.023 | 1.024
sys2 128 | 0.707 | 1.068 | 0.784 | 0.789
sys3 128 | 0.837 | 0.824 | 0.891 | 0.890
sysl  128*5 | 0.874 | 1.009 | 0.981 | 0.980
sys2  128*5 | 0.811 | 1.064 | 0973 | 0.969
sys3  128*5 | 0.910 | 1.099 | 1.045 | 1.052
sysl 1280 | 0.877 | 1.005 | 1.007 | 1.008
sys2 1280 | 0.813 | 1.016 | 0.987 | 0.983
sys3 1280 | 1.033 | 1.093 | 0.989 | 0.988
sysl 12800 | 0.899 | 1.001 | 1.002 | 1.003
sys2 12800 | 0.828 | 1.011 | 0.989 | 0.985
sys3 12800 | 1.044 | 1.082 | 0.994 | 0.992

data length CM M UNB MSE
(20% missing) fit fit fit fit
sysl 128 | 0323 | 1.099 | 0460 | 0.456
sys2 128 | 0.242 | 1.092 | 0.604 | 0.584
sys3 128 | 0.792 | 0.789 | 0.858 | 0.855
sysl  128*5 | 0.707 | 1.013 | 0.946 | 0.945
sys2  128*5 | 0.647 | 1.082 | 0.969 | 0.963
sys3  128*5 | 0.810 | 1137 | 0924 | 0.922
sysl 1280 | 0.796 | 1.009 | 0.979 | 0.976
sys2 1280 | 0.723 | 1.036 [ 0.974 | 0.971
sys3 1280 | 1.059 [ 1.134 | 0972 | 0.970
sysl 12800 | 0797 | 1.002 | 1.002 | 1.003
sys2 12800 | 0.741 | 1.002 | 1.003 | 1.004
sys3 12800 | 1.053 | 1.114 | 0.990 | 0.989

Table 2.4.2
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2.5 Appendix 2

A2.1 Recursive algorithm

This part will define f3, f 4, and derive some relevant terms in eqn(2.2.6)

and eqn(2.2.7). Consider
E[UrXRr]=E[}X3uix;jcosiQcosjQ]

= ¥.cos2j QY E [u; xjJcos (i—j )Q — (Tsin 2j QY E [wix; Jsin (i = YQ)/2
(A2.1.1)
similarly
E[U;X;]1=Y5sin%j QY E [u;xj1cos (i=j)Q + (3 sin2j QY E [u;x;1sin (i—j)$2)/2
(A2.1.2)
define
E[UpXRl1+E[UiX{1=NYE[u;x;jlcos i—j)Q=N f3 (A2.1.3)
f 3 represents the real part of the cross-spectrum. Consider
E[UiXpl=E[XYuixjsiniQcosjQ)
= ¥'cosZj QY E [u; x;1sin (i—j)Q + (3 sin2j QY E [u;x;)cos (i~ )2)/2
(A2.1.4)
similarly
E[UrX;]=-3sin?j Q¥ E [u; x;1sin (i =) )Q + (Tsin 2j QY E [u; x;cos (i —j )Q)/2
(A2.1.5)
define
E[UiXp]1 -E[UrX;1=NZXE[uixjlsin(i—j)Q=N f4 (A2.1.6)
f 4 represents the imaginary part of the cross-spectrum.
The rest of the terms can be derived according to the definitions, which are

UpYr =E[UpXg —UrX,r]l
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= f3(lzv-—Zcoszm Q) + f 42 cosmQ sinm Q

where
E[UpXmr1=f33cos?2mQ — f 43 cosm Q sinm Q
UY =EUIX; - Ui Xy ]
=f 3(-12!—28in2m Q) - f 4 .cosm Q sinm Q
where
E[UiXp1=f3Ysin?mQ + f ;3 cosm Q sinm Q
UiYr =E[UiXg — Ui Xpr]
=f4( -I2V-~20082m Q) - f 33 .cosm Q sinm Q
where
E[UiXmr] =S 43c0s2mQ + f 3¥ cosm Q sinm Q
UpY; =E[UrX; —UpXm1
=—f Y -FsintmQ - f 5T cosm Q sinm Q
where
E[UrXpy]=~f43sin?mQ + f 33 cosm Q sinm Q
A2.2 Direct algorithm

(A2.1.7)

(A2.1.8)

(A2.1.9)

(A2.1.10)

This part will present a direct algorithm by the following substitutions

Xp=Yp +X,p

Xi =Y+ X

(A2.2.1)
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The remaining terms may be derived similarly, to give
E[UrXR1=E[UrYp + UrXmr]
=E[UgrYR]+ f33cos?mQ + f 43 cosm Q sinm Q

where

E[UpXmpr]=f33cos?mQ - f 43 cosmQ sinm Q

E[UX;)=E[UY + U Xp]
=E[UiY1]1+ f3Ysin?mQ + f 43 cosm Q sinm Q

where

E[UiXm]=f33sin’mQ + f 1Y cosm Q sinm Q

E[UXR]=E[U;Yg + Ui X g1
=E[U;Yr]+ fa3cos?mQ + f3Y cosm Q sinm Q

where

E(UiXmpl=f43cos?mQ + f 33 cosm Q sinm Q

E[UrX;]=E[URY + UpXpy]
=E[URY ] - f4Xsin?mQ + f 33 cosm Q sinm Q
where

E(UrXpm]=-f43sin?2mQ + f3¥ cosm Q sinm Q

(A2.2.2)

(A2.2.3)

(A2.24)

(A2.2.5)
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Section 2  System identification and parameter estimation

S2.1 Survey

The need for a system model in controller design for both linear and non-
linear system is well known. Critical points in system identification are the detec-
tion of system structure, the determination of the order of the system, finally the
estimation of the parameters of the system when a parametric model is suitable
for the description of the system. For linear system identification, many methods
have been developed successfully. The tutorial text book in theory and applica-
tion by Ljung (1987) gives a good survey and unifies many fundamental methods

as a set of tool boxes.

For nonlinear system identification there are two distinct methods, producing
either a linear approximating model or alternatively a nonlinear model. In the first
case structure detection is reduced to the order and time delay determination (Bil-
lings and Voon 1983). Many algorithms may be then used to estimate the
parameters of the system models, and a linear covariance analysis of the residuals
can be applied to test the adequacy of the fitted model. The most popular linear
model is the Auto-Regressive Moving Average (ARMA) model which may be
used to approximate some system with mild nonlinearities around operating

points. However linear approximating model is inappropriate under some cir-
cumstances.

The second method has better accuracy but tends to be more complicated
and problem specific. Some representative parametric models have been studied
such as Hammerstein model (Narendra and Gallman 1966), Nonlinear Auto-
Regressive Moving Average model with eXogenous inputs (Leontaritis and Bil-
lings 1985), Bilinear model (Svoronos, Stephanopoulos, and Aris 1981, Fnaiech
and Ljung 1987), and nonlinear output affine model (Chen and Billings 1988), in
which attention was concentrated on parameter estimation with the assumption
that the system structure is known. Furthermore, traditional models like Volterra
(1930) or Wiener series (Wiener 1958, Billings 1980) have been studied for long

time, but the implications for controller design makes them inferior to those
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models mentioned above.

The parameter estimation of nonlinear models, particularly nonlinear models
which are linear in the parameters, have been studied in detail. However so far
nonlinear system structure detection has been only investigated by a few authors

(e.g. West 1965, Douce 1976, Billings and Voon 1983) due to the associated
difficulties. .

In the section, attention is concentrated on parametric models. A concept
considered seldom in system identification and parameter estimation, amplitude
effect to nonlinear system, is introduced, in other applications even though it has
been known for a long time. Almost all authors paid attention to time functions,
that is the evolution of input and output series along time process. In the case of
system identification and parameter estimation, this is appropriate for linear sys-
tems. However it is well understood that the characteristics of nonlinear systems
depend on signal amplitude. Whereas nonlinear system identification and parame-
ter estimation should consider both time axis and amplitude axis, unfortunately

the latter is often ignored without any explanation in many publications.

In summary, chapter three presents a new method, regarding to amplitude
sampling, to detect the structure of a class of nonlinear systems and to estimate
the systems parameters. With the aid of multi-dimensional graphics a clear
geometrical interpretation is obtained. The nonlinear characteristic of the sys-
tems, dynamic or static, can be directly identified. Following the idea, a recursive
parameter estimation procedure is developed in which the parameters to be
estimated are the slopes on the corresponding projecting planes. The principle
and implementation of the method are explained in detail and a simulation experi-

ment confirms the validity and efficiency of the method.

Chapter four presents a variable weighted least squares algorithm according
to the amplitude distance between current state and previous states, which is
demonstrated to be appropriate for a wide range of nonlinear systems and the
same as ordinary least squares algorithm in linear cases. The idea leads to a vari-
able weight algorithm with for on-line parameter estimation. Jumping effect pred-

iction is investigated in order to check the off-line alggrithm application. Several
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systems, typical and special, are chosen in the simulation experiment to confirm

the algorithms performance.

S2.2 List of notations
E[]

Varl[.]

Cov|.]

Integ|.]

Ave[.]

ARMA

NARMAX

OLS
VWLS
PID
Matlab

expectation

variance

covariance

interger operation

arithmetic average operation
Auto-Regressive Moving Average

Nonlinear Auto-Regressive Moving Average with eXo-

genous inputs

Original Least Squares

Variable Weighted Least Squates
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Chapter 3  Structure detection and parameter estimation

3.1 Introduction

Structure detection and model validation tests are fundamental parts of most
identiﬁcation procedures. It is often necessary to determine the structural form or
type of model representation which approximates, in the sense of some specified
criterion, to the process as the first step in system identification and finally tests
the chosen model fitness against the available input and output data. Whereas
structure detection involves the determination of the model form which will most
appropriately fit the data, model validity checks are designed to indicate the ade-
quacy of the fitted model. Most studies relating to these procedures assume that
the system under investigation is linear. Structure detection then reduces to the
problem of determining the model order and time delay of the system (Goring
and Unbehauen 1973).

This becomes rather complicated in the case of nonlinear systems, and few
authors have studied the problem. West (1965) considered nonlinear distortion
correlation by studying static nonlinear characteristics. By splitting the output
from the nonlinear element into two portions, one proportional to the input signal
and the other a distortion noise, West showed that there is no correlation between
the input and distortion signal whenever the input belongs to the separable class
of random process. Douce (1976) proved that the same property occurs for a
specific class of nonlinear dynamic systems. The nonlinear distortion can how-
ever, be detected by cross-correlating the residual with a test signal obtained by
passing the system input through a specified nonlinearity and Douce developed an
identification procedure based on this result. Billings and Voon (1983) introduced
higher-order correlation functions as a simple method of computing measures of
nonlinearities, which were shown to avoid complicated computation. Billings

(1980) gives a good survey on nonlinear system identification.
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Billings and Voon (1983) defined structure detection as a method of detect-
ing nonlinearity and of distinguishing this from linear effects and additive noise.
Further, they defined model validity as testing terms in rcsiduais which if ignored
will cause bias in the parameter estimates. There is no need in this latter case to
distinguish between linear, nonlinear or correlated noise effects since any one of
these can introduce bias into the estimates. The structure detection and model
validation are usually distinct and iteration is needed to modify the model and its

parameters to produce a proper approximation of the system concerned.

One common feature of the representative techniques is that they mainly
consider time correlation characteristics of input and output signals. A potential
development is to study signal amplitude effects as an aid to nonlinear system
identification. This chapter aims, by a signal amplitude selection technique, to
detect the structure of the whole system concerned, including determination of the
position and characteristics of any nonlinearity, then to'estimate the parameters of

the system.

Consider a general form of nonlinear system given by
Vi =f Oi-1s " s YicnarXis """ Xicpp ) + € (3.1.1)

where f is a single valued nonlinearity such as a polynomial ( Hammerstein
model, Wiener model ), saturation or relay, and x; and y; are the current input and

output respectively. €; is an uncorrelated disturbance with zero mean value and
variance 62.

Two classes of the nonlinear systems have been studied as shown in Fig.
3.1.1.

For the first system, defined as sys1 shown in Fig. 3.1.1(a), eqn(3.1.1) gives

Yi=bof (i) +- +bppf Xi—p) —aA1Yi-1 =~ @naYi-na +& (3.1.2)
For the second system, defined as sys2 shown in Fig. 3.1.1(b), eqn(3.1.1) .
gives

Yi =f (boxi +..t bppXi-np—Q1Yi-1 — " — AnaYi—pa) + € (3.1.3)
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The work described in this chapter represents the results of preliminary stu-
dies, in that it is restricted mainly to first order systems. However it is suggested
that further study may demonstrate that the ideas have wider applicability.

—> NL i B/A

(a)

®)
21 . +a 2@
A=a 0 +3 na
-1 -nb
B= bo + bl z + + bnbl

Figure 3.1.1 Nonlinear systems
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3.2 System identification

3.2.1 Structure detection

Consider a simple form of eqn(3.1.1)
Yi =f Qi-1, Xi) (3.2.1)

where the analytical form is unknown and the input and output signals are avail-
able.

A quantisation operation, including input and past output signal amplitude
quantisations and current output signal amplitude averaging, will be developed to

find the analytical expression to describe the system.
Let X; and y;_; denote quantisation variable of x; and y;_; respectively, that
is
X; , Yi-1 IS quantized following time axis with data length n.
X; , Yi-1 is quantized following amplitude axis with data length nx, ny.

Usually nx, ny <n, and

% =Integ | oy =mincey |+

yi=Avely; ], for X,y (3.2.2)

where Integ[.] denotes taking integer operation, Ave[.] denotes arithmetic average
operation, and max(.)vand min(.) take the maximum and minimum of the series
respectively.

In fact the quantisation operation smoothes the corresponding signals within
a small area specified by X; and y;_;. This method considers both time and ampli-
tude correlation characteristics of signais.

From y;, X; and y;_;, a 3D space is correspondingly built up, as shown in
Fig. 3.2.1. The structure detection and the parameter estimation will be carried

out based on this 3D space and the corresponding projecting planes.
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Figure 3.2.1 3D quantisation space

For the linear system .
Yi =ayyi-1+box; (3.2.3)

points on the 3D plot defined above all lie on the plane
Yi = ayyi-1—box; =0 (3.2.4)
For nonlinear systems, points lie on a surface. Inspection of this surfacé can
reveal information about the location and characteristic of a nonlinear element

and the linear dynamic parameters within the system.

Two examples, both first order systems, as shown in Fig. 3.2.2, are selected.

The nonlinearity is saturation and the linear dynamics are
A =1+09z-1
B =1 (3.2.5)

The input signal is a Gaussian white random signal with zero mean value

and variance 4. The data length of the input and output is set to 4000. The
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quantised data lengths nx and ny are set to 20 equally, hence the quantised area
consists of 20%20=400 small areas.

+ 092"
/Il / 092

)]

®)

Figure 3.2.2 First oder systems

Two projecting planes y;, X; and y;, ¥;-) are defined as one of the planes per-
pendicular to y;_; and X; respectively in the 3D space. They will be used for the
linear dynamic parameter estimation of the systems.

The examples will be used to show directly several features on the 3D

graphic surface, including

1 System structure

2 Nonlinearity and its position
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Consider the plot shown in Fig. 3.2.3(al). This shows the output (vertical) as
a function of input and previous output of a system excited by white normal dis-
tributed noise. Quantisation has been introduced as described above, primarily to
render the plotting process simple within Matlab (a proprietary software pack-
age), with the additional advantage, not persued here, that disturbance effects are
reduced due to averaging when sufficient data points are available.

The horizontal plane, corresponding to y; =0, is used to indicate absence of
data pairs in the corresponding X;, ¥;_; space.

Visual inspection of this plot indicates that y; is a linear function of y;_; for
the range of signal amplitude available. Further, y; is obviously a nonlinear func-
tion of X;, with some evidence of the presence of a saturation characteristic for
large values of X;.

This dependence of the output on a signal variable (which may be a combi-
nation of system variables) is demonstrated by viewing plots such as Fig.
3.2.2(al) from a selected direction. This direction is defined by a vector perpen-
dicular to the dependant variable and to the selected independent variable.

In this example, the viewing direction is perpendicular to the X; axis. Pro-
jecting the surface onto this plane gives the nonlinear relationship between y; and
X;, as shown in Fig. 3.2.3(a2).

Further, the angle or the slope of the projection retative to the y;_; axis gives
the linear coefficient relating y; to y;_;, as shown in Fig. 3.2.3(a3). In summary,

Fig. 3.2.3(al) enables the system to be identified as
yi =ayi-1+bof %) (3.2.6)

That is, the structure is as in Fig. 3.2.2(a).

Similarly consider the plot shown in Fig. 3.2.3(b1). Visual inspection of this

plot indicates that y; is a saturating nonlinear function of both y;_; and X; for the

range of signal amplitude available.



Figure 3.2.3(al) System (sys1) output ¥, versus input X, and
previous output ¥

15 ¥ Y T T T -

X OF
.0.5_
1+ —
5 4 3 2 1 0 1 2

Figure 3.2.3(a2) Projecting plane of §; and %



Yi-2

Figure 3.2.3(a3) Projecting plane of ¥; and y;

Figure 3.2.3(b1) System (sys2) output y; versus input ¥; and
previous output y;_;
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Figure 3.2.3(b3) Projecting plane of  and y;_



-68 -

The relationship between y; and X; shown in Fig. 3.2.3(b2) is the same as
the analysis for the first system, however the visual inspection has indicated, in
Fig. 3.2.3(bl), the nonlinearity depending on the combination of y;_; and ¥;,
saturation appears when | @yy;_1+box; | > 1. Fig. 3.2.3(b3) is the projecting
plane y;, ¥;_; in case of | a1y +box; | < 1, this is convenient for parameter

estimation in linear area.

In summary, from Fig. 3.2.3(b1) the system structure is identified as
Yi =f @yi-1+box;) (3.2.7)

That is, the structure is as in Fig. 3.2.2(b).

-

It is learnt from the system structure given in Fig. 3.2.2 that the relationship
between output and input only depends on y; and ¥;, similarly the relationship
between output and past output only depends on y; and y;_;. Therefore the quanti-
sation algorithm may be used to distinguish the two types of nonlinear systems in
the 3D space. For system one, it is clear that the nonlinearity can only be visual-
ized from y;, X; projecting direction. For system two, it is found that the non-
linearity appears from both projecting directions y;, X; and y;, ¥;_;. For linear sys-
tem, there are linear relationships viewed from the two projecting directions, this
is confirmed within the linear area in the 3D space.

The structure detection method developed from the simple cases is also
available for some more general cases. This is because the relationship between
input ¥; and output y; indicates the static nonlinear characteristic, leading to
detection of the static nonlinearity. The second reason is that the displayed rela-
tionship between past output y;_; and output y; indicates the presence or absence
of a nonlinear relationship, even though neglecting other terms leads to a poor
indication of the linear coefficient a;.;. Therefore the first step is used to detect
the linearity or nonlinearity of the systems, and if nonlinearity is detected then

further inspection is used to distinguish the two types of systems.
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3.2.2 Parameter estimation

For simple cases, system structure detection and parameter estimation are
simultaneously achieved. The parameters may be obtained, as mentioned above,
from the slope on the corresponding projecting planes, as shown in Fig. 3.2.3(a2,
a3, b2, b3). However the quantisation technique for the general case may not be
directly applied to obtain system parameters from the slopes on the projecting
planes as for first order systems. This is because for the general case (high order
systcms) the variables not involved in building the 3D space affect the variables
in the 3D space, the slopes on the projecting planes in the 3D space are not true
representatives for the parameters to be estimated. It is argued that the technique

is still applicable, with some modifications.

Alternatively we divide the work, as mentioned in the last section, into two
parts, one for structure detection having been solved, another for parameter esti-
mation. The modified algorithm, by introducing auxiliary variables, generates a
set of equivalent first order systems, or a set of 3D spaces with the same proper-
ties as the first order systems. We have demonstrated that parameter estimates can
be directly obtained in the 3D space representing a first order system, hence the
problem for parameter estimation in general case may be solved. The implemen-
tation of the parameter estimation algorithm is based on the following argument,
which presents, by introducing auxiliary variables, a recursive procedure to esti-
mate parameters.

Argument

The quantisation algorithm developed from the first order system is also

available for high order system when a set of auxiliary variables are defined as

for sysl
fax =yi— ﬁ a;yi-j = ibjf xi-j)» k=1,---,na
j=ly#k j=

1, -,nb

-V =- a:Vi_i — b. Xi—i), k
Sfok =Yi Jg i Yi-j j=g¢k jf( i ])

for sys2
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fax = a/)’z-] M f(,b Xi-j»  k=l,---,na
for = f‘aj)’i—j + O bixij, k=l .nb (3.2.8)
J= j=0.=k

Proof: according to eqn(3.1.2), for sysl
fak =aryi-x +bof (x;) ~
fok =bef (i) + baf (i)

According to eqn(3.1.3), for sys2

Yi =f(@rYi-k +fak)

Yi =f (beXi—k + fok) (3.2.9)
These have the same form as the first order systems given in Fig. 3.2.2, therefore
a set of 3D spaces may be built up from the set of first order systems and the
parameters of the systems may be obtained directly by the quantisation algorithm

developed from the 3D spaces.

It should be noticed that f 4 and fp; include the parameters to be estimated.
We use the most recent parameter estimates instead of the true parameters to cal-
culate f and fy, then update the parameter estimates. Obviously this is a recur-

sive process, with the algorithm given by, for sys1

falr+) =y; —j=g*kaj (r)yi-j "jgbj r)f xi-j), Kk

1, ,na

So(r+1)=y; _]gaj(r))’i—j —j=g¢kbj(r)f (xi-j), k=l,---.nb

faxr+1) =ag (r+1)yi_ + bof (x;)
Foe (r+1) = b (r+1)f ;) + bof (xi)

for sys2

fatr+= 8 4o+ Ebemoy, k=l na
j=ly=k J=

1) = (P)yi: + j bi(r)xi_i, k=1, -+ ,nb
SFor(r+1) Jga](r)}'t j joliek j(r)xl j n

-
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Yi =f (@ (r+1)yi—g + fax(r+1))
¥i =f Grr+1xicg + Fo (r+1) (3.2.10)

where r is a recursive time. The extensive simulation experiment has confirmed

the algorithm to produce correct estimates.

3.3 Simulation experiment
Two noise free second order nonlinear systems are selected with the dif-
ferent structures as shown in Fig. 3.1.1. The nonlinearity is saturation, and the

system linear dynamics are set to
A=1-z140.322

B =1-05z"1 (3.3.1)

The data length of the input and output is 4000. The quantised data lengths
nx and ny are set to 20, hence the quantised area consists of 20%¥20=400 small
areas. A Gaussian random signal input with zero mean value and variance 4 is
chosen as input.

The horizontal plane, corresponding to y; =0, is used to indicate absence of
data pairs in the corresponding X;, ;- space.

The first step is to detect the nonlinear system structure. Three variables, the
output y;, past output y;_; and input x; are selected to build up a 3D space by the
quantisation operation given in eqn(3.2.2). The results are illustrated for the
open-loop system (sys1) in Fig. 3.3.1(a) and the closed-loop system (sys2) in Fig.
3.3.1(b).

First consider Fig. 3.3.1(a), y; is a nonlinear function, with evidence of
saturation, of ¥; and a linear function of y;_; by visual inspection of this plot. It is
also found that y; is a nonlinear function, with evidenc® of saturation, of X;_; and
a linear function of y;_, by visual inspection of the 3D space (¥;, ¥;-2, Xj—1) not
shown in the chapter. According to the discussion in section 3.2 the system is

'identiﬁed as

yi =a1yis1+ayia+bof () +b1f (xi-y) (3.3.2)
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where function f (.) denotes saturation for the specific system and the system
order is assumed known by someway.

Similarly the visual inspection of Fig. 3.3.1(b) indicates that ¥; is a saturat-
ing nonlinear function both of X; and y;_;. The same structure is also found in the

3D space (3;, Y2, X;—1) not shown in the chapter. Hence the system is identified

as
yi =f(@1ia—ayia+box; +b1x;-) (3.3.3)
The rule to determine the system structure characteristics in the 3D space is
sys1 Nonlinearity (viewing perpendicular to plane y;, ¥;), linearity (view-
ing perpendicular to plane y;, y;_).
sys2 Nonlinearity (viewing perpendicular to plane y;,%;), nonlinearity

(viewing perpendicular to plane y;, ¥;_;).
Linear system
Linearity (viewing perpendicular to plane y;, ¥;) linearity (viewing
perpendicular to plane y;, ¥;_;), which is c.onﬁxmed by visual inspec-
tion in linear area of the 3D space.
It has been noted that the slopes or angles relative to the elemental plane %;,
¥i-1 are not true representatives for the linear dynamic parameters of the systems
in the structure detection 3D space, however they may be used.as the initial

values for recursive parameter estimation confirmed by the following experiment.
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Figure 3.3.1(a)  System (sys!) output y; versus input X; and
previous output y;—

Figure 3.3.1(b)  System (sys2) output y; versus input ¥; and
previous output ¥
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The second step is to estimate the linear dynamic parameters of the systems

identified in the last experiment. According to the algorithm presented in section

3.2.2, a set of 3D spaces, by introducing auxiliary variables, are chosen as

for sysl

space (fq1 Yi-1%i)
space (f a2 Yi-2 Xi)
space (fp1 Xi-1 Xi)

where

for sys2

space (¥; Yi-1fa1)
space (¥; Yi-2 fa2)
space (¥; X; fb0)
space (Vi Xi-1f»1)

where

for estimation of a; and by
for estimation of a4

for estimation of b,

fa1=Yi —ayi2—bif (xi<)

fa2=Yi —ayi-1—byf (xi-y)

fb1=Yi —ai-1—ayi- (3.34)

for estimation of a;
for estimation of a4
for estimation of b
for estimation of b,

fa1=agyi2+boxi +b1xi

fa2=a1yi-1 +boxi +b1xiog
fr0=a1i1—ayia+bixiy

fe1=aryiqy—ayia+box; (3.3.5)

The initial values for the iteration are set to (@a; a3 bob1)=(-0.4 0 1 0) for
the sysl and (a; a3 b9 b1)=(-0.5 0 1 0) for the sys2. Parameters @; and by are

chosen initially from the 3D space (y; y;- X;) used for the system structure detec-

tion in the first experiment. They are not true parameters but suitable initial set-

tings. Since no initial information is available for a3 and b in the 3D space, their
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initial values are set to zero.

After five iterations using the last parameters estimated and the available
input and output data for new parameter estimation, the surfaces in the set of 3D
spaces arrive at steady state. Consider sys1, the resultant 3D spaces and project-
ing planes are shown in Fig. 3.3.2. Spaces (f;1 yi-1 x;) shown in Fig. 3.3.2(a) and
(fa2yi-2x;) shown in Fig. 3.3.2(d) have the same shape, that is, f_ a1 18 a saturat-
ing nonlinear function of X; shown in Fig. 3.3.2(b) and a linear function of y;_;
shown in Fig. 3.3.2(c), faz is a saturating nonlinear function of X; and a linear
function of y;_, shown in Fig. 3.3.2(¢). The different angle of the projection rela-
tive to the y;_; axis in planes fa1Yi—y and f—az ¥i-2 indicates the different parame-
ters estimated. In space (f4 ;-1 X;), as shown in Fig. 3.3.2(f), the visual inspec-
tion indicates that f—bl is a saturating nonlinear function both of ¥;_; and X;, this is
coincident with the system structure identified given in eqn(3.3.2) and Fig.

3.3.2(g) shows the resultant slope for the parameter b, estimate.
Similarly for sys2, four projecting planes, as shown in Fig. 3.3.3(a, b, ¢, d)

are obtained from their 3D spaces. The projecting planes ;, £, and 7;, £, are

chosen in case of lay;_; —aqy;_2+ box; + b1x;_1| < 1, hence a linear characteris-
tic is displayed.
Table 3.3.1 summarises the recursive parameter estimating results for both

sys1 and sys2.

Recursive parameter estimation
Sys1: open-loop
Est. para.\ recursion 1 2 3 4 5 Real para.
4 04 | 06 | -08 -0.9 099 | a;=-1
d; 0 0.1 0.2 025 | 03 a;=03
bo 1 |1 1 1 1 bo=
b, 0 [02]-03 |-04 |-05 | b5,=-05
Recursive parameter estimation
Sys2: closed-loop
Est. para.\ recursion 1 2 3 4 S Real para.
d, 051072 -093]| -09 | -098 | a1=-1
4, 0 023 | 03 0.3 0.3 a,=03
bo 1 |1 1 1 1 bo=
b) 0 |03 | -043 | -048 | -049 | b;=-05

Table 3.3.1
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Figure 3.3.2(a) Auxiliary variable (sysl) f., versus input
X; and previous output ¥;
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Figure 3.3.2(b)  Projecting plane of f,; and %;
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Figure 3.3.2(d)  Auxiliary variable (sysl) fa2 versus input
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Figure 3.3.3(a)  Projecting plane of y; and X;
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3.4 Conclusion

This chapter has introduced a potentially valuable method for nonlinear sys-
tem identification. When a system contains a nonlinear characteristic which is
piece-wise linear, then the display of output against input and past outputs is a
series of planes or hyper planes. For each linear region, a linear model can be
constructed. In simple cases, it is possible to determine the variables which affect
the nonlinear output signal, and the characteristics of the nonlinearity. Thus the

structure and parameters of the system can be found.

The idea introduced with reference to first order nonlinear systems have
been demonstrated with two second order examples.

This chapter is submitted as a novel idea prompting substantial further work.
Areas for further research include the automatic determination of the amplitude
range of validity of a linear model. For each range, the parameters of the linear-
ised model should be used, in terms of the angles of the elemental planes, to
determine the function affecting the nonlinear behaviour of the system. A projec-
tion of the surface onto the appropriate plane may enable the nonlinear charac-
teristic to be found.

Discussion has been limited to noise free systems. It is not clear how an
independent noise source will interfere with the analysis procedures proposed. It
is expected, however, that the effect of low variance disturbances can be minim-
ised by averaging and by careful choice of the quantisation amplitudes.

For the consideration of experiment three recommendations for input signal
x; choice are

1 Input signal amplitude should include all nonlinearities in the range of
operation in order to identify system fully. .

2 The input signal amplitude should not be too big in order to guarantee the
algorithm precision.

3 Properly set quantised data length nx in order to keep a trade off between

algorithm precision and computing time.
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Chapter 4 A variable weighted least squares algorithm

4.1 Introduction

Many papers have paid attention to nonlinear system identification, espe-
cially to parameter estimation (Narendra and Gallmann 1966, Bard 1974, Douce
1976 Svoronos, Stephanopoulos and Aris 1981, Leontaritis and Billings 1985,
Chen and Billings 1988) under the assumption that the system structure is known
or that the system can be approximated by a chosen model, from input and output
data. One significant reason parametric models are so popular is that the Propor-
tional Integral and Derivative (PID) regulator and most of the moder controllers,
such as the self-tuning controller, adaptive controller, optimal controller, etc., use
a parametric model. Thus, for a wide range of practical applications parametric
models are used in controller design.

A wide range of nonlinear systems can be represented by Nonlinear AutoRe-
gressive Moving Average models with eXogenous inputs (NARMAX) (Leontar-
itis and Billings 1985 a, b), and these have been successfully applied for self tun-
ing controller design. The model mainly involves the determination of the order
of the system, the variables to be employed and the estimation of the parameters.
In fact this is a type of generalised nonlinear regressive analysis model in linear

parameters.

