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Abstract
Bleher, Ott and Grebogi found numerically an interesting chaotic phenomenon
in 1989 for the scattering of a particle in a plane from a potential field with
several peaks of equal height. They claimed that when the energy E of the
particle is slightly less than the peak height Ec there is a hyperbolic suspension
of a topological Markov chain from which chaotic scattering occurs, whereas
for E > Ec there are no bounded orbits. They called the bifurcation at E = Ec

an abrupt bifurcation to chaotic scattering.
The aim of this paper is to establish a rigorous mathematical explanation

for how chaotic orbits occur via the bifurcation, from the viewpoint of the anti-
integrable limit, and to do so for a general range of chaotic scattering problems.

Mathematics Subject Classification: 37J30, 37J45, 37D05, 70H70

(Some figures may appear in colour only in the online journal)

1. Introduction

Bleher et al [7] found numerically an interesting chaotic phenomenon in 1989 when
investigating the motion of a particle scattered by a smooth planar potential field V : R

2 → R

of the form

V (x, y) = x2y2 exp(−(x2 + y2)). (1)

Content from this work may be used under the terms of the Creative Commons Attribution
3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and
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When the total energy E of the particle is slightly less than the height Ec := max(x,y)∈R2 V (x, y)

of the peaks of the potential, their study suggested that there exists a bounded hyperbolic
invariant set of the form of a suspension of a Cantor set in the energy level, on which chaotic
scattering occurs, whereas there are no bounded orbits when E > Ec. If the energy is close to
Ec with E < Ec, they proposed that the Lyapunov exponents of orbits of the return map to a
cross-section of the invariant set are of order ln(Ec −E)−1, while the box-counting dimension
of a cross-section to the invariant set is asymptotically proportional to 1/ ln(Ec − E)−1. They
called the bifurcation of dynamics at E = Ec an abrupt bifurcation [7]; it is related to a change
in the topology of the energy surface.

Potential (1) has four peaks and π/2 rotation symmetry. In [6], a potential of the form

V (x, y) = (x2 + y2)2 sin2

(
3

2
tan−1 y

x
− π

4

)
exp(−(x2 + y2)), (2)

= r

2
(r3 + y3 − 3x2y)e−r2

, where r = x2 + y2,

which has three peaks and 2π/3 rotation symmetry, was also studied and much the same
bifurcation behaviour was reported. Chaotic scattering from a similar three-hill example had
been reported earlier in [26]. The topological entropy of the return map was observed to jump
down to 0 as E increases through Ec [23].

In order to explain the aforementioned phenomenon, an argument that invokes [18, 33]
on heteroclinic intersection of stable and unstable manifolds of periodic orbits was presented
in [6]. There, they numerically verified a sufficient condition that guarantees the intersection.
Their analysis, however, falls a long way short of proving the full range of claimed behaviour. In
particular their argument does not produce the full topological Markov chain for E < Ec, only
an unspecified subset, nor does it prove hyperbolicity. Although suggestive, their argument for
no bounded orbits when E > Ec is not a proof. In the three-hill case (2) the hills are elliptic,
not circular as they assumed, and the analysis of the elliptic case in their section 7 and the later
paper [36], although again suggestive, is not complete.

In our paper we develop a general approach to proving chaotic scattering, in particular
constructing hyperbolic suspensions of topological Markov chains. Unfortunately, it still does
not prove the full extent of the claims of [6], for (1) because of the right angles between the
heteroclinic orbits along the edges of the square (a problem already recognized in [6]), and
for (2) because the hills are elliptic with their short axes pointing towards the centre whereas
we would need the long axes towards the centre to deduce abrupt formation of a topological
Markov chain. Nevertheless, we apply our method to deduce a large hyperbolic topological
Markov chain for (1) and for two modified three-hill examples.

As already made clear in [6], the dynamics in the vicinity of the peaks of the potential play
a crucial role in the bifurcation. Let O be a non-degenerate maximum point of V : R

2 → R.
The potential is said to be elliptic around O if D2V (O) has distinct eigenvalues, otherwise it
is said to be circular around O. The main difference between the dynamics around an elliptic
maximum point and a circular one is that trajectories can approach a circular peak in any
direction, but can approach an elliptic peak along the long and short axes only, and all but two
do so along the long axis. The discussion [6] was primarily for the case where the potential
is circular around the peaks, though the elliptic case was considered briefly. For a special
setting of potential with large enough non-circularity around a peak, a geometrical sufficient
condition for abrupt bifurcation was provided in [36] by analysing the dynamics near the peak,
but we shall go well beyond this. For a review on chaotic scattering and its applications,
see [30].

The point of our paper is to show that the limit E → Ec can be interpreted as a non-
degenerate anti-integrable (AI) limit (for this concept, see e.g. [1, 2, 9, 15, 17]) and that a
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rigorous analysis is possible in general. It is based on ideas of Turaev and Shilnikov from
1989 [38] for the elliptic case and on [9] for the circular case. Turaev and Shilnikov studied
Hamiltonian systems with a hyperbolic equilibrium Om with a simple pair of eigenvalues
of smallest real part and several homoclinic orbits to Om. One can describe the union of
homoclinic orbits as a bouquet. They considered the generic case in which the homoclinics
leave and return tangent to the slowest eigenvectors of Om. They showed that for energy
just below (or above, respectively) that of Om there is a subshift of trajectories continuing
all concatenations of homoclinics in the bouquet for which at each visit to Om the direction
reverses (stays the same, respectively). Although it is clear they had a strategy in mind, their
paper does not contain a proof. A variational proof was provided in [11]. An implicit function
theorem version of the result was obtained for the case of circular hills in [9], where the second
derivative at the equilibrium has rotation symmetry.

The principal point of our paper is to extend the above to an implicit function theorem proof
valid for potentials with more than one local maximum, whether circular or elliptic, provided
they all have the same height. Note that, by structural stability of the resulting subshifts, one
can perturb the heights by a small amount proportional to the difference of the energy from
their mean and still keep the chaotic sets, but cannot expect their creation to be abrupt as the
energy is varied.

To complete the analysis one would like to find conditions under which there are no
other bounded orbits. This can be done in some circumstances, though even to determine the
complete set of homoclinics and heteroclinics to the equilibria is not obvious. We give in this
paper two examples, examples 12 and 14 in section 3, for which we are able to prove that
there are no bounded orbits when E > Ec, the only bounded orbits are the heteroclinics when
E = Ec, and that there is a (bounded) hyperbolic set of chaotic orbits for all E ∈ (Ec − δ, Ec)

for some δ > 0.
The rest of this paper is organized as follows. In the next section, we specify the setting,

define AI trajectories, and state the main results. In section 3, we recall the non-degeneracy
condition for homoclinic and heteroclinic trajectories from [9], and examine their applicability
in some examples. In section 4, existence, uniqueness and smooth dependence on the energy
of trajectories inside a small neighbourhood of each equilibrium point are studied. In section 5,
we define a variational functional which depends on ε = E − Ec, and stationary points of
which give rise to trajectories of energy E for ε �= 0. In particular, when ε = 0 all stationary
points of the functional are non-degenerate and correspond to the AI-trajectories. Then we
apply the implicit function theorem to continue the AI-trajectories to true trajectories for ε �= 0.

2. Setting and main results

The systems considered in this paper are governed by a Lagrangian of the form

L : T R
2 → R, (x, v) �→ L(x, v) = 1

2 |v|2 − V (x),

where the scalar potential V is C4 in x and | . | denotes the norm associated to an inner product
〈 , 〉 on R

2. In a future paper we will consider the effects of adding a vector potential. We
could allow more general kinetic energy of the form 1

2 〈v, M(x)v〉 with M everywhere positive
definite, as arises for general constrained Lagrangian systems, e.g. double pendulum, but in
two degrees of freedom, as here, Birkhoff proved this could be reduced to the Euclidean case
by change of coordinates and rate of time [5].

The Euler–Lagrange equation is

ẍ + ∇V (x) = 0. (3)
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We assume the system has properties (V1)–(V3) as follows:

(V1) There is a finite set Omax of non-degenerate local maximum points for V with equal
height Ec, without loss of generality Ec = 0 (there can be other local maxima).

(V2) Each O ∈ Omax is a hyperbolic equilibrium. Equivalently, the Hessian of V at O is
negative definite.

(V3) There is a finite set {�k}k∈K of non-degenerate hetero/homoclinic trajectories to Omax

(non-degeneracy will be defined in section 3), for some finite index set K , e.g. of integers.