It is well known that most control systems encounted in practice are non-
linear to some extent. However it may be possible to represent systems which are
perturbed over a restricted operating range by a linear model. In these cases an
AutoRegressive Moving Average (ARMA) model is c6mmon1y used with a com-
bination of least squares algorithms to estimate the parameters. This is generally
called a piecewise linearisation technique.

Least squares type algorithms, such as ordinary least squares and weighted
least squares, are popular for use in both off line and on line parameter estima-

tion. The ordinary least squares algorithm is known to have optimal properties
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when the parameters are time invariant, however it is unsuitable for either track-
ing time-varying parameters or approximating nonlinear systems, and can give
biased parameter values. Thus considerable research effort has been directed
towards the development of modified versions of the algorithm. Research has led
to study of special weighting functions, where the weighting function is time
varying. The best known of these modified ordinary least squares algorithm is
exponential data weighting (Goodwin and Payne 1977') and the modified version
(Salgado, Goodwin, and Middleton 1988) with exponential resetting and forget-
ting when the excitation is poor. Another interesting idea in this regard is the vari-
able forgetting factor algorithm of Fortescue, Kershenbaum, and Ydstie (1981), in
which at each step a weighting factor is chosen to maintain constant a scalar
measure of the information content of the estimator. It has been shown that, for
nearly deterministic systems, such an approach enables the parameter estimates to
follow both slow and sudden changes in the plant dynamics. Approximations

allowing modelling of nonlinear systems has also been studied.

The algorithms mentioned above are particularly useful for dynamic perfor-
mance assessment in the presence of poor excitation.

In this chapter, a second order ARMA model is adopted to approximate a
wide range of nonlinear systems, and a Variable Weighted Least Squares
(VWLS) algorithm is developed with a suitable weighting choice to deal with
nonlinear characteristics. The weighting choice concerns the state amplitude dis-
tance between the current state and past states. This novel weighting is introduced
to handle the amplitude effects in nonlinear systems. This algorithm removes

some of the difficulties in nonlinear system structure detection.
First the background relevant to the new algorithm is presented.
Consider the modelling of a single-input-output nonlinear system by the
general expression

)'(")'-"f[)’(n —l)v )’(’l —2)’"-u (n)9 u(n—l)v-"] (41-1)

where u and y are respectively the input and output of the system, and f is an unk-

nown general nonlinear function.
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Given a record of input-output signal ug, yg the response to a specific input

sequence ur is to be determined.

The basic technique is to linearise the system about the current, instantane-
ous operating point, to predict the output Yr(n). For the known inputs,
ur(n), ur(n-1)... and past outputs (known or predicted) yr (n~-1), yr (n-2)... the
amplitude distance in state space between this point and every point on the given

record of ug and yg is computed.

A weighted least squares technique is then used to calculate a linearised
model, with each set of data in the records ug, yr being weighted according to

the inverse square of this distance.

Using this linearised model, the predicted output yr(n) is obtained. This

weighting is repeated for each output point to be estimated.

The behaviour of a system described by a linear ARMA model is defined by
y)=¢T (1)@ +e(t) (4.1.2)
where
oT(®)=[y-1),...,y@-na),u),..., u(t-nb)]
O =[ay,...,8m, b0, ... bp) (4.1.3)

u(t) and y(t) are the system input and output respectively, € is a disturbance with

zero mean value and limited variance 2.

-

The standard Weighted Least Squares (WLS) algorithm is given by
) =[RE) I f @) (4.1.4)

where
R(1)= $BER) 0k) 67 &)
f@)=+ 3P0 660y k) (4.1.5)

B(z,k) is a time varying weighting function. The corresponding recursive form is

O(t) =0t -1)+R-1(2) 6() [y (1) — 6T (2) O(t-1) ]
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R@)=MR(E-1)+ (1) ¢T (1) (4.1.6)
where the weighting sequence A(f) has the following property,
Bt ,k)=A@)BE-1,k) 1<k <t-1
Bie)=1 0<A<1 4.1.7)

this means
Be.k)= j_glﬂl(i ) (4.1.8)

The weights take account of the time correlation of current data with past data,
that is the farther from current time the less weight, hence A(r) is usually called
forgetting factor. By applying the matrix inversion lemma, eqn(4.1.6) may be

simplified to a standard form given in many textbooks.

4.2 Parameter estimation

This part will presents both off-line and on-line VWLS algorithms and

analyse the properties of the off-line algorithm.

4.2.1 Off-line algorithm
A second order ARMA model is given by

y@®)=ay@-D+ay@-2)+bou(t)+bu@-1)+co+e) (4.2.1)
It may be written in vector form:
y () =0T (1)® +e(r) (4.2.2)
where
OT (1) =Dy (¢-1), y (1-2), u (1), u (¢ -1), 1]
T =[a,, ay, bo, b1, 1] (4.2.3)
The parameter vector is estimated by a VWLS algorithm
O=[ROIY () (4.2.4)

where
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R(t) = Jw(t kN k)

f©)=4 Zw ey k) (42.5)

Equations (4.2.1) to (4.2.5), are the particular cases of the expressions given
in eqn(4.1.2) to eqn(4.1.5) in the introduction.

The critical novel point is the choice of the weight w(tk). In principle, it
can be any non-negative function which decreases with increasing distance. In
practice, it is convenient to use a square law, with the maximum value limited for

sufficiently small distance, this is set to be
O Ly = @) = u@—h)2 + u(t-1) ~ u -k -1)>

+ (-1 -yU—k=-1))P2+@-2)-y(t—k-2))? (4.2.6)

which is determined from the nearness of current state to the previously measured
states. That is, the more the weight is given, the smaller the amplitude distance

between current state and previous known states.

4.2.2 Properties of algorithm

Two properties of the VWLS algorithm are of fundamental importance.
First is noticed the similarity between the VWLS and Ordinary Least Squares
(OLS) techniques for linear systems, and secondly the geometrical interpretation

of the weight choice. These are now demonstrated.

1. For a time-invariant linear system, the VWLS algorithm is equivalent in
expected value to the OLS algorithm when the uncorrelated disturbance has zero

mean value.
Proof

According to the conditions given, it follows, from eqn(4.2.5),
ER()]=E[R(+])]
E[f@)=E[f (t+])] (4.2.7)

Substituting eqn(4.2.7) into eqn(4.2.4), produces
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E[6,()1=E[6,(+1)] (4.2.8)
where v denotes the parameter vector estimated by VWLS algorithm.

For OLS algorithm, it follows, from eqn(4.1.2) and eqn(4.1.3) (B(z,k)=1)
E[6,(t)1=E[6,@1+])] (4.2.9)

where o denotes the parameter vector estimated by OLS algorithm. It may be
proved, Norton (1987), that both E[©,(r)] and E[ ©,(z) ] are unbiased esti-

mates for uncorrelated disturbance with zero mean value, hence
E[6,t)]1=E[6,(1)]1=0 (4.2.10)

For nonlinear systems eqn(4.2.7) does not hold.

It should be noticed that the OLS algorithm has the minimum covariance
property for linear time invariant systems when error is uncorrelated (Norton

1987). Therefore for the linear systems
Cov[©, 12Cov([ 6, ] (4.2.11)

For nonlinear systems eqn(4.2.11) does not hold. -

2. The weight chosen for the state amplitude distance is the inverse of the

squared radius of a hypersphere with center at the current state (u(t), u(t-1), y(t-1),
y(t-2)).
This may be understood by letting
RAtk)=(u(t)—u(—k)2+u@-1)—u@—k-1))>
+ -1 -y@E-k-D)y2+ @ (-2) -y @t-k-2))> (4.2.12)
this is a hypersphere with radius R(t,k) and centre at (u(t), u(t-1), y(t-1), y(t-2)).
The radius varies with differing previous states, but the centre is fixed. Therefore

the integration of the weights is determined by a set of radii of a concentric

hypersphere, that is

w(t k)= F(%TE)' (4.2.13)

An example is shown in Fig. 4.2.1 for the simplest case of

R2t.k)=(u(t) - u@—k)2+ @y -1)~y@—-k-1)>2
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u(t-k)

Figure 4.2.1 Weighting geometric interpretation

4.2.3 Modified (on-line) algorithm

It has been shown that for the off-line algorithm, for every current state all
weights must be calculated, and the memory length increases with the growth of
data series. Hence the algorithm can not be directly written in recursive form.
However it is possible to apply the technique in a modified algorithm with the

aim of on-line implementation.

With reference to eqn(4.2.4) and eqn(4.2.5), the algorithm is given by:

O=[REIf () (4.2.14)
where
R()= 77 3 w(t k)T k)
fO)= 75 3 wekpEy®) (42.15)

This uses only a limited amount of past data, extending over i points, reduc-

ing the computation required at the trade off of a reduced data set leading to
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reduced accuracy. An alternative possibility, for time invariant systems, is to
smooth the gathered data, so that a new input and output measurement is com-
bined with other measured data which has similar values of all the states u(t),
u(t-1), y(t-1), y(t-2). The algorithm is similar to that.in eqn(4.2.15), the differ-

ences are
o7 (k) = [F(k-1), y(k-2), u(k), @(k-1), 1] (4.2.16)

where — denotes the smoothed data.

4.3 Experiment results

Four representative systems as shown in Fig. 4.3.1 are selected for the simu-

lation study. These are

1 Second order linear system defined by

y@)=ay@-1)+ay(@-2)+bou(t)+bwu(@-1)+cyp (4.3.1)

where the parameters are set to (aj, a3, bg, by, c)=(1, -0.3, 1, -0.5, 2). This
example will be used to check the equivalence for the given performance cri-
terion between VWLS and OLS in linear case. Since OLS is optimal algorithm,
VWLS is also expected to have the same property when the variance of the dis-

turbance is small.

2 Static square defined by
y@)=uXr) (4.3.2)

which will be used to check the algorithm for a static nonlinearity; a very com-

mon situation in industrial areas.
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Figure 4.3.1 Experimental systems
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3 First order lag after hysteresis defined by
y@)=09y(@-1)+x()/8

3sign(u(t)) lu@)i 21

x()=
x(t-1) otherwise
1 x>0
sign(x)=40 x=0 4.3.3)
-1 x<0

which will be used to check the technique for a class of nonlinear systems
encountered in many engineering fields. It represents the cascade of a multi-

valued nonlinearity with a linear dynamic system.

4 Complex nonlinear defined by
y(@)=©08y(¢t-1)+x()*(1 +0.3sin(u(z-1))

sign(u()) lu@)l =1
x()= (4.3.4)
u(t) otherwise

which will be used to check the approximation for a complex nonlinear system.

Four input signals, sinusoid, Gaussian, step, and random amplitude steps are

available to demonstrate the model behaviour for different input signals

A noise signal is superposed on system input, that is
2(t) = u () +€(t) (43.5)

where u(t) is the input signal without contamination. This is a much worse case
than when an uncorrelated noise is superimposed on the system output. The vari-

ance of the noise €(¢) is selected for each experiment.

Two working modes are (a) the one step predictor and (b) _the‘ model
response or so called multi-step predictor. The first one is given by

@) =ay(t-1)+azy (t-2)+bou(t) + bu(t-1)+co (4.3.6)

where “ denotes predicted value. The second one is given by
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Y@®)=ay(-1)+apy(t-2)+bou(t) +bu(@-1)+co 4.3.7)

The criterion to evaluate the algorithm performance is a normalised output
error squared defined by
e= -———1(__2(’2"")“ i 4.38)
An interactive simulation procedure is implemented in the matrix laboratory
package Matlab. This includes a learning phase at the-beginning of the program
execution, in which the measured output is recorded as a function of past output
and current and past input values. The length of input and output data is usually
set to 800, the first 500 data points are dedicated to the learning phase.
In order to prevent weighting factors from being very large, a limiter is used,

ie.

w —‘L—Z o
wi(t) =9 4.3.9)
a —<o

where a is a preset positive constant.

A comparison has been made with results using the OLS algorithm. Table
4.3.1 shows the resultant errors defined in eqn(4.3.8), in which ¢1 and €2 denote
one step prediction error and model response error respectively. This table
demonstrates the VWLS has better properties in both one step prediction and
model response for the concerned nonlinear systems, and is the same as OLS for
linear systems. For the linear system it should be noted that the OLS parameter
estimates are expected to have lower variances for big disturbances due to its
minimum variance property, and hence lower error measures even though the
same error measures are obtained by the two algorithms with small disturbance in

the experiment.
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Predictor errors
Input: Gaussian

system OLS VWLS

el e2 el e2

0.000 | 0.001 | 0.000 | 0.001
0.521 | 0.522 | 0.108 | 0.111
0.225 | 0.017 | 0.191
0.047 | 0.238 | 0.024 | 0.111

W=
o
(=)
N
w

Predictor errors
Input: sinusoid

system OLS VWLS

el e2 el e2
1 0.000 | 0.003 | 0.000 | 0.003
2 0.312 | 0414 | 0.184 | 0.187
3 0.039 | 0.031 | 0.000 | 0.003
4 0.005 | 0.009 | 0.000 | 0.004

Predictor errors
Input: random amplitude step

system OLS VWLS

el e2 el €2
1 0.000 | 0.003 { 0.000 | 0.003
2 0.341 | 0.691 | 0.123 | 0.181
3 0.004 | 0.533 | 0.002 | 0.383
4 0.017 | 0.690 | 0.011 | 0.538

Predictor errors
Input: step

system OLS VWLS

el e2 el e2
1 0.000 | 0.002 | 0.000 | 0.002
2 0.552 | 0.566 | 0.482 | 0.486
3 0.000 | 0.012 | 0.000 | 0.011
4 0.000 | 0.033 | 0.000 | 0.023

Table 4.3.1
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4.4 Application--Analysis of a saturating second order system

This part will analyse the behaviour, including frequency response and step
response characteristics, of a saturating second order system presented by Douce

(1963), as one of the applications of the VWLS algorithm.

4.4.1 Jump resonances

Jump resonance is one of the phenomena exhibited in nonlinear systems.
Some basic concepts are introduced before a new technique for the prediction of
jump resonance is introduced. Ogata (1970) summarised the phenomenon.

In carrying out experiments on the forced oscillations of a system with dif-

ferential equation,

2
m‘é—t“}- +f%xt—+kx +k'x3=p cosQu (4.4.1)

where
p cosSdt = forcing function (4.4.2)

one may observe a number of phenomena, such as multivalued responses, and a
variety of periodic motions (such as subharmonic oscillations and superharmonic

oscillations). These phenomena do not occur in the response of linear systems.

In carrying out experiments in which the amplitude p of the forcing function
is held constant, while its frequency is varied slowly and the amplitude x of the
response is observed, one may obtain a frequency response curve similar to that
shown in Fig. 4.4.1. Suppose that k" < 0 and that the forcing frequency 2 is low
at the start at point 1 on the curve of Fig. 4.4.1. As the frequency  is increased,
the amplitude x increases smoothly and continuously until point 2 is reached. A
further increase in the frequency € will cause a jump from point 2 to point 3, with
accompanying changes in amplitude and phase. This phenomenon is called a
jump resonance. As the frequency £ is increased further, the amplitude x follows
the curve from point 3 toward point 4. In performing the experiment in the other
direction, i.e., starting from a high frequency, one observes that as  is decreased,

the amplitude x slowly increases through point 3, until point 5 is reached. A’

i i A <. . et

o S
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further decrease in Q will cause another jump from point 5 to point 6, accom-
panied again by changes in amplitude and phase. After this jump, the amplitude x
decreases with Q and follows the curve from point 6 toward point 1. Thus, the
response curve is actually discontinuous, and a representative point on the
response curve follows different paths for increasing and decreasing frequencies.
The response corresponding to the curve between point 2 and point 5 correspond
to unstable oscillations, and they can not be observed experimentally. One thus
sees that for a given amplitude p of the forcing function there is a range of fre-
quencies over which either of the two stable responses can occur. It is noted that
for jump resonance to take place, it is necessary that the damping term should be
small and that the amplitude of the forcing function should be large enough to

drive the system into a region of appreciable nonlinear operation.

response amplitude

frequency

Figure 4.4.1 frequency response curve showing
jump resonance
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4.4.2 Jump effect prediction
The new modelling technique has been evaluated by applying it to tﬁc pred-

iction of jump resonance, and comparing these prcdictiohs with experiments on
the system selected. The learning phase involves recording the system response to
a wide band zero-mean Gaussian signal so that a record is built up of system out-
put as a function of past values of the output and present and past values of the
system input.

A multi-step predictor as given in eqn(4.3.7) is used to obtain system output
response excited by a set of sinusoidal inputs with different frequency, the vary-
ing parameters in the model being estimated by the VWLS algorithm. A critical
point is that a learning phase proceeds from the real system before the multi-step
predictor is involved. When the multi-step predictor starts working, that is as the
computer simulation is initiated, the knowledge of the system kept in the learning
data file is available to guide the model parameter estimation and output predic-

tion.

4.4.3 Simulation experiment

In order to study the problem, a model is set up to describe a typical
amplifier-motor combination as shown in Fig. 4.4.2, reproduced from Douce
1963. The motor torque is assumed proportional to the voltage fed to the
amplifier. This linear relationship is obeyed only if the input voltage does not
exceed a limited value, due to overloading or saturation of some elements of the

system. This causes the system to operate in a nonlinear manner.

For a large input voltage, the output current from the amplifier remains
approximately constant, and the magnetic flux in the motor, limited by saturation
of the iron, attains its maximum value. Thus the motor torque, and the accelera-
tion of the motor, is independent of amplifier input voltage if this voltage is
greater than a particular magnitude. In this simple angular position-control sys-

tem, the linear equations are applicable only for small control signals.
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The schematic of the second-order position-control system is shown in Fig.
4.4.2(a). The motor produces a torque proportional to the amplifier input signal,
unless a torque is demanded greater than the maximum available. Let the magni-
tude of the control signal which is just sufficient to apply maximum motor torque

be h.

For le. | < h linear analysis is applicable, giving, with the usual notation,

d% do
— 2 =wXe,)=wi®; -6, - T7t£.) (4.4.6)

When the signal is equal to or exceeds h, the acceleration of the output has its
maximum value wg2h. This gives the relationship between output acceleration

and control signal magnitude shown in Fig. 4.4.2(b).

AMPLIFIER

0n 0,-0-T4,

(a) The basic system.

OQUTPUT ACCELERATION
u:h-

CONTROL SIGNAL

T
-n ° N

(b) Characteristic of the saturating element.

- T8,

0
{c) Block dnu-u;a

Figure 4.4.2 Analysis of saturating second order system
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The block diagram of the system can now be constructed in Fig. 4.4.2(c).
This shows the nonlinear characteristic as a separate element, an essential step in

analysing the behaviour of any nonlinear system for any input.

Noting that the relationship between the output signal of the nonlinearity,

-

e, , and the input signal e; can be written as follows,

e, lel<h
eo=\h ¢ >h
~h e <-h
or
ea=71-(le,~+hl—lei—hl) (4.4.7)

When the effect of saturation is considered, direct solution of the differential
equation is not possible in general and the superposition theorem is inapplicable
as well known. Therefore the response to a particular input can not be determined
from the known response to a different input signal. The method of analysis to be
adapted depends on the form of the input signal applied. In this case, the signal to
be considered is sinusoid. The discrete form of the experimental system is given

by
e1=0;(t)-6,(-1)

e =e;—TO,(t-1)

e lel<h
~h e <-h
or
eo=—(le;+hl=le;—hl) (4.4.8)

8,(t)=Ae, +0,(-1)
8,(t)=A6,()+6,(-1) (4.4.9)

which is a numerical algorithm to be implemented in computer program, where A

is the sampling interval.
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In this first experiment, the length of data in the learning phase is set to 3000
points. Then Gaussian input is changed into a set of sinusoidal inputs and the
model output is predicted to obtain the corresponding frequency response charac-

teristics. The relevant experimental parameters are set as follows

Input signal 0; = 1.5sinQu

Frequency range of input Q=0.01* 2r)—0.2*%(2x)
Frequency change step 0.01*(2 )

Data length per harmonic 100

System damping T=02

Break point of saturation b=1

Height of saturation h=1

|
Fig. 4.4.3(a, b) shows the model response against time. The first 3000 data

points are generated from the system with a Gaussian input, for the learning
phase. The last 4000 data points are obtained by the VWLS algorithm for the
model response to a set of sinusoidal inputs with 200 data points per harmonic.
The gain of the frequency response characteristics is calculated by smoothing the
peak values in the range of last 100 data points for the each frequency. Fig.
4.4.3(a) shows the model response for increasing input frequency and Fig.

4.4.3(b) shows the results with decreasing frequency.

Fig. 4.4.4(a) shows the model frequency response characteristic. The obvi-
ous jump resonance may be observed by comparing the characteristics for fre-
quency increasing and decreasing. Fig. 4.4.4(b) shows the system frequency
response characteristic. Comparison of these two figures shows good qualitative
agreement, particularly at high and low frequencies. The magnitude of the jump
effect is, however, appreciably smaller for the model than for the true system.
Two reasons for this are proposed. First, the leaming phase is unlikely to include
all amplitudes of states encountered in the sinusoidal input experiment, so linear
extrapolation is invoked fairly extensively. Second, the method uses local lineari-
sation. The jump effect is believed to be highly sensitive to the form of the non-

linear characteristic, and this smoothing is expected to reduce the magnitude of
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this effect.

amplitude

o 2000 2500 3000 3500 4000 4500 5000 S500 6000 6500 7000

time

Figure 4.4.3(a)  Sinusoidal response with frequency increase

amplitude

2000 2500 3000 3500 4000 4500 5000 S500 6000 6500 7000
time

Figure 4.4.3(b)  Sinusoidal response with frequency decrease
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Figure 4.4.4(a) Model frequency response characteristics
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Figure 4.44(b) System frequency rcsponsc‘chémcteﬁstics
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4.4.4 Step response experiment

The second experiment is carried out to check the validity of the VWLS
algorithm to predict the response of the saturating second order system, shown in
Fig. 4.4.1, to a step input.

Douce (1963) gave a detailed theoretical study of the response of the saturat-
ing second order system to a step input, which is summarised in Fig. 4.4.5 repro-

duced from Douce (1963).

HORIZONTAL
TRAJECTORIES
ALONG THE LINE
x+Tuw,y =0
PARABOLIC TRAJECTORIES
OUTSIDE THE LINEAR
REGIME

o parasoLic
TRAJECTORIES

x+Twgy *=h

Figure 4.4.5 Phase-plane response of the saturating system

With reference to Fig. 4.4.2, when a step of magnitude greater than h is applied,
maximum acceleration is applied initially, producing a parabolic trajectory on the
phase plane, until the system enters the lincar regime. Form this time the
acceleration decreases, becoming zero when the trajectory cuts the line
x + Twqgy =0. Deceleration ensues, and if the trajectory leaves the linear regime
it follows a further parabolic path.

A critical damped (Twg = 2) system for small signal opcratién is selected in
the experiment. For linear system there is no overshoot at the output for a step

input with any amplitude. For the nonlinear system, Douce (1963) predicted that
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there will be overshoot at the output for a step input with sufficiently large ampli-

tude.

First 1000 data points as a learning phase are generated from random Gaus-
sian input with zero mean value and variance 25, in which the measured output is
recorded as a function of past output and current and past input values. Then
inputing a step signal with amplitude 50 to the system, the output response is
obtained in one step prediction mode given in eqn(4.3.6) and model response or
multi-step prediction mode given in eqn(4.3.7) by the VWLS algorithm. The one
step prediction shown in Fig. 4.4.6(a) indicates fairly the output response proper-
ties both in transient and steady states. The model response shown in Fig. 4.4.6(b)
indicates errors in transient state and zero error in steady state. This is the worst
test condition to the VWLS algorithm due to using all predicted past outputs

instead of real past outputs for the model response calculation.
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Figure 4.4.6(a)  Siep response of one step prediction



- 105 -

mput—-—-

m{alu'-step prediction * ‘ .
1050 1100 1150
time

Figure 4.4.6(b)  Step response of multi-step prediction

4.5 Conclusion

This chapter has introduced a novel method to model nonlinear system
behaviour by the ARMA model with a weighted least squares algorithm.

The method involves a learning phase, during which input-output data is
recorded. Using a priori knowledge, or tests with this data set, the order of the

locally linearised model is determined.

To implement the model, for each time step the learning data is scanned, and
this data is inserted into the model for linearisation according to the distance
between the current state and each recorded state.

An interesting feature of the method is that the input data for the learning
phase can differ substantially from that used in the modelling phase. The same
modelling technique predicts two nonlinear phenomena which, to date, have been

examined using totally different techniques.
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The computer simulation studies have demonstrated the validity and
efficiency of the method.
The areas for further research include experiments in laboratory or real

environments and extension of the idea from the weighting choice to other typical

parameter estimation algorithms such as maximum likelihood estimation and

prediction error estimation.
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Section 3 Self-tuning controller design

S3.1 Survey

A general problem in control theory and application is to design control laws
or controllers which achieve better performance for any member of a specified
class of plants or processes. This naturally involves system identification and
parameter estimation which are often separate steps in the classical approach.
With the increase of control quality demand and complicated plant control, adap-
tive control strategy, a suitable combination of above steps, has been suggested,
studied, and tested in laboratories and real environments, and applied to solve real
problems for a few decades. In particular, a representative starting milestone that
may be recognised publicly was in year of 1958 when Kalman postulated the
design of a machine which adjusts itself automatically to control an arbitrary
dynamic process.

This section does not intend to give an exhaustive survey of the topic all-
round. A brief introduction to nearly a decade of development of relevant
branches, immediately highlight the subject---Self-Tuning Control (STC) for non-

linear systems.

In the 1960s, the appearance of modern control theory, such as state space
technique, Kalman filter theory and stability theory, was important for the
development of adaptive control. Some fruitful results in stochastic control, such
as dynamic programming (Bellman 1957, 1961), system identification and param-
eter estimation (Astrom and Eykoff 1971), and some fundamental contributions
by Tsypkin (1971, 1973), increased the understanding of adaptive control
development.

In the 1970s, there was a rapid and vigorous expansion both in theory and
applications. Various novel and applicable controllers, such as minimum variance
controller (Astrom 1970), general minimal variance controller (Clarke and
Gawthrop 1975), the pole-assignment controller (Wellstead, Prager and Zanker
1979), and pole-zero placement controller (Astrom and Wittenmark 1980), were

presented. Then many papers on the understanding, experimental studies and



- 108 -

applications, and modified controllers based on the controllers were published.
Meanwhile people began to consider and test the application to various plants and
processes with the controllers. It is worthwhile to mention that Astrom and co-
workers made great contributions to this field. The period was a revolutionary
decade.

More recently, adaptive controllers entered a period of maturity. The advan-
tages of different adaptive controllers based on linear models have been com-
bined to build up some complex controllers such as the general prcdictive con-
troller (Peterka 1984, Clarke, Mohtadi and Tuffs 1987), general pole placement
controller (Lelic and Zarrop 1987, Lelic and Wellstead 1987). Astrom in 1983
made a summary of the current development of adaptive control. Although
important theoretical results on stability and structure had been established, much
theoretical work still remained to be done. The advent of microprocessors and
industrial feasibility studies have contributed to a better understanding of the
practical aspects of adaptive control, and a number of adaptive regulators had
appeared on the market.

Astrom and Eykoff (1971), Clarke and Gawthrop (1979), Isermann (1982),
Astrom (1983), Seborg, Shah, and Edgar (1986), Gupta (1986), Midelleton,
Goodwin, Hill, and Mayne (1988), have also provided important reviews.

STC for nonlinear systems, one of the active branches of adaptive control,
has been given attention since 1980s. The critical point is adaptive controller
design based on a nonlinear plant model. Astrom and Wittenmark (1973) Clarke
and Gawthrop (1979), and Isermann (1982) all consider the problem of how to
run a self-tuner for long periods of time on a strongly nonlinear process. It is vpos-
sible to construct algorithms similar to those developed from linear models as
long as the nonlinear model structure is linear in the parameters. '

Fig. 3.1 shows the general STC system framework. The difference between
linear system STC shown in Fig. 3.1(a) and the nonlinear system STC shown in
Fig. 3.1(b) is the plant structure. Much more attention should be paid to the model

treatment instead of developing new control scheme for nonlinear systems.
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Figure 3.1 STC schemes

Although Astrom and people mentioned above forecast the problem and
possible solution, almost no results were reported untile Anbumani, Patnaik and
Sarma (1981), and Lachmann (1982) publications appeared, which improved con-
siderably the control performance with NLSTC for nonlinear plants.

Controller design, whatever the plant is linear or nonlinear, and controller is
traditional PID or modern STC, generally requires the following three procedures:
1 A proper model to approximate the plant.

2 A criterion for controller design and calculation of controller output based

on the criterion chosen.
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3  System test, such as stability analysis, output response to typical inputs, abil-

ity to suppress the system response to disturbance or noise.

The adaptive controllers studied in the section are of specified structure with
the parameter values to be selected and all variables are of sampled form for

implementation on digital computers.

In chapter five, a general predictive controller is designed based on a com-
bined Hammerstien + ARMA system model, which is termed NonLinear General
Controller (NLGPC). In chapter six, A NonLinear DeadBeat Controller is
designed, based on the same model as in chapter five, by a direct method in which
a new operator is introduced to simplify the design procedure to be the same as

for linear deadbeat controller design.
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Chapter 5  Nonlinear general predictive controller design

5.1 Introduction

Self-tuning control techniques are, in the main, based on the philosophy that
the system to be controlled can be regarded as being linear. To this end, the topic
is well developed both in term of theory and applications (Harris and Billings
(eds) 1985, Warwick (ed) 1988). For a large number of systems such a linearizing
approach is acceptable, any relatively small nonlinearities being effectively
linearized by the controller. The resulting performance is deemed to be satisfac-
tory but is nevertheless below that which would be expected, had the plant been
perfectly linear. In order to obtain improved control over systems with small non-
linearities or to deal with systems with stronger nonlinearities, whilst obtaining
the benefits of a self-tuning control method, it is necessary to take account of the
nonlinearities in an appropriate way.

Because of the large number of different types of nonlinearity which can
occur in practice (Atherton 1975, Cook 1986), extending a basic linear control
scheme to account for all possibilities is not a realistic proposition and would
necessarily result in a toolbox approach which requires a certain amount of opera-
tor selection and therefore plant knowledge. A much more sensible way of tack-
ling the general problem is to employ a framework with which a large number of
nonlinear plants can be adequately modelled. The most appropriate solution as far
as self-tuning control is concerned (Anbumani, Patnaik, and Sarma 1981, Lach-
mann 1982, Agarwal and Seborg 1987), is to assume a parametric plant descrip-
tion via a Hammerstein model which basically constitutes a linear ARMA system
model coupled with a polynomial of powers of the control input. By this means
the plant to be controlled is thought of as consisting of a linear part cascaded with
a nonlinear part. The ARMA model is then used to represent the linear part,
whereas the extra power polynomial approximates the nonlinear part, as shown in
Fig. 5.1.1. In fact such an underlying philosophy has been shown as sensible

within an adaptive control scheme.
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The feasibility of using a Hammerstein model based in adaptive controller
has been studied (Grimble 1985). This has highlighted a major problem in the use
of such models. This is the necessity for the on-line computation of a root solving
algorithm for every recursion of the controller updating procedure. Not only is
this an extremely time consuming process, which can be a particular problem
when the sampling period is small, but also the accuracy of the root solving rou-
tine, which is needed to obtain a unique solution to the nonlinear plant model
polynomial, can be poor, and this can produce stability problems and usually

requires an odd number of polynomial roots in order to guarantee at least one real

Figure 5.1.1 Model of plant characteristics

In this chapter an adaptive nonlinear controller is designed, based on the
Hammerstein model, in term of NLGPC. The controller has the flexibility of a
linear system form of General Predictive Control (GPC) (Clark, Mohtadi and
Tuffs 1987), but can also deal effectively with a range of nonlinear systems. The
design procedure entails two distinct parts, that is linear GPC design and polyno-
mial root-solving. The method is therefore indirect. The overall techxﬁque can
best be understood by reference to Fig. 5.1.1. Under the assumption that the
model approximates the plant concerned very well, then a linear controller is
designed to provide self-tuning GPC for the linear dynamic g~1B/A of the plant,
which relates x(t), output of the plant nonlinear static part, to y(t), the plant out-

put. The second step invokes a root-solving procedure, to calculate the inverse
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function of the nonlinear part NL, to find a controller output u(t). The intermedi-
ate variable x(t), which is the input to the linear part of the system, is not a
measurable quantity. However it may be estimated within the plant model due to
the separability of the process (Billings and Fakhouri 1978). Note if
x(t)=y(u )=ku(t), where k is a scalar gain, the overall control problem reduces to a

linear GPC requirement.

The novel approach taken in the chapter is to employ a one or two step
Newton-Raphson iteration, for every recursion of the overall algorithm, in place
of a complex root solving routine. The technique makes use of the signal value
from the previous recursion of the algorithm, such that on-line computation is
significantly reduced to a few arithmetic operations. The second benefit in the
algorithm is that the variation of the controller output signal to be reduced from
one sample period to the next. This follows since each input signal is based on its
previous value so that the transmitted signal is filtered automatically. A positive

feature of this controller is therefore the reduction of control input swings.

5.2 Plant model and output prediction

Consider a class of plants described by Hammerstein model
| Ay(t)=Bx(t-1)+Ce(t) (5.2.1)
where the polynomials A, B, and C are defined as,
A=1+a1g7t+ - +a,q™
B=bo+big 1+ -+ +bpq™

C=cotc1q71+  * +Creq™™

x(®)=ro+rw@)+ - +rpuT (@)=Y riui(t) (5.2.2)

=

where ¢~ is the backward shift operator such that g~y (¢) =y (t—i), u(t) is the
plant input or controller output, y(t) is the measured variable or system output.
g(t) is a disturbance affecting the system such that de(t)=E(r), 6=1-¢~1, which

allows for nonzero offset on a zero mean, white noise signal &(r) (Tuffs and
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Clarke 1985). This representation of the model disturbance comes from the con-
sideration in practice that two principal disturbances are encountered (Clarke,
Mohtadi and Tuffs 1987), random steps occuring at random times such as
changes in material quality and Brownian motion found in plants relying on
energy balance. x(t) is an intermediate variable which is the nonlinear static ele-
ment output or linear dynamic element input in the plant model.

The parameters a;, b;, and r; cab be estimated by an Enhanced Recursive
Least Squares (ERLS) approach (Kortamann and Unbehauen 1987), when the
plant model is continuously updated within a self-tuning controller. It can be
assumed initially that these are known or identified values, and the requirement
for them to be estimated can be reintroduced later specifically for adaptive con-
troller design purposes. Also, let C=1 for simplicity of explanation.

As a fundamental aspect of a predictive control-algorithm, a prediction of
the plant output signal is required, which is based on information available at a
particular time instant. By considering merely the linear part of the plant
represented in eqn(5.2.1), a prediction of the output at time instant t+k is obtained
directly, based on information available at time instant t. For this purpose a
Diophantine identity is introduced (Clarke, Mohtadi, and Tuffs 1987, Owens and
Warwick 1988)

1=E A8+ q*F, (5.2.3)

in which k 21 and E;, F; are unique polynomials for any given integer k and

polynomial A. Also E; is monic and of order ne = k-1 such that
Ei=1+eiqg7'+ - +e.q™
and
Fe=fo+f1q7t+ - +furq™ (5.2.4)

where nf=na.
If now eqn(5.2.1) is multiplied throughout by ¢*¥E,8 and the Diophantine

identity given in eqn(5.2.3) is made use of, it follows that

y(t+k) =BE dx (t+k-1) + Fry (1) + Exe(t+k) (5.2.5)
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in which the disturbance terms present are all future values, this is due to the fact
that ne=k-1.

The optimal output predictor for the output signal at time instant t+k, made

at time instant t, is therefore
Y(@+k/t)=BEdx (t+k-1)+ Fy(t) (5.2.6)

It is thus an obvious point that from eqn(5.2.5) and eqn(5.2.6), the actual system
output can be regarded as

Y(@+k)=Y(@+kit)+ E e(t+k) 5.2.7
However, at an instant t, it is possible to select a range of values k for which an
output prediction can be made.

Assume that a set of output predictions is made from k=1 to N, where N 2 1,

when the output eqn(5.2.5) may be rewritten in vector form
YT =GX +f +¢ (5.2.8)
where
YT =[y@+1) -+ y(@+N)]_
XT =[8x(t) --- Sx(t+N-1)]
fT=0f@+1) - f@+N)]
el =[Ee(t+1) -+ ENe(t+N)] (5.2.9)

Further, the matrix G is of dimension N*N and has elements such that

g0 o ....0
g1 8o 0
. .... 0
6= 1 (5210)
] . .... 0
8N-1 N2 - . . . 80

where g; is the coefficient in the integrated plant step-response, i.e. g; = h; from

H=@0A)Y'B=ho+hig'+hoq™? --- (5.2.11)
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The vector GX in eqn(5.2.8) therefore represents a set of unknown values,
due to the vector X, at time instant t. Note that the signal x(t),and therefore dx (1),
is considered to be unknown until it has been calculated and applied, thus at the
- instant that the output predictions are made, it is an unknown signal.
The vector f in eqn(5.2.8) represents a set of known values at time instant t,

such that each term in f is given by
fQ@rk)=Fey(t)+h ~ (5.2.12)
in which
he ={BEy —[ho+h1g™! -+ + hpyq~ D Jdx (t+k-1)  (5.2.13)

In the appendix 5.6.2, a detailed recursive algorithm is presented to implement

the operations, including initial value settings.
5.3 Nonlinear general predictive controller

5.3.1 Controller design

The design of the overall control input to be applied to the plant contains
two parts, that relating to the linear dynamic part of the plant and that relating to
the nonlinear static part of the plant. The linear part is considered firstly, and for

predictive control a cost function given by
J = kﬁlb’ (t+k)y-w(@-k)1% + ﬁl.(k)[Sx (t+k-1))2 (5.3.1)

is employed in which N is the maximum prediction horizon, A(k) is a weighting
applied to the control inputs and w(t) is a reference input signal, applied at time
instant t. Note that the control horizon and the output prediction horizon have
been selected as the same value, N. This is not a necessary requirement, in fact
other control horizon selections have been investigated elsewhere (Clarke,
Mohtadi, and Tuffs 1987, Warwick and Clarke 1988).

The control objective is to obtain a vector of future control inputs X which
will minimize the cost function in eqn(5.3.1). On taking the expected value of the

cost function J,
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EJ)=E[GX +f +e-W)I(GX +f +e-W)+XTAX] (5.3.2)
where A is a N*N diagonal matrix whose diagonal elements are
A1), -o0 AWV (5.3.3)

and

WT =[w(+1) - -+ w(+N)] (5.3.4)

By differentiating eqn(5.3.2) with respect to X and setting the result to zero,

a cost function minimum is given by the minimum mean square control
X =(GTG +MIGTW - f) (5.3.5)
such that
x()=x@-1)+gTW -f) (5.3.6)
where g7 is the first row of (GT G + A)"!G7T.

So the control signal x(t) is the signal required to be applied to the linear part
of the system, and which is based on a set of known future reference signals W

along with the known vector f.

5.3.2 Fast recursive root-solving

The signal x(t) obtained in eqn(5.3.6) is an intermediate variable acting as a
solution to the linear predictive controller problem. It remains for the nonlinear
part of the controller problem to be solved, and this is done directly, remembering
that x(t) is related to the control input to be applied to the plant, u(t), by the
definition given in eqn(5.2.2).

The nonlinear problem can be stated as, with reference to eqn(5.2.2), given
any signal x(t), at time instant t, and the appropriate coefficients (r;, i=0, 1,...,nr).
find the control input signal u(t).

With reference to Fig. 5.1.1 and eqn(5.2.2), the relationship between x(t) and

u(t) may be written as

x(@)=0u)] (5.3.7)
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where ¢(.) denotes a functional operator whatever it is linear or nonlinear, In this
case it expresses a polynomial for the Hammerstein model. The requirement is to
calculate the function inversion, i.e.
u(t)=6"x ()] (5.3.8)
which means that one of the Hammerstein polynomial roots must be found in
order to produce a possible control input signal u(t).
One suggested solution is provided by the Newton-Raphson recursive

method (Gerald 1987), whereby
[O(u, () —x (1)}

Un 1= ¥n = T )
o ua (1) = L) (53.9)

where the subscript n denotes the order of iteration, such that the (n+1)th iteration
is obtained from the nth iteration, n 2 0.

Two problems occur when appling eqn(5.3.9) directly, The first is that
¢’(4, (2)) = 0 in the neighbourhood of a solution. This is a critical point because in
practice it cannot be guaranteed that the derivative of the function will not
approximately equate with zero after any particular recursion due to model varia-
tion, the estimated error, and even an unsuitable initial value. The second problem
is the posSibility of no real root of the polynomial existing, thus causing a break-

down of the algorithm.

In order to overcome these drawbacks, whilst retaining simplicity, an
improved root-solving approach based on eqn(5.3.9) has been developed. which
is explained as follows.

When ¢’(4, (2)) = 0, there exist two possibilities. Either u, (¢) is a root which
satisfies the polynomial equation, or it is not. this can easily be checked by taking
account of ¢(u, (¢)) — x (¢), which will be within a preset small value, i.e. approxi-
mately zero, if u,(¢) is one of the roots. On the other hand, if u,(¢) is not a root
then a new alternative initial value is set and the recursion process is repeated. If

no real root exists or if several searches have been carried out with alternative
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initial values, a monitoring loop instructs the root-solving algorithm to stop and a

default value is taken such that u(t)=x(t)/ct, where a is a positive constant.

It is possible (Anbumani, Patnaik, and Sarma 1981) to restrict the polyno-
mial order to be odd, thereby ensuring that there is at least one real root. Unfor-
tunately this may introduce modelling error and restricts the types of the non-

linearities concerned. No such restriction is placed in the method described.

The solution to the second problem as mentioned above is to set the initial
value to be ug(t) = u(t-1), i.e. the initial value is equal to the previously applied
control input. This is a particularly suitable choice whgn the signal to noise ratio
of the plant is high and /or when the reference input changes are either small or
infrequent. In general it is found that with this initialisation procedure, the root-
solving procedure used here involves, in most cases, a single iteration of
eqn(5.3.9), each time a new solution is required. If the resultant solution does not
fit well, a further preset finite number of recursions depending on the sampling
period are carried out. If this is still not satisfactory, an alternative initial value is
tried, as described above.

Note that a standard, more complex, root-solving algorithm can, if desired,
be employed in order to obtain a solution. Care must be taken, however, where
on-line, real-time applications are involved, due to the computing time require-
ments. A flow diagram for the nonlinear plant part solution is shown in Fig. 5.3.1,
where it takes r;, u(t-1), and x(t) as input values, and u(t) as output value, at any
time instant. Four monitoring factors cl, ¢2, c¢3, and c4 are preset. cl is used to
control the iterating time of the algorithm, which is often chosen from a trade off
between solution accuracy and solution obtainability, c2 is a error measurement
that will determine the accuracy of the solution, c¢3 is a default value in case no
suitable root is found. c4 is used to check whether the derivative ¢'(u (¢)) enters a
small region around zero, which is an indiction of either a possible solution or an

inflecting point of the polynomial curve.

Another suggested solution is to generate a look-up table from the relation-

ship x (¢) = ¢[u (¢)], and then the controller output u(t) may be found for the given
x(t).



- 121 -

k(t) obtained by eqn¥-3.6)
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5.3.3 Self-tuning implementation
The steps required to employ a self-tuning NLGPC on a plant described by a

Hammerstein model are as folloes during every sampling interval:

Step 1 Sample the system output, (time instant t).

Step 2 Update the plant model parameter estimates a;, b;,r; by
ERLS.

Step 3 Using the estimated model coefficients g;, b; calculate linear

intermediate signal x(t). This is a linear GPC design routine.

Step 4 Calculate the controller output u(t) from x(t) with aid of a
root-solving routine.

Step 5 Apply the controller output u(t) to the plant input.

Step 6 Update the input and output vector of the plant and store other
necessary data.

Step 7 Wait for the next sampling instant before returning to step 1.

5.4 Simulation experiment
In order to investigate the usefullness of the NLGPC scheme, described
above, simulations have been carried out for particular systems. A comparison
with NonLinear DeadBeat Controller (NLDBC) on the same plant models is
included.
Two different nonlinearities are selected (Anbumani, Patnaik, and Sarma
1981), as described in eqn(5.2.2)
NL1: ro=1,ri=1,ry=-1,r3=0.2 (5.4.1)
NL2: ro=0,r1=1,r3=0,r3=-1 (5.4.2)

The nonlinear characteristics are shown in Fig. 5.4.1. For the linear dynamic part,

again two different models are selected with reference to eqn(5.2.2)

Ll: a1=-09,bgp=1,b1=2 (5.4.3)
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L2: ay=-287,a,=274,a3=-0.87
bo=0.04, b1 =0.002, by = -0.037 (5.4.4)

This means that L1 is open-loop stable and non-minimum phase, whereas L2 is

open-loop unstable.

601 T T T B : T !

Figure 5.4.1 Static nonlinearities

An ERLS estimator is used with fixed forgetting factor 0.95, and no noise is
introduced into the system, €(t)=0. In order to overcome the large initial input
signal deviations which occur during tuning, a relay providing unity magnitude
bang-bang control is employed for the first 10 samples. It is, further, assumed

within the estimator that the model structure is known.

In order to consider transient behaviour, a sequence of set-point value is

assigned as follows,
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Samples set point values
1-10 20

11-30 20

31-50 60

51-70 20

71-90 0

The cycle from 11-90 samples is then repeated periodically. In each of the
Figs. 5.4.2 to 5.4.5, the plots in "a’ show the control input signal u(t) as a continu-
ous line with the intermediate variable x(t) shown by a broken line. The plots
given in b’ show the reference set-point signal as a continuous line with the

actual system output signal y(t) shown by a broken line.

Fig. 5.4.2 shows the behaviour of a nonlinear .deadbeat controller when
operating on a system whose linear part is described by L1 and whose nonlinear
part is described by NL1. The dead time (transport delay) of the linear part in
each case is unity, as is defined in the original model eqn(5.2.1), further the order
of the B polynomial is also unity. It can be seen from Fig. 5.4.2b that following a
change in reference signal, the system output reaches the new set point value after
only 2 sample periods and no overshoot occurs. These results are those which
would be expected from a deadbeat controller operating on a purely linear plant
(Warwick 1986) whose characteristics are represented in L1, the 2 sample periods
corresponding to the sum of the dead time are the order of the B polynomial, both
of which are unity.

It can also be seen that once initial tuning in of the parameter estimator has
occurred, after approximately 70 sample periods, operation of the overall con-
troller, including the root solver is satisfactory. It is assumed however that the
structure of both the linear and nonlinear system part is known exactly, hence for
Fig. 5.4.2, 1 a; parameter and 2 b; parameters are selected, along with 3 r;

parameters and r g being set to unity.

There is no reason to suggest why the indirect design method, described in

the chapter, would not be suitable for use with controller in which the control
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objective is of a type other than deadbeat, ¢.g. pole placement or minimum vari-
ance control. Self-tuning control is therefore applicable to a wide variety of non-
lincar systems, which can be regarded as separable, in the sense of the need for an
intermediate variable x(t) to be estimated. It must be pointed out though, that
-where noise affects the system, due to the cancelling effects of the deadbeat
action, the noise will be filtered by the open-loop denominator A. this means that
the system under control is required to be open-loop stable, otherwise noise

enhancement may result.

Fig. 5.4.3 shows the behaviour of a nonlinear general predictive controller
when operating on a stable but nonminimum phase system, whose linear part is
described by L1 and whose nonlinear part is described by NL1. The predictive
nature of the controller can be clearly witnessed in the plots, where advance
knowledge of a reference value change has allowed the actual output signal to
commence its distinct set value variation before the alteration in reference value
has occurred.

Fig. 5.4.4 and Fig. 5.4.5 show the behaviour of a NLGPC when operating on
an unstable plant whose linear part is described by L2 and whose nonlinear part is
described by NL1 in the case of Fig. 5.4.4, and NL2 in the case of Fig. 5.4.5. Note
that 400 data points are plotted in these figures, rather than 200 as is the case for
Fig. 5.4.2 and Fig. 5.4.3. Again, exact structural knowledge of the plant, i.c.
correct number of a;, b;, and r; parameters, is assumed for parameter estimation

purposes, and the control weightings A(k ) are taken to be equal to zero.

The plots in Fig. 5.4.4b and Fig. 5.4.5b show that with the unstable open-
loop plants in question, NLGPC is still able to produce a stable, satisfactory out-
put response, although the initial tuning period is a lot longer than previously.
Also, as can be seen from Fig. 5.4.4a and Fig. 5.4.5a, in order to provide a suit-
able controlling action, the control input signal has a high variance and rapid vari-
ations occur. A conclusion can be made that NLGPC is potentially suitable for the
control of nonlinear plants. However, controller quality is much more sensitive to
the choice of control weightings A(k). In fact, improper choice of A(k) may be

such that a stable closed-loop system response is not achievable, even when the
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controller parameters are finely tuned.
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5.5 Conclusion

In the chapter an indirect self-tuning controller has been presented for the
control, by means of either General Predictive Control or Deadbeat Control, of a
class of nonlinear systems which can be adequately modelled by Hammerstein
model. The simple Newton-Raphson root solver is in fact also applicable with
other control objectives such as pole placement or minimum variance output. In
fact the characteristics of the particular linear control objective, such as GPC, are
retained in thé nonlinear controller and hence much more attention should be paid

to the nonlinear model treating technique.

The self-tuning controller described in the chapter will operate well whether
the system under control is linear or nonlinear, although in common with other
self-tuning control algorithms, a detailed theoretical analysis, in particular a
determination of the transient behaviour, is of little value except in some very
simple or specialised cases. The feasibility of NLGPC is therefore considered and
compared with NLDBC, by means of several simulation studies. These indicate
that not only can NLGPC be successfully applied for nonlinear system control,

but also that it can be applied in a relatively simple fashion.
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5.6 Appendix

5.6.1 Enhanced Recursive Least Squares estimator

An ERLS algorithm is used to estimate the parameters of the Hammerstein

model given in eqn(5.2.1) and eqn(5.2.2).
O(t+1)=O@) + L(1)[y (t) - o7 (1)6(z)]

= P-1)o()
L®) = T39T 0P 6-160)

_ipre_1y_ PE=DO@T (1)P (=1
P@)=[P@-1) 1+¢T(I)P(t—1)¢g(t))]/}"

where

©=1Boo Por - Pno1 Boz - Brvz * Bow * Brow araz -
oT@)=[1u@-1) - u(-nb-1)u@-1)2 -+ u(@@-nb-1)2 - -

u@=1" - u(@-nb=-)%" -y(@t-1) -+ =y(t-na)]

Boo=(bo+b1+ - +bw)ro, Bij =b;r;

Let r1=1, it follows that

" g

A is a forgetting factor to effect the convergence of the parameter estimates

and to cope with slowing time-varying plant. Sodestrom, Ljung and Gustavsoon

(1976) presented a way to choose this constant, for plants or processes with con-

stant parameters
A@)=1

or

Ae+1) =Ag At) + (1 = Ay)
095<2=A0)<1
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For plant with slowly time varying parameters
Ar)=2%g, 0.85s2p<1

The most suitable forgetting factor depends on the plant model and the kind of
disturbances. For the case of low order model and no stochastic disturbance, a
smaller value Ag (e.g. Ao=0.85) can be used to speed up the convergence of the
parameter estimates, otherwise Ay must be set to 1 to guarantee the accuracy of
the parameter estimates, and results in slow convergence of the estimates. There-
fore the choice of the forgetting factor is a trade off between convergence speed
and accuracy of the estimator.

The ERLS estimator is an unbiased for an uncorrelated disturbance
sequences. For correlated disturbance sequence, an Enhanced Recursive Max-
imum Likelihood (ERML) estimator is available which may be derived from

linear RML estimator.

5.6.2 Recursive computation of Diophantine equation (E, F) and polynomial

Gil@™

1 Initialisation (j=1)

EighH=1
Fig)=q(1-4)
Gig)=B

where
A=8A=(1-¢g DA =0pg+0yq7 1+ -+ +0t,qq ™"

=1, Opu==Qng, O =a; —aj_;, n.=na +1
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2 For j=1...N-1 (N maximum prediction horizon)

Ejy@V=Ej(@@ D+ fjoq

Fin@ ™ V=f o+ fGeng™+ - +fG+iq™, i €[0, nal
f+0i =F Gy — %S jo

f (j+1)na =—Cnafjo

Gj+l(q_l) = Ej+1(q‘1)B = g(j+1)0 + g(f+l)lq—1 4 4 g(j+1)iq—i
g(j+1)i = &ji +fjobi-j, i €[0, nb+j]
with

bi-j=0, i<j
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Chapter 6 Nonlinear deadbeat controller design™

6.1 Introduction

Most of the NLSTC design methods, using parametric models, are indirect
ones. The NLSTC design routine is, as shown in Fig. 5.1.1, to first construct a
linear STC from the relationship between x and y and then to calculate the inverse
function of the nonlinear part to obtain the controller output u, usually involving a
root-solving routine. The internal or intermediate variable x can be estimated due
to the assumption of the nonlinear plant model being separable, so that the inter-
mediate variable is a bridge connecting STC and NLSTC. If x=f(u)=ku, k is a
constant, that the STC design is derived for a linear system. By this method,
Anbumani, Patnaik and Sarma (1981), Lachmann (1982), and Grimble (1985)
presented several schemes for NLSTC design. On the other hand, a direct design
method results from an integration of the STC design idea and different model-
ling technique to produce the NLSTC output u directly without the requirement
for estimating the intermediate variable x. A few papers were published recently
using a direct design method in some special cases, and these obtained straight-
forwardly the NLSTC output u instead of estimating the intermediate variable x,
see Lachmann (1982), Agarwal and Seborg (1987), and Zhang and Lang (1988)

for details.

A large number of control systems are designed with the objective that the
response of the system should attain its desired value as quickly as possible. Such
a control system is called a minimum-time control system or a time-optimal con-
trol system (Kuo 1980). One of the typical forms in digital control system is so
called deadbeat controller, which combines fastest response to reference signals
with easy implementation in self-tuning algorithms. -

Previous work concermned with deadbeat controller design mainly concen-
trates on the following aspects. Deadbeat regulators, either single variable (Tou
1964, Jordan and Korn 1980, Iserman 1981) or multivariable (Kaczorek 1982,
Chen, Chiang and Hsiao 1984, Beelen and Dooren 1988), are basic designs,
which emphasise the ability to follow step reference signal. The deadbeat
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tracking design deals with the problem of following irregular reference signals
(Bradshow and Pooter 1976, Kucera 1980, Ichikawa 1989). Robust deadbeat
controllers (Zhao and Kimura 1986, Warwick 1986) describe many schemes to
overcome the drawbacks such as the excessive control signals to achieve the
fastest regulation speed and less robustness with respect to plant variations,
allowing a trade off between speed of response and robustness.

It should be noticed that all proposals mentioned above use a linear plant
model. However in a real environments linear model is not always proper due to
the existence of severe nonlinearities. Kaczorek (1982) mentions, without refer-
ence, that deadbeat control of bilinear and nonlinear systems has received consid-
erable attention, with no solutions given.

The purpose of the chapter is to design a general controller for a class of
nonlinear systems described by the Hammerstein model. The implementation of

a deadbeat controller, as an example, is studied with computer simulation.

6.2 HCARIMA model and HCARMA model

The Hammerstein model defined in eqn(5.2.1) is written in the alternative

form:
Ay()=Bx(t-1)+¢€() (6.2.1)
where the polynomials A and B are defined as,
A=l4+a1g71+ -+ +a,q™
B=by+big7 '+ -+ +bypq™
and

x(t)=ro+ru@)+ - +rpuv (@)= i_‘br,-ui(:) (6.2.2)

where 1=0, 1, 2, etc. are sampling instants, q~! is the backward shift operator such
that g%y (t) =y (t—i), u(t) is the plant input or controller output, y(t) is the meas-
ured variable or system output, €(¢) is a either correlated or uncorrelated distur-

bance, and x(t) is an intermediate variable which is the nonlinear static element
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output or equal to the linear dynamic element input in the plant model.

Hammerstein-like CARIMA (HCARIMA) and Hammerstein-like CARMA
(HCARMA) models to be presented are alternative expressions of eqn(6.2.1) with

suitable modifications. Eqn(6.2.1) may be written in vector form
AY =BX +¢ (6.2.3)
where
Arr(asn=[1ar - apgl
YT e ey = @)y ¢=1) - - - y(t—na)]
Blf(nb+1)=[b0 by - bl
XT oy =[x (@-1) x(¢-2) - -+ x(¢—nb-1)] (6.2.4)

and from eqgn(6.2.2), x(t) may be written as a function of the vector U(t) as

x(t)=RU(t) (6.2.5)
where
R=[ror1 -+ 7wl
UT@)=[1u@) - u”(@)] (6.2.6)
Hence
X =[RU@¢-1)RU(t-2) -+ RU(t—nb-1)] ' (6.2.7)

Substituting eqn(6.2.7) into BX in eqn(6.2.3), gives

BX =BU (6.2.8)
where
B=1[BooBo " Bn]
U=[U@-1) - Ut-nb-1)] (6.2.9)

Furthermore eqn(6.2.9) may be expressed in the form

-

Boo= ro b;

Bo=[rirz ** ralbo=[Bo1 - Bowl
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Bi=lrira - - relb1=[P11 " Pinl

Bo =[r17r2 <+ ruelbw =[Bap1 *** Bromrl

UT@-1D)=[u@-1)u?@-1) - u™(¢-1)]
UT(-2)=[u(-2) u2(¢-2) -+ u™(¢-2)]
UT(t-nb-1)=[u(t-nb~1) u2(t-nb-1) --- u™(@-nb-1)] (6.2.10)

The vector expression relating the system output Y, the controller output U
(instead of intermediate variable X) and disturbance € is built up through

eqn(6.2.3) to eqn(6.2.10), to give
AY =BU +¢ (6.2.11)

The HCARIMA or HCARMA model may be readily developed from eqn(6.2.11),

in which the corresponding polynomial form is
Ay (#)=B@EHU (@-1)+ oo+ &(1) (6.2.12)
where A, y(t), U(t-1), Boo and € have been defined above, and
Bz =Bo+Prz7+ -+ + Pz (6.2.13)

z~1is a new defined vector backward shift operator, possessing the following pro-

perties
2T ()= UT (¢-1) = @ -1) u2r-1) - - u™ (-1)]
(1-z7HUT@)=UT@0)-UT(-1)
= () = u(e=1) w(t) - u(e=1) - - w™ () - u™ (2-1)
E@ DB YN =EBE YU @), g7z =274
BGz"DIE (@ Nu@)) =B "YUt () (6.2.14)
where

UE=IE@Yu@)E@™Du@)? -+ E@Hu@E)™]

and z~! = ¢~! for linear model.
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The HCARIMA model is defined when the disturbance €(z) = C&(t)/8
Ay (1) =B HU @-1)+ Boo + CE()/S (6.2.15)
where
C=1+ci1g71+ - +cpeqg™
d=1-g"1 (6.2.16)
and &(z) is a uncorrelated random disturbance.
Similarly HCARMA model is defined to be
Ay (1) =BE"HU (¢t-1) + oo + CE() (6.2.17)
The model is linear in the parameters and nonlinear in input and output sig-

nals. Parameter estimates may be then handled easily by the ERLS algorithm

given in chapter five.
6.3 NLDBC and its STC implementation

6.3.1 Nonlinear feedback controller based on HCARMA model

The basic design of the NLDBC originates with the design of DBC in linear
systems. Consider a CARMA model

Ay(t)=q*Bu(t)+CE&@) (6.3.1)

where k 2 1 is the integer part of the transport delay.

Clarke (1982) presented a general form of feedback controller for linear
plant described by CARMA model, it has

u@)=L vw@e) -y @)l (632)
where
G=g0+81q71+...+gnq ™™
F=1+f1q7'+ - +farq™

V=vo+vigl+ -+ +Vpq™ (6.3.3)
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w(t) is a reference input or so called setpoint sequence. The polynomial V is often

set equal to a constant, i.e. V = v,.
The controller parameters are given by
G =A
F=S-q*B (6.3.4)
The polynomial S is assigned according to various performance.

Warwick (1986) presented several typical DBC design schemes by selecting

polynomial S, one of his selections was
V=1,G=A, F=B(1)-q*B (6.3.5)
the resultant controller is given by
u(t) =-E%-5-u(t—k)+ -B%-ry[w(t)—- ) (6.3.6)

and the system output response is determined by

y© =q+BYway+ S=gB)(CE() + Bl

= -B%-yw (k) + BL~g*B) oy (6.3.7)

B(1)A

As stated in the introduction, the method of controller design based on a

linear model may be applied for nonlinear model given a suitable plant structure.

Consider the HCARMA model
Ay (t)=z=*% Bz YU (t-1) + Boo + CE(r) (6.3.8)

A kind of general feedback controller is proposed for nonlinear plant described by
the HCARMA model in eqn(6.3.8), as follows ‘

vey=$ vwe) -yl 63.9)

where G, V, and W(t) are the same as for the linear system, U(t) is defined in
eqn(6.2.10), and F is defined to be
F =f0+f12'1 + +f,,fz‘"f

fo=Ufoufoz " fond=011---1]
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fi=0fuafe finl

for =Unr1fnr2 = Frfarl (6.3.10)
Note the new backward shift operator z—! has been introduced. Expanding

eqn(6.3.9) with the substitutions in eqn(6.3.11), gives

w@)+uE)+ - +um @) =—f1f,-U(:—i) +GIVW (@) -y ()] (6.3.11)

a=—_f,-U(t—i)+G[VW(t)—y(t)] (6.3.12)

Eqn(6.3.11) becomes

u@)+u@)+ - +ur@)-o=0 (6.3.13)
o is known, which is thought of an innovation variable, therefore the controller
output u(t) may be determined from one of the real roots, usually the minimum
amplitude one, of eqn(6.3.13). The fast recursive root-solving routine has been
developed to overcome the problem of no real root and to speed up root-solving
for convenience of on-line application. Based on the direct controller in

eqn(6.3.9), typical NLDBC designs are readily implemented.