Let

p := ∂L

∂v
(x, v) = v

be the conjugate momentum. The corresponding Hamiltonian function is

H : T ∗
R

2 → R, (x, p) �→ H(x, p) = 1
2 |p|2 + V (x),

and the associated Hamilton’s equations are

ẋi = pi, ṗi = −∂V (x)

∂xi

, i = 1, 2.

The Hamiltonian is preserved under the Hamiltonian flow, so we have the energy integral

E(x, v) = 1
2 |v|2 + V (x) = constant.

The equilibrium (O, 0) possesses eigenvalues ±µ1 = ±µ1(O) and ±µ2 = ±µ2(O)

with −µ2
j the eigenvalues of the Hessian of V at O. Without loss of generality, we take

0 < µ1 � µ2. The equilibrium is a saddle–saddle equilibrium.
Devaney [20] proved that if an analytic Hamiltonian system possesses a transverse

homoclinic orbit to a saddle-focus equilibrium, then for any integer N � 2 the system admits
on the zero energy level a subsystem that is a suspension of the horseshoe with N symbols.
In the presence of a gyroscopic force, Buffoni and Séré [13] gave a variational version of
Devaney’s result using a non-degeneracy condition.

The situation for saddle–saddle equilibria is more subtle, for there are examples where
the existence of several transverse homoclinic orbits to a saddle–saddle equilibrium does not
imply chaos. See [21] and example 11 to come in section 3. To ensure the occurrence of
chaos, additional conditions have to be imposed. For instance, assuming that there are two
transverse homoclinic orbits to an elliptic maximum point and some conditions on these orbits,
Holmes [29] showed that there is an invariant set on the zero energy level on which the flow is
a suspension of a shift automorphism and being hyperbolic it persists to all nearby energies.
This contrasts with the scenario of abrupt bifurcation of chaos proposed by [7]. A variational
version of his result was given by Berti and Bolle [3]. On the other hand, [38] states that in
situations which include that of [29] on the zero energy level, the only orbits which remain
forever in a small neighbourhood of the union of the homoclinics are the homoclinics and the
equilibrium. Indeed Holmes’ chaos is bounded away from the homoclinics.

Nevertheless, [38] also states that chaos is formed for all small enough positive or negative
energies, under suitable conditions on homoclinics to a saddle–saddle. This is the direction
we follow. The key conditions are non-degeneracy (section 3) and admissibility (definition 1
below).

Let us introduce some notation. Suppose x1, x2, x3 are three points in configuration space
for which x1 is connected to x2 by a trajectory γ12 and x2 is connected to x3 by a trajectory
γ23. These trajectories are represented by curves. If there is no ambiguity, these curves are
still denoted by γ12 and γ23. We use the product path γ12 · γ23 to represent the concatenation
of trajectory curves connecting x1, x2 and x3 in such a way that it starts from x1 following
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γ12 to x2, then following γ23 to x3. With this notation, an anti-integrable (AI) trajectory is
defined to be a bi-infinite product of curves · · · · �ki−1 · �ki

· �ki+1 · · · · with ki ∈ K and subject
to limt→∞ �ki

(t) = limt→−∞ �ki+1(t) for every i ∈ Z. Define

Oei
= lim

t→∞ �ki
(t) = lim

t→−∞ �ki+1(t) ∈ Omax,

and

ξ+
ki

:= lim
t→∞

�̇ki
(t)

|�̇ki
(t)| , ξ−

ki
:= lim

t→−∞
�̇ki

(t)

|�̇ki
(t)| .

Definition 1 (Admissibility condition). An AI-trajectory · · ··�k−1 ·�k0 ·�k1 ·· · · or a bi-infinite
sequence {ki}i∈Z, ki ∈ K , is called admissible for E < 0 (respectively, E > 0) if, for every
i ∈ Z, we have

〈ξ+
ki
, ξ−

ki+1
〉 < 0 (respectively > 0) (4)

when µ1(Oei
) = µ2(Oei

). When µ1(Oei
) �= µ2(Oei

), besides (4) we require that both ξ+
ki

and
ξ−
ki+1

are tangent to the eigenvector of −µ2
1 of the Hessian of V at Oei

.

Remark 2. For µ1(Oei
) �= µ2(Oei

), the admissibility condition for E < 0 (respectively,
E > 0) admits one situation only:

〈ξ+
ki
, ξ−

ki+1
〉 = −1 (respectively = 1).

We say that a trajectory ϒ shadows the AI-trajectory · · · ·�k−1 ·�k0 ·�k1 · · · · if there exists
a sequence · · · < a−1 < b−1 < a0 < b0 < · · · such that ϒ([bi−1, ai]) is contained in a small
neighbourhood of �ki

and ϒ([ai, bi]) is in a small neighbourhood of Oei
.

The notion of non-degeneracy of a homo/heteroclinic trajectory will be recalled in
section 3. We say that an AI-trajectory is non-degenerate if it is made up from non-degenerate
homo/heteroclinic trajectories.

Theorem 3. There exists ε0 < 0 such that for any ε ∈ (ε0, 0) and any non-degenerate
AI-trajectory admissible for E < 0 there exists a unique (up to a time shift) trajectory ϒ

of energy ε shadowing such AI-trajectory.

Theorem 4. There exists ε1 > 0 such that for any ε ∈ (0, ε1) and any non-degenerate
AI-trajectory admissible for E > 0 there exists a unique (up to a time shift) trajectory ϒ

of energy ε shadowing such AI-trajectory.

The two theorems above are a corollary of a more detailed result, theorem 23.
By the admissibility condition, the collection of all AI-trajectories over {�k}k∈K admissible

for E < 0 (respectively, E > 0) determines a topological Markov graph (or subshift of finite
type) G−

K (respectively, G+
K ) with vertices belonging to K . So a bi-infinite sequence {�ki

}i∈Z

is admissible for E < 0 (respectively E > 0) if and only if the bi-infinite sequence {ki}i∈Z is
admissible by the topological Markov graph G−

K (respectively, G+
K ).

We shall see that theorem 23 implies that if ε is non-zero and sufficiently close to zero,
then there is an invariant set 	ε on the energy level {E = ε} on which the dynamics is a
suspension of the topological Markov chain G−

K or G+
K . To be precise,

Theorem 5. There exists ε0 < 0 such that for any ε0 < ε < 0 there exists a cross-section
N ∈ T R

2 on the energy level {E = ε} for which Aε := N ∩ 	ε is a uniformly hyperbolic
invariant set with Lyapunov exponents of order ln |ε|−1 for the Poincaré map Pε . The restriction
of Pε to Aε is topologically conjugate to the topological Markov chain G−

K .
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3 0

2 1

3 0
O

2 1

GK
-

GK
+

(a) (b)

1
2

03

Figure 1. Example 7: (a) homoclinic trajectories to O. (b) Corresponding topological Markov
graphs G−

K and G+
K .

Theorem 6. There exists ε1 > 0 such that for any 0 < ε < ε1 there exists a cross-section
N ∈ T R

2 on the energy level {E = ε} for which Aε := N ∩ 	ε is a uniformly hyperbolic
invariant set with Lyapunov exponents of order ln |ε|−1 for the Poincaré map Pε . The restriction
of Pε to Aε is topologically conjugate to the topological Markov chain G+

K .

We remark that, by the above two theorems and a result of Fathi [27], the upper box-
counting dimension of Aε is at most of order 1/ ln |ε|−1.

To illustrate the admissibility condition we give two examples.

Example 7. Suppose the potential V has a non-degenerate circular local maximum point O for
which V (O) = 0 with four homoclinic trajectories to O, as in figure 1. Denote the homoclinic
trajectory traversing clockwise to the right of O by �0, and the one traversing anti-clockwise to
the right of O by �1 (namely the time-reverse of �0). The other two traversing clockwise and
anti-clockwise to the left of O are denoted by �2 and �3, respectively. Let K = {0, 1, 2, 3}.
We obtain the indicated graphs G±

K of admissible transitions for energy above or below 0.

Example 8. Suppose the potential V has three non-degenerate local maxima O0, O1 and O2

with V (O0) = V (O1) = 0 and V (O2) > 0 as in figure 2. Let Omax = {O0, O1} (excluding
O2). Suppose O0 is elliptic and O1 is circular. Suppose there is a heteroclinic trajectory �0

emanating from O0 to O1 and its time-reverse �1 from O1 to O0. Assume there is a homoclinic
trajectory �2 to O1 and a ‘bounce’ time s such that �2(s) is not a critical point and that the
trajectory meets perpendicularly the level set V −1(0) at �2(s). (It is clear that �̈2(s) �= 0,
�̇2(s) = 0, and �̇2(t) �= 0 for −∞ < t �= s < ∞; also d2

dt2 V (�2(s)) < 0.) Suppose O1 has
two other homoclinic trajectories as in figure 2, �3 traversing clockwise and its time-reverse
�4. Also assume that O0 has two homoclinic trajectories going out and coming back on
opposite sides of the long axis, �5 traversing clockwise and its time-reverse �6, as in figure 2.
Let K = {0, 1, 2, 3, 4, 5, 6}. We obtain the indicated graphs G±

K of admissible transitions for
energy above or below 0.