6.3.2 Nonlinear deadbeat controller
An example is selected to show the design procedure of the nonlinear dead-

beat controller. Let

-

V=1 G=A4A
F=8-z*p(z)=B(1)-z*B(z"h) (6.3.14)

the NLDBC output u(t) is then obtained from |
ouu(t) + 0u(t) + o u™(t)-0p=0 (6.3.15)

where

ao=}=foﬂ,-v(t—,k—j)+gba,- [ (e=7) =y (¢=)]
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o) = gbﬁjl
0 = jg)BjZ

Ol =J§Bjm (6.3.16)

Consequently, the system output response is obtained from
@1y (1) + 0y Xe) + Oy () = 0= S W k=) = §BEG~k=)) + BOE)
(6.3.17)

where

WT@)=[w@)wt) --- w (1))

ET) =150 L8 - Sea)™) (63.18)

6.3.3 NLDBC STC implementation
The steps required to employ a self-tuning NLDBC on a plant described by
HCARMA model are summarised as follows

At each sampling instant t, _

Step 1 Sample the system output.

Step 2 Update the plant model parameter estimates by ERLS or
ERML.

Step 3 Calculate the controller output from eqn(6.3.10) with aid of a

root-solving routine.
Step 4 Apply the controller output to the plant input.
Step 5 Update the input and output vector of the plant.

Step 6 Wait for the next sampling instant before returning to step 1.
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6.4 Simulation results

The simulation is directed towards studying the direct designed NLDBC,
and features of its behaviour such as controller feasibility, reference input track-
ing, suppression of disturbances. The efficiency of the root-solving routine
presented in chapter five is also considered.

Two different polynomials are chosen for the static nonlinearities. These are

same as those in chapter five, namely

NL1: x(t)=1+u()—-u@t)+0.2u3()

that is
NL1. ro=1,ri=1,r=-1,r3=02 6.4.1)
and
NL2: x(¢)=u(t) —u3@)
that is

NL2: ro=0,r1=1,r=0,r3=-1 (6.4.2)

the nonlinear characteristics are shown as in Fig. 5.4.1.

There different linear dynamic systems L1, L2, and L3 are chosen, L1
(Clarke, Mohtadi, and Tuffs 1987) is a non-minimum phase plant, L2 is a first
order stable plant, L3 (Kurz, Isermann, and Schumann 1980) is a high order plant
with low pass behaviour and one zero outside of the unit circle of the z-plane.

L1: A=1-09¢-1, B=1+2¢"!
L2: A=1-09¢-1, B=1-0.5¢"1
L3: A=1-17063¢7!+0958¢2-0.1767¢3
B =1.86+4.86¢71 + 0.78¢2 (6.4.3)

In order to overcome the large initial input signal deviations which occur
during tuning, a relay providing unity magnitude bang-bang control is employed
for the first 10 samples. It is, further, assumed within the estimator that the model
structure is known. An ERLS estimator is used with fixed forgetting factor 0.9 to
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speed up parameter estimates, and is initialized with parameters (1,0...0).

In order to consider transient behaviour, a sequence of set-point value is

assigned as follows,

Samples set point values
1-10 20
11-30 20
- 31-50 60
51-70 20
71-90 0

The cycle from 11-90 samples is then repeated periodically and 200 samples
in total are taken for every experiment. In each of Fig. 6.4.1 to Fig. 6.4.6, the
plots in ’a’ show the set-point signal w(t) in a continuous line with the actual sys-
tem output signal y(t) shown by a broken line. The plots in ’b’ show the control
input signal u(t) as a continuous line with the innovation variable o.(z) shown as a
broken line.

The plots show that the NLDBC developed has the same properties as the
linear DBC. The efficiency of the root solver is demonstrated again.

The overshoots in Fig. 6.4.3(a) and Fig. 6.4.4(a) come from the fact IB(1)l <
IBo! in nonlinear system similar to B(1) < b in linear system. This can be under-
stood from eqn(6.3.7) by letting &(t) = 0, B =bg+b1¢~!, and considering the
linear system

y(@t) = ﬁﬁw(t—k) - (6.4.4)

Before the set-point variation, we have w(t-k-1) = w(t-k-2)...= 0. There is a step

input at time t-k, and the corresponding system output y(t) is determined by

y(t) =[bow (t—k) +byw (¢—-k-1))/B (1)
= 'b';blngW (t—k) (6.4.5)

If bg > bo + b, then y(t) > w(t-k), which implies the presence of an overshoot.
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6.5 Conclusions

The introduction of a vector backward shift operator makes the HCARIMA
and HCARMA models resemble their corresponding linear ones. The nonlinear
controller design closely follows the linear controller design strategy. The new
controller design scheme generalises the linear controller design developed by
Clarke (1982).

The second advantage of the models is that the requirement for intermediate
variable estimation can be removed. However it should be noticed that a rodt
solver is still required whether indirect or direct design method is used. This is a
characteristic in nonlinear system controller design. The NLDBC was selected as
an example to show the model validity and efficiency.

Based on the developed models, some typical sclf:tuning controllers, such as
minimum variance, pole placement, and alternative forms, may be realized easily.
This will be reported in the near future. For some complicated self-tuning con-
trollers like general predictive controller and general pole-placement controller,
the model is still suitable. However the final controller output calculation

involves the solution of a set of highly complicated nonlinear equations.

6.6 Appendix

In order to explain the procedure of NLDBC design with the direct method,
a simple NLDBC design by hand is selected by considerihg following model

Ay (£)=Bx(t-1)+&(t)
A=1-09q"!
B =1+2g¢"1
x()=1+u@)-u?+02u3@) (A6.1)
the corresponding HCARMA model is
Ay (1) = B(z~)U (¢-1) + Boo + §(¢) (A6.2)
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where
Bz"1) =Bo+ Prz!

Bo=1[riraralbo=[1-10.2]

Bi=[ryraralbi=[2-204]

Boo=r0 b,' =12
1=

UT(@-1)=[u@-1) u2(t-1) ud@t-1)]
UT (1-2) = [u(t-2) u2(t—1) u3(t-2)] (A6.3)

According to eqn(6.3.9), design the NLDBC by~ letting V=1, G=1, and
F =B(0) - z~1B(z )

o (8) + 0pu(t) + 0au3(t) — g =0 (A6.4)
where
oy=bori+biry=3
Oy=borog+biro=-3
o3 =bors+bir3=0.6
Go= 3B;UG-1=)+ 300w (=) =y @=)))
=[u(@-1)-u2@-1)+ 0.2u3(t-1)]
+ [2u(t-2) - 2u2(t-2) + 0.4u3(1-2)]
+[W @)=y @)]-09(W(-1) -y (-1)] (A6.5)
Accordingly
u()-3u(t)+0.6u3¢t)—op=0 (A6.6)

u(t) may be calculated by root-solving routine from eqn(A6.6) and will change

with the innovation variable oy
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Section 4 Conclusions and bibliography

S4.1 Overall conclusions

This thesis has studied some problems in signal processing and nonlinear
system identification and control, leading to novel contributions in several areas
including: the effect of missing data position to spectrum analysis and frequency
response characteristic estimation; the exploration, using a geometric method, of
nonlinear system structure detection and parameter estimation; the importance of
signal amplitude selection in nonlinear system identification and the consideration
of nonlinear system self-tuning controller design with emphasis on the nonlinear
systems described by the Hammerstein model.

In summary:

In section one, a relative simple method has been presented for handling
data records with missing points, useful for the estimation of the Fourier
transform, power spectrum density and frequency response functions. Unlike pre-
vious techniques, the new method demonstrates the importance of the position of

missing points in the estimation process.

The effect of the periodic occurrence of missing points, leading to a periodic
error spectrum, has been predicted and observed in experiments.

Areas for further research include study of the effect of various distributions
of missing data position in signal analysis, investigation of parametric model esti-
mation from incomplete time series, and estimation of missing values.

In section two, the consideration of signal amplitude in nonlinear system
identification and parameter estimation has led to two novel results. One is the
technique of signal amplitude quantisation to detect the system structure and to
estimate the system parameters. Another is the VWLS algorithm, chosing weight-
ings by state amplitude distance. The 3D space has displayed rich information
about system characteristics.

Areas for further research include automatic determination of the amplitude

range of validity of a linear model for the given system, and application of the
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quantisation technique for identifying various nonlinear systems.

In section three, the studies, both theoretical and experimental, of nonlinear
STC controller design indicate that the attention should be paid to the technique
in model treatment, that is to give a suitable description form based on original
model, in order to facilitate the implementation of control schemes.

Areas for further research include a study of the validity of designing other
type of controllers with the HCARMA model, to borrow the idea developed in
section two to investigate the possibility of simplifying nonlinear controller
design.

The computer software package Matlab significantly simplifies program
design.

As stated at the beginning of the thesis, this research work emphasizes the
development of new concepts and exploration of potential applications, therefore

much more work must be carried on in the future in order to make it complete.
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Abstract.

available data contains one or more uncertain observations or missing points.

This paper considers the spectrum analysis of finite—duration data where the

A new

recursive method is developed using a mean—square error criterion to obtain estimates of

the Fourier transform and the power spectrum of the complete data record.

This

technique is applied to the estimation of the frequency response of linear systems for the
case in which the output data contains missing data.

It is shown that it is important to consider the position through the record of the missing

points.

A comparison is presented of the results obtained using this new method and traditional

methods, demonstrating the improvements obtained.

Keywords.
' NOTATION
;ug § =1, N Time series, system input.
i %y Time series, system output, no missing
i observations.
Yi Time series, system output with missing

observations.

c. Amplitude and power spectra.
Estimate of X(f1), based on Y(Q2).
Number of missing points.

Variance of specified signal.
Smoothed value of Syy(ﬂ).

System frequency response function.
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- INTRODUCTION

In time series modelling and parameter estimation, the situation
is considered in which the measured sequence is not a
complete set of the observations, but

. unreliable.

The pattern of the uncertain observation may be in one of
two categories, one deterministic or periodic, as in the case,

measure and record different processes,

Spectral analysis, data reduction, missing values, system identification.

| alternative technique the Periodogram Method (PM). A brief

" introduction to CM and PM will be presented after a definition

of the problem.

The time series, assumed normally distributed, with no missing
observations is written

Xi = X,,...X. XN i= 11w N.

With missing observations, the series is written

K o= xg an

where g; = O for a missing point, and unity otherwise.
: "/ |

. The missing data consists of M missing points, a member of

the measurements :
' corresponding 10 some time instants are missing, not known or -

* aperiodic phenomenon, as in the case of ao unreliable sensor .

. values and then reconstructs the time series.

-» which fails intermittently.

A
" One solution to the problem of uncerain observations is

interpolation, which estimates uncertain values using the known
However, the

. interpolating method has some disadvantages (Harris, 1987) to

use. Another more general solution is more straightforward
and compensates the estimated values directly without
reconstruction of the time series.  Attention will be paid to
techniques in the second category in this paper.

- Since 19621 (Jones,1982; Parzen,1983), especially 1969 (Nahi),

some useful results (Harris,1987; Roberts,1980; McGiffin,1981)
have been obtained in signal modelling and patameter
estimation from time series with uncertain observations. A
good survey of some representative methods can be found in

McGiffin (1980).

" The Power Spectral Density (PSD) is an important parameter

in the description of random processes. There are two general
methods currently available for PSD estimation with uncertain

observations. We call one the Covariance Method (CM), the

this set being xp, .

The discrete Fourier transform of x; is

X(Q) (1.2)

xg(cos {0} - § sin ifl) = Xg + jX|

N
L
{=1

for example, of a single sensor which is time shared to where 0 = 2sk/N with k integer.

or a random or '

The power spectral density is

NoX@.xv .

Sxx ()

Alternatively, the power spectral density can be expressed in
terms of the measured autocovariance function according to

N
Sux(f1) = Ryx(0) + 2L 1 Ryx (1) cos(flr) (1.3)
L)
1 N-r
where Rux(r) = 5= f_o X{ Xjy4y for r > 0.
Estimates of X(f)), Syx((), etc. based on yj, the data with

missing points, are written X({l), Sxx({), etec.

The covariance method for spectral analysis with missing points
(._Iones.l962: McGiffin,1980; Parzen,1963) uses equation (1.1) to
give

Ryfr)

Ru(r).Ru(r) .
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Knowing the positions of the missing points, Rgg<7) can be
calculated, to give the estimate
Rex(r) = Ryy(r)/Rgglr)
N-r
where Ryy(r) - %_0 YiYi4r-
Using equation (1.3), the spectral density of x(t) can be

estimated.
An alternative approach termed the periodogram method

(Harris,1987) is based directly on the measured power spectrum
syy(n) . This is defined by

N
Sex@® = g Syy@®
where (N—M) is the number of non-—zero terms in y(t).
For white noise, this estimator is unbiassed and minimum
variance. However, as shown below, an improved estimator
can be found when the original process is non-white.

THE NEW ESTIMATORS

The Fourier transform of y; may be written

Yo - %
¢ =1

x\i cos I - Exm cos nf}
=R+ 1Y

The estimate of X({}) introduced in this paper is

Xm =
where k, and k,

error, equal to  E{(X~X).(X~X)*}.
functions of the frequency .

k, Yp + k,jY[, (2.1)

are chosen to minimise the mean square
Both k, and k, are

The mean square error of the estimate is
E{(XR — k, YRI? + (X = k, Yp?)}.

Differentiating with respect to  k, , and setting the result to

zero gives

C2.E0R YR) = 2 K,.E(Y})

That is

5 E[XR YR)
! E{Yi]

and similarly

. E[X; Yp)
2 E(Y’l']

Appendix 1 derives the expression for Kk, on the two

murpptions:— i

() The  missing points are separated such that
cross—correlation between values at missing positions may
be neglected, and

(b) The missing points are not too near the end of the
record.

the

of xN has zero effect on  Xy(f) for all values of 02, and
a maximum effect on Xp(f) since cos N2 = 1.
From Appendix 1,
f, (N - 25 cos? mi))
k, (2.2)

fy (N - 4% cos? m)) + 2% cos? m}
M M

The factor f, is the normalised spectrum, which is in
general not known a priori, given by

2

f, = =3

e (2.3)

2
E(XZ) = =5 . E(k{ (Iyj cos iD)?)
For white noise, f, is unity at all frequencies {2, so that
k, =k, 51 This shows that a minimum mean-square
error estimate of the Foyrier transform of a white process with

' missing observations is X() = Iy (cos i} + j sin if}) .

The results presented later in the paper consider highly
coloured noise with no a priori information. In these cases an
iterative process is used, in which f, is updated from the
current estimate of k, (with the initial value k, = 1
assumed), according to equation (2.3) and equation (2.2) then
used to give k,.

In a similar manner, the power spectrum estimate Sy {{)
may be written in terms of the measured Fourier components

. 1
Sxx(@ = 5 lky Y3 + kY]

The result is derived in Appendix 2, giving

! 1 E(Xé) 2 2
ks = 3 Bzl * 3 ky
NTf -ﬂ):cos’nﬂ
1 3"

f, (N - hﬁ cos? ml) + 25 cos? mi}

cos? ml replaced by sin? m

Similarly for
throughout.

]

"The frequency response of a
(smoothed) values of the input spectral density

k, . with

system is estimated from
Syu(f) and

Sux(f) according to
" Sux(M

. G - ———

: ™ Suu(®

The estimate of )?(ﬂ) is chosen to minimise the mean
squared error of the numerator term.

Let X = k,' YR + j K¢ Yy where k, and ky are
chosen to minimise

JiE{(u-x - UX) (UX - U*X)%}
‘Minimising with respect to k, gives

E[URZXpYR + Uy 2XgYR]
ks = E{Ug?YR? + Uy2YR?)

Following the same procedures as in appendices 1 and 2 gives'

[£, Etswu) + Mol (e + ][ 3 - L cos? ml]

k

The essential novel feature of the new method is that the
values of factors k, and k, depend on the position of
the missing poinys) in the record. The need for t:hl.l
dependence can be demonstrated from the defining equation
(1.2) by considering a single missing point located at the end
of the record, that is with i = N.

$” l—:[s‘m).[t‘,[%l - 2'}‘:I cos? mﬂ] + Zcos? nﬂ] + ZUS{f: + f:] [-2'! - Zcos

By inspection, the value’

where

2
f, - 7 E{ (k¢ YR)?)
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£y = Elk, Ug YR)

fg = Etkg Up Yg)

Similarly for kg, with cos? mQ replaced by sin? mQ

throughout.

EXPERIMENTAL RESULTS

Two systems have been studied to compare the traditional and
new methods for spectral analysis and for system identification.
Experiments have been completed to examine the effect of
smoothing over several blocks and over adjacent frequencies on
the resulting estimates.

For spectral density estimates, two quantitative measures of
performance have been wused as comparators of the two
methods. In the first, the sum over all frequencies of the
sum of error squared between the true spectrum with no
missing points and the estimated spectrum with missing points

using the PM, CM and new technique are compared.
Secondly, a linear regression of the true spectrum on the
estimated spectrum again over all frequencies has been

obtained, to compare the bias of the two methods.

In all experiments, a block length of 128 points has been :

used, and the missing points have been introduced at positions - :

10, 20, 30 ..., 120. In those experiments each involving one
block, smoothing over four adjacent frequencies has been used
to estimate the power spectrum for the calculation of k. For
experiments in each involving more blocks, the spectrum is
smoothed over the blocks for this calculation. Lag windows
are used to smooth the covariance functions when the
.correlation method is used to estimate the frequency response.

First—order System
The system considered is

Xk 0.9 xg—-1 + W
in which wp is a white noise normally distributed signal of
unity variance and zero mean value.

Figure 1 compares the squared—error in the power spectrum
estimates in an experiment consisting of 1000 blocks using
‘the traditional and new methods. The maximum error in the -
traditional method occurs at zero frequency. This error is
equal to approximately 10% of the true value.

Ensembles of experiments, each of duration equal to one, two,
ten and one hundred blocks have been completed to investigate
the ensemble average of the sum of error squared over
frequency of the power spectrum estimates. Table 1
summarises the results and shows the significant reduction in
error resulting from the new method. This Table also lists °
the ensemble average of the linear regression of the true on
.the estimated spectrum. The new method substantially reduces .
the deviation of this factor from unity.

TABLE 1

Errors in Spectral Estimates :
Length | Periodogram Correlation New Method
of Data
Error|Best fit|Error|Best fit|Error|Best fit

128 777 1 1.118 573 1.086 137 | 1.017
128x5 605 { 1.099 480 | 1.079 462 | 1.079
128x10 | 219 | 1.108 115 | 1.032 78 { 1.024
128x10%| 179 | 1.106 36 | 1.018 19 | 1.004

Fourth—order System

_The signal is produced by passing the previously defined white
noise through the process described by Harris (1987)

Ye—3 = 17143y _4 — 0.9048y,_s + W

Yk 1.0732yg —1 0.9512yy 2 +  yg-3 .

This produces a
resonances.

power spectrum with two pronounced

|

{ Data has been analysed for 128 x 102 points. For the
| periodogram method, this has been analysed using blocks of
128 points, whilst for the correlation method a triangular

window of length 128 points is introduced.

The periodogram method is again inferior to the correlation
method, both being worse than the new method. Figure 2
shows how the errors in spectral estimation vary with
frequency, the frequencies of the maxima corresponding to the
resonance frequencies of the system. The maximum error is
approximately 10% of the true value. Numerical results of the
-from of Table 1 demonstrate very similar quantitative
advantages of the new method.

Input—output data of the two systems as described above has
been used for frequency response estimation. The new method
. again shows significantly superior results compared with the
"earlier methods. However in this case the periodogram
method is superior to the correiation technique.

TABLE 2 Errors in_Frequency Response Estimates

Length | Periodogram Correlation New Method
of Data

|Error|Best fit|Error Best fit|Error|Best fit
128 133 | 1.02 199 0.86 133 | 1.02
128x5 39 | 1.004 112 0.86 38 | 1.003
128x10 17 | 1.003 108 0.88 16 | 1.003
128x102| 1.8 | 1.003 95 0.90 1.7 | 1.002

Table 2 gives a quantitative comparison of the three methods
for the fourth order system. Figure 3 shows, for the same
system with 128 x 102 data points, the variation of magnitude
of error squared of the frequency response estimate with
frequency. .

CONCLUSIONS

This paper has drawn attention to the effect of the location of
missing points on the resulting spectral estimates. This effect
has not been considered in detail in earlier papers, but it has
a substantial influence on the errors introduced by these
missing points. Simulation studies have demonstrated the
improvement in estimates of power spectral density and of
frequency response which follow when the position of the
missing points is included in the analysis.
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APPENDICES

Appendix 1

DERIVATION OF THE AMPLITUDE SPECTRUM ESTIMATE

From equation (2.1), the estimate of the real part of the
amplitude spectrum is

Xp() = Xk, YR

E[XpYR]

where Kk, = T
E{¥i]

XRYR = (Ixj cos iQ).(Xx; cos if! - ﬁxm cos mil).

. E{XgYR)

N
F]

N

N
f|d7[i - L cos? m
M

The factor f,

at the frequency 1 ) - (variance of the process x; ).

Similarly YE = (Ix{ cos I -~ Exm cos mil)?

Again, assuming that the missing points are

separated such that

E((ILxy cos ml)?) » ¢2? L cos? m} ,
(o M

OG-k YD?

E{(Zxy cos if})?}-E(Ix; cos if} Exm cos mil)

Syx = ')i cos? mid E({x( Xp cos (i-m) 0}
is equal to the ratio (power spectral density ’ _

adequately

Appendix 2

DERIVATION OF__THE POWER SPECTRAL DENSITY
ESTIMATE

The true and estimated power spectra are

Sxx() =

[x + x|
[ki'Y;z + k‘Y;]

are chosen to minimise scparately the expected

Zl —~ Z| -

gxx(m =

ky and k,
value of

and (X; -k, Yf)z .

This gives
E(XE Yﬁ)
ky —_
E(Y"zl
: E(x3 *rl?)
and k, *E(Y;)

Since Xg and YR are zero mean normal variables,

EIXEYZ) = E(XZ).E(Z) + 2.[E(XR YR))?

and E(Yﬁ) - 3.[E(Yé)]’ .

i 1 E{X2) 2

l'l‘his gives ky, - 3 El—:'}) 3
. . R

|

N
With E(X3) = 5 f, o2

- (Appendix 1, the required result is obtained.
derivation applies for k,.

and using the expressions given in
An identical

N L
E(Yﬁ) - 6’[!',["2- - Zﬁcos’nﬂ] + gcos?nﬂ]‘ .

An identical derivation gives k,
(cos mfl) throughout.

ERROR SQUARED OF PSD

o 5 10

with (sin mfl) replacing |

15 20 25

HARMONIC FREQUENCY

Fig. 1.

Error squared as function of frequency,

first order system.

X Periodogram method.

‘A Correlation method.

O New method.
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Abstract. A technique is described for the adaptive control of nonlinear systems.

The method is based on a combined Hammerstein + ARMA system model, and is centred on a

GCeneral Predictive Control Scheme.

The overall procedure is termed Nonlinear General

Fredictive Control and employs a recursively calculated control algorithm which is
aimed at making the technique applicable in a practical sense.

In the Nonlinear General Predictive Controller described, the nonlinear and linear

iygstem characteristics are treated separately.
nxercise, dependent on operation within a recursive, tuning algorithm,

I this end a simple rocr sniving
1S =mplioyed ro

find the inverse Hammerstein characteristic parameters which form the noniinear part.
It {8 shown that the same Hammerstein procedure can be used to form a Nonlinear Dead
Reat Controller, and the results of such a controller in operation are compared with
those of the Nonlinear General Predictive Controller.

Keywords. Adaptive control; nonlinear control systems; predictive control: discrere

time systems: self-adjusting systems.

INTRODUCTION

As the employment of computer based adaptive con-
trol schemes becomes more widely acceptable, in a
practical sense, so controllers must become more
versatile in terms of the types of plant on which
they can be operated. In particular, self-tuning
control techniques are based on the philosophy
rhat the system to be controlled can be regarded
essentially, as being linear. For s large number
of systems such an approach is acceptable, any
relatively 'small' nonlinearities, such as
stiction and minor hysteresis, being effectively
linearized by the controller. This results in a
performance which is deemed to be all right, but
which is nevertheless well below that which would
be expected, had the plant been perfectly linear.
In order to arrive at much improved control over
systems with ssall nonlinearities or to deal
efficiently with strongly nonlinesr systems,
whilst reaping the benefits of a self-tuning con-
trol algorithm, the nonlinearities must be taken
care of in an sppropriate fashion.

A large number of different types of nonlinearity
can occur in practice (Atherton, 197%; Cook, 1988)
which means that the extension of a bssic linear
control scheme to ssoeunt for all possidilities is
not a realistic proposition and would necessarily
result in & bank of possible controllers which
require an element of operator selection and hence
a ressonable depth of plant knowledge. A more
sensible approach to the problem is to employ a
fremework with which & lsrge number of nonlinear
plante can be sdequately modelled. It has been
found that the most suitable solution within the
fleld of self-tuning control is the use of a para-
metric plant description via a Hasmerstein model
{Anbumeni and Co-Workers, 1981: Lachmann, 1982;
Agarwal and Seborg, 1987). This model basically
~ongtitutes a linear ARMA system model coupled
«ith a polynomial expressed in powers of the con-
rrol tnput. By this meens the plant to be con-
rrolled is thought of as consisting of a linear

part cascaded with a nonlinear part. The ARMA
model is then used to represent the )lincar part,
whereas the extra power polynomial approximates
the nonlinear part. In fact such an underlying
philosophy has been shown as sensible within an
adaptive control scheme (Anbumani and Co-Workers,
1981; Lachmann, 1982).

An adaptive nonlinear control scheme is described
in this paper with the Hammerstein model as a cen-
tral theme in a control algorithm which {s a non-
linear form of Generalised Predictive Control. The
resultant controller retains the flexibility of
the linear system General Predictive Control form
(Clarke and Co-Workers, 1987), and yet also has

the ability to deal effectively with a large number
of nonlinear systems. The overall controller design
procedure involves two distinct parts, such that
the method is indirect, one dealing with the linear
elements and the other with the nonlinear elements.
On the sssumption that the computer based model of
the plant is a good representation of the actual
plant, a linesr controller is designed to provide
self-tuning General Predictive Control lor the
linear part plant model relating pseudo-input x(t)
to actual plant output y(t). The inverse function
of the nonlinear part is then found, Ln order to
obtain the actual plant input signal u(t). The
intermediate pseudo-input x{(t), is the input to

the linear part system and also the output of the
nonlinear part system, it is thereforc nnt a
measureable quantity, although it can be estimated
within the model due to the process separability
(Billings and Fakhouri, 1978). 1% is worth noting
that if the actual system proves to be, to all
intents and purposes, linear,sn the oversll controi
problem reduces to a linear General Predictive
Control requirement, and this reduction property

{s also exhibited by the controller described here.

The feasibility of Hammerstein model based adaptive
controllers has been studied to an exrent {Grimble,
1985}, and this has highlignted & major proolem in
the use of such models as being the necesgs,tv for

the on~line computation of a root solving algocithm



every racursion of *he contrcller updating pro-
~edure. Not only is this an extremely time con-
suming process, which can be a particular problem
when the gampling pericd is small, but also the
atcuracy of the root sociving routine, which is
needed to obtain a unique solution to the non-
linear plant model polynomial, can be poor, can
pryduce stability problems and usually requires an
odd number of polynomial roots.

In tnis paper a novel approach 1s taken by the em-
ployment of a simple one step Newton-Raphson ite-
ration, every recursion of the overall algorithm,
in place ~f a complex root solving routine. The
technique makes use of signal values from the pre-
vious recursion of the algorithm such that on-line
computation time is reduced to that necessary for
a few multiplications and additions. The end re-
sult is that, becsuse each input signal applied is
based on its previously employed value, the tranc-
mitted signal is filtered as it is applied to the
plant, thus input signal variations, from one
sample period to the next, are reduced. A positive
feature of the controller is therefore the re-
duction of control input swings, which are often
not realisable in practice due to actuator limita-
tions (Payne, 1986; Warwick, 1988).

Detatils of an implementation study are given to
show how the nonlinesr edaptive General Predictive
Controller can be realised, in a practical sense,
and performance results indicate how the method
compares with another adaptive control scheme
based on the same approsch to dealing with non-
linear tendencies but with a different central
control objective. An sdaptive nonlinear Dead-
beat Controller was chosen for this purpnse, in
order to show the flexible nature of the control
approach.

PLANT MODEL
It is assumed that the plant to be controlled can

be adequately represented by the SISO discrete-
time Hammerstein model of the form:

Ay{t) = Bx(t - 1) + Ce(t) (1)
where the polynomiasls A, B and C are defined ae,
- f
- .
Asleaq' e .o s q
[] .
Ty (2y

Buby ¢Dq" + .0veen ¢ ban |
-n :

Cal+c¢,Q7" + iveees v q ¢ '
_in which q~' is the unit backward shift operator, '
- such that q~'y(t) « y(t -~ 1). Also {(y(t) : tev) '
is the system output sequence and {e(t) : ter} is
a disturbance affecting the system whereby

te(t) = c(t), & =1 ~q-', wvhich allows for non- -
gero offset on a gero mean, white noise signal,
_Tuffs and Clarke (198%3).

The intermediate variable, x(t), is the nonlinear
element cutput and the linear element input, and
is defined by
n
Yoo

L yu(t) (3

i
i=0

x(t) =

where {u(t) : tct]l is the system input sequence,
and is the sequence actually spplied to the plant

It can be noted that the transport delay, relating
input to output in the system model of eq. (1), is
given as unity - this is done only to ease the
following explanation of the controller, in

general the technique Jec-rired wirks with anv
specific transport delav.

In tha adaptive cnantraller desecribed in this paper,
the parameters Ti' ai, bl and indeed rl can pe
estimated by an enhancerd recursive least squares
procedure (Kortmann and Unbehauen, 1987; Shah and
Cluett, 1988), when the plant mndel is rontinunusly
updated within a self-tuning algorithm. [t is per-
haps easier however, for *the reater "~ jnjtiall.
consider these parameters as both fixed and bnown
or identified values, the requirement for them ‘o
he recursively estimated can then be reintroduced
at a later time, specifically for adaptive control-
ler purposes. To simplify the explanation though,
it will be considered that C = 1, i.e.

ci =20 :41=1, B nc. noting that the method

can readily cope with colored noise, should this
occur. Naturally, this means that when the recur-

sive estimator is employed, the ci parameters need

not be included in the estimation procedur=.

PREDICTIVE CONTROL

Although the intention of this paper is to pri-
marily put forward the concept of a particular
adaptive controller for nonlinear systems, never-
theless a linear adaptive control algorithm is
central to the theme. Mainly because of its posi-
tive attributes and widespread application possi-
bilities, a predictive control method has been
selected in the first instance, and this is now
described.

A prediction of the plant output signal is required
as a fundamental aspect of the controller con-
sidered, and this is based on information available
at a particular time instant. By considering
merely the linear part of the plant represented in
eq. (1), a prediction of the output signal at time
instant t + k is directly obtained, based on infor-
mation available at time instant t, where the 1ndex
k indicates k sample periods in the future. For
this purpose a diophantine identity is introduced
(Owens and Warwick, 1988).