To apply our theorems to these sorts of example, we need also to verify non-degeneracy
hypotheses on the homoclinic or heteroclinic trajectories. We will address this in the
next section.
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3

5

6

1

0

2    

4

GK
+

61 5 0

2 3 4

GK
-

0 1

5 6

2 3 4

O0

O  2

V   (0)  -1

O1

Figure 2. Example 8: heteroclinic and homoclinic trajectories to O0 and O1 and topological
Markov graphs G−

K and G+
K .

(a) (b) (c) (d) (e)

(f ) (g) (h) (i) (j) (k) (l )

Figure 3. Trajectories asymptotic to a local maximum point O. A circle or ellipse is used to
indicate whether the hyperbolic equilibrium (O, 0) ∈ T

∗
R

2 has equal or distinct eigenvalues
0 < µ1 � µ2. The long axis of the ellipse is parallel to the projection of the eigen-direction of
µ1 to the configuration plane. The circle or ellipse also indicates an equipotential curve of the
potential V .

We have mentioned that the dynamics in the vicinity of the peaks of the potential V

play a crucial role in the bifurcation. Let O ∈ Omax. Depending whether the eigenvalues of
(O, 0) ∈ T ∗

R
2 are equal or not, there are 12 possibilities for how a pair of trajectories meet at

O in the configuration plane as depicted in figure 3. Among them, (a), (b), (f ) and (g) fulfil
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− 3 − 2 − 1 0 1 2 3

− 3

− 2

− 1

0

1
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3

x

y

Figure 4. Level sets of the potential V of form (1) and heteroclinics.

the admissibility condition for E < 0. Possibilities (d), (e) and (k) fulfil the admissibility
condition for E > 0. The remaining possibilities (c), (h), (i), (j ), and (l) are excluded from
our admissibility condition. Some of them have been addressed by [37].

Now we are in a good position to look again at the results of [6, 7]. With the potential
of form (1), the straight lines {(x, y)| x = ±1}, {(x, y)| y = ±1} and {(x, y)| y = ±x} are
invariant under the Lagrangian flow (see figure 4). Thus, there are 12 heteroclinic trajectories
to the circular maximum points (±1, ±1) of the potential (circularity can be proved by direct
calculation of the quadratic part; alternatively the sides of the square form orbits and so the
reflection symmetry across the diagonal forces the quadratic part to be circular). We prove in
example 17 that these heteroclinics are non-degenerate. Hence, by theorem 5, we are able to
prove that, when E decreases through Ec = e−2, there is an abrupt bifurcation to a subshift 


on 4 symbols, say 0, 1, 2 and 3, representing the peaks.
We do not, however, obtain the whole of the subshift that Bleher et al claim [6], namely that

with forbidden words {00}, {11}, {22} and {33}, call it 
BGO . This is because the possibility
(c) (‘90-degree turn’) is not covered by our general approach (it was already perceived as
problematic in [6]). Our subshift 
 has forbidden words {00}, {11}, {22}, {33}, {012}, {123},
{230}, {301}, {032}, {321}, {210} and {103}. The topological entropy of 
BGO is ln 3, while
that of 
 is ln(1 +

√
2) (this is a relatively simple calculation, based on using symmetry to

reduce the equation for the largest eigenvalue of the adjacency matrix for the graph to that for
a 2 × 2 matrix). It is conceivable that the subshift 
BGO occurs as soon as E < Ec, because
the shape of the potential might be such that turning 90-degrees is always feasible, though it
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would be very weakly hyperbolic for E near Ec. Alternatively, it is possible, indeed likely,
that one does not obtain the whole of 
BGO straightaway. Instead, orbits are probably added
gradually to 
 as energy decreases, to make up 
BGO at some lower energy.

Potential (2) has a maximum point at (0,
√

2), and numerical computation shows that
the eigenvalues of the Hessian matrix of the potential there are approximately −1.218 02 and
−2.165 36 (indeed, it is diagonal and easy to show that Vxx �= Vyy). Hence, the maximum
point is elliptic. Its short axis points towards the centre and numerically there are heteroclinics
coming in along the long axes (look ahead to figure 8(b)). This means that we cannot deduce an
abrupt bifurcation when the energy is lowered through the critical value Ec. Instead the most
one can hope for is gradual formation of a full chaotic set as the energy goes sufficiently below
Ec so that the dynamics does not notice that the axes are the wrong way round. We did not prove
that there are heteroclinic connections, but their existence could be proved by minimizing the
Jacobi length of absolutely continuous curves connecting the maximum points inside a bounded
region, using compactness and showing the gradient vector ∇V points inwards on the boundary.
Furthermore they will come out along the long axes (as in cases (f ), (k) in figure 3) because
the short axes give only reflection symmetric orbits, which go to infinity. Presumably we could
also show that they come in on opposite sides of the maxima as our numerical computation
indicates in figure 8(b), but we did not invest time in this. Interestingly, what theorem 4 would
give in this setting is two periodic orbits for energy slightly above Ec, rotating in opposite
directions round the triangle formed by the heteroclinic connections.

In examples 12 and 14, to come in section 3, we provide two potentials that do exhibit
abrupt bifurcation. For these examples, we rigorously prove the existence and non-degeneracy
of heteroclinic trajectories, and the absence of bounded trajectories for energy above the
maximum. Other examples that could be studied using our results are those of [24, 25].

3. Non-degeneracy conditions and examples

Define

ME := {x ∈ R
2| V (x) � E} (i.e. Hill’s region)

and let

J (γ ) :=
∫ 1

0

√
2(E − V (γ (s))) |γ̇ (s)| ds (5)

be the Maupertuis functional on the set W 1,1 of absolutely continuous curves [14] γ : [0, 1] →
ME with fixed ends γ (0) and γ (1). The functional is independent of the parametrization of
the curve, and

J (γ ) =
∫

γ

〈
∂L

∂v
(x, v), v

〉
dt =

∫
〈p, dγ 〉 (6)

with v = γ̇ , if γ is parametrised in such a way that

|γ̇ |2
2

+ V (γ ) = E. (7)

The Maupertuis principle says that if γ is a trajectory of (3) of energy E, then it is a critical
point of J , and conversely, any critical point of J becomes a trajectory of energy E after
reparametrizing as in (7). Alternatively, one could restrict to energy E by considering critical
points of S = ∫ τ

0 (L + E) dt with free duration τ . This has the advantage of allowing a
more general form of Lagrangian L. Nevertheless we do not need that generality here and
furthermore the values of S and J are equal on trajectories of energy E (see section 4).
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Suppose Oe ∈ Omax. In the phase space T ∗
R

2, the hyperbolic equilibrium (Oe, 0) has
two-dimensional local stable and unstable manifolds W±

loc [31]. Since W±
loc are Lagrangian

manifolds and locally project diffeomorphically to the configuration plane [28], they are defined
by C2 generating functions S± on a sufficiently small neighbourhood Ue of Oe:

W±
loc = {

(x, p)| p = ∓∇S±(x), x ∈ Ue

}
.

The functions S± have a non-degenerate minimum at Oe; without loss of generality
S±(Oe) = 0.

For any x ∈ Ue, there exists a unique trajectory ω+
x : [0, ∞) → Ue such that ω+

x (0) = x

and limt→∞ ω+
x (t) = Oe. Similarly, there exists a unique trajectory ω−

x : (−∞, 0] → Ue such
that ω−

x (0) = x and limt→−∞ ω−
x (t) = Oe. Then,

S+(x) =
∫ ∞

0
L(ω+

x (t), ω̇
+
x (t)) dt,

S−(x) =
∫ 0

−∞
L(ω−

x (t), ω̇−
x (t)) dt.

Remark that S+(x) is equal to S−(x) due to time reversibility of the system.
For x ∈ Ue, the Maupertuis action J of the trajectory ω+

x (for energy 0) is S+(x) using (6).
Similarly that of ω−

x is S−(x).
Take δ > 0 small enough so that defining

Ue,δ = {x ∈ Ue| S±(x) < δ}, (8)

then S±(x) = δ for all x ∈ ∂Ue,δ . We write Ue = Ue,δ . Its boundary ∂Ue is C2 and for all
x ∈ ∂Ue, ω±

x intersect ∂Ue orthogonally, by the first variation formula, see [8, 12].
Suppose δ is sufficiently small and Oe0 , Oe1 ∈ Omax. Let

 = (M0, ∂Ue0 , ∂Ue1)

:= {γ̃ : [0, 1] → M0| γ̃ (0) ∈ ∂Ue0 , γ̃ (1) ∈ ∂Ue1}
be the space of absolutely continuous curves with endpoints in ∂Ue0 and ∂Ue1 .

For any γ̃ ∈  with γ̃ (0) = y and γ̃ (1) = x, define a curve γ by adding two
segments ω−

y and ω+
x . (We also need to reparametrize the curve so that γ (0) = Oe0 and

γ (1) = Oe1 .) Following [8], for any critical point γ̃ of the functional J on , the curve γ is a
hetero/homoclinic trajectory provided γ is reparametrized as (7). Moreover, J (γ ) = J (γ̃ )+2δ.

The condition that γ is non-degenerate can be expressed in the following equivalent ways.

(1) γ is a non-degenerate critical point of the Maupertuis functional J : � → R on the subset
of curves with the parametrization (7), where

� = �(M0, Oe0 , Oe1) = {γ : [0, 1] → M0| γ (0) = Oe0 , γ (1) = Oe1}
is the space of absolutely continuous curves with fixed boundary points Oe0 and Oe1 .

(2) γ is the concatenation ω−
γ̃ (0)

· γ̃ · ω+
γ̃ (1)

and γ̃ is a non-degenerate critical point of the
Maupertuis functional J :  → R on the subset of curves with the parametrization (7).

(3) Any point (γ̃ , τ ) ∈  × R
+ defines a curve ũ : [0, τ ] → M0 by ũ(t) = γ̃ (t/τ ). Let

G(ũ, τ ) =
∫ τ

0
L(ũ(t), ˙̃u(t)) dt

be its action. Then γ is non-degenerate if γ = ω−
γ̃ (0)

·γ̃ ·ω+
γ̃ (1)

and (ũ, τ ) is a non-degenerate
critical point for G.
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C = D

D

Figure 5. A simple closed curve formed by three pieces of trajectories. The angles turned are
measured anti-clockwise, similarly to the external angles of a polygon.

(4) Define u : R → M0 satisfying limt→−∞ u(t) = Oe0 and limt→∞ u(t) = Oe1 with the
parametrization (7) obtained from a critical point γ of the Maupertuis functional. Then γ

is non-degenerate if the unique (up to a scalar multiple) solution ξ of the linearized Euler–
Lagrange equation along the hetero/homoclinic trajectory u satisfying limt→±∞ ξ(t) = 0
is u̇.

We will find it convenient to use the following sufficient (but not necessary) condition
for non-degeneracy. Equipped with the Jacobi metric

√
2(E − V (x)) |dx|, geodesics in Hill’s

region ME are trajectories of the Lagrangian system with potential V and energy E, and vice
versa. The Jacobi metric is a Riemannian metric which degenerates on the boundary ∂ME .
The Gaussian curvature KE(x) of x in ME is

KE(x) = − 1

4

� ln(E − V (x))

E − V (x)

= 1

4

(
�V (x)

(E − V (x))2
+

|∇V (x)|2
(E − V (x))3

)
, (9)

where � is the Laplacian operator, that is, �V (x) means the trace of the Hessian of V . To show
a heteroclinic γ is non-degenerate it suffices that the Gaussian curvature in a neighbourhood
of {γ (t)| 0 < t < 1} be negative.

The following result, which will be useful later for proving absence of bounded trajectories
for E > Ec in examples 12 and 14, is a Jacobi metric version of the Gauss–Bonnet formula.
(See figure 5.)

Theorem 9 (The Gauss–Bonnet formula). Suppose C is a simple closed piecewise smooth
curve consisting of m pieces of trajectories (m � 1). Let θ1, θ2, . . . , θm be the angle turned at
each point where there is a velocity discontinuity. Then

±2
∫ ∫

D

KE(x)(E − V (x)) dS +
m∑

i=1

θi = ±2π,

with plus sign if C is anti-clockwise, or minus sign otherwise, where D is the region bounded
by C.

Proof. The curvature κ(x) of a trajectory is given by

κ(x) = ∇⊥V (x)

|ẋ|2

= ∇⊥V (x)

2(E − V (x))

= − 1

2
∇⊥ ln(E − V (x)),
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where ∇⊥V (x) means ∇V (x) · n̂ with n̂ the unit tangent vector perpendicular to ẋ satisfying
n̂ × ẋ = |ẋ|k̂ (in the usual (î, ĵ , k̂)-Euclidean coordinates). Suppose C = γ1 · γ2 · · · γm is a
product of m pieces of trajectories, with γ1 = {x1(t)| t0

1 � t � t1
1 }, γ2 = {x2(t)| t0

2 � t � t1
2 },

etc. Then by Green’s theorem the angle turned by these trajectories along C is ±2π −∑m
i=1 θi :

± 2π −
m∑

i=1

θi =
∫ t1

1

t0
1

κ(x1)|ẋ1| dt + · · · +
∫ t1

m

t0
m

κ(xm)|ẋm| dt

=
∫

C

κ(x) |dx|

= − 1

2

∫
C

∇⊥ ln(E − V (x)) |dx|

= ∓ 1

2

∫ ∫
D

� ln(E − V (x)) dS (10)

= ± 2
∫ ∫

D

KE(x)(E − V (x)) dS,

where dS is an element of surface area in D, and (10) takes the minus sign if the trajectory
traverses C anti-clockwise, the plus sign otherwise. �

Corollary 10. Suppose KE is non-positive.

(i) Any trajectory of energy E cannot self-intersect.
(ii) Any two distinct trajectories of energy E can intersect at most once.

Example 11.

(a) For the system of two uncoupled pendula

L((x1, x2), (ẋ1, ẋ2)) = 1
2 (ẋ2

1 + ẋ2
2 ) − (cos 2πx1 − 1) − (cos 2πx2 − 1),

(x1, x2) ∈ R
2/Z

2,

there are four non-degenerate homoclinic trajectories to (0, 0), along the sides of the
unit square in both directions, and a continuum of degenerate homoclinic orbits from one
corner to the diagonally opposite one, see [3, 11]. Any pair of non-degenerate homoclinics
joining at (0, 0) behave like case (c) or (e) in figure 3.

(b) Similarly, all except four homoclinic trajectories to (0, 0) for the Lagrangian

L((x1, x2), (ẋ1, ẋ2)) = 1
2 (ẋ2

1 + ẋ2
2 ) + x2

1 − x4
1 + 2x2

2 − 2x4
2 , (x1, x2) ∈ R

2

are degenerate. Any pair of non-degenerate homoclinic orbits joining at the origin behave
like case (h), (i), (k) or (l) in figure 3.

Example 12. The Lagrangian system with potential

V (x, y) = −3x2y + y3 − (x2 + y2)2

(see figure 6(a)) has the following properties:

(o) V has three maxima (0, 3/4), (−3
√

3/8, −3/8) and (3
√

3/8, −3/8), and they are elliptic
with long axes towards the origin.

(i) There exist precisely 6 heteroclinic trajectories between the maxima. They are confined
to the equilateral triangle with vertices the three maxima. Their connections behave like
case (g) in figure 3.
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Figure 6. (a) Level sets of the potential V in example 12 and heteroclinics forming a cusped
triangle. (b) Level sets of the curvature K27/256 with value below 100. Darker shading indicates
negative curvature, lighter shading indicates positive curvature, and the level set of zero curvature
is the three straight lines through the hilltops plus the origin. Note that for each potential hill top
there are two sectors of approach in which the curvature is positive and two in which it is negative.

0

1 2
G-

Figure 7. Markov graph G− for examples 12 and 14.

(ii) All the heteroclinic trajectories are non-degenerate.
(iii) For any energy E, all bounded trajectories are confined to the equilateral triangle.
(iv) For E > Ec = 27/256, there are no bounded trajectories.
(v) For E = Ec, the only bounded trajectories are the equilibria and heteroclinics between

them.
(vi) There is δ > 0 such that for all E ∈ (Ec − δ, Ec) there is a hyperbolic suspended subshift

corresponding to the Markov graph G− of figure 7.

Proof.

(o) To find the maxima is simple calculus. The eigenvalues of the Hessian matrix of the
potential evaluated at the maxima are −27/4 and −9/4, thus the maxima are elliptic.