-k
1= EkAG + q Fk (4)

where k 2 1 and E. F, are polynomiais which are

unique for any given prediction horizon k and plant
polynomial A, such that
a
Fk = f, f'q" t eeeiee * rn q -
. a

-{k-1) (s)

B =lseq'+s. ..., v e

Sk k-1

If now eq. (1) is multiplied throughout by

k

q E & and the diophantine identity, eq. (4), is
made use of, it follows that \

ylt + k) = l!kdx(t s+ k=-1) s Fky(t) + Ekt(t + k)
. (6)
‘in which the disturbance terms Eclt + k) are all
future values, from time t, due to the fact that
the lk polynomial is of order k - 1.

The optimal prediction of the output signal at time
instant t + k, made at time instant t, is therefore

Flt + k/t) « BESx(t + k - 1) + Fy(t) (7)

where §(t + k/t) indicates the predicted value of
the actual output signal y(t + k), given the in-
formetion available up to and including that at
time instant t.
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function [rc,xml)=dbc2 (tempy,pm,phi,c)

format compact

cle;clg;

% the function started 20/3/1989.

% this function is used to design directly

% a deadbeat controller with an algorithm given by

%

% B(1L)U(t)=B*U(t-k) + A*[W(t)-Y(t)]

n=length(pm); rc=0;

nb=c (1) ;na=c(2):;

am(l)=1;am(2:na+1l)=pm(n-na+l:n,1)’;

for i=1:3
rc=[rc,sum(pm(2+ (i-1) * (nb+1) : 1+i* (nb+1),1) ") 1;

end

xml=pm(2:n-na,l)’ *phi(2:n-na,l)+am*tempy’ ;



As an aside, it is easy to see from eqs. (6) and
"7}, that the actual system output can be regarded
as

it e kY o= oulr o+ k/EY Eoelt + k) (8)

it is *thougnh, possible at any time instant t, %5
select a range of values k for whichn an output
prediction can be made. Assuming that a set of
ocutput predictions are to be made, from k = 1 to
k = N, where N 2 1, then eq. (6} can be written in
vector form as

7= Gg +f e e . (9).
in which ZT = iylt o« 1, o.... ,oylE N
X' = (8x(t), Sx(t s 1),..., Sx(t + N = 1))
T (foy
£ o= [f(t+ 1), £t +2),..., f(t+N))

[E,e(t + 1),E, e(t +2), ......,
Ege(t + N))

(L
-3
L]

and

noting that !T indicates the transpose of y.

n eq. (3), the matrix G is of dimension N x N and
has elements such that

rg. 0 L rereeeeae o]
2, gv T . ~
. ~ S .

(1)

[»)
(]
’
o

\"g.

| Bhel Bne2 L
where the LYY parameters are obtained from the inte-

grated plant step-response, i.e, gi = hi:
H= (6A)"'B = h + hg™'+ hq~'+ ..... (12).

The vector Gg in eq. (9) represents a set of un-
known values, due to the Z vector, at time instant
t - the elements in G are themsslves assumed to be-
known, if the plant is known or available from
parameter estimations in the adaptive case. Note
also that the signal x{(t), and therefore éx(t), is
unknown until it has been calculated by means of
the control algorithm and subsequently applied to
the plant, thus at the instant that the output pre-
dictions are made, it is an unknown signal

The vector f in eq. (9) represents a set of known
values at time instant t, such that the individual.
terms in { are given by

f(t + k) = Fky(t) + hk (13)°

where

h o= (8 - [h, sha™ s, hk_l‘(k‘l’jy
Jex(t s k=10 (14).

So, the vector of future output signals y, can be
considered, from eq. (9), to consist at time in-
stant t of a vector of unknown signals GX, a
vector of known signals f, and a vector of noise
signals ¢.

CONTROLLER DESIGN

The overall control algorithm design is made up of:
rwo distinct parts, connected by means of the
intermediate variable x(t), and relating to firstly
the linear system part and secondly the nonlinear
system part. The linear part is considered first,,
and for predictive control a finite horizon cost
function can be written as:

il N
J= L o lylt + k) = vin vl o T k),
k=1 L=l
Pixle o - 1Y fren
where N 1s the maximum predicticn norizon, “ir: is

2 reference input signal, applied at fime instant
t, and A (k) is a costing applied ‘o the conrrol
inputs. It is worth noting that the output and
control input horizons have both been selected as
N, this is by no means a necessary requirement, in
fact other control horizon selections for linear
General Predictive Controllers have been investi-
gated elsewhere (Clarke and Co-Workers, 1987;
Warwick and Clarke, 1988},

The control objective is to obtain a vector of
future control inputs i which will minimize the
expected value of the cost function (15). HMNow the
expected value of J is

- v)

E(J} = E((GE + £ + ¢ = v)(Gx + £ +

?35) t16)

+

x4

~here £{.) signifies the expected value, and } is
an N x N diagonal matrix w~hose N diagonal eloments
are: A(1l), ..... A(N). Also

gT = [(vlt + 1), vit + 2y, ..., ,ovlt s NI (17}

denotes the future set of reference input values,
i.e. the required trajectory.

By differentiating eq. (16} with respect to g and
equating the result to zero, a cost function mini-
mum is given by the optimal control

is 66T (18)

such that the first row of this equation can also
be written as

x{t) = x{t - 1) + ET(Z - 0 (19)

- T
where gT is the first row of (GTG + AP G,

The control signal x(t) is the signal which, if
the system was linear, would be applied as the
control input. It is based on a set of known
future reference signals v along with the known
vector £, as can be seen from eq. (19). In fact
the signal x(t), obtained in eq. (18), is an
intermediate variable, found as a solution to the
linear predictive controller problem. It remains
for the nonlinear part of the controller problem
. to be solved, which is done directly, remembering
that the control signal applied to the actual
(nonlinear) plant, u(t) is related to x(t) by
means of eq. (3) R

The nonlinear problem, can in this case, be stated
"as: given any signal x(t), at time instant t, and
‘' the appropriate coefficients ! 1 =0,..., Ny

| find the control input signal u(t).

'

. From eq. (3) it can be noted that

x(t) = oflult)) (20)

where ¢{.)} denotes a functional operator, in
this case a Hammerstein model polynomial.

However, we actually require:

) = e {x(t)) (21
which means that a ront of *he Hammerstein model
poiynomial must be found i1n order to produce a

possible mignal u(t).

A simple solution to the polynomial can in fact



o

e found by the Newton-Raphson recursive method
Jerald, 1978), whereby

gofu_(th) = xie)j

"»l(' n t'fu ()}

-

o
]
N
n

sfilcn tne subscript n denotes the order of ite-

sation, sucn that the (n+ 1)th iteration is
crained from the nth i1‘eration, n 2 O, and
de
2 {u ()} = — ({u (t))
n dun n

A discussion of implementation policies with re-
gard to rhis algorithm, including initial value
selection and avoiding problem areas, is carried
out in the following section.

CONTROLLER IMPLEMENTATION

The adaptive discrete-time controller described in
this paper requires the following course of action
every sample period:

1. Update a recursively estimated model of the
plant.

2. Calculate xit) via eq.
mated model parameters.

3, Calculate u(t) to be applied as the (ns+l)th
iteration of eq. (22). 1t is suggested here
that n = O will suffice.

a. Apply u(t).

(19}, using the esti-

However, several problems occur when applying eq.
(22), the first being that 0'(un(t)) * 0 in the

neighbourhood of a solution. This is an extremely
critical point because in practice it cannot be
guaranteed that the calculated function derivative
will not approximately equate with zero after any
particular recursion, due to model variation,
estimation error and even an unsuitable initial
value. Another problem is the possibility of no
real root of the polynomial existing, thus causing
algorithm breakdown. In order to overcome these
problems, whilst retaining stability, the fol-
lowing possibilities arise.

“hen O'lun(t)) * 0 it is either the case that
un(t) is a root which satisfies the polynomial or

it is not. This can easily be checked by taking
account of O(un(t)) -x{t), which will be within a

preset small value, i.e. approximately zero, if
un(t) is a root. However, if un(t) is not & root

then a nev alternative initial value is employed
and the recursion process is repeated. If no real,
root exists and/or if several searches have been
carried out with alternative initial values, a
monitoring loop instructs the root solver to stop
and a default is taken such that u(t) = x(t)/as,
where a is a positive constant. -

The polynomial order can, if it is so desired, be
restricted to an odd number, thereby ensuring that
there is at least one real root (Anbumani snd Co-
Workers, 1981). This procedure can though intro-
duce modelling errors and certainly restricts the -
type of nonlinearity which can be considered. In
this paper therefore, no such restriction is
placed on the method described.

The initial control input signal value for eq.(22)"
is taken as u,(t) = u(t - 1), i.e. the initial
value for the iterative start up at time instant t
15 equal to the control input actually applied at
rime instant t - 1. This is an extremely suitable
~hoice when reference input changes are either
small or infrequent and/or when the signal to
noise ratio of the plant is high. In general it
is found that with this initialisation procedure,
only one or two iterations of eq. (22) are nor-

mally required before a gnod approximaticn of the
solution root is obtained. In ~he aigorithm pre-
sented in this paper, *he root s~lving pracedura
~mployed involves only a single 1%~ration nf ena.

2) each time a new solution 1s reauired.Howevar,
1f the solution, at a particular t:me 1nsrant, iyes
~ot fi%t well the palynomial irn Tiestion, a farener

preset number of iterations can re rarried ~ut,
actual number depending on tne inter-sample period
available. If the solution is still not good, an
alternative initial value is applied, as described
earlier,

re

To summarize, the nonlinear General Predictive Con-
troller described here consists of the following
sequence of events during every sample period, the
plant under control being periodically sampled.

1. Sample plant output (at time instant t).

2. Update plant model coefficient estimates using
enhanced recursive least squares. Note: both
the linear part coefficients a. hl and the

nonlinear part coefficients N are updated.

3. Using the estimated linear model coefficients
a, bi' calculate the linear intermediate sig-

(19).

4, Using the single-iteration Hewton-Raphson method
eq. (22), calculate the actual plant control
input u(t) from the estimated nonlinear model
coefficients A and x(t).

nal x{(t) from eq.

5. Apply u(t) to the plant input.

Store all appropriate data and coefficient
estimate values.

7. Wait for sampling clock pulse then go to 1.

IMPLEMENTATION STUDIES

In order to investigate the usefulness of the non-
linear General Predictive Controller, described in
the previous section, the control of a plant with
distinct linear and nonlinear parts was simulated.
The same plant was also placed under the control of
a nonlinear Deadbeat controller, based on the same
nonlinear part design features, in order to show
the general applicability of the method.

With reference to eqs. (1) and (2) the linear
system part was regarded as consisting of:
A=1-09q"' andBs=s1l +2q"'

whilet the nonlinear part was regarded as con-
sisting of:

x(t) = 1 + u{t) = & (t) +« 0.2 W (t)

such that the linear part is open-loop stable and
non-minimum phase.

An enhanced nonlinear system ALS parameter estima-
tion procedurs was employed, with a fixed forget-
ting factor of 0.95, also no noise was introduced
into the system, e{t) = 0. Further, it was assumed
within the parameter estimator, that the model
structure was known.

In order to consider transient behaviour, 8 se-
quence of set-point reference values was assigned
as follows:

Samples Reference
1-10 20
11-30 20
31-50 50
51-70 20
71-30 ]

The cycle 11-30 samples was then repeated periodi-
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cally.

Figures i and 2 show the behaviour of a nonlinear
General Fredictive Controller with N = 10 and

Vik) = 7, for all k. The predictive nature of the
controller can be clearly seen in the plots, where.
idvance xnowledge of a reference value change has
allowed for the actual output signal to commence
its distinct set value variation before the

actual alteration in reference value has occurred.
This has resulted in an overshoot free ocutput res--
ponse once the initial tuning .in period has been
passed.

figures 3 and 4 show the behaviour of a nonlinear
Ceadbeat Controller when operating on the plant
model described. It can be seen that following a
change in reference signal, the syatem output
reaches the new set-point after only 2 sample
periods and no overshoot occurs. These results
are those which would be expected from a Deadbeat
Controller operating on a purely linear plant
(warwick, 1988), the 2 sample periods corres-
ponding to the sum of the dead time and the order
of the B polynomial, both of which are unity.

CONCLUSIONS

Adaptive control has been shown to be an extremely.
useful tool for certain time varying systems,

these systems have, in the main, been regarded as
linear. I[n this paper a self-tuning control algo-:
rithm has been presented, which, is based on
either General Predictive or Deadbeat control,

and which deals with many types of nonlinear
system, i.e. those systems with nonlinearities
which can be adequately represented within a
Hammerstein model. The major computational root-
solving problems that are inherent with such an
algorithm were avoided by the use of a simple one
step Newton-Rephson root solver. In fact such an
approach can be taken with the employment of dif-
ferent types of linear part control algorithms,
e.g. pole placement or optimal. The characteri-
stics of any particular linear control objective,

" e.g. General Predictive Control, are retained in

the nonlinear controller and hence much more
attention can be paid to the nonlinear modelling
technique.

The adaptive controller described in this paper
operates efficiently whether the system under con-
trol is linear or nonlinear, however a detailed
theoretical analysis of controller bshaviour,
particularly transient behaviour, is of little
value except in some very specific cases - this
is a common point with self-tuning control algo-
rithms. The feasibility of the nonlinear General
Predictive Controller was therefore investigated
alongside a nonlinear Deadbeat Controller, by
means of some simulation studies, results from
these and others indicate that both controllers
can not only be very successfully applied to non-
linear systems, but also that they can be applied
in a relatively simple feshion.
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ABSTRACT

This paper considers the spectrum analysis of finite duration records where the
available data contains one or more uncertain observations or missing points. A new
direct method is developed using an unbiased or minimum mean square error criterion to
obtain estimates of the Fourier transform and the power spectrum density of the complete
data record. The analysis is extended to include frequency response identification of a

wide range of systems with missing data at the output.

It is shown that it is important to consider the position within the record as well as
the total number of the missing points. One resuit of a periodic distribution of the
missing points is the production of a spurious periodicity in the measured power spectrum.

It is believed that this phenomenon has not been reported previously.

A comparison of the new method with traditional techniques is presented, and

simulation results demonstrate the resulting improved performance.

Keywords
Spectral analysis, Data reduction, Missing values, Frequency response.
Notation
u system input, no missing observations
X system output, no missing observations
y system output, with missing observations
X(),S¢x(£)) etc. amplitude and power spectra
X estimate of X(Q) based on Y()
M number of missing points
ox? variance of specified signal
Syy(® smoothed value of Syy(f0)
G - system frequency response
E[.] expectation
X" complex conjugate of X
CM Covariance Method
PM Periodogram Method
UNB UNBiased or UNB criterion
MSE Mean Square Error or MSE criterion
Q harmonic frequency



1. Introduction

In time series modelling and parameter estimation, a common situation is met in
which the measured sequence is not a complete set of the observations, but the
measurements corresponding to some time instants are missing, not known or unreliable.

Missing data can arise from a number of causes, such as failure of recording
equipment, clerical errors, rejection of outliers, or because of an inability to observe the
phenomenon at certain times. The pattern of the missing data, i.e. the distribution of the
missing data position, may be in one of two categories, one deterministic or periodic, as
in the case, for example, of a single sensor which is time shared to measure and record
different processes, or a random or aperiodic phenomenon as in the case of an unreliable
sensor which fails intermittently.

One solution to the problem of uncertain observation is interpolation (Bard 1974;
John and Prescott 1975; Jarrett 1978; Smith 1981), which estimates uncertain values using
the known values and then reconstructs the time series. However, all the authors rely on
parametric models of the process, which is not always desirable in frequency domain
analysis. The methods become quite complicated when adjacent missing values are

encountered.

Other preferred methods do not reconstruct the original time series from the given
observations, but introduce direct compensation of the measured statistics. @ These require
less a priori information, and may require less computation effort than interpolation
techniques. Notable contributions include Jones (1962), Parzen (1963), Nahi (1969),
Robert and Gaster (1980), McGiffin and Murthy (1981), and Harris (1987).. A good
survey can be found in McGiffin and Murthy (1980). The earlier methods are outlined to
permit quantitative comparisons to be made with the new technique introduced in this

paper.

There are two general methods currently available for Power Spectral Density (PSD)
estimation with uncertain observations. We call one the Covariance Method (CM), the
alternative technique the Periodogram Method (PM). A brief introduction to these will be
presented after a definition of the problem.

The time series, assumed normally distributed, with no missing observations is written
X = Xyy oony Xjy o oony XN i = 1,N.

With missing observations, the series is written

Y = X{.8j (1.1)

where g; = 0 for a missing point and is unity otherwise. The missing data consists of M
missing points, a member of this set being xp,.

The discrete Fourier transform of x is
N »
X(Q) = % 1xi(cos i - j sin i) = Xp + jXj

2xk
where Q = N with k integer.
The power spectral density is

X(x* ()
Syx () = - N




Alternatively, the power spectral density can be expressed in terms of the measured
autocovariance function according to

N
Syx (1) = Ryx(0) + 2L lex(T)cos(Qr) (1.2)
where ’
N-7
X

Ryx(7) = N XiXi+7 for 7 > 0.

1=

The covariance method for spectral analysis with missing points (Jones, 1962; Parzen,
1963; McGiffin and Murthy, 1980) uses eqn.(1.1) to give

Ryy(r) - Rgg(r).Rxx(T).
Knowing the positions of the missing points, Rgg(T) can be calculated to give

N-r
Ryy<7) - ?_1 YiYi+r
N-7

Rgg(T) - %_1 gi8i+r

Ryy(7)
Rgg(7)

Ryx (7) (1.3)

. By eqn.(1.3) computing N + 1 covariances, consistent estimates can be obtained as
Ryx(7) converges to the true value as N - « (McGiffin and Murthy, 1980), then using
eqn.(1.2) the spectral density of x(t) can be estimated.

The main drawback of this method is that different covariances are computed with
different accuracy since the variance of the estimate Ry,(7) increases with increasing 7,
and for a given r it decreases with increasing value of the denominator of eqn.(1.3) for
Ryu(7), thus for a given sequence with a particular pattern of missing observations,
determining the optimal 7's to be used in computing R,,(7) is a difficult problem and has
not yet been studied (McGiffin and Murthy, 1980). Another disadvantage of this method
is that the estimate is not statistically efficient (McGiffin and Murthy, 1980).

An alternative approach termed the periodogram method, denoted PM, (Harris, 1987)
is based directly on the measured power spectrum Syy(Q). This is defined by

N
SXX(Q) - "m Syy(Q)

where (N — M) is the number of non—zero terms in y(t).

In general, both the above estimators are sub—optimal, as discussed later in this
paper.

The new estimator of the property 6y (for example the power spectral density) of
the process giving the sequence X, is derived from the estimate of ey from the sequence y
according to

-~

6y - k8

where k is a frequency—dependent factor chosen to satisfy -a criterion such as zero bias or
minimum mean square error. This real gain factor k .depends on the true value of €.
A recursive method was introduced to determine its value in the authors' previous work
(Douce and Zhu, 1988), in which simulation studies showed that the recursion i-ptrqduced
converges rapidly for the wide tange of examples considered. A dircct methed will be




—

presented to obtain the same results with significant reduction of computing time in this
paper, accompanied by revised criteria for the specification of the gain factor k.

2. Estimator for Fourier Transform

The Fourier transform X is conveniently estimated from the observed data y using the
MSE criterion. Writing X = (XgR + j Xp the estimate is X = k, YR + k, j Y
where k, and k, are chosen to minimise

E [(X-X (X-X*]
Differentiating with respect to k, and k,, and setting the differentials to zero gives

E[Xg YR] E(X| Y]
- -—TR-Z——- and k2 . = Y'l 2 (2'1)

The appendix derives expressions for k, and k, on the two assumptions, used
throughout the paper:

(a) The missing points are separated such that the cross—correlation between values at
missing positions may be neglected, and

(b) The missing points are not too near the end of the record.

Yé + Yf - (N-M)o?
Z 2
(N - 2M) YR

k, = 1+ ]Zcosznﬂ

where the summation is over the missing points. A similar expression holds for k,, with
YR? replaced by Y2 and cos?m{) by sin?mfl.

3. Estimator for PSD

The reason for the introduction of two gains in the Fourier transform estimator is
that there are two independent variables, the real part and imaginary part, in the
criterion. However, the PSD estimator is a real variable, hence just one gain k, is
required. First, the UNB estimator is developed to satisfy

E[(Xg? + X[2) - ky(YRZ + Y[2)] = O .

Using the results developed in the Appendix, the gain k, is

E[X2 + X2] N Mo?
ky = YTR+ Y?l = ol oyraTye ]
R I R I

Secondly, the MSE estimator is developed to minimise
E([(sz + Xp?) - k,(Yp? + Y;2)]?)
Differentiating with respect to k, and setting the result to zero gives

2 2
) E[(Xé + xf)(YR + YI)]
= 2)2
3 (Yé+Y!)

Evaluation of this expression involves the fourth order moments of the normal zero
mean random processes X], XR, etc. The general result

E[A2B2] = E[A?].E[B?] + 2(E[AB])?
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is used extensively. The method is outlined in the Appendix. In terms of the known
second moments, the result is

(E[XRI+E[XT]) (YEHYD)+2((E[XRYR]) 2+(E[X[Y[]) 2+(E[XRY[]) 24(E(XYR]) ?)
ks = 3 (Y2 + Y?)2

4. A Property of the PSD Estimation

The estimators developed in this paper give an estimated power spectrum of
magnitude proportional to the measured power spectrum at the same frequency. However,
missing points also give rise to spectral components at frequencies differing from the
components present in the original time series. In particular, periodic missing points lead
to a spurious component in the measured power spectrum which is periodic with respect

to frequency.

One qualitative explanation of this phenomenon considers the periodic missing points
(of period P points) as a sampled version of the original sequence x(i). This sampled
sequence is subtracted from x(i) to produce the observed sequence y(i). The sampled
sequence, sampled at the low frequency ( 1/p), introduces aliasing of the original signal, so
that the original term at zero frequency produces alias terms at the frequencies 1/p, 2/p,
etc. This is a periodic phenomenon, giving a repetitive power spectrum, repeating over
(N/p) harmonic frequencies. This is clearly seen in figure 2, at high frequencies where
the true power spectral density is small.

5. Frequency Response Estimation

The importance of the frequency response characteristics is well known for system
identification and controller design. The essence of frequency response estimation is the
estimation of the cross—spectrum between input and output and input auto—spectrum of a
system. This part studies the estimation of the frequency response function from input
and output data of a system in which there exists missing points at the output. Formally
speaking, as far as authors know, there had not been any published result until the
authors' publication (Douce and Zhu, 1988) even though one can naturally borrow ideas
and techniques from power spectral density estimation with missing data.

The definition of the frequency response estimation is given by, without missing data,

¢ = Sux/guu

. where §,, is the measured cross—spectrum between input and output of the system and
Suu is the measured auto—spectrum of the system input.

With missing points, the cross spectrum has to be computed using an estimated value
for X based on Y. The estimate is selected to give an unbiased estimate of the cross
spectrum or to give a minimum mean squared error in the resulting cross—spectrum

estimate.

~ Considering first the UNB estimator, the parameters k, and k; are chosen to
separately ensure that real and imaginary parts of the error in the cross spectrum estimate

are zero, that is

E[Re(U*X) - que(U*Y)] - () = E[(URXR+UIXI) - k4(URYR+UIYl)]

E[Im(U*X) - kgIm(U¥Y)] 0 = E[(URX[-UiXp) - k¢ (URY-UrYR)]

Define f3 from

Nf, = E[UpXg + UgXp ] N XL E[uin] cos(i-j).




Then E[URYR + UjYq] E[UR(XR - Mp) + Up(X] - Mp)]

= Nf, - IX E[uimj].(cosiﬂ cos j + siniQ sinjQ)
= Nf, - IX E[uimj].cos(i—j)Q

- Nf, - Mf,.

N
N-M"

By substitution, k, = and similarly for k.

This important result demonstrates that the PM, derived on an ad—hoc basis for
spectral analysis, is, when the stated assumptions are satisfied, an unbiased estimate of the
cross —spectrum. It therefore leads to unbiased estimates of the system frequency

response.

Second, consider the MSE estimator, in which the function
E[(U*X - U*X) (U*X - U*X)*]
with )A(R = k,YR and }21 = kgYy is minimised with respect to k, and k..

Differentiating with respect to k, and k leads to

E{ UéXRYR + UfXRYR]

ky = 2vy2 2y2

URYR + UIYR
and E[U2X,Y, + U2X,Y,]
K - RI1 1™ 111

5 2y 2 22

URYI + UIYI

As previously noted, these higher order moments can be expressed in terms of second
order moments, and the details proceed as before. Lengthy expressions result, which are

not reproduced here.

6. Experiment Results

Two systems excited by Gaussian white noise have been studied to compare the
traditional and new methods for spectral analysis. The experiments have been completed
to examine the effect of smoothing over several blocks and over adjacent frequencies on

the resulting estimates.

In all experiments a block length of 128 points has been used. When the record
contains more than one block, spectral estimates are obtained by smoothing over all
blocks. When only one block is involved, spectral estimates are smoothed over adjacent
frequencies, using two frequencies for system 1 (defined below) and four for system 2.
When analysing the data using correlation function techniques, the whole record is used,

with a Bartlett window.
Three quantitative measures of performance have been used for the comparison. The

first one is the sum over all frequencies of the error squared between the true spectrum
with no missing points and the estimated spectrum with missing points. This is a measure

of bias and is given by

Eo(E(A) - EA)?
el - N




The second one is the sum over all frequencies of the MSE, that is

T -~
GoE(A-A)2

e2 N

The thi{d one is a linear regression of the spectrum on the estimated again over all
frequencies, which is given by

T ~
_E(A)E(A)
fit - éO__A_
L (EA))?
Q-O( (A))

The first order system (SYS 1) considered is

Xk = 0.9 xXg-1 + ug

in which uy is a white noise normally distributed signal of unity variance and zero mean
value.

The fourth order system (SYS 2) is the process described by Harris (1987), giving an
output produced by passing the previously defined white noise through the process

described by
Yk-3 = 1.7143 yp_4 - 0.9048 yy_5 + uy

yk = 1.0732 yg.1 - 0.9512 yp_o + yk-3
This produces a power spectrum with two pronounced resonances.

A wide range of experiments have been undertaken to test the improvements of the
proposed methods. In this printed paper, a small selection of typical results is presented.

Table 1 shows the results for power spectrum estimation with 10% missing points,
regularly spaced. The columns list the values of the criteria defined above for four
techniques. The rows are for increasing lengths of record for the two systems.

In all experiments, it is noted that

(a) The UNB method has the smallest measured bias (el), and the fit is closest to unity,
and

(b) The MSE has, as predicted, the smallest measured mean squared error (e2).

(¢) Both methods are, on all criteria presented, superior to the traditional CM and PM
techniques.

In frequency response estimation, it has been shown that the PM method, previously
used only for spectral analysis, corresponds to the UNB technique, and hence only three
techniques have been compared. Table 2 demonstrates the numerical comparison in tests
with 20% missing points. The new methods demonstrate their expected advantages, with

both greatly superior to the CM method.

For system 2, Figure 1 shows the various estimates, using a record length of 1000
blocks. It is notable how the CM method is unique in introducing very large errors at

low frequencies.

Figure 2 refers to the same experiment, in which the error squared for each method
is plotted against frequency. This demonstrates the previously mentioned large errors of
the CM, and also shows clearly the periodic errors due to periodic missing points.
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7. Conclusions

This paper presents a relatively simple method for handling data records with missing
points, useful for the estimation of Fourier transforms, power spectral densities and
frequency response functions. Unlike previous techniques, the new method demonstrates
the importance of the position of missing points in the estimation process.

The effect of the periodic occurrence of missing points, leading to a periodic error
spectrum, has been predicted and observed in experiments.

Extensive simulation studies show the superiority of the method compared with two
previous techniques.
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APPENDIX

For convenience, define

E[Xg + X{] =~ k, (YR + Y{) = Nf, (Al.1)
and let Xp = YR + Mg
where Mp is the real part of the transform of the missing points.

From the definition,

Xlzz = II xj xj cos il cos jO .

Throughout the paper, summations with respect to i and j are taken over the whole
record, i, j = 1 to N. Summations with respect to m involve only the M missing points.

Xg = L cos2jl I xixq_jcos(i-)0 - %I sin2jQ L xyxq_j sin(i-)Q .

Taking expectations, the second term is negligible, since E[x;x;.. j] is even, whilst sin(i—j)
is odd. Similarly

E{Xj] = I sin? j0 I E[xixj-j] cos(i-j)
f, = L E[xixi_j] cos(i-j)Q .
Also, E[XZ] = Y2+ E[2Xg Mg - MZ]
with E[XgMR] = ZIX[xixp] cos iQ} cos ml ~ f, ¥ cos? m} .

Similarly, assuming adequate separation between missing points,

E(M] =~ o2 L cos? mi.
Similar results hold for E[XjMj] etc., with sin? mQ replacing cos? mQ.
Combining the above equations

Nf, Nf,
- — - 2 -—
Nf, K, + 2Mf, Mo or k, F (N-2M) + Mo?

Substituting for f, from (Al.1l)
N Mo?
= N-2M 1 -7z ]
3 N-2M Y3+ Y]

To determine k, and k,, note that

E[XgYp] = Y& + E[(XgMg] - E[MR]

Substituting these terms into equation (2.1) elimination of f, and k, gives the
required result.



data length PM cM UNB MSE
(10% missing) el ] fit ol ] & el e fit el 2 fit
sysl 128 | 5039 109 | 1113 | 4638 £23.01 {1093 120 2298 | 1069 | 1347 2112 | 107
o2 128 | 2600 5942 1.266 | 2507 5020 1085 | 1871 4191 1.041 | 2009 4001 1.079
sysl  128°5 5.031 1036 | 1108 | 4912 | 9957 | 1.088 1.9% 8248 | 1.064 2352 8.201 | 1.084
sys2 128*5 553.0 1261 1.102 370.1 1220 1.062 184.3 1032 1.039 317.9 12 1.045
sysl 1280 2.6719 1847 | 107 3552 | 6594|1070 | 0993 3760 | 1.010 1.687 3530 | 1014
2 1280 | 2842 1233 1064 | 1902 | 1w 1040 | 167.4 94s1 | 090 | 1702 9008 | o9m
syst 12800 27982 | sos2 | 1065 | o9 4102 | 1025 | 0137 2085 | 1.007 [ 0155 1751 | LOI2
o2 12800 | 2383 ng? 1038 | 1667 | 9005 | 1031 | 2140 | 7097 | 1001 | 3401 | 6681 | 1.0t0
Table 1 Errors in spectrum estimation
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Frequency response estimates.

with no missing points

covariance method
minimum bias
minimum mean square error
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data length CM UNB MSE
(20% missing) el e2 fit el e2 fit el e2 fit
sysl 128 18.17 52.19 0323 2.872 5137 | 0460 | 2929 | 4.997 | 0.456
sys2 128 | 1834 3724 0.242 14.43 19.28 0.604 | 15.84 18.55 0.584
sysl 128*5 7.694 20.66 0.707 0.275 1417 | 0946 | 0278 1.175 | 0.945
sys2  128%5 88.67 143.2 0.647 4306 | 1947 0969 | 4.542 | 18.15 0.963
sysl 1280 5.404 12.93 0.796 0.120 1.322 | 0979 0.131 1.311 | 0.976
sys2 1280 18.30 41.45 0.723 1417 8.267 | 0.974 1.646 5.616 | 0.971
sysl 12800 3.611 8.317 | 0.797 0.026 1.177 | 1.002 | 0.028 1.128 | 1.003
sys2 12800 14.29 25.71 0.7405 0.038 7.625 | 1.003 0.057 5.007 | 1.004
Table 2 Errors in frequency response estimation
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Figure 2. Error squared as a function of harmonic.
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S5.2 Computer programs

§5.2.1 Computer and program language:

The computers used for the work in this thesis were the Prime computer
installation and the Sun Workstation network in the Engineering Department,
University of Warwick.