(i) Minimize the Jacobi length from one maximum to another over the set of absolutely
continuous curves contained in the equilateral triangle. The minimum is achieved, by
compactness of the set. The result is a geodesic provided it does not include any segment
on the boundary. Suppose there is a segment on the lower boundary {(x, y)| |x| <

3
√

3/8, y = −3/8}. But ∂
∂y

(E − V ) < 0 in the region 4(x2 + y2)y < 3(y2 − x2)



2716 C Baesens et al

which includes the lower boundary. So we can achieve a reduction in the Jacobi length by
pushing the curve into the interior of the triangle. Because the eigenvectors of the smaller
eigenvalue point to the centre of the triangle, the heteroclinics meet at any of the maximum
points like case (g) in figure 3. The heteroclinic orbit from one maximum to another is
unique by the hyperbolicity to be shown in (ii) and the constraint (v) that they must lie in
the triangle. The six heteroclinics found numerically are illustrated in figure 6(a) (they
occur in pairs in opposite directions).

(ii) It suffices to show that the Gaussian curvature is negative in the interior of the equilateral
triangle minus the origin (which the heteroclinics do not visit). Direct calculation
shows that

K27/256(x, y) = − (x2 + y2)( 3
8 + y)( 3

4 +
√

3x − y)( 3
4 − √

3x − y)

2( 27
256 + 3x2y − y3 + (x2 + y2)2)3

.

Thus, the zero set of the curvature consists of the three straight lines through the maxima
plus the origin, and the curvature is negative inside the triangle, except at the centre. The
curvature has a singularity at the maximum points. See figure 6(b).

(iii) We show that for any E, any trajectory that leaves the equilateral triangle will go to infinity.
For the region {0 � x � −√

3y, y � −3/8}, a simple calculation shows that

∂V (x, y)

∂y
= − 3x2 + 3y2 − 4y(x2 + y2)

� − 3x2 + x2 + 4
3

8

(
x2 +

x2

3

)
(with equality only if (x, y) = (3

√
3/8, −3/8)

= 0.

So the force has negative vertical component in the region. When a particle leaves the
triangle from a point on the segment {0 � x � 3

√
3/8, y = −3/8}, the vertical

component of its velocity must be non-positive. Hence, the vertical component of the
particle’s velocity will always stay negative and bounded away from zero. Therefore, the
particle goes to infinity. (For trajectories that cross the lines {x = 0} or {y = −x/

√
3},

use the symmetry of the system.)
(iv) We have shown that K27/256(x) < 0 when x is in the interior of the equilateral triangle

minus the origin. It follows that KE(x) < 0 for all x in the triangle when E > Ec =
27/256. To see this, K27/256(x) < 0 implies from (9) that (Ec − V )�V � −|∇V |2 at
x, which implies that (E − V )�V < −|∇V |2 at x for all E > Ec (because Ec > V (x)

so �V < 0). Suppose there is a bounded trajectory γ . It has to lie within the triangle,
so must have an accumulation point in phase space (since the part of the energy level that
projects to the configuration space in the triangle is compact). The accumulation point
cannot be an equilibrium because E > Ec. This implies that there is µ � 0 and t1 < t2
such that max{|γ (t2) − γ (t1)|, |γ̇ (t2) − γ̇ (t1)|} < µ (the velocity at γ (t1) and γ (t2) are
in almost the same direction). If µ is zero, γ is a periodic trajectory, contradicting (i) of
corollary 10. If µ is not zero, one can take µ sufficiently small so that there is a segment
ν of another trajectory connecting γ (t1) and γ (t2). (This can be done since E > Ec.)
The two segments {γ (t)| t1 � t � t2} and ν form a simple closed curve since γ cannot
self-intersect (by (i) of corollary 10). But, this contradicts (ii) of the corollary. (Remark:
alternatively, one can prove this assertion by proposition 13.)

(v) The equilateral triangle can be decomposed into six right triangles of the same area and
shape (up to translation and rotation). One of them is {0 � x � −√

3y, −3/8 � y � 0}.
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In this one, we have

∂2V

∂y∂x
(x, y) = −2x(3 + 4y) � 0,

with the last equality only when x = 0. And

∂V

∂x
(x,

−x√
3
) = −2x2

(
−

√
3 +

8

3
x

)
� 0

on the hypotenuse {(x, y)| 0 � x � 3
√

3/8,
√

3y = −x}, with the last equality only
when x = 0 or x = 3

√
3/8. This means that in the interior of the right triangle the force

always has negative horizontal component, and implies that a particle in the interior must
go to and cross the boundary of the right triangle unless it is asymptotic to the maximum
point (3

√
3/8, −3/8). If its trajectory is asymptotic to the maximum point, then consider

it in the opposite time direction. If in the opposite time direction it is also asymptotic to
a maximum point, it is a heteroclinic. It cannot be a homoclinic because then it would
contain a loop, thus it, or another homoclinic by symmetry of the system, must have a
point with zero horizontal velocity. (The case like �2 in figure 2(a) cannot happen here).
Due to the negative horizontal force, the particle cannot go the maximum point. When
the particle crosses the lower boundary {(x, y)| 0 � x � 3

√
3/8, y = −3/8}, it has to

go to infinity. When it crosses the side {(x, y)| x = 0, −3/8 � y � 0} or the hypotenuse
to another right triangle, by (ii) of corollary 10, it cannot come back to the original right
triangle. Hence, the particle will cross the segment {(x, y)| x = 0, −3/8 � y � 0}
twice or cross the boundary of the equilateral triangle. The former case contradicts (ii) of
corollary 10, while the latter results in an unbounded trajectory.
Part (vi) is a consequence of theorem 3. �

Proposition 13. For E > Ec, if there is a bounded trajectory γ in the configuration space
there is one with a self-intersection.

Proof. Let � be the phase space orbit corresponding to γ . � is bounded so take a limit
point A of � and its orbit �′. Then �′ consists of limit points of �, so is bounded. If it has
no self-intersections, take a limit point B. Denote the projections to configuration space of
all the above by the corresponding lower case letters. The velocity in configuration space
is non-zero at b because E > Ec. Take a local transverse section σ through b. Then γ ′

cuts σ repeatedly and these intersections are themselves limit points of γ . As in the proof of
the Poincaré-Bendixson theorem, successive intersections of a non-self-intersecting trajectory
with σ are monotonic and thus γ ′ forms a closed curve, which contradicts its having no
self-intersections. �

Example 14. The Lagrangian system with potential

V (x, y) = −3x2y + y3 − (x2 + y2)3

(figure 8) has the following properties:

(o) V has three maxima (0, 2−1/3), (−2−4/3
√

3, −2−4/3) and (2−4/3
√

3, −2−4/3) and they are
circular.

(i) There exist exactly six heteroclinic trajectories between the maxima and their connections
behave like case (b) in figure 3.

(ii) All the heteroclinic trajectories are non-degenerate.
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(iii) For any energy E, all bounded trajectories are confined to the equilateral triangle with
vertices the three maxima.

(iv) For E > Ec = 1/4, there are no bounded trajectories.
(v) For E = Ec, the only bounded trajectories are the equilibria and the heteroclinics between

them.
(vi) There is δ > 0 such that for all E ∈ (Ec − δ, Ec) there is a hyperbolic suspended subshift

based on the graph of figure 7.

Proof.

(o) To find the maxima is simple calculus. The eigenvalues of the Hessian of the potential at
the maximum points are double, equal to −9/21/3, thus the peaks are circular.

(ii) On the energy level {E = 1/4}, trajectories of the Lagrangian system are geodesics of the
Jacobi metric

√
2(E − V (x, y)) |d(x, y)|. Let z = x + iy. Then in the complex z-plane

the metric can be written as ρ(z)|dz| with

ρ(z) = |
√

2z3 + i/
√

2|.
Note that the metric degenerates only at the hilltops z1 = 2−1/3eiπ/2, z2 = 2−1/3ei7π/6 and
z3 = 2−1/3ei11π/6. Furthermore, the metric ρ(z)|dz| corresponds to the Euclidean metric
|dw| in the w-plane where

w(z) =
√

2z4/4 + iz/
√

2. (11)

Since all geodesics in the w-plane with the metric |dw| are Euclidean straight lines, all
trajectories for the Lagrangian system are non-degenerate.

(i) Note that heteroclinics correspond to the straight lines joining the three points w(z1),
w(z2) and w(z3), thus can be obtained by solving the quartic equation (11) for z and
choosing the right solution. (See figure 8(a)). Points z1, z2 and z3 are located at the
vertices of an equilateral triangle. The mapping z �→ w has 2π/3 rotation symmetry, thus
w(z1), w(z2) and w(z3) are also located at the vertices of an equilateral triangle. Taking
Taylor expansion around z1, z2 and z3, we see that the heteroclinics meet at an angle of
π/6 at z1, z2 or z3.