The programs originally written ih Fortran 77 were translated into

MATLAB. The final version of the all programs was written in MATLAB.

§5.2.2 What is MATLAB?
MATLAB (Moler, Little and Bangert 1987) is an interactive program to help

with scientific and engineering numeric calculations. The name MATLAB stands
for matrix laboratory. Originally written in Fortran for mainframe computers, it
provides easy access to matrix software developed by the LINPACK and
EISPACK projects. Together, LINPACK and EISPACK represent the state of the
art in software for matrix computation.

MATLAB is an interactive system whose basic data element is a matrix that
does not require dimensioning. This allows solution of many numeric problems in
a fraction of the time it would take to write a program in a language like Fortran,
Basic, or C. Furthermore, problem solutions are expressed in MATLAB almost
exactly as they are written mathematically.

MATLAB has evolved over more than half a decade with input from many
users. In university environments it has become the standard instructional tool
used in introductory courses in applied linear algebra, as well as advanced courses
in other areas. In industrial settings, MATLAB is used for research, and to solve
practical engineering and mathematical problems. Typical uses include general
purpose numeric computation, algorithm prototyping, and solving the special
problems with matrix formulations that arise in disciplines like automatic control

theory, statistics, and digital signal processing (time-series analysis).
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The highly optimized, second generation MATLAB that runs on IBM and
other MS-DOS compatible personal computers is called PC-MATLAB. On larger
computers, like Sun Workstations and VAX computers, the modern version of
MATLAB is called PRO-MATLAB. On the Macintosh, it is MacMATLAB.
Entirely written in the C language, MATLAB is a complete "integrated" system,
including graphics, programmble macros, IEEE arithmetic, a fast interpreter, and

many analytical commands.

S5.2.3 MATLAB files or M-files

An M-file consists of a sequence of normal MATLAB statements, possibly
including references to other M-files. One use of M-file is automate long
sequences of commands. Such file are called script files or just scripts. A second
type of M-file provides extensibility to MATLAB. Called function files or just
functions, they allow new functions to be added to the existing functions. Much

of the power of MATLAB derives from this ability to create new functions that

solve user-specific problems.

S5.2.4 Interactive simulation experiment

All the simulation experiments follow the same interactive structure as
shown in Fig. 5.2.1. The tasks in either script or function are explained at the

beginning and suitable comments are given for some critical lines.

-
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Begin

Run?

ly

Choice Quit

Script 1

Script 2 Script n

Function base:

function 1

function m

Figure 5.2.1  Flowe chart for interactive simulation
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S5.2.5 List of computer programs

Section one
Scripts: Comments
missl: PSD and frequency response estimations by PM, CM,

UNB(recursive), and MSE(recursive).

miss2: PSD and frequency response estimations by PM, IM, UNB(direct),

and MSE(direct).
Section two
Scripts:
nondet: system identification by amplitude quantisz;ﬁon (aqg).
testnl: parameter estimation of system one by aq.
testn2: parameter estimation of system two by aq.
nident: parameter estimation by VWLS algorithm.
jump: frequency response of a nonlinear system consisting of a second

order linear dynamic and a saturation static.
jmp: frequency response prediction of the system given in the program
"jump” by VWLS algorithm.

Functions:

ingen: generate inputs.

sysout: generate outputs from given inputs and plants.
model: generate model responses.

fit: parameter estimatior with VWLS.

jumod: jump resonant model.
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jhit2: parameter estimator of jump resonant model.
Section three
Scripts:

nlgpc: nonlinear general predictive controller (gpc).

nldbc: nonlinear deadbeat controller (dbc).

Functions:

plant: plants. -
paraest: parameter estimator.

root: root solver.

diopeq: Diophantine equation solver.

condes: gpc designer.

dbcl: indirect dbc designer.

dbc2: direct dbc designer.
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format compact

clc;clg: % clear windows

the script started 18/10/1988.

this is used to analyses Power Spectrum Density (PSD)
with missing data in a time series and to
estimate FREquency reSPonse (FRESP)
with missing data in output series.

two sorts of estimators, UNBised and Mean Square Error,
are built up to compare with traditional ones such
as Periodogram Method and Covariance Method .

square bias, MSE, and linear FIT are calculated as
measurements for the comparison.

X, input
y, ouput without missing point
ym, ouput with missing points

psdy, psd from y

0 O O O I OP IO I JO O O° IR OP O JC O P d° O A P I I O oP oo

psdum, -==————-- ym by PM

psdyc, —-———————-==-=-= CM

psdyi, -——-=--—-—-=-- UNB

psdyn, -—~===-——-—---- MSE

frl, anl, FRESP (amplitude and phase )} from y
fr2, an2, ---- from ym by PM

fr3, an3, ===r——————c—e-- UNB

fr4, angd, -——==—m————e——-- MSE

fr5, anb5, ~———==-———e-—-- CM

load batmisl % consideration of batch job
while 1
clc:
n=input (' n>0 enter,n<=0 quit’);
if n<=0;break, end
’l,initialisation’
'2,generate input and output data £fft, psd,welghts’
*3,FRESP,MSE,FIT calculation’
4,plots’
i=input (/ your choice’):;
if jm=1
clc;clg;
istart=1;
ifin=input ('length of one block’);
nbl=input (‘no. of block’):;
m=input (‘no. of missing points’);
misp=input (‘distr. of mp., unif.=1; arb.=def.’);
clear a
for t=1:4
a(t)=input(‘y(t)=a(l)*y(t-1)+ .
a(2)*y(t=-2)+y(t-3),y3=a3*yd+ad*y5+x’)
end
w=input (‘window for CM, dn.=0; Bartlett=1');
wl=input (‘' lag length of window’);
if nble==1l
mv=input (/ 1<order of moving aver. filter<5’);
end
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ps=input (' open loop=1l, closedl=2, closed2=3');
clear wf wg wind
for j=1:wl
for i=1:ifin
wf (i, j)=cos(2*pi* (i-1)*(j-1)/ifin);
wq(i, j)=sin(2*pi*(i-1)* (j~1)/ifin);
end
wind(j,1)=1-(3-1) *w/wl;
end
elseif i==
clerelg;
pl=input ('batch job? y=1 n=default’);
if pl~=1
k=0;clear mp; % locate missing points
yp=ones (ifin,1l):
for t=1:m
if misp==1
k=k+flooxr(ifin/m):;
mp (t)=k;
else
mp (t)=input (‘missing position= ’);
end
yp(mp(t),1)=0;
end
rm=xcorr (yp):; % Parzen weigth for CM
clear cw sw nl £ wl ;
cw(ifin,1)=0;sw(ifin,1)=0;cs=cw;
for t=1:ifin
wl(t,1l)=ifin/(ifin-m);% traditional weight
% as initial value
% of new weight
nl(t,l)=ifin;
f(t,1)=(t-1)/ifin;
for j=1:m
cl=cos(2*pi*mp(j) *(t-1) /ifin);
sl=sin(2*pi*mp(j)*(t-1)/ifin);
cw(t,l)=cw(t,1l)+cl"2;
sw(t,1l)=sw(t,1l)+sl”2;
cs(t,1l)=cs(t,l)+cl*sl;
end
end
w3=wl; w2=wl;wé=wl;w5=wl; g3=wl; gd4=wl;g5=wl;
gl=wl;g2=wl;
cwl=nl/2-2*cw;cw2=nl/2-cw;swl=nl/2-2*sw;sw2=nl/2-sw;
sw3=nl/2+sw;
rand('normal’)
clear u ucm X Xcm Xu XX y yl yi ym ys ycm ycp xcm;
yl(ifin+5,1)=0;yh=yl;
clear trl tr2 tr3 tr4 £frl £fr2 fr3 fr4 ;
clear psdx psdy psdym psdyi psdyn f1 £2 £3 £f4 ;
trl(ifin,1)=0;tr2=trl;tr3=trl;trd=trl;
frimtrl;fr2«=trl;fr3=trl;frd=trl;frS5=trl;
anl=trl;an2=trl;an3=trl;and=trl;an5=trl:;
psdx=trl; psdy=trl; psdym=trl; psdyi=trl;
psdyn=trl; psdyc=trl;
psdxc=trl; temp=[anl an2 an3]; xu=trl;
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cv=0;cvx=0;stx=0;sty=0;pyc=trl;amp5=trl;
csp=trl;gsp=trl;
fl=trl;f2=£f1;£3=f1;f4=f1,;gf1=£f1;gf2=Ff1;gf3=£1;
gfd=fl1;
pmsel=fl;pmse2=£f1;pmse3=fl;pmsed=£f1;
fmsel=£fl; fmse2=f1; fmse3=fl; fmse4=f1;
phmsel=f1l;phmse2=f1;phmse3=£f1;phmsed=Ff1;
for tl=1:nbl

if ps==

for

t=6:ifin+5
x(t-5,1)=rand;
u(t-5,1)=x(t-5,1):

yl(t-3,1)=a(3)*yl(t-4,1)+a(4) *yl (t-5,1)+x(t-5,1);
yl(t,l)=a(l)*yl(t-1,1)+a(2)*yl(t-2,1)+yl(t-3,1):

end
for

y(t-5,1)=y1(t,1); % without missing point
ym(t-5,1)=y1(t,1); % traditional
yi(t-5,1)=yl(t,1); % interpolation

t=1:m

ys(t,1)=ym(mp(t),1); % real missing values
ym(mp(t) rl)=0;
yi(mp(t),1)=(yi(mp(t)-1,1)+yi(mp(t)+1,1))/2;
ys(t,2)=yi(mp(t),1l); % interpolate values

end
elseif pg==2 % feedback without missing point
for t=6:1fin+5

x(t-5,1)=rand ;
yhl(t-5,1)=yh(t,1);
u(t-5,1)=x(t-5,1)-yh(t,1);

yl(t-3,1)=a(3)*yl(t-4,1)+a(4)*yl(t-5,1)+u(t-5,1);
yl(t,1)=a(l)*yl(t-1,1)+a(2)*yl(t-2,1)+yl(t-3,1);

y(t-5,1)=y1(t,1); % without missing point
% with missing point

ym(t-5,1)=y1(t,1)*yp(t-5,1);

yh(t+1l,1)=.2*yh(t,1l)+yl(t,1):

end
elseif ps==3 % feedback with missing point input
for t=6:ifin+5

end

yl(t-
yl(t,

end

x(t-5,1)=rand :
yh1l(t~5,1)=yh(t,1);
u(t-5,1)=x(t-5,1)-yh(t,1);
3,1)=a(3)*yl(t-4,1)+a(4) *yl(t-5,1)+u(t=-5,1);
1)y=a(l)*yl(t-1,1)+a(2)*yl(t-2,1)+yl(t-3,1);
y(t-5,1)=yl(t,1); % without missing point
% with missing point

ym(t=5,1)=yl(t,1)*yp(t-5,1);

%$feedback with missing point
yh(t+1,1)=,0*yh(t, 1) +ym(t-5,1);

tempx=£fft(x); % input x’'s fft
rex=real (tempx) ;

imx=imag (tempx) ;

tempu=£fft (u):

tempy=£ft(y); % output y’s fft
rey=real (tempy);
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imy=imag (tempy) ;

tempym=££ft (ym); % output ym’s fft
reym=real (tempym) ;

imym=imag (tempym) ;

tempyi=£fft (yi); % output yi’s fft

px=abs (tempx) .~2/ifin; % psd estimations
py=abs (tempy) .*2/ifin;

pym=abs (tempym) .*2/ (ifin-m) ;
pyi=g3.*abs(tempym) .”2/ifin;
pyn=w3.*pym* (ifin-m) /ifin;

psdx=(tl-1) *psdx/tl+px/tl;
psdy=(tl-1)*psdy/tl+py/tl;
psdym=(t1-1) *psdym/t1l+pym/tl;
psdyi=(tl-1)*psdyi/tl+pyi/tl;
psdyn=(t1-1) *psdyn/tl+pyn/tl;

% fresp estimations
trl=(tempy.*conj(tempx))./ifin;
fri=(tl-1)*frl/tl+trl/tl;

tr2=(tempym.*conj (tempx))/ (ifin-m);
fr2=(t1l-1)*fr2/tl+tr2/tl;

t3=g4.*reym+sqrt (-1) *g5. *imym;
tr3=t3.*conj(tempx)/ifin;
fr3=(tl-1)*fr3/tl+tr3/tl;

td4=wd, *reym+sqgrt (=1) *w5. *imym;
tr4=t4.*conj(tempx)/ifin;
fra=(tl-1)*fr4/tl+trd/tl;

if ps==3
pss=1; % weights for case 3 by cm

else
$for case 1,2 by cm

xu=(t1l-1) *xu/tl+conj(tempx) .*tempu/tl;
end
cvl=ifin*cov(ym)/(ifin-m);
cv=(tl-1)*cv/tl+cvl/tl;

rif=2* (wl,*reym) .* (w2.*imym) /ifin;
f2=(t1-1)*£2/t1+rif/tl;

fl=psdyn; yy=psdyn*ifin;yy(1,1)=yy(1,1)/2;

cf3=(rex.*wd.*reym+imx.*w5.*imym) /ifin;
f£3=(t1l-1)*£3/t1l+cf3/tl;

cfd= (imx.*wd.*reym-rex.*w5.*imym) /ifin;
fa=(tl-1)*£4/tl+cf4/tl; ,

gfl=psdyi;
gf2=(t1l-1) *gf2/t1+2* (gl.*reym) .* (g2.*imym) / (ifin*tl);
gf3=(t1l-1) *g£3/t1+(rex.*g4.*reym+imx.*g5.*imym) / (i£in*tl);
gfd=(t1l-1) *gfd/t1l+ (imx.*g4.*reym-rex.*g5.*imym) / (1fin*tl);
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if nbl== % moving average filter for one block
tw=1;
for j=l:ifin-mv+l
yy (j,1)=tw*sum(yy (3:j+mv-1,1))/mv;
£1(j,1l)=tw*sum(£fl(j:j+mv-1,1))/mv;
£f2(j,1)=twrsum(£2(j:j+mv-1,1))/mv;
£3(j,1)=twrsum(£3(j:j+mv-1,1))/mv;
£4(j,1)=tw*sum(£4 (j:j+mv-1,1))/mv;
gfl(j,1)=tw*sum(gfl (j:j+mv-1,1))/mv;
gf2(j,1)=tw*sum(gf2(j:j+mv-1,1))/mv;
gf3(j,1)=tw*sum(gf3(j:j+mv-1,1))/mv;
gfd4(j,1)=tw*sum(gf4 (j:j+mv-1,1))/mv;
end
end

% new weight (mse) for psd
ymr=£f1.*cwl+cv*cw+2*£2, *cs;
ymi=£f1.*swl+cv*sw-2*£2, *cs;
ymi(1l,1)=0; ymr (1,1)=£1(1,1)*(ifin/2-m)+cv*m/2;
yrymr=£f1.*cw2+£2.*cs; yiymi=fl.*sw2-£f2, *cs;
yiymi (1,1)=0; yrymr(l,1)=£1(1,1)*(ifin/2-m/2);
yrymi=£2,*sw3-fl.*cs; yiymr=£f2.*cw2-fl.*cs;
yrymi(1,1)=0;yiymr(1,1)=0;
ymrymi=£2.*(ifin/2-cw+sw)-2*fl.*cs+cv*cs;
ymrymi (1,1)=0;
c3=4*yrymi."2;

w3=yy.* (ymr+ymi) +2* (yrymr.*2+yiymi . *2+yrymi.*2+yiymr.*2);
w7=3%* (ymr+ymi) .*2-4*ymr. *ymi+4*ymrymi."*2;
w3=w3./w7; w3(ifin/2,1)=w3(1,1);

% new weight (unb) for psd
g3=ifin*gfl./(gfl* (ifin-2*m)+cv*m);

% new weight (mse) for Fourie transform
rn=(f1l.*cw2+£2.*cs) ;xd=(£fl.*cwl+cv*cw+2*£2.*cs);
in=(fl.*sw2-£2.*cs);
id=(fl.*swl+cv*sw-2*f2,*cs+,0001);
wl=rn./rd;w2=in./id;

% new weight (mse) for fresp real part
uryr=ifin*£3/2;
urymr=£3.*cw2+£f4.*cs;
urymr (1,1)=£3(1,1) *(1fin/2-m/2);
uiyr=ifin*f4/2;
uiymr=£4.*cw2-£3.*cs;
cl=urymr . 2+uiymr.”2;

wi=psdx. *rn+2* (uryr.*urymr+uiyr. *uiymr) ;
w7=psdx.*rd+2*cl;
wid=w4./w7; wd(ifin/2,1)=wd (1,1);

% new weight (mse) for fresp imag. part
uryi=-ifin*£4/2;
urymi=-£4,*sw2-£3.*cs;
uiyi=ifin*£3/2;
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uiymi=£3,*sw2-£f4,*cs;
c2=urymi . 2+uiymi.”2;

wS=psdx.*in+2* (uryi.*urymi+uiyi.*uiymi);
w7=psdx.*id+2*c2;

w7(l,1)=1; w7(ifin/2,1)=1;

w5=w5./w7;

w5(1,1)=1; wS5(ifin/2,1)=1;

rn=(gfl.*cw2+gf2.*cs);

rd=(gfl. *cwl+cv*cw+2*gf2 . *cs):;
in=(gfl.*sw2-gf2.*cs);
id=(gfl.*swl+cv*sw-2*gf2, *cs+.0001);
gl=rn./rd;g2=in./id;

% new weight (unb) for fresp real and imag. parts
g4=ifin/ (ifin-m);
g5=g4;

if nbl==1
psdyi=g3.*abs (tempym) .~2/ifin;
psdyn=w3. *abs (tempym) .~2/ifin;
fr3=(g4.*reym+sqrt (-1) *g5,*imym) . *conj(tempx) /ifin;
fr4=(wd.*reym+sqrt (-1) *w5.*imym) . *conj (tempx) /ifin;
end

% mse calculation
pmsel=(tl-1) *pmsel/t1l+ (py-pym).”2/tl; % psd
pmse2=(t1l-1) *pmse2/tl+ (py-pyi) .*2/tl;
pmse3=(t1l-1) *pmse3/tl+ (py-pyn) .*2/tl;
pmsed=(t1-1) *pmsed/t1l+ (py-pyc) .*2/tl;

% amplitude (fresp)
fmsel=(tl-1)*fmsel/tl1l+(trl-tr2).*conj(trl-tr2)/tl;
fmse2=(tl-1) *fmse2/t1l+(trl-tr3).*conj(trl-tr3)/tl;
fmse3=(t1l-1) *fmse3/tl+(trl-tr4).*conj(trl-trd)/tl;
fmsed=(t1-1) *fmsed/t1+ (trl-amp5) .*conj(trl-amp5)/tl;

% phase
phmsel=(t1-1) *phmsel/t1l+(angle(trl)-angle(tr2)).”2/tl;
phmse2=(t1-1) *phmse2/t1+ (angle(trl)-angle(tr3)).”2/tl;
phmse3=(t1-1) *phmse3/t1+ (angle(trl)-angle(trd)).”2/tl;
phmse4=(t1-1) *phmse4/t1+(angle(trl)-phase5)."2/tl;

xem((tl-1)*ifin+l:tl*ifin,1l)=x;

ucm( (tl-1)*ifin+l:tl*ifin, 1) =u;

yem((tl-1) *ifin+l:t1*ifin,1)=ym;

ycp((tl-1)*ifin+l:tl*ifin, 1) =yp;
end

rm=xcorr (ycp):

xy=[xcm ycm];

Xuc=[xcm ucm];

xx=[xcm xcm]:;

wig=[wf wq]; l=ifin*nbl;
[pyc,templ=frsp(l,wind,wfq,wl, rm, xy);
psdyc=pyc:

fr5=temp(:,1);an5=atan2 (temp(:,3),temp(:,2)):
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[pyc,templ=£frsp(l,wind,wfq,wl, rm, xuc);
fxu=temp(:,1);axu=atan2 (temp(:,3),temp(:,2)):
[pyc,temp)=frsp(l,wind,wfqg,wl, rm, xx) ;
fxx=temp(:,1);axx=atan2 (temp(:,3),temp(:,2)):

i=sqgrt (-1);
fxu=£fxu. *exp (i*axu) ; fxx=fxx.*exp (i*axx)
fr5=£fr5.*exp(i*anb);
else
save batmisl
end

elseif i==3
cle; clg % fresp estimations, mse, fit

% amplitude squared bise
efl=((frl-£fr2) .*conj(frl-£fr2))/ifin;
ef2=((fr1-£fr3) .*conj(frl-£fr3))/ifin;
ef3=((frl-£fr4) .*conj(frl-£fr4))/ifin;
efd=((fri1-£fr5) .*conij{(frl-£frS))/ifin;
el=sum(efl), e2=sum(ef2), e3=sum(ef3), ed=sum(efd)

% fresp
if ps==3
fri=fri./(psdx-£frl);fr2=fr2./(psdx-£fr2);
fr3=fr3./(psdx-£fr3);frd4=£fr4./(psdx-£frd);
fr5=£fr5./ (psdx-£fr5):
else
frl=frl./xu;fr2=£r2./xu;
fr3=£fr3./xu; fxrd4=£frd./xu;
fr5=£fr5./xu;
end
% phase
anl=angle(frl);an2=angle(fr2) ;an3=angle (fr3):
and=angle(fr4):;an5=angle (fr5);

% amplitude
frl=abs(frl):fr2=abs(fr2);fr3=abs (fr3);
frd=abs (fr4); fr5=abs (£fr5);

% psd squard bise
bisl=((psdy-psdym).”2)/ifin;
bis2=( (psdy-psdyi).”2)/ifin;
bis3=((psdy-psdyn).”2)/ifin;
bisd4=( (psdy-psdyc).”*2)/ifin;
bsl=sum(bisl) ;bs2=sum(bis2);
bs3=sum(bis3) ;bsd=sum(bisd);

% psd mse
pml=sum(pmsel)/ifin;pm2=sum(pmse2)/ifin;
pm3=sum(pmse3) /ifin;pmd=sum(pmsed)/ifin;

% amplitude mse
fml=abs (sum(fmsel))/ifin, fm2=abs (sum(fmse2))/ifin
fm3=abs (sum(fmse3))/ifin, fmd=abs (sum(fmse4))/ifin
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% phase squared bise
eal=((anl-an2).72)/ifin; ea2=((anl-an3).”2)/ifin;
ea3=((anl-and).”2)/ifin; ead4=((anl-an5).”2)/ifin;
ee1=sum(ea1),ee2=sum(ea2),ee3=sum(ea3),ee4=sum(ea4)

% phase mse
phl=sum(phmsel)/ifin;ph2=sum(phmse2) /ifin;
ph3=sum(phmse3) /ifin;ph4=sum(phmse4) /ifin;

% fit psd
plm=(psdy’ *psdym) / {psdym’ *psdym) ;
pli=(psdy’ *psdyi)/ (psdyi’ *psdyi);
pln=(psdy’ *psdyn) / (psdyn’ *psdyn) ;
plc=(psdy’ *psdyc) / (psdyc’ *psdyc) ;

% fit amplitude
amlm= (frl’ *fr2)/(fr2’ *fr2)
amli= (£frl’*fr3)/(fr3’ *fr3)
amln= (frl’*fr4)/(frd4’ *£fr4)
amlc=(frl’ *fr5)/ (fr5’ *£frb)

% fit phase
alm=(anl’*an2)/ (an2’*an2)
ali=(anl’*an3)/(an3’*an3)
aln=(anl’*an4)/ (an4’ *an4)
alc=(anl’*an5)/ (an5’ *an})

pause
elseif i==4

cle,clg
plot (f, frl,’-',£f,£fxr2,"*’ £, £x3,":’ ,£,£frd4,’'-.' ,£,£25,'+")

title(’fresp amp: true - ,pm *,unb :,mse,~-.,cm +’)
pause

plot (f,efl,’'*’ ,f,ef2,’:’,£,ef3,’-." ,£,ef4,’+")
title(’amp bis;: pm *, unb :, mse -.,cm +')

pause
plOt (f,anl,”’,f,anz,’*"f,an3’ ’:"f'an4,"—."f,an5”+’)

title(’fresp ang: true -,pm *,unb :,mse -.,cm +’)
pause
plot(f,eal,’*’ f,ea2,’:',£f,ea3,’'-.",f,ead,’'+")
title('ang bis: pm *, unb :, mse -.,cm +’)
pause
plot (f,psdy,’-',£f,psdym,"*’,£,psdyi,’:’,£f,psdyn,’'~.",f,psdyc,’'+')
title(’psd: true -,pm *,unb :,mse -.,cm +’)
pause
plot (f,bisl,’*’,f,bis2,’:’,£,bis3,’-.7,f,bis4,’+")
title(’psd bis: pm *,unb :,mse ~-.,cm +’)
pause
else
'wrong number given,reset your choice 1,2,3,4'
end
end
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format compact
clc:;clg:; % clear windows

%
%

00 dP P I I I IO I IO N I P IR O O I IC IO O P OP OO oP I O o

the script started 18/10/1988.
this is used to analyses Power Spectrum Density (PSD)

with missing data in a time series and to estimate

FREquency reSPonse (FRESP) with missing data
at output series.

two sorts of estimators, UNBised and Mean Square Error,
are built up to compare with traditional ones such

as Periodogram Method and Interpolation Method.
square bias, MSE, and linear FIT are calculated as
measurements for the comparison

direct estimate and recursive estimate are checked with

UNB and MSE.
X, input
y, ouput without missing point
ym, ouput with missing points

psdy, psd from y

psdum, =-==-=--- ym by PM
psdyc, ——-—-==sseeeoo M

psdyi, —====-=r————-- UNB

psdyn, —=——=--—————--- MSE

frl, anl, FRESP (amplitude and phase ) from y
fr2, an2, ---- from ym by PM same as UNB

fr3, an3, -===-=---——eaaee— UNB

frd4, and, -=—-—————————e—— MSE

fr5, anb, ——=———mem——————e M

%$load batmis3 % consideration of batch job
while 1

cle;
n=input (' n>0 enter,n<=0 quit’):
if n<=0;break,end
*l,initialisation’
*2,generate input and output data fft, psd,weights’
’*3,FRESP,MSE,FIT calculation’
"4,plots’
i=input (' your choice’);
if ime=]
clc;clg:;
istart=1;
ifin=input (' length of one block’):
nbl=input (‘no. of block’);
m=input (‘no. of missing points’):
misp=input (’distr. of mp., unif.=1, arb.=def.’):
clear a
for t=1:4
a(t)=input(‘y(t)=a(l)*y(t-1)+
a(2)*y(t-2)+y(t-3),y3=a3*yd+ad*yS+x’)
end
if nbl==]
mv=input (‘ 1<order of moving aver. filter<5’);
end
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elseif i==
clc:clg;
pl=input ('batch job? y=1 n=default’);
if pl~=1
k=0;clear mp; % locate missing points
yp=ones(ifin,1);
for t=1:m
if misp==1
k=k+floor (ifin/m);
mp (t)=k;
else
mp (t)=input (‘which is missing position’):
end
yp(mp(t),1)=0;
end :
rm=xcorr (yp): % Parzen weigth for CM
clear ¢cw sw nl £ wl ;
cw(ifin,1l)=0;sw(ifin,1)=0:cs=cw;
for t=1:ifin
wl(t,1l)=ifin/(ifin-m);% traditional weight
% as initial value
% of new weight
nl(t,1l)=ifin;
f(t,1)=(t-1)/ifin;
for j=1:m
cl=cos (2*pi*mp(j) *(t-1)/ifin);
sl=sin{(2*pi*mp(j)*(t-1)/ifin);
cw(t,l)=cw(t,1)+cl”2;
sw(t,l)=sw(t,1l)+s1"2;
cs(t,1)=cs(t,1)+cl*sl;
end
end
w3awl; w2=wl;wd=wl;wS=wl; g3=wl; g4=wl;g5=wl;
gl=wl;g2=wl;
cwl=nl/2-2*cw;cw2=nl/2-cw;swl=nl/2-2*sw;
sw2=nl/2-sw;sw3=nl/2+sw;
rand(’'normal’)
clear x y yl yi ym ys ; yl(ifin+5,1)=0;
clear trl tr2 tr3 trd4 frl fr2 £fr3 fr4 ;
clear psdx psdy psdym psdyi psdyn f1 £2 £3 £f4 ;
trl(ifin,1l)=0;tr2=trl;tr3=trl;trd4=trl;tr5=trl;
fri=trl;fr2=trl;fr3=trl;fré4=trl; frS5=trl;
anl=trl;an2=trl;an3=trl;and4=trl;an5=trl;
psdx=trl; psdy=trl; psdym=trl; psdyi=trl:
psdyn=trl; psdyc=trl;
psdxc=trl; temp=[anl an2 an3]:
cv=0;cvx=0;stx=0;sty=0;pyc=trl;amp5=trl;csp=trl;
gsp=trl;
fl=trl;f2=f]1;f3=f1;f4=f1;gfl=f1;gf2=f1;gf3=£1;
gfé=£f1;
pmsel=fl;pmse2=£f1;pmse3=£fl;pmsed=£f1;
fmsel=£fl;fmse2=f1; fmse3=£f1l;fmsed=£f1;
phmsel=f];phmse2=f1;phmse3=f1;phmsed4=£f1;
dri=0;drr=0;dii=0;
for tl=1l:nbl
for t=6:ifin+5
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x(t-5,1)=rand;
yl(t-3,1)=a(3)*yl(t-4,1)+a(4)*yl(t-5,1)+x(t-5,1);
yl(t,1)=a(l)*yl(t-1,1)+a(2)*yl(t-2,1)+yl(t-3,1);

y(t-5,1)=y1(t,1); % without missing point
ym(t-5,1)=y1(t,1); % traditional
yi(t-5,1)=yl(t,1); % interpolation

end

for t=1:m
ys(t,l)=ym(mp(t),1):; % real missing values
ym(mp(t),1)=0;
yi(mp(t),1)=(yi(mp(t)-1,1)+yi(mp(t)+1,1))/2;
ys(t,2)=yi(mp(t),1l); % interpolate values

end

tempx=£fft(x); % input x’'s fft

rex=real (tempx);

imx=imag (tempx) :

tempy=£fft (y); % output y’s fft

rey=real (tempy) ;

imy=imag (tempy) ;

tempym=£fft (ym) ; % output ym’s fft

reym=real (tempym) ;

imym=imag (tempym) ;

tempyi=fft(yi); % output yi’s fft

px=abs (tempx) .~2/ifin; % psd estimations
py=abs (tempy) . *2/ifin;

pym=abs (tempym) .*2/ (ifin-m);
pyi=g3.*pym* (ifin-m) /ifin;

pyn=w3.*pym* (ifin-m)/ifin;

pyc=abs (tempyi) .~2/ifin; %im

psdx=(tl-1)*psdx/tl+px/tl;
psdy=(tl-1) *psdy/tl+py/tl;
psdym=(£1-1) *psdym/t1+pym/tl;
psdyi=(t1-1) *psdyi/tl+pyi/tl;
psdyn=(t1-1) *psdyn/tl+pyn/tl;
psdyc=(t1-1) *psdyc/t1l+pyc/tl; %im
% fresp estimations
trl=(tempy.*conj(tempx)) ./ifin;
fri=(tl-1)*frl/tl+trl/tl;

tr2=(tempym.*conj(tempx))/ (ifin-m);
fr2=(tl-1)*fr2/tl+tr2/tl;

t3=g4.*reym+sqrt (-1) *g5. *imym;
tr3=t3.*conj(tempx)/ifin;
fr3=(t1-1)*fr3/tl+tr3/tl;

t4=w4 . *reym+sqrt (-1) *w5. *imym;
tr4=t4.*conj(tempx)/ifin;
fra=(tl-1)*fr4/tl+trd/tl;

tr5=(tempyi.*conj(tempx))/ifin; %im
fr5=(tl-1)*fr5/t1l+tr5/t1;