(iii) Note that
∂

∂y
V (x, y) = −3x2 + 3y2 − 6y(x2 + y2)2,

and

− ∂

∂y
V (x, −2−4/3) = −3 × 2−1/3(x2 − 3 × 2−8/3)2.

The latter is negative except when x is at a maximum point. The second partial derivative

∂2

∂y2
V (x, y) = 6y − 6(x2 + y2)2 − 24y2(x2 + y2)

is negative when y is negative. Hence − ∂
∂y

V (x, y) in the region {(x, y)| y � −2−4/3}
is negative except at a maximum point. In particular, it is negative in the region
{(x, y)| 0 � x � −√

3y, y � −2−4/3} except at a maximum point. The rest of proof is
similar to that of (iii) of example 12.

(iv) It can be verified that the Gaussian curvature K1/4 is everywhere zero except at the
maximum points, where it has a singularity. Thus, from (9), (Ec − V )�V = −|∇V |2
everywhere. Since V < Ec except at the maxima, we deduce that �V < 0 except at the
critical points of V (the maxima and the origin), and so KE is everywhere negative when
E > 1/4 except at the origin. Then the proof goes the same as that of (iv) of example 12.
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Figure 8. (a) Level sets of the potential V in example 14 and heteroclinics. (b) Level sets of the
potential of form (2) and heteroclinics.

(v) All trajectories can be obtained from straight lines in the complex w-plane.
(vi) is a consequence of theorem 3. �

Remark 15. The logarithm of the absolute value of an analytic function is automatically
harmonic, but it is easily checked explicitly, as follows. Write ρ(z) = ρ(x + iy) as ρ̂(z, z̄). It
is easy to verify that the Gaussian curvature

K(z) = K̂(z, z̄) = −� ln ρ̂(z, z̄)

ρ̂2(z, z̄)

of any point other than z1, z2 and z3 in the complex z-plane with the metric ρ(z) |dz| is zero,
since

� ln ρ̂(z, z̄) = 4
∂2

∂z∂z̄
ln ρ̂(z, z̄)

= 2
∂2

∂z∂z̄

(
ln

(√
2z3 +

i√
2

)
+ ln

(√
2z̄3 − i√

2

))
= 0.

Remark 16. One thing we did not prove in examples 12 and 14 is that the set of bounded
orbits for E ∈ (Ec − δ, Ec) is not more than the constructed subshift. This could probably be
done with a bit more work, see [22].

Example 17. For the Lagrangian system with potential of form (1), there are 12 heteroclinic
trajectories to the four maximum points (±1, ±1). They are given by straight lines {(x, y)| −
1 � x � 1, y = ±1}, {(x, y)| x = ±1, − 1 � y � 1} and {(x, y)| − 1 � x = ±y � 1}, as
in figure 4. All of them are non-degenerate.

Proof. Along the trajectory (x∗(t), y∗(t)) from (−1, 1) to (1, 1), the orthogonal component
of the linearized Euler–Lagrange equation is

d2

dt2
(δy) = 4x2

∗ e−(x2
∗+1)δy.
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The coefficient in the right hand side of the equality is positive except when x∗ passes through
zero. Thus there are no bounded solutions other than δy = 0.

For the trajectory (x∗(t), y∗(t)) from (−1, 1) to (1, −1), put u = (x + y)/
√

2, v =
(x − y)/

√
2. Then (u∗(t), v∗(t)) is a trajectory from (0, −√

2) to (0,
√

2) in the (u, v)-plane.
The orthogonal component of the linearized Euler–Lagrange equation along (u∗(t), v∗(t)) is

d2

dt2
(δv) = u2

∗

(
1 +

u2
∗

2

)
e−u2

∗ δv.

The coefficient on the right hand side is positive except when u∗ passes through zero. Thus
there are no bounded solutions other than zero. The non-degeneracy of all other heteroclinics
follows from the symmetry of the system. �

4. Boundary value problem

This section is devoted to the dynamics of a particle moving in a small neighbourhood of a
non-degenerate local maximum Oe ∈ Omax of the potential V . We choose the neighbourhood
to be Ue = Ue,δ defined in (8). In this section all results are local, so we omit the subscript
e in the rest of this section. As in [4, 9, 11, 12, 32], lemmata 18, 19, 20 and proposition 21
stated below characterize the main features of the dynamics. For the trajectories ω±

x (t), let
z±
x (t) ∈ W±

loc be the corresponding orbits in the phase space.
Recall that for critical points of J (5), parametrized to achieve (7), J has the value

S =
∫ b

a

(L + E) dt,

where [a, b] is the corresponding time-interval.

Proof. From the parametrization (7),
√

2(E − V ) = |γ̇ | so

J =
∫ b

a

|γ̇ |2 dt

=
∫ b

a

({
1

2
|γ̇ |2 − V

}
+

{
1

2
|γ̇ |2 + V

})
dt = S. �

Lemma 18. There exists T > 0 large, such that for any x, y ∈ U and any a < b ∈ R with
b − a � T , the Lagrangian system (3) has a unique trajectory q(t) satisfying q(a) = x,
q(b) = y, and q(t) ∈ U for a � t � b. Furthermore,

• if q is written as a function of (x, y, a, b, t), then it is a C2 function; in fact, it has the
phase space representation

(q(t), p(t)) = z+
x(t − a) + z−

y (t − b) + φ(x, y, a, b, t)eµ1(a−b), (12)

where φ is a uniformly bounded C2 function to T ∗
R

2 ∼= R
4.

• the action

S(x, y, a, b) =
∫ b

a

(L(q(t), q̇(t)) + E) dt

is C2 and

S(x, y, a, b) = S+(x) + S−(y) + R(x, y, a, b)eµ1(a−b) + (b − a)E,

where R is uniformly C2 bounded as b − a → ∞ and E, depending on x, y, a, b, is the
energy of q.
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The representation (12) indicates that q(t) → ω+
x (t−a) as b → ∞, that q(t) → ω−

y (t−b)

as a → −∞, and that q(t) → O as a → −∞ and b → ∞, all uniformly on compact
time intervals. Since the cotangent planes T ∗

x U and T ∗
y U intersect transversally the invariant

manifolds W±
loc of the hyperbolic equilibrium (O, 0), lemma 18 is a consequence of lemma 19

below by putting Yv = T ∗
x U and Yu = T ∗

y U . Lemma 19 can be derived from Shilnikov’s
lemma [34] or from the strong λ-lemma [19].

Lemma 19. Let gt be the phase flow of the differential equation ż = G(z), where G is a C3

vector field on R
n and g0 ≡ id . Suppose that the origin 0 is a hyperbolic equilibrium with

nonempty local stable and unstable manifolds W±
loc, and that µ = min |Re (Spec DG(0))|. Let

Yu and Yv be C2 manifolds intersecting transversally W−
loc and W +

loc, respectively, at points zu

and zv . Then for sufficiently large T > 0 and any a < b with b − a > T , there exists a unique
solution z(t) = gt (z(a)) such that

• z(a) ∈ Yv , z(b) ∈ Yu,
• it has the representation

z(t) = gt−a(zv) + gt−b(zu) + eµ(a−b)φ(a, b, t), (13)

where φ is a uniformly C2 function to R
n. If the manifolds Yu and Yv depend smoothly on

a parameter taking values in a compact manifold, then φ is a uniformly bounded joint C2

function with that parameter.

Proof. The proof follows closely that in [12]. Set z = (u, v) and use coordinates u ∈ W−
loc,

v ∈ W +
loc in a neighbourhood N = W−

loc × W +
loc of the origin. Suppose Yu is the graph of a

function: Yu = {(u, v)| u = f (v)} and gt (Yu) ∩ N is given by {(u, v)| u = ft (v)}. Then zu =
f0(0) = f (0). The strong λ-lemma [19] says that ‖ft‖C2 � Ceµt , t � 0, for some constant
C. An analogous estimate ‖ht‖C2 � Ce−µt also holds for gt (Yv) ∩ N = {(u, v)| v = ht (u)}
for t � 0, with Yv = {(u, v)| v = h(u)} and zv = h0(0) = h(0). The boundary conditions
require z(t) = gt−a(Yv) ∩ gt−b(Yu). Thus, any point on the set {z(t)| a � t � b} satisfies
u = ft−b(v) and v = ht−a(u). By the above estimates and the implicit function theorem,
equation v = ht−a(ft−b(v)) has a unique solution v(t) = gt−a(zv) + η(a, b, t) for a � t � b.
The fact that

(0, v(t)) = gt−a(zv) + (0, ht−a(ft−b(v))) − (0, ht−a(0))

= gt−a(zv) + �+
a,b,t (v)

gives ‖�+
a,b,t‖C2 � C2eµ(a−b) and �+

a,b,t is quadratically small provided ht−a and ft−b are
small: ‖�+

a,b,t‖C2 � ‖ht−a‖C2 ‖ft−b‖C2 . Hence |η(a, b, t)| � C2eµ(a−b). A similar inequality
holds for the derivative of η in a, b, t . The representation (13) is proved for the coordinate v.
The proof is similar for the coordinate u. When Yu and Yv depend on a parameter, the estimate
above will be uniform in such a parameter. �

Let

ζ +(x) := lim
t→∞ eµ1t ω̇+

x (t), ζ−(y) := lim
t→−∞ e−µ1t ω̇−

y (t).