% mse calculation
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cvl=ifin*cov(ym)/(ifin-m);
cv=(tl-1)*cv/tl+cvl/tl;

rif=2*(wl.*reym).*(w2,*imym)/ifin;
£2=(t1-1)*£f2/t1+rif/tl;

fl=psdyn; yy=psdyn*ifin;yy(1l,1l)=yy(1,1)/2;

cf3=(rex.*wd . *reym+imx.*w5. *imym) /ifin;
£3=(t1-1)*£3/t1+cf3/t1;

cfd=(imx.*wd ., *reym-rex.*wS5.*imym) /ifin;
f4=(t1-1)*£f4/tl+cfd/tl1; ,

gfl=psdyi;
gf2=(t1-1) *gf2/t1+2* (gl.*reym) .* (g2.*imym) / (ifin*tl);
gf3=(t1-1)*gf3/tl+(rex.*gd,.*reym+imx,*g5,*imym)/ (ifin*tl);
gfd=(tl-1) *gf4/t1+(imx.*gd.*reym-rex.*g5.*imym) / (ifin*tl);

dri=(tl-1)*dri/t1+ (reym.*imym)/t1l; %direct operation
drr=(tl-1) *drr/tl+reym.*2/t1;
dii=(t1l-1)*dii/tl+imym.*2/t1;

if nbl==1 % moving average filter for one block
tw=1;
for j=l:ifin-mv+l
yy(3,1)=tw*sum(yy(j:Jj+mv-1,1))/mv;
£f1(3,1)=tw*sum(£f1(j:j+mv-1,1))/mv;
£2(j,1)=tw*sum(£2 (j:j+mv~-1,1)) /mv;
£3(3,1)=twrsum(£3 (3:j+mv-1,1)) /mv;
fa(j,1)=twr*sum(£4 (j:3j+mv-1,1)) /mv;
gfl(j,1)=tw*sum(gfl(j:j+mv-1,1))/mv;
gf2(j,1)=tw*sum(g£f2(j:j+mv-1,1))/mv;
gf3(j,1)=tw*sum(gf3(j:j+mv-1,1)) /mv;
gfd4(j,1)=tw*sum(gfd(j:j+mv-1,1))/mv;
end
end

% new weight (mse) for psd
ymr=£f1, *cwl+cv*cw+2*£2, *cs;
ymi=£f1l, *swl+cv*sw-2*£2.*cs;
ymi(1,1)=0;
ymr (1,1)=£1(1,1)*(ifin/2-m)+cv*m/2;
yrymr=£f1.*cw2+f2.*cs; yiymi=fl,*sw2-£f2.*cs;
yiymi(1,1)=0; yrymr(l,1)=£1(1,1)*(ifin/2-m/2);
yrymi=f2 *gw3-fl.*cs; yiymr=£2,*cw2-fl.*cs;
yrymi(l,1)=0;yiymr(1,1)=0;
ymrymim£2, *(ifin/2-cw+sw)-2*fl.*cs+cv*cs;
ymrymi (1,1)=0;
c3=4*yrymi,*2;

w3=yy.* (ymr+ymi)+2* (yrymr. 2+yiymi.*2+yrymi.*2+yiymr."2);
wl=3* (ymr+ymi) .*2-4*ymr. *ymi+4*ymrymi."2;
w3=w3./w7; w3(ifin/2,1)=w3(1,1):

% new weight (unb) for psd
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g3=ifin*gfl./ (gfl* (ifin-2*m)+cv*m);

% new weight (mse) for Fourie transform
rn=(fl.*cw2+£f2.*cs) ;rd=(fl.*cwl+cv*cw+2*£f2, *cs);
in=(fl.*sw2~£f2.*cs);
id=(fl.*swl+cv*sw-2*£2.*cs+.0001);
wl=rn./rd;w2=in./id;

% new weight (mse) for fresp real part
uryr=ifin*£3/2;
urymr=£3.*cw2+f4,*cs;
urymr (1,1)=£3(1,1) *(ifin/2-m/2);
uiyr=ifin*f4/2;
uiymr=£f4.*cw2~-£3.*cs;
cl=urymr.”2+uiymr.”2; -

wi=psdx. *rn+2* (uryr.*urymr+uiyr.*uiymr); -
w1=psdx. *rd+2*cl;
wid=wd,/w7; w4 (ifin/2,1)=wd4(1,1);

% new weight (mse) for fresp imag. part
uryi=-ifin*£f4/2;
urymi=-f4,*sw2-£3.*cs;
uiyi=ifin*£3/2;
uiymi=£3.*sw2-£f4,*cs;
c2=urymi.*2+uiymi.”2;

wS=psdx.*in+2* (uryi.*urymi+uiyi.*uiymi);
wi=psdx.*id+2*c2;

w7(l,1)=1; w7(ifin/2,1)=1;

w5=w5./w7;

w5(1,1)=1; wS(ifin/2,1)=1;

rn=(gfl.*cw2+gf2.*cs) ;rd=(gfl. *cwl+cv*cw+2*gf2.*cs);
in=(gfl.*sw2-gf2.%*cs);
id=(gfl.*swl+cv*sw-2*gf2.*cs+.0001) ;
gl=rn./rd;g2=in./id;

% new weight (unb) for fresp real and imag. parts
g4=ifin/ (ifin-m);
gd=g4;

if nbl==1l
psdyi=g3. *abs (tempym) .*2/ifin;
psdyn=w3. *abs (tempym) .~2/ifin;
fr3-(g4.*reym+sqrt(—1)*g5.*imym).*conj(tempx)/ifin;
fr4=(wéd.*reym+sgrt (-1)*w5.*imym) . *conj (tempx) /ifin;
tr3=fr3;trd4=£fr4;

end

pmsel=(t1-1) *pmsel/t1+(py-pym)."2/tl; & psd
pmse2-(tl-1)*pmse2/t1+(py-pyi).A2/t1;
pmse3-(t1-1)*pmse3/tl+(py-pyn).“2/t1;
pmsed=(t1-1) *pmsed/t1+(py-pyc) . 2/tl;

% amplitude (fresp)
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fmsel=(tl~-1l) *fmsel/tl+(trl-tr2).*conj(trl-tr2)/tl;
fmse2=(t1l-1) *fmse2/tl+(trl-tr3).*conj(trl-tr3)/tl;
fmse3=(tl-1)*fmse3/tl+(trl-tr4) .*conj(trl-trd)/tl;
fmsed=(t1l-1) *fmsed4/tl+(trl-tr5).*conj(trl-tr5)/tl;

phmsel=(t1l-1) *phmsel/tl+(angle(trl)-angle(tr2)).~2/tl; % phase
phmse2=(t1l-1) *phmse2/tl+(angle(trl)-angle(tr3)) .22/t1;
phmse3=(t1l-1) *phmse3/t1l+(angle(trl)-angle(trd)) .*2/t1;
phmsed=(t1-1) *phmsed4/tl+(angle(trl)-angle(tr5)).”2/tl;
end
else
save batmis3
end
elseif i==3
clc; clg % fresp estimations, mse, fit
psddu=(drr+dii-cv*m)/ (ifin-2*m); % direct operation
d3=psddu-cv;
dl=psddu*ifin.* (drr+dii) +2* ((drr+d3.*cw) . 2+ (dii+d3.*sw) .*2+2* (dri+
d3.*cs) .*2);
d2=3* (drr+dii) .*2-4*drr.*dii+4*dri.*2;
d1l=dl./d2; '
psddm=dl.* (drr+dii)/ifin;

% amplitude squared bise of fresp
efl=((frl-£fr2) .*conj(frl-£fr2))/ifin;
ef2=((frl-fr3) .*conj(frl-£r3))/ifin;
ef3=((frl-fr4) .*conj(frl-£fr4))/ifin;
efd=((frl~£fr5) .*conj(frl-£fr5))/ifin;
el=sum(efl),e2=sum(ef2) ,e3=sum(ef3),ed=sum(efd),

% fresp
fri=£frl./psdx;fr2=£fr2./psdx:;
fr3=£fr3./psdx; fr4=£fr4./psdx;
fr5=£fr5./psdx;

% phase
anl=angle(frl);an2=angle(fr2);
an3=angle (fr3);and4=angle(fr4):;

anS=angle (£fr5);
% amplitude

fril=abs (frl); fr2=abs(fr2);fr3=abs(fr3);
frd4=abs (fr4); fr5=abs (£fx5);

% psd squard bise
bisl=((psdy-psdym) .”2)/ifin;
bis2=( (psdy-psdyi).”~2)/ifin;
bis3=((psdy-psdyn).”2)/ifin;
bisd=( (psdy-psdyc) .*2)/ifin;
bsl=sum(bisl) ;bs2=sum(bis2);
bs3=sum(bis3) ;bsd4=sum(bisd);

% psd mse
pml=sum(pmsel)/ifin;pm2=sum(pmse2)/ifin;
pm3=sum(pmse3)/ifin; pmé=sum(pmsed)/ifin;

% amplitude mse
fml=abs (sum(fmsel))/ifin, fm2=abs (sum(fmse2))/ifin
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fm3=abs (sum(fmse3))/ifin, fmd4=abs (sum(fmsed))/ifin
% phase squared bise
eal=((anl-an2).22)/ifin; ea2=((anl-an3) .”2)/ifin;
ea3=((anl-and).”2)/ifin; ead4=((anl-an5) .”2)/ifin;
eel=sum(eal) ;ee2=sum(ea?2) ;ee3=sum(ea3);eed=sum(ead);

% phase mse
phl=sum(phmsel)/ifin;ph2=sum(phmse2)/ifin;
ph3=sum(phmse3) /ifin;phd4=sum(phmsed)/ifin;

% fit psd
plm=(psdy’ *psdym) / (psdym’ *psdym) ;
pli=(psdy’ *psdyi)/ (psdyi’ *psdyi);
pln=(psdy’ *psdyn) / (psdyn’ *psdyn) ;
plc=(psdy’ *psdyc) / (psdyc’ *psdyc) ;

% fit amplitude
amlm= (frl’ *£fr2)/(£fr2’' *£r2)
amli=(frl’*fr3)/(fr3’*£fx3)
amln=(frl’*fr4)/ (fr4’' *fr4)
amlc=(frl’ *fr5)/(fr5’ *£fr5)

% fit phase
alm=(anl’ *an2)/ (an2’*an2);
ali=(anl’*an3)/(an3’*an3);
aln=(anl’*an4)/(and4’*and);
alc=(anl’ *an5)/ (an5’*an5);

elseif j==4
clc,clqg
plot (f, fxrl1,'-',£,£fx2,’'*’ ,£,£x3,"':',£,fx4,’'-." ,£,£x5,"+")
title(’'fresp amp: true - ,pm *,unb :,mse,-.,cm +')
pause
plot(f,efl,’*! f,ef2,’:',£f,e£3,'-." ,£f,efd,’+")
title(‘amp bis: pm *, unb :, mse -.,cm +')
pause
plot(f,anl,’-’,£f,an2,’'*’ ,f,an3,’:’,£f,an4,’~-,’ ,£,and,’+")
title(’fresp ang: true -,pm *,unb :,mse -.,cm +')
pause
plot(f,eal,’*’, f,ea2,’:’,f,ea3,’'-." ,f,ead,’'+")
title(’ang bis: pm *, unb :, mse -.,cm +’)
pause

plot (£,psdy,’'-',f,psdym,’ *’ f,psdyi,’:’,£f,psdyn,’~-.",£,psdyc,’+’)

title('psd: true -,pm *,unb :,mse -.,cm +’)
pause
plot (f,bisl,’*’,f,bis2,’:’,£f,bis3,’-.",£f,bis4,’+’)
title(’psd bis: pm *,unb :,mse -.,cm +')
pause

else
'wrong number given,reset your choice 1,2,3,4°

end

end
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format compact

clc:clg; % clear windows.

% the script started 1/10/1988.

% this detects nonlinear systems structure based on input

% and output data, by a gquantisation algorithm, to
% give illustrations both within three dimensional
% space and in particular project planes.
% uncorrelated nomarl noise (0.,vn) can be superposed on
% input and output if required.
%
$load batdet2 % consideration of batch job.
while 1

cle;

n=input ('n>0 enter,n<=0 quit ’):;
if n<=0;break,end
’1,initialisation’
*2,generate ipt’
'3,generate opt and quantization’
'4,plot 3D surface and 2D project curve’
i=input (' your choice ’):
if i==1
clec;clg:
elseif i==2
clc;clg:
ipt=5;
'set ipt signal’
’1,sinusoid’
’2,Gaussian’
*3,step’
"4, random amplitude step '
ipt=input (' your choice ’);
istart=input ('starting point of data series ’);
ifin=input (' final point of data series <4000 ’);
xl=ingen (ipt, istart,ifin);
x=x1 (istart:ifin):;
clc;clg;
’'set sys. para.’
*1,linear follows nl.’
'2,closed loop system with jumping effect’
j=input (' your choice’):

i1f j==1
'1,first or second order lag saturation’
2,- - =-=-== == =-===-= relay’
3)- = =-=—- === ===-=-=-= coutput=input”3’
14,- = = = = = = = = = = = = linear’

istype=input (' your choice ’);
c=linel (j):
elseif j==2
j1=3;
else
c=line3(j):
end
clc:clyg:
’set quant. control’
sl=input (‘starting point of polt’):
s2=input (‘ final point of plot’);
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nr=input ('set amp. quan. range of x(i) and y(i-1)’):
ax=input ('set axes control para.’);

elseif i==
clc,clg

clear zl1 2z2 z3 znl zn2 zn3;
pl=input ('batch job? yes=1, no=default’);%open-loop sys.

if §==1

yl=sysoutl (istype, istart, ifin, x,c);

else

yl=sysout2(1l,istart,ifin,x,c); % closed-loop sys.

end

y=yl{istart:ifin);

if pl~=1

xl=x(sl:s82);

‘X2=x(sl~1:82-1);

yl=y(sl-1:82-1);

y2=y(sl-2:82-2);

z=y(sl:s2);
kl=nr/(max(x1l)-min(x1)) ;k2=nr/(max(yl) -min(yl));
k3=nr/ (max(x2)-min(x2)) ;kd4=nr/ (max(y2)-min(y2)):
il=round(kl* (xl-min(x1))+1);jl=round(k2* (yl-min(yl))+1);
j2=round(k3* (x2-min(x2))+1) ; j3=round (k4* (y2-min (y2) ) +1) ;
for tl=1l:nr

for

end
end

t2=1l:nr
ind=find(il==tl&jl==t2);
zl(tl,t2)=sum(z (ind));znl(tl,t2)=length(ind):
if znl(tl,t2)==0
znl (tl,t2)=1;
end
ind=find (il==t1&j2==t2);
z2(tl,t2)=sum(z (ind));zn2(tl,t2)=length(ind):
if zn2(tl,t2)==
zn2(tl,t2)=1;
end
ind=find (il==t1&j3==t2);
z3(tl,t2)=sum(z (ind));zn3(tl,t2)=length(ind);
if zn3(tl,t2)==0
zn3(tl,t2)=1;
end

zl=z1./znl;temp=zeros (2*ax+nr); temp(ax+l:ax+nr,ax+l:ax+nr)=z1;

zl=temp;

z2=22./zn2;temp (ax+1l:ax+nr,ax+l:ax+nr)=z2;z2=temp;
z3=2z3./zn3;temp (ax+l:ax+nr,ax+l:ax+nr)=z3;z3=temp:;

else

save batdet

end

elseif i==4g

clear px0 pxl pyl py2 pd0 pdl;
k=round (ax+nr/2)+1; n=(max(x)-min(x))/(nr-1);
px0=z1 (ax+1:ax+nr, k)
hx0=min(x):n:max(x); n=(max(y)-min(y))/(nr-1);
pyl=z1 (k,ax+l:ax+nr);
hyl=min(y):n:max(y):
py2=z3(k,ax+l:ax+nr):
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pxl=z2(k,ax+l:ax+nr);

mesh(z1l) %coordinate (x,yl,y)
title(’sys. opt y(i) versus ipt x(i) and previous opt y(i-1)')
pause
pl=input (‘do you want to store the plot , yes=1,no=default’)
if pl==1 '
meta plotn
end
mesh(zl’)
title(’'sys opt y(i) versus ipt x(i) and previous opt y(i-1)"')
pause
if pl==
meta plotn
end
plot (hx0’,px0)
grid
title('projeting plane of y(i) and x(i)’)
xlabel('x(i)')
ylabel(’y(i)’)
pause
if pl==1
meta plotn
end
plot (hyl’,pyl)
grid
title('projecting plane of y(i) and y(i-1)’)
xlabel(‘y(i-1)*)
ylabel ('y (i) ')
pause
if pl==1
meta plotn
end
mesh(z3) %coordinate (x,y2,y)
title(’sys opt y(i) versus ipt x(i) and previous opt y(i-2)')
pause
pl=input (‘do you want to store the plot , yes=1,no=default’)
if pl==1 :
meta plotn
end
mesh (z3')
title(’sys opt y(i) versus ipt x(i) and previous opt y(i-2)’)
pause
if plm=]
meta plotn
end
plot (hyl’,py2)
grid
title(’'projecting plane of y(i) and y(i-2)')
xlabel ('y(i-2)')
ylabel('y(i)’)
pause
if pl==1
meta plotn
end :
mesh(z2) %coordinate (x,x1,y)
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title(’sys opt y(i) versus ipt x(i) and previous ipt x(i-1)')
pause
pl=input (‘do you want to store the plot , yes=1,no=default’)
if pl==1
meta plotn
end
mesh(z2’)
title(’"sys opt y(i) versus ipt x(i) and previous ipt x(i-1)')
pause .
if pl==
meta plotn
end
plot (hx0’ ,px1)
grid
title('projecting plane of y(i) and x(i-1)')
xlabel (“x(i~1)")
ylabel ('y(i)")
pause
if pl==1
meta plotn
end
else
"wrong number given,reset your choice 1,2,3,4,5’
end
end
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format compact
clec,
% the script started 15/11/1988
% the script is used to eatimate system parameters
% by recursive procedure after
% detection of nonlinear system (sysl) done by ’‘nondet.m’
load batdet
clear zl z2 z3 znl zn2 zn3
x1=x(sl:s82); %set up coordinates
X2=x(sl=-1l:82-1);
yl=y(sl-1:s2-1);
y2=y(sl-2:52-2);
z=y (sl:82);
tal=z+c(4) *y2-c(2)*x2;
tbl=z+c (3) *yl+c(4) *y2;
ta2=z+c (3) *yl-c(2)*x2; ,
$quant. gains
kl=nr/(max(x1)-min(x1)) ;k2=nr/ (max(yl)-min(yl)):;
k3=nr/(max(x2)-min(x2)) ;k4=nr/ (max(y2)-min(y2)):
il=round(kl* (xl-min(x1))+1);jl=round(k2* (yl-min(yl))+1);
j2=round(k3* (x2-min (x2))+1) ; j3=round (k4* (y2-min (y2) ) +1) ;
for tl=1l:nr
for t2=1:nr
ind=find (il==tl&jl==t2);
z1(tl,t2)=sum(tal(ind));znl(tl,t2)=1length(ind);
if znl(tl,t2)==0
znl(tl,t2)=1;
end
ind=find (il==t1l&j2==t2);
z2(tl,t2)=sum(tbl (ind));zn2(t1l,t2)=length (ind);
if zn2(tl,t2)==
zn2 (t1,t2)=1;
end
ind=find (il==t1&j3==t2);
z3(tl,t2)=sum(ta2(ind));zn3(t1l,t2)=length(ind):
if zn3(tl,t2)==0
zn3(tl,t2)=1;

end
end
end
z1l=z1./2znl;temp=zeros (2*ax+nr); temp(ax+l:ax+nr,ax+l:ax+nr)=z1;
zl=temp;

z2=22./zn2;temp (ax+1:ax+nr,ax+l:ax+nr)=z2;z2=temp;
z3=z3./2zn3;temp (ax+1:ax+nr,ax+l:ax+nr)=z3;z3=temp;
save batdetl
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format compact
clc,
% the script started 15/11/1988
% the script is used to eatimate system parameters
% by recursive procedure after the
%t detection of the nonlinear system (sys2) done by ’'nondet.m’
load batdet
clear z1 z2 23 znl zn2 zn3
X1l=x(sl:s82);
x2=x(sl-1:82-1);
yl=y(sl-1:s52-1);
y2=y(sl-2:82-2);
z=y(sl:s2);
tal=yl+(c(4)*y2+c(2)*x2)/c(3);
ta2=y2+(c(3) *yl+c(2)*x2)/c(4);
tbl=x2+(c(3) *yl+c(4) *y2)/c(2);
$quant. gain
kl=nr/(max(x1l)-min(x1));k2=nr/(max(tal)-min(tal)):
k3=nr/ (max(tbl)-min(tbl)) ;k4=nr/(max(ta2)-min (ta2)) ;
il=round(k1*(xl—min(xl))+l);jl=round(k2*(tal-min(tal))+1);
j2=round (k3* (tbl-min(tbl) )+1) ; §3=round (k4* (ta2-min(ta2)) +1) ;
for tl=l1l:nr
for t2=1:nr
ind=find (il==tl&jl==t2);
z1(tl,t2)=sum(z(ind));znl(tl,t2)=length(ind);
if znl(tl,t2)==0
znl(tl,t2)=1;
end
ind=find (il==t1&j2==t2);
zZ(tl,t2)=sum(z(ind));zn2(t1,t2)=length(ind);
if zn2(t1,t2)==0
zn2(t1,t2)=1;
end
ind=find (il==tl&j3==t2);
z23(tl,t2)=sum(z (ind)) ;zn3(t1l,t2)=1length (ind);
if zn3(t1,t2)==0
zn3(tl,t2)=1;
end
end
end
zl=z1./znl;temp=zeros(2*ax+nr); temp(ax+l:ax+nr,ax+l:ax+nr)=zl;
zl=temp;
z2=z2./zn2;temp(ax+1:ax+nr,ax+1:ax+nr)=22;z2=temp;
z3=z3./zn3;temp(ax+1:ax+nr,ax+1:ax+nr)=z3;z3=temp;
save batdet2
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format compact
clc;clg; % clear windows.

%

%
%
%
%
%
%
%
%
%
%
%
%

the script started 1/7/1988.

this models nonlinear or linear systems as a linear one ,
ym(t)=b0*x (t)+bl*x(t-1)-al*ym(t-1)-a2*ym(t-2)+cO,
by Weighted least Squres (WLS) , which the weights
are determined according to nearness of current
state to previous states.

uncorrelated nomarl noise (0.,vn) can be superposed on
input if required.

iprog = 1, one step prediction;
= 2, model response.

plots and estimated parameters show are inclusive either.

both off line and on line algorithms are available.

while 1

clc
n=input (' n>0 enter,n<=0 quit ’);
if n<=0;break,end
f1,initialisation’
*2,generate input’
’3,generate output’
"4,model estimation’
"5,plot model response or one step prediction and input’
i=input (' your choice ’);
if i==1
clec,clg,
elseif i==2
clec,clqg,
ipt=5;
’1,sinusoid’
’2,Gaussian’
"3,uniform’
r4,step’
’*5,random amplitude step '
ipt=input (' your choice ’);
istart=input ('starting point of data series '):
ifin=input (‘final point of data series <4000 ’):
xl=ingen(ipt,istart,ifin});
x=x1 (istart:ifin):
noi=input (' input noise? y=1, n=default’):;
if noi==1
v=input (’ variance= ’'); v=sqrt(v);
rand (' normal’)
z=x+v*rand(l,istart:ifin);
else
Z=X;
end
elseif i==3
clec,clg,
’1,linear’
’2,output=input*2’
'3,first order lag hysteresis’
'4,complex nonlinear’
’5,closed system with jumping effect’
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istype=input (‘your choice ’);
{yl,c]l=sysout (istype,istart,ifin, z);
y=yl(istart:ifin);
noi=input (' output noise? y=1, n=default’):
if noi==
v=input (' variance= ’); v=sqrt(v);
rand ('’ normal’)
y=ytv*rand(l,istart:ifin);
end
elseif i==
clc,clqg,
l,one step prediction’
’2,model response’
iprog=input (' your choice ’});
wc=input (‘weight choice, lim. data=1, default otherwise’);
if we==
d=input (‘weight range>4'});
end
ies=input ('starting point of para. est. ’):
ief=input (' final point of para. est. ’);
pl=input ("batch job? y=1, n=default’);
if pl~=1
if we==1
const=[iprog,d]:
[ym,pm,erols, erwls]=modell (const, ies,ief,x,y):
else
[ym,pm, erols, erwls]=model?2 (iprog, ies, ief, x,y):
% store model state and parameter table
pm=pm(:,ies+3:ief);
x1l=x(ies+3:ief)’;yl=y (ies+2:ief-1)’;
x2=x(ies+2:ief-1)';y2=y(ies+l:ief-2)';
table=(x1,x2,y1l,vy2];
save jumtab2 table pm
end
else
save batnid
end
elseif i==5
clc;clg;clear k xp yp ymp;
sl=input (’starting point of plot '):
s2=input (' final point of plot ’});
k=sl:s2;
xp=x(sl:s2);
yp=y(sl:s2);
ymp=ym(sl:s2);
plot(k,xp’',’'-",k,yp’,’0’ ,k,ymp’,’*") % plots
grid
title('true y , est. ym , input x versus time t’)
xlabel('time t’)
ylabel('x,ylo,ym|*")
pause
pl=input (' store the plots? yes=1, no=default ')
if pl==1
meta ploide
end
"mean square errors’
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erols,erwls
pause
else
'wrong number given,reset your choice 1,2,3,4,5,6'
end
end
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format compact

clc; clg; % clear windows.

% the script stareted 7/4/1989.

% this studies jumping effect of a nonlinear system which
% consists of

% a second order linear dynamic and a saturation static
%
while 1

clc;

n=input (' enter>0, quit<=0");
if n<=0;break,end
*l,injtialisation ,ipt. and opt. generation’
*2,plot of opt. amp. versus freq.specified’
i=input (' your choice’):;
if i==
"set sys. para. ?'
nl=input (' yes=1,no=default’);
if nl==
damp=input (‘' damp=") ;
b=input (' break point of saturation’);
h=input (' height of saturation’);
h=h/b; clc
end
set input signal ?’
nl=input (' yes=1,no=default’):;
if nl==1
amp=input (' amplitude of sinusoid’);
rgl=input (‘min freq.’):
rg2=input (‘max freq.'’);
dr=input (‘dir. of freq. inc=1 dec=-1'):
step=input ('step of freq. change’):
sp=input (' sampling interval’);
ns=input (‘no. of samples’);
end
clear £ fr yf yfm w;
y(2)=0;y1(2)=0;y2=(];
pl=input (‘batch job, pl=1, normal pl=default’):;
if pl~=1
tl=1; t2=0;
if dr==1
t3=1;
fr(t3)=rgl-step; fl=rgl; f2=step; £3=rg2;
else
t3=ceil ((rg2-rgl)/step)+3;
fr(t3-1)=rg2+step; fl=rg2; f2=-step; f3=rgl;
step=-step;
end
for t4=f1:£2:£3
t3=dr+t3;
if dr==1
fr(t3)=£fr(t3-1)+step; £(t3-1)=£fr(t3);
else
fr(t3-1)=£fr (t3)+step; £ (t3-1)=fr(t3-1):
end
w=2*pi*f (t3-1);
for t=1:ns % one sinewave
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t2=t2+sp:
tl=t1+1;
r=amp*cos (w* (t2-sp));
x(tl)=r;
el=x(tl)-y(tl-1);
e2=el-damp*yl (tl1l-1);
if abs(e2)>1
u=sign(e2);
else
u=e2;
end
yl(tl)=sp*u+yl (£tl1l-1);
y(tl)=sp*yl(tl)+y(tl-1);

yfr(t3-1)=(abs (max (y (£1-100+1:t1)))+

abs (min (y (t1-100+1:t1))) )/ (2*amp) ;

end
else
save bajmp
end
elseif i==2
plot (x)
xlabel('time t’)
ylabel (' sys ipt’
pause
plot (y)
xlabel(‘time t')
ylabel (' sys opt’
pause

)

)

$freq

pl=input (' store the plot? yes=1,no=default’):

if pl==1
meta Jjmp2
end
plot (£, yfm)
grid
title(’sys.
xlabel (' freq.’)
ylabel (’amp.’)
pause
if pl==1
meta jmp2
end
else

freq.

respon.,'’)

'wrong number given,reset your choice’

end
end
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real sy

o oP o0 o o o0 o o

the who
while 1

clc:

n=input (‘e
if n<=0;br
’1,initial
"2,plot of

989 Jjmp.m Page 1

ear windows.
tareted 7/4/1989.
jumping effect of a nonlinear system
onsists of
d order linear dynamic and a saturation static
ngth of data (ipt and opt) has been
ed from
stem excited by Gaussian input in experiment.

a set of sinewaves is used to predicted the corresponding
output by VWLS, which the weights are calculated from

le data including experimental ocnes.

nter>0,quit<=0");

eak,end

isation ,ipt. and opt. generation’
opt. amp. versus freq.specified’

i=input (' your choice’};

if i==1

"set input signal ?°

nl=
if

end

cle
pl=input (
if pl~=1

loa

es=

est
if

els

input (' yes=1, no=default’);

nl==1

amp=input (‘amplitude of sinusoid’});
rgl=input (‘min freq.’);

rg2=input (‘max freq.’):

dr=input (‘dir. of freq. inc=1 dec=-1');
step=input ('step of freq. change’):;
sp=input (' sampling interval’); %sp=0.5 or 1.
ns=input (‘no. of samples’):; %$ns=200 or 100.

ar £ fr yf yfm w; .
‘batch job, pl=1l, normal pl=default’):;

d jdat2 %experimental data ipt/opt
length(x); %experimental data length
=eg;t2=0;

dr==1

t3=1; 4

fr(t3)=rgl-step; fl=rgl; f2=step; f3=rqg2;

e

t3=ceil ((rg2-rgl)/step) +3;
fr(t3-1)=rg2+step; fl=rg2; f2=-step; £3=rgl;
step=-step:;

end

for

td4=£f1:f2:£3
t3=dr+t3;
if dr==1
fr(t3)=fr (t3-1)+step; £(t3-1)=fr (t3):
else
fr(t3-1)=fr(t3)+step; £(t3-1)=fr(t3-1):
end
w=2*pi*f (£t3-1);
for t=1l:ns % one sinewave
est=est+1;t2=t2+sp;
r=amp*cos (w* (t2-sp)):
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x(est)=r;
[y (est),pm(est-es, :) ]=jumod(x,y,est);
end
yfm(t3-1)=(abs (max(y(est-100+1l:est)))+
abs(min(y(est-100+1l:est))) )/ (2*amp);
end
else
save bajmp
end

elseif i==2
plot (x)
xlabel ('time t’)
ylabel (‘sys ipt’)

pause
plot (y)
xlabel(‘time t')
ylabel (' sys opt’)
pause
pl=input (' store the plot? yes=1,no=default’);
if pl==
meta jmp2
end
plot (£, yfm)
grid
title(’sys. freq. respon.’)
xlabel (' freq.’)
ylabel (‘amp.’)
pause
if pl==1
meta jmp2

end

else

‘wrong number given,reset your choice’
end
end
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function x = ingen(inp,is,ifi)
format compact

clc;clg:; % clear windows

$ the function started 27/6/1988.