Lemma 20. The energy h(x, y, a, b) of the trajectory q(t) is a C2 function and has the form

h(x, y, a, b) = eµ1(a−b)
(
2

〈
ζ +(x), ζ−(y)

〉
+ h1(x, y, a, b)

)
,

where h1(x, y, a, b) converges to zero in the C2 topology as b − a → ∞.
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Note that ζ +(x) and ζ−(y) are tangent vectors at O to the asymptotic trajectories ω+
x and

ω−
y , respectively. In other words, write

ζ +(x) = |ζ +(x)| ξ+(x), ζ−(y) = |ζ−(y)| ξ−(y),

then

ξ+(x) := lim
t→∞

ω̇+
x (t)

|ω̇+
x (t)|

, and ξ−(y) := lim
t→−∞

ω̇−
y (t)

|ω̇−
y (t)| .

For equal eigenvalues µ1(O) = µ2(O), the scalar product 〈ξ+(x), ξ−(y)〉 may take any value
in [−1, 1] for a pair x and y ∈ U . When µ1(O) �= µ2(O), let W ++

loc ⊂ W +
loc and W−−

loc ⊂ W−
loc

be one-dimensional local strong stable and unstable manifolds of the hyperbolic equilibrium
(O, 0) ∈ T ∗

R
2, namely the invariant manifolds tangent to the eigenvectors with eigenvalues

±µ2 (the strong directions). The manifolds W±±
loc divide W±

loc into connected components:
W +

loc \ W ++
loc = W +

loc,R ∪ W +
loc,L, W−

loc \ W−−
loc = W−

loc,R ∪ W−
loc,L. The projections π(W±±) to

configuration space are identical and divide the neighbourhood U into connected components
U \ π(W±±

loc ) = UR ∪ UL.
When µ1 �= µ2, we have 〈ξ+(x), ξ−(y)〉 ∈ {0, ±1}. More precisely,

〈ξ+(x), ξ−(y)〉 =
{−1 if (x, y) ∈ (UR × UR) ∪ (UL × UL)

+1 if (x, y) ∈ (UR × UL) ∪ (UL × UR).

Proof of lemma 20. Since we are concerned with the dynamics only in a neighbourhood U of
O, we may shift and rotate coordinates if necessary so that the origin is located at O and in the
new coordinates (we still use x = (x1, x2) ∈ R

2 and conjugate momentum p = (p1, p2) ∈ R
2)

the Hessian matrix of V at O is diagonal and the Hamiltonian takes the form

H(x, p) = 1
2 |p|2 − 1

2ν1x
2
1 − 1

2ν2x
2
2 + O3(x), (14)

where −ν1, −ν2 are the eigenvalues of the Hessian matrix of V at O. If ν1 = ν2 the result was
proved in [9]. If ν1 �= ν2, the eigenvalues of the Hamiltonian dynamics are ±µ1, ±µ2 with
µ1 = √

ν1, µ2 = √
ν2. There exists a symplectic transformation T : (x, p) �→ (u, v) given by

(x1, x2) = T −1
1 (u, v)

=
(

u1 − µ1v1√
2ν1

,
u2 − µ2v2√

2ν2

)
+ O2(u, v),

(p1, p2) = T −1
2 (u, v)

=
(

u1 + µ1v1√
2

,
u2 + µ2v2√

2

)
+ O2(u, v),

such that W +
loc = {u = 0}, W−

loc = {v = 0}, and the Hamiltonian takes the form

H(u, v) = µ1u1v1(1 + O(u, v)) + µ2u2v2(1 + O(u, v)). (15)

If µ1 < µ2, then the coordinates can be chosen in such a way that W ++
loc = {u = 0, v1 = 0}

and W−−
loc = {u1 = 0, v = 0}. Hamilton’s equations on W−

loc have the form

u̇1 = µ1u1 + O2(u), u̇2 = µ2u2 + O2(u), (16)

where the right hand side of both equations is of class C3. By a C2 change of variables
η = f−(u) = (f1−(u), f2−(u)), they can be transformed to linear equations η̇1 = µ1η1,
η̇2 = µ2η2 unless µ2 = 2µ1 [35].

Hence if µ2 �= 2µ1 the phase flow on W−
loc takes the form

gt (u, 0) = (
f −1

− (eµ1t f1−(u), eµ2t f2−(u)), 0
)

= (
eµ1t ((f1−(u), e(µ2−µ1)tf2−(u)) + G−(u, t)), 0

)
(17)
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where G− = (G1−, G2−) with ‖G−‖C2 → 0 uniformly on W−
loc as t → −∞. Note that

f1−(u) = 0 and G1−(u, t) = 0 if u1 = 0, (18)

f2−(u) = 0 and G2−(u, t) = 0 if u2 = 0.

The representation given in (17) is called an exponential expansion in [19]. A similar
representation holds for the flow on W +

loc:

gt (0, v) = (
0, e−µ1t ((f1+(v), e−(µ2−µ1)tf2+(v)) + G+(v, t))

)
(19)

where G+ = (G1+, G2+) with ‖G+‖C2 → 0 uniformly on W +
loc as t → ∞. Note also that

f1+(v) = 0 and G1+(v, t) = 0 if v1 = 0, (20)

f2+(v) = 0 and G2+(v, t) = 0 if v2 = 0.

Moreover,

lim
t→−∞ e−µ1t gt (u, 0) = (f1−(u), lim

t→−∞ e(µ2−µ1)tf2−(u), 0, 0), (21)

lim
t→∞ eµ1t gt (0, v) = (0, 0, f1+(v), lim

t→∞ e−(µ2−µ1)tf2+(v)). (22)

Put t = (a + b)/2 in (12), by (17) and (19),(
q

(
a + b

2

)
, p

(
a + b

2

))
= eµ1(a−b)/2(f1−(u), e(µ2−µ1)(a−b)/2f2−(u),

f1+(v), e(µ2−µ1)(a−b)/2f2+(v))

+ eµ1(a−b)/2F(u, v, a, b), (23)

where u = u(b), v = v(a) and ‖F‖C2 → 0 as b − a → ∞. (Note that u �= 0 and v �= 0 for
any finite a and b.) Substituting (23) into (15), we get an estimate of the energy at q((a+b)/2):

h(x, y, a, b) = eµ1(a−b)(µ1f1−(u)f1+(v) + µ2e(µ2−µ1)(a−b)f2−(u)f2+(v) + h2)

=
{

eµ1(a−b)(µ1f1−(u)f1+(v) + µ1f2−(u)f2+(v) + h2) if µ1 = µ2

eµ1(a−b)(µ1f1−(u)f1+(v) + h3) if µ1 < µ2,

(24)

where h2 = h2(x, y, a, b) and h3 = h3(x, y, a, b) satisfying ‖h2‖C2 → 0 and ‖h3‖C2 → 0 as
b − a → ∞. Passing to the variables x, p and using (21) and (22), we get

lim
t→∞ eµ1t ω̇+

x (t) = µ1√
2
(f1+(v),

µ2

µ1
lim
t→∞ e−(µ2−µ1)tf2+(v)), (25)

lim
t→−∞ e−µ1t ω̇−

y (t) = 1√
2
(f1−(u), lim

t→−∞ e(µ2−µ1)tf2−(u)). (26)

Putting together (24)–(26), we obtain the desired result:

h(x, y, a, b) = eµ1(a−b)(2〈 lim
t→∞ eµ1t ω̇+

x (t), lim
t→−∞ e−µ1t ω̇−

y (t)〉 + h1),

where h1 = h1(x, y, a, b) equals h2 if µ1 = µ2 or h3 if µ1 < µ2.
If µ2 = 2µ1 one can linearize just the first equation of (16) as in [11], and achieve the

same result. In fact this argument works for any µ2 > µ1. �
Take small ν > 0 and let

B− = {(x, y) ∈ U 2| 〈
ζ +(x), ζ−(y)

〉
� −ν},

B+ = {(x, y) ∈ U 2| 〈
ζ +(x), ζ−(y)

〉
� ν}.