% generate four input signals

% inp = 1, sinusoid;

% = 2, Gaussian;

% = 3, uniform;

% = 4, step;

% = 5, random amplitude steps.
%

% is = start input point

% ifi = final input point

% input signal is stored in x(:,1).

clear x; x(ifi)=0;
if inp==1
a=input (‘give amplitude of sinusoid ’);
p=input (‘give period of sinusoid(>2) ’);
temp=2*pi/p;
for t=is:ifi
X(t)=a*sin((t-is)*temp)+x(t);
end
elseif inp==
rand (' normal’)
v=input (‘give variance (>0) ’);
v=sqrt (v);
for t=is:ifi
x(t)=v*rand+x(t);
end
elseif inp==3
rand (‘uniform’)
v=input ('give variance (>0)’);
v=1*v;
for t=is:ifi
x(t)=v*(rand-.5)+x(t):
end
elseif inp==4
a=input (‘give step amplitude ’);
for t=is:is+4
x(t)=0.+x(t);
end
for t=is+5:ifi
x(t)=a+x(t):
end
elseif inp==5
v=-1.,0;
max=-1.0;
while v<= 0. | max<= 0.
v=input ('give variance of step >0');
max=input (' 0< max. integer step interval <50
end
v=sqgrt (v);
t3=is;
for t2=1:ifi-is+1
a=v*rand;
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rand(‘uniform’)
l=max*rand+1;
rand (/' normal’)
if 11
1=1;
end
if 1>max
l=max:;
end
for t4=t3:t3+1-1
if td<= ifi
x(td)=a+x(t4):;
end
end
t3=t3+1;
end
else
‘wrong number given , reset input signal type 1,2,3,4’
end
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function [y,c] = sysout(sys,is,ifi,x)

format compact

clc; % clear windows

% the funtion started 28/6/1988.

% generate system ocutput from predetermined input signal and system.

% sys = 1, linear [ bO+bl*z(-1)1/[a0+al*z(-1)+a2*z(-2)];

% = 2, output=input”2;

% = 3, first order lag after hysteresis

&F 0 mmmeee—————

% | 3 —=]=== |  memmmm———————————

% X =1 1 i1 | I I Yy

% ==>| wmm|mm——- | ===>1(1/8)/[1+.9%z(-1) ]} |-——=>"

% I | I

% |=3-==|== |  mmme—mmmmm—meeee

& e

%

%

%

% = 4, complex nonlinear. = -———————e——-

% -1 | {=mmmm——

s mmmmmee————— [ | .8%z(-1) | I

% I 1 === | = !

% x(t) | I/ | v | y(t)
$ 00 ————— >| il e B e T Xemm==>

% I I /1 | ~

% | | ==== |-1 I I

% | = |

% | 1 I

% I e | I

% I [ ! \ |

% |==>|.3sin(x(t-1)) |~==>F-——mmmemm

% | | X’ multiplication

¥ 0000000 mmm—emme—o———ee "+’ summation

%

%

% = 5, nonlinear closed-loop system

%

%

% ____________

% I 1| --|

% x(t) | I/ | I ! I | y (t)
% ——+-+=->| | m———— | ====>| 1l/s |=-===> | 1l/s |-==--- >
% A /1 | | N |
% === 1=-1 I e | e I
% I I I
% || | ==—————- ! I I
% | - | damp |&--==-=m————-— !
% I I | - I
% F mmmeeee— |
% __________________________________________________
%

% is = starting point of data series.

% ifi = final point of data series.

% x(:,1) = input signal generated from function ingen.

% c(:,1) = linear system parameters ,

% ¢c(1,1)=b0,c(2,1)=bl,c(3,1)=al0,c(4,1)=al,c(5,1)=a2.
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%
% system output is stored in y(:,1).
%
clear y; y(1,ifi)=0.;
if sys==
'’ [bO0+bl*z (-1)]/[a0+al*z (-1)+a2*z (~-2) ]’
c(1l,1)=input (‘b0’);c(2,1)=input (‘bl’);c(3,1)=input ('ald’);
c(4,l)=input(’al’);:;c(5,1)=input (‘a2’);
ga=c(1,1)/c(3,1):gb=c(2,1)/c(3,1):9c=c(4,1)/c(3,1):
gd=c (5, 1)/c(3,1);
y(is)=ga*x(is);
y(is+l)=ga*x (is+1l)+gb*x(is)-gc*y(is);
for t=is+2:ifi
y (t)=ga*x(t)+gb*x(t-1) -gc*y(t-1) -gd*y (t-2);
end
elseif sys==2
for t=is:ifi
y(t)y=x(t)"2;
end
elseif abs(sys)==3
for t=is:ifi
if abs(x(t))>=1.0 % hysteresis
sys=3*sign(x(t}):
end
if t==is
y(t)=.9%y(t)+sys/8;
else
y(t)=.9*y(t-1)+sys/8; % first order lag
end
end
elseif abs(sys)==4
for t=is:ifi
temp=x(t);
if abs(temp)>1.
temp=sign (temp) ;
end
if t==is
y(t)=(.8*y(t)+temp) *(1l.+.3*sin(x(t))):
else
y(t)=(.8*y(t-1)+temp) *(1.+.3*sin(x(t-1)));
end -
end
elseif sys==5
clear yl;yl(l+is)=0;
y(1+is)=0;
damp=input (' damp="') ;
h=1;
for t=is+1l:1ifi
el=x(t)-y(t-1);
e2=el-damp*yl(t-1):
if abs(e2)>1
u=sign(e2);
else
u=e2;
end
yl(t)=0.5%u+yl (t-1);
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y(t)=0.5*yl(t)+y(t-1);
end
else
"wrong number given,reset system type 1,2,3,4’
end
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function [yml,pm,eo,ew]=model2(iprog,is,ifi,x,y)

format compact

clc;clg; % clear windows.

the function started 29/6/1988.

obtain model parameters by a function fit (n,iwp,noise,x,y).

generate model response
ym(t)=b0*x(t)+bl*x(t-1)-al*ym(t-1)-a2*ym(t-2)+cO,

or one step prediction
ym(t)=b0*x(t)+b2*x(t-1)~al*y(t-1)-a2*y(t-2)+cO0.

compare WLS with OLS by mean square error between system

output and model output or predictive output.

iprog = 1 , one step prediction;
= 2 , model response.
is = starting point of data series.
ifi = final point of data series.
x = input signal
y = system output.

model output or one step predictive output by WLS and OLS
is stored in ym(:,1) and ys(:,1l) respectively

estimated parameters by WLS and OLS are stored in pm{1:5,:)
and ps{l1:5,1) respectively.

t=1 2 3 ...k

b0 b0 b0...b0 b0
bl bl bl...bl bl
pm(l:5,t)= al al al...al ps(l:5,1)=al
a2 a2 a2...az2 a2
c0 ¢0 ¢0...c0 c0

0P 0 P O P IO A I I I I I IO I I I I I R I I I N M K A K N N

clear ym yml; ym(1l,4000)=0; yml=ym;
ys=ym; ysl=yml;
temp=(0.,0.,0.,0.,0.17;
pm(:,4000)=temp;
ps= fit (ifi,2,1,x,y); % obtain OLS parameters.
for t=is+3:ifi
if t==is+3
for tl=1:2
ym(tl)=y (tl) ;yml(tl)=y(tl);
ys(tl)=y(tl);ysl(tl)=y(tl);
errsqg(tl)=0;erxr(tl)=0;
end
errsq(3)=0;
end ,
pmli= fit2(t,1,1,x,y); % obtain model parameters.
pm(:,t)=pml; ,
ym(t)=pm(l,t)*x(t)+pm(2,t)*x(t-1) ...
-pm(3,t)*y(t-1)-pm(4,t) *y(t-2)+pm(5,t);
ys(t)=ps(1,1)*x(t)+ps(2,1) *x(t-1) ...
-ps(3,1) *y(t-1)-ps(4,1) *y(t-2)+ps(5,1);
yml(t)=pm(1l,t)*x(t)+pm(2,t)*x(t-1) ...
-pm(3,t)*yml(t-1)-pm(4,t)*yml (t-2)+pm(5,t);
ysl(t)=ps(l,1)*x(t)+ps(2,1)*x(t-1)...
-ps(3,1) *ysl(t-1)-ps(4,1) *ysl(t-2)+ps(5,1);
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errsqg(l)=(y(t)-ys(t)) "2+errsq(l);
errsq(2)=(y(t)-ym(t))"2+errsq(2);
err(l)=(y(t)-ysl(t))"2+erx(l);
err (2)=(y(t)-yml(t) )" 2+erxr(2);
errsg(3)=y(t)*2+errsq(3):;
end
eo=errsq(l)/errsq(3); % OLS MSE for prediction
ew=errsq(2)/errsq(3); % WLS MSE for prediction
eol=err (l) /errsq(3); % OLS MSE for model response
ewl=err (2)/errsq(3); % WLS MSE for model response
eo=[eo0,eo0l) ;ew=[ew,ewl];
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function p=£fit2(n,iwp,noise,x,y)
format compact
clc;clg; % clear windows

OP OP O 0P P o0 dP OO P JP OO IO P JP O° o oP o

the function started 29/6/1988.

estimate model parameters (b0,bl,al,a2,c0) using data up
to time n-1.

system is approximated by model
y{t)=b0*x(t)+bl*x(t-1)-al*y(t-1)-~a2*y(t-2)+c0

weighted Least Squares or ordinary LS estimator is used.

n = system present time.
iwp = 1 , weighted LS estimator;
= default , ordinary LS estimator.
noise 0 , noise free at input:;
1 , noise superposed on input.

estimated parameters are stored in p(:,1)=[b0,bl,al,a2,c0]’.

first find weights stored in w(:,1),
model state sl=x(n),s2=x(n-1),s3=y(n-1),s4=y(n-2)

z=[x(3:n-1)’,x(2:n-2)',y(2:n-2)',y(1:n-3)"];

sS=

[x(n),x(n-1),y(n-1),y(n-2)1;

tmp=ones(n-3,1);
al=(z(:,2),2(:,2),-2z(:,3),-2(:,4),tmp]";

if iwp==1

%

wx=(max (x(l:n))=-min(x(1l:n)))"2;wx=1/wx; %scaling
wy=(max(y(l:n-1))-min(y(1l:n-1)))"2;wy=1/wy;
wsc=[wX, WX, Wy, Wyl ;ws=tmp*wsc;

s=tmp*s; e=z-s; e=e.*Ws;
w=sum(e’ ."2);
i=find(w<=.0001); [nl,n2}=size(i);
for t=1:n2
w(i(t))=.0001;
end
w=tmp’ ./w;
for noise free case omit second limit on weight.
if noise==1
av=sum(w)/ (n-4) ;
temp=100*av;
i=find (w>temp) ;
(nl,n2)=size (i)
for t=1:n2
w(i(t))=temp;
end
end

else

w=tmp’; % ordinary weights.

end

%

build up matrices.

sw=sqrt (w) ;
twl=[SwW;SwW;SW;SwW;SW];
bl=al;

al=twl.*al; a=al*al’;
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ty=y(3:n-1)’.*w’; b=bl*ty;

p=a\b; % obtain model parameters.
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%
%
%
%
%
%
%
%
%
%
%
%
%
%
£

e

unction [ym,pm]=jumod(x,y,ifi)
ormat compact
lc % clear windows.
the function started 29/6/1988.
obtain model parameters by a function jfit(n,iwp,noise,x,y).
generate model response
ym(t)=b0*x(t)+bl*x(t-1)-al*ym(t-1)-a2*ym(t-2)+cO
to predict jump resonance characteristics.
is = starting point of model prediction.
ifi = final point of model prediction.
x = input signal
y = system output.

model output obtained by VWLS is stored in ym.

estimated parameters by VWLS is stored in pm(l:5,:).

t=1 2 3 ...k

b0 b0 b0...b0
bl bl bl...bl
pm{(l:5,t)= al al al...al
a2 a2 a2...a2
c0 ¢c0 c0...c0

or t=ifi:ifi
pml=jfit(t,1l,%,y); % obtain model parameters.
pm=pml’ ;
% one step prediction.
ym=pm (1) *x (t) +pm(2) *x (t=-1) -pm(3) *y (t-1) -pm(4) *y (£~2) +pm(5) ;
nd
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function p=jfit2(n,noise, x,vy)
format compact
clc % clear windows

00 o P IO O° O O° I OO O I° O O O IO JdO IO o°

Z=
S=

the function started 29/6/1988.

estimate model parameters(b0,bl,al,a2,c0)

using data up to time n-1.

system is approximated by model

y(t)=b0*x (t)+bl*x(t-1)-al*y(t-1)-a2*y (t-2)+c0

Weighted Least Squares or ordinary LS estimator is used.

n = system present time.
iwp = 1 , weighted LS estimator:
= default , ordinary LS estimator.
noise 0 , noise free at input;
1 , noise superposed on input.

estimated parameters are stored in p(:,1)={b0,bl,al,a2,c0]’.

first find weights stored in w(:,1),
model state sl=x(n),s2=x(n-1),s3=y(n-1),sd4=y(n-2)

[x(3:n-1)7,x(2:n=-2)",y(2:n-2)",y(1:n=-3)"];
(x(n),x(n-1),y(n-1),y(n=2)];

tmp=ones (n-3,1);
al=[(z(:,1),2z(:,2),-2(:,3),-2z(:,4),tmp]’;

%

%

s=tmp*s; e=z-s; w=sum(e’."2);
i=find (w<=.0001); [nl,n2}=size(i);
for t=1:n2
w(i(t))=.0001;
end
w=tmp’ ./w;
for noise free case omit second limit on weight.
if noise==1
av=sum(w) / (n-4);
temp=100*av;
i=find (w>temp) ;
[nl,n2)=size(i):
for t=1:n2
w(i(t))=temp;
end
end
build up matrices.

sw=sqgrt (w) ;
twl=[Sw;SW;SW;SW;SwW];
bl=al;

al=twl,*al; a=al*al’;
ty=y(3:n-1)’.*w’; b=bl*ty:;

p=a\b; % obtain model parameters.
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format compact
clc;clg; % clear windows.
% the script started 15/3/1989.

% this program is used to study General Predictive Control
% in NI system, which the plant can be modelled as
% Hammerstein one. the GPC strategy is shown as follows,
% the scheme is to obtain x by linear GPC design, and then
$ to calculate u by a root-solver, therefore this is
% an indirect design methcod.
%
% ——
% --->|Con.Desi|<~==-~- | Estij<—==——=o-mmmmmmommm——m
% I [ | | mat | |D |
% [ | | or | v I
% | ! I ! I I |
% ! | ~ I I |
% | I ! I I
% I _Vv | | |
% W I (O I IX | o I Y
$ ---|-0-->| Contro. |----|-| NL |--| B/A |--0-————- | ——=>
% ~ | I ! I I |
% I I
% | I
% | I
% f I
%
while 1
cle:;

n=input (‘n>0 enter,n<=0 quit ’);
if n<=0;break,end
"l,initialisation’
’2,process running’
’3,plots’
i=input (/your choice ’):
if i==]1
clc;clg;
ns=input (' lenght of sample’);
‘nl part of Hammerstein model,1,2'
nl=input (‘nll=al+u+a2u*2+a3u”3;nl2=u+al3u*3’);
'linear part of Hammerstein model,a,b’
na=input (' order of a=l+alq(-1l)+...+anaqg(-na}’);
for i=l:na+l
a(i)=input(’'=")
end
nb=input (‘' order of b=b0+blg(-1)+...+bnbg(-nb)’);
for i=1l:nb+l
b(i)=input ('=")
end .
"settings of ERLS estimator’
lamd=input (/' forgetting factor’);
clec,
temp=input (‘' initial values of normal matrix’);
nm=3* (nb+1) +na+1;
p=temp*eye (nm) ;
v=input (' noise variance’);
v=gqrt (v);
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'settings of controller’
cl=input (‘' control weighting’);
n2=input ('max. output horizon’):
nu=input (' control horizon’);
td=input ('time delay’):
dn=input (‘default no. of sample at start >=10");
’settings of root-solver’
¢3=input (’derivative mornitoring factor’)
c4=input (' root solution accuracy’)
ite=20*ones (1,20);itd=ite(1:10):
w(l:10)=itd; %settings of setpoint sequence
temp(1l:20)=ite;temp(21:40)=3*ite;
temp (41:60)=ite;temp(61:80)=0*ite;
while length(w)<ns
w=[w,temp]}:
end
w=w (l:ns+n2);
crot=[c3,cd4}:x=zeros(1,4);y=x;du=zeros(1l,dn+l);
ab=[b,a) ;pm=zeros (1,nm) ;pm(1)=b (1) ; pm=pm’;
xm=du; phi=[]; u=zeros(l,4+dn+l);
elseif i==2
clc;clg:;
u(4)=1;rand('normal’):
for t=4:ns
cot=[nb,na,t,lamd,nl);cs=[nb,na,n2,nu,cl, t]:
[yl,x1l]=plant (u,x,y,ab,cot):
x (t)=xl;y(t)=yl+v*rand;
$generate system output y(t) and
$intermediate variable x(t)
% parameter estimates
[paset,pm,phi,pl=paraest (u,y,pm,p,cot);
bm=paset (1:nb+1); % polynomial b
am=paset (nb+2:nb+2+na); % polynomial a
% nonlinear part r
rm=paset (nb+na+3:length(paset));
if t>dn
[g,g1,wf]=diopeq(w,y,du,cs,paset);
{xml,du(t) J=condes (gl,xm(t-1),wf,n2,t);
xm(t)=xml;
utl=u(t):;
ut=root (utl, xml, rm,crot);
u(t+td)=ut;
else .
if w(t+l)>=y (t)
u(t+td)=1.0;
else
u(t+td)=-1.0;
end
end
end

elseif i==3
sp=input ('’ length of plot’):
plot ({w(l:sp)’,y(1l:sp)’])
xlabel (’time period’),ylabel(’signal magnitude’)
text(.6,.9,' reference’,’sc’)
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text(.6,.8,'- - - plant output’,’sc’)
pause
plo=input (‘' store plot=1, otherwise default’);
if plo==
meta chapb
end
plot([u(l:sp)’,xm(l:sp)’])
xlabel ('time period’),ylabel(’signal magnitude’)
text(.6,.9,' control input’,’sc’)

text(.6,.8,’'- - - intermediate variable’,’sc’)
pause
if plo==
meta chapb
end
pause

‘model para.’
am,bm,rm, pause
else
"wrong number given,reset your choice 1,2,3,4,5’
end
end



Apr 17 21:56 1989 nldbc.m Page 1

format compact
clc;clg; % clear windows.
% the script started 15/3/1989.

% this program is used to study DeadBeat Control in NL
$ system, which the plant can be modelled as Hammerstein
$ one. the DBC strategy is shown as follows, the scheme 1
$ is to obtain x by linear DBC design, and then to calculate
$ u by a root-solver, therefore this is an indirect design
% method. the scheme 2 is to obtain directly u, i.e.
% so called direct method.
%
%
% -—~>|Con.Desi [<~——=~ | Esti]j<—===m————mmmmmm————
% I ! I [ mat | ID I
% I I f oxr | _v__ I
%. I I ! | I I I
% I I ~ I I |
% I I I I [
% [ Vv I I |
% W | O X P | Y
$ ---|-0-->| Contro. |--=-|=-| NL |--|] B/A |--O------ | ===>
% ~ I I I I I |
% | !
% | I
% I |
% | I
%
while 1
clc:

n=input ('n>0 enter,n<=0 quit '};
if n<=0:break,end
'1,initialisation’
*2,process running’
’3,plots’
i=input (' your choice ’}:
if i==1
cle;clg:;
ns=input (' lenght of sample’);
'nl part of Hammerstein model, 1,2’
nl=input (‘nll=al+u+a2u*2+a3u”3;nl2=u+a3u”3’);
’linear part of Hammerstein model,a,b’
na=input (' order of a=l+alqg(-1)+...+anaq(~-na)’);
for i=1l:na+l
a(i)=input(’'=")
end
nb=input (' order of b=b0+blg(-1)+...+bnbg(-nb)’);
for i=l:nb+l
b(i)=input (‘="')
end A
’settings of ERLS estimator’
lamd=input (‘' forgetting factor’):
clc,
temp=input (’initial values of normal matrix’);
nm=3* (nb+1)+na+1;
p=temp*eye (nm) ;
v=input (' noise variance’);
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v=sqrt (v); .
'settings of controller’
cl=input (' controller magnitude clamper’);
td=input (' time delay’):;
dn=input ('default no. of sample at start >=10');
"settings of root-solver’
c3=input (' derivative mornitoring factor’):;
cd=input (' root solution accuracy’):
ite=20*ones (1,20);itd=ite(1:10);
clear w
w(l:10)=itd; %settings of setpoint sequence
temp(1:20)=ite;temp(21:40)=3*ite;
temp(41:60)=ite;temp(61:80)=0*ite;
while length (w)<ns
w=[w,temp] ;
end
w=w(l:ns):;
crot=[c3,c4d];x=zeros(l,4);y=x;du=zeros(1l,dn+l);
ab=[b,a)};pm=zeros (1,nm);pm(2)=b (1) ;pm=pm’ ;u=zeros (1l,4+dn+l);
xm=du;phi=[]; :
db=input (' indir. method=1, dir. method=2');
elseif i==2
clc:clg:
u(4)=1;rand(’normal’);
for t=4:ns
cot=[nb,na,t, lamd,nl];
[yl,x1l])=plant (u,x,y,ab,cot);
Xx(t)=x1;y(t)=yl+v*rand;
$generate system output y(t) and
$intermediate variable x(t)
% parameter estimates
[paset,pm,phi,p]=paraest (u,y,pm,p,cot);
bm=paset (1:nb+1); % polynomial b
am=paset (nb+2:nb+2+na); % polynomial a
% nonlinear part r
rm=paset (nb+na+3:1length (paset));
if t>dn
tempx=xm(t-td:-1:t-nb-td):
tempy=w(t:-1l:t-na)-y(t:-1l:t-na);
if db==1
xm(t)=dbcl (tempx, tempy,am,bm,cl);
utl=u(t):;
ut=root (utl,xm(t),rm,crot);
else _
utl=u(t);
[rc,xm(t) ]=dbc2 (tempy, pm, phi, cot) ;
ut=root (utl, xm(t),rc,crot);
if abs(ut)>cl :
ut=cl*sign (ut)
end '
end
u(t+td)=ut;
else
if w(t+l)>=y(t)
u(t+td)=1.0;
else
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u(t+td)=-1.0;
end
end
end

elseif i==3
sp=input (' length of plot’):;
plot ([w(l:sp)’,y(l:sp)’])
xlabel (‘time period’),ylabel(’signal magnitude’)

text(.6,.9,' reference’,’sc’)
text(.6,.8,’- - - plant output’,’sc’)
pause
plo=input (' store plot=1, otherwise default’);
if plo==1

meta chapb6
end

plot{[u(l:sp)’,xm(l:sp)’])
xlabel('time period’),ylabel ('signal magnitude’)

text(.6,.9,’ control input’,’sc’)
text (.6, .8,’- - - innovation variable’,’sc’)
pause
if plo==
meta chapé
end
pause

'model para.’
am,bm, rm, pause
else :
'wrong number given,reset your choice 1,2,3,4,5’
end
end
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function [yl,xl]l=plant(u,x,y,ab,c)
format compact
clc;clg;
% the function started 15/3/1989
% this function generates an output y(t) of nl system
% and intermediate variable x(t) from input u(t),
% which consists of a nonlinear element single-valued
% followed by a linar dynamic element
nb=c (1) ;na=c(2);t=c(3);:nl=c(5);
b=ab(l:nb+l);a=ab(nb+2:nb+2+na);
if nl==1
x(t)=1+u(t)-u(t)*2+.2*%u(t)"3;
else ‘
x(t)=u(t)-u(t)*3;
end
x1l=x(t):
tempx=x(t:-1l:t-nb):;tempy=y(t-1:-1:t-na);
yl=tempx*b’+tempy*a(2:na+l)’;
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function [theta,pm,phi,pl=paraest(u,y,pm,p,c)
format compact
clc:;clg; % clear windows.,
the function started 15/3/1989.
This function estimates parameters of Hammerstein
model by an Enhanced Recursive Least Square method,
Parameters estimated are stored in am(i),bm(i),
rm(i) which are separated from original
parameter vector.
nb=c (1) ;na=c(2) ;t=c(3):;lam=c(4) ;nl=c(5);
tempu=u(t:-1l:t-nb);
phi=[1, tempu, tempu.”2,tempu.”3,~y(t-1:-1:t-na)}’;
leng=length(pm’);
l=p*phi/ (1+phi’ *p*phi); %
p=(p- (p*phi*phi’ *p)/ (1+phi’ *p*phi)) /lam;
pm=pm+1* (y (t) -phi’ *pm) ;

% parameter are separated

P d0 o0 o o o

bm=pm(2:nb+2,1)’;

am(2:na+l)=pm(2+(nb+1)*3:leng,1l)’ ;am(l)=1;

theta=[]:

for i=2:4
theta=[theta;pm((i-2) *(nb+1)+2: (i-1)* (nb+1)+1,1)"'];

end

rm(2:4)=(theta*bm’/ (om*bm’}))’;

rm(l)=pm(1l)/sum(bm) ;

theta={bm,am, rm];
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function ul=root (ul,xml,r,c)
format compact
clc:clg:;
% the function started 15/3/1989
% this subprogram solves one of a polynomial roots by
% Newton-Raphson method, the root is stored in ul and u2.
i3=0;i4=0;df=1;
c3=c(1l);cd=c(2);x2=1;u2=ul; % best value c¢3=0.5, c4=1
while d£f<20
i=0:x%x2=abs (x2)+c3+1;
while abs(x2)>c3 % derivative check
i=i+1;
templ=[1l,ul,ul"2,ul”"3];
temp2=[1,2*ul,3*ul"*2]};r2=r(2:4);
xl=r*templ’ -xml;x2=r2*temp2’; '
if abs(x2)>c3 % derivative check
u2=ul-x1/x2;
ul=u2;
end
if i==5
x2=0;
end
end
ul=u2;xl=r*[1,u2,u222,u2°3]'-xml;
if abs(xl)>c4 % root accuracy check
ul=xmi/ (5+i3); u2=ul;
13=i3+5;1i4=14+1;
if i4==10
i3=-70;
end
if i4==20
df=30;
u2=xml/20;ul=u2;
end
else
df=30;
end
end
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function [g,gl,wf]=diopeq(w,y,du,c,pa)

format compact

clc;clg;

the function started 15/3/1989

this function gives solution of Diophantine equation
by recursive method . the equation has form like

1=E*A*Delt + qPow(-j)*F

where Delt = l-gPow(-1)
gPow(-j) means g to the minus j

d0 0° dP o0 o dP oP o

% the second role is to build up matrix G.
nb=c(l);na=c(2);:n2=c(3) ;nu=c(4);cl=c(S);t=c(6);
bm=pa (1:nb+1) ;am=pa (nb+2:nb+na+2) ;
e(l)=1;%initialize polynomial e
adelt (2:na+l)=am(2:na+l)-am(l:na);
adelt (1)=1;adelt (na+2)=~am(na+l);
=-adelt (2:na+2);%initialize polynomial f
eb=bm;eb (nb+1+4+n2)=0;
g3=bm(2:nb+1) ;g3 (nb+1+n2)=0;
for j=1l:n2
e(j+1)=£f(1); % e
f(l:na)=f(2:na+l)-adelt (2:na+l)*e(j+1):;% £
f (na+l)=-adelt (na+2)*e(j+1);
for j1=1:nb+1+j
if 3i>=j+1
eb(jl)=eb(jl)+£(1) *bm(jl-3j);
end
end
g2=eb (j+1 :nb+1+3j);
wf(j)=g2*du(t-1:-1l:t-nb-1)'+f*y(t:-1:t-na)’;
wE(jy=w(t+j)-wf(j);%difference between setpoint
%and predicted step response
end
g=eb(1l:n2)’; g3=g; %$build up matrix g
for i=1l:n2-1
g4 (1)=0;g4 (i+1:n2)=g3(1l:n2-1i);
g=[g,94'];
end
g=g(:,1l:nu);% consideration for control horizon
% build up matrix "g’*g-cl*unit"
unit=eye(nu) ;gl=g’ *g-cl*unit;
gl=inv(gl) *g’;
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function[xml, du)=condes (gl,xm2,wf,n2, t)
format compact
clec:clg:
the function started 15/3/1989
the function calculates the intermediate variable
x(t) by linear gpc design% procedure, which
will be used to find nlgpc controller output u(t)
by root-solving routine (root.m).
xm3=gl(1l,:)*wf’;
xml=xm2+xm3;
if abs(xml)>100
xml=100*sign (xml) ;
end
du=xml-xm2;

o0 o o o0 o
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function xml=dbcl (x,y,am,bm,cl)
format compact
clc;clg;
% the function started 20/3/1989.
% this function is used to design indirectly
% a deadbeat controller with an algorithm given by
%
% X(t)=B*X(t-k)/B(1l) + A*[W(t)-Y(t)]/B(1l)
xml=bm*x’ +am*y’ ;
bs=sum(bm) ;
if abs(bs)<=0.01
bs=0.01*sign (bs) ;
end
xml=xml/bs;
if abs(xml)>=cl
xml=cl*sign (xml) ;
end
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function [rc,xml]=dbc2 (tempy,pm,phi,c)
format compact
clc;clg;
% the function started 20/3/1989.
% this function is used to design directly
% a deadbeat controller with an algorithm given by
%
% B(1)U(t)=B*U(t-k) + A*[W(t)-Y(t)]
n=length(pm); rc=0;
nb=c (1) ;na=c(2);
am(l)=l;am(2:na+l)=pm(n-na+l:n,1)’:;
for i=1:3
rc=[rc,sum{pm(2+(i-1) *(nb+1) : 1+i* (nb+1),1)")]:
end
xml=pm(2:n-na,l1l)’ *phi(2:n-na,1l)+am*tempy’ ;
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