Then for (x, y) ∈ B− or B+ the function h(x, y, a, b) is monotone in a−b (for b−a sufficiently
large). Thus, solving the equation h(x, y, a, b) = ε for small ε yields a function τε(x, y), with
b − a = τε . This together with lemmata 18 and 20 gives the following result.
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Proposition 21. There exists ε0 < 0 (respectively, ε1 > 0) such that for all ε ∈ (ε0, 0)

(respectively, ε ∈ (0, ε1)):

• for any (x, y) ∈ B− (respectively, B+), there exists a unique trajectory qε
x,y : [a, b] → U

of energy ε connecting points x and y, with qε
x,y(a) = x, qε

x,y(b) = y, and b − a = τ .

• τ = τε(x, y) is a C2 function on B− (respectively, B+) and

τε(x, y) = − log |ε|
µ1

+ µ(x, y, ε),

where the function µ is uniformly bounded on B− (respectively, B+) as ε → 0.
• we have

(qε
x,y(t), p

ε
x,y(t)) = z+

x(t − a) + z−
y (t − b) + εζ(x, y, ε),

where the function ζ is uniformly C1 bounded as ε → 0.
• the action S(x, y, a, b) of the trajectory qε

x,y regarded as a function of (x, y) is C2 on B−

(respectively, B+) and

S(x, y, a, b) = S+(x) + S−(y) + εr(x, y, ε) − ε log |ε|/µ1, (27)

where r is uniformly C2 bounded on B− (respectively, B+) as ε → 0.

Remark 22. When µ1 = µ2, a pair of points x and y is contained in B− or B+ if x and y are
sufficiently bounded away from the maximum point O and if 〈ξ+(x), ξ−(y)〉 is sufficiently
bounded away from zero. When µ1 < µ2, an additional condition is needed to guarantee
that (x, y) is in B− or B+. The condition is that x must be sufficiently bounded away from
π(W ++

loc) and y must be sufficiently bounded away from π(W−−
loc ). This can be seen from (18),

(20), (25) and (26). As a matter of fact, f1−(u) takes the form f1−(u) = u1f̃1−(u), with
f̃1−(0) �= 0 [11, 12, 19, 35]. Similarly, f1+(v) = v1f̃1+(v), with f̃1+(0) �= 0. This remark
explains the definition of the admissibility condition in definition 1.

5. Shadowing hetero/homoclinic trajectories

The boundaries ∂Ue,δ of Ue,δ are C2.
Suppose that �i−1,i = �ki

, ki ∈ K , is a hetero/homoclinic trajectory such that �i−1,i (0) =
y

†
i−1 ∈ ∂Uei−1 and �i−1,i (T0) = x

†
i ∈ ∂Uei

for some T0 = T0(y
†
i−1, x

†
i ) > 0. See figure 9.

Let Wk be a small neighbourhood of �k((−∞, ∞)). By our assumption, the points y
†
i−1 and

x
†
i are not conjugate to each other on the fixed energy level {E = 0}. Then by the implicit

function theorem, there are neighbourhoods �yi−1 of y
†
i−1 in ∂Uei−1 , �xi

of x
†
i in ∂Uei

, and
there are ε0 < 0 < ε1 such that for all ε0 < ε < ε1 any points yi−1 in �yi−1 ⊂ ∂Uei−1 and
xi in �xi

⊂ ∂Uei
can be connected by a unique trajectory qi−1,i : [0, Tε] → Wki

of energy ε

satisfying qi−1,i (0) = yi−1 and qi−1,i (Tε) = xi for some Tε = Tε(yi−1, xi) > 0. If qi−1,i and
Tε are regarded as functions of (yi−1, xi, ε), then they depend C2 on their variables.

Theorem 23. There exists ε0 < 0 (respectively, ε1 > 0) such that for any ε0 < ε < 0
(respectively, 0 < ε < ε1) and any sequence of hetero/homoclinic trajectories {�ki

}i∈Z

admissible for E < 0 (respectively, E > 0) the system admits a unique (up to time shift)
trajectory ϒ : R → Mε ∩ (

⋃
k∈K Wk) of energy ε and a sequence · · · < a−1 < b−1 < a0 <

b0 < · · · such that for all i ∈ Z

• ϒ([bi−1, ai]) ⊂ Wki
, ϒ(bi−1) ∈ �yi−1 , ϒ(ai) ∈ �xi

, and ϒ([ai, bi]) ⊂ Uei
.
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Figure 9. Decomposition of paths into segments inside neighbourhoods of the maxima and
segments between them.

More precisely,

• ai − bi−1 = Tε(ϒ(bi−1), ϒ(ai)),
• ϒ(t) = qi−1,i (t − bi−1) for bi−1 � t � ai ,
• ϒ(t) = qε

ϒ(ai ),ϒ(bi )
(t) for ai � t � bi , with bi − ai = τε(ϒ(ai), ϒ(bi)).

As ε → 0, ϒ(bi−1) → y
†
i−1, ϒ(ai) → x

†
i , and ai − bi−1 → T0(y

†
i−1, x

†
i ).

Theorem 23 implies that there is an invariant set 	ε on the energy level {E = ε} on which
the system is a suspension of the topological Markov chain G−

K or G+
K (i.e. theorems 5 and 6).

To this end, we shall obtain a more detailed result first. We take the cross section
N ∈ T R

2 described in theorem 5 to be the annuli whose projection to the configuration
space is

⋃
Oe∈Omax

∂Ue. That is, we require that if (x, v) ∈ N then x belongs to some ∂Ue,
|v| = √

2(ε − V (x)), and the inner product of the velocity vector with the inner normal of
∂Ue is positive. The Lagrangian flow induces a map (the Poincaré map) Pε on a subset of N :

Pε : (xi, vi) �→ (xi+1, vi+1). (28)

The meaning of Pε is that if xi , vi are the position and velocity with which a particle enters⋃
Oe∈Omax

Ue then xi+1, vi+1 are the next position and velocity with which it enters
⋃

Oe∈Omax
Ue.

Suppose the corresponding orbits of the hetero/homoclinic trajectories {�k}k∈K in the
phase space T R

2 intersect N at a set A0:

A0 = {
(x(k), v(k))

}
k∈K

. (29)

(We can take all Ue sufficiently small so that N and (�k, �̇k) intersect at only one point for each
k.) Define two topological Markov chains 
−

A0
and 
+

A0
, which are respectively topologically

conjugate to the subshift with graphs G−
K and G+

K , by


±
A0

:= {{(x†
i , v

†
i )}i∈Z | (x†

i , v
†
i ) = (x(ki ), v(ki )), ki ∈ K,

ki �→ ki+1 complying with the graph G−
K or G+

K for all i ∈ Z}. (30)
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Let P±
0 be the subshift 
±

A0
→ 
±

A0
,

(x
†
i , v

†
i ) �→ (x

†
i+1, v

†
i+1). (31)

Proposition 24. Let the sequence {(x†
i , v

†
i ) ∈ A0}i∈Z be an orbit of the map P−

0 (respectively,
P+

0 ). Then there are ε0 < 0 < ε1 so that for any ε ∈ (ε0, 0) (respectively, (0, ε1)) there exists
a unique sequence {(x∗

i (ε), v∗
i (ε))}i∈Z which is a hyperbolic orbit of the map Pε such that

for every i, (x∗
i (ε), v∗

i (ε)) is C1 in ε, uniformly in i, and x∗
i (ε) ∈ �xi

, limε→0 x∗
i (ε) = x

†
i ,

limε→0 v∗
i (ε) = v

†
i .

Define the following action function on �yi−1 × �xi
:

Sε(yi−1, xi) :=
∫ Tε(yi−1,xi )

0

(
L(qi−1,i (t), q̇i−1,i (t)) + ε

)
dt.

The function Sε is jointly C2 in (yi−1, xi) and ε, and satisfies

dSε(yi−1, xi) = −〈p+
yi−1

, dyi−1〉 + 〈p−
xi
, dxi〉

with p+
yi−1

:= v+
yi−1

:= q̇i−1,i (0), p−
xi

:= v−
xi

:= q̇i−1,i (Tε).

We denote the sequence {(y†
i−1, x

†
i )}i∈Z determined by an AI-trajectory by {z†

i }i∈Z = z† ∈
Z, where

Z :=
∏
i∈Z

(
�yi−1 × �xi

)
,

is an open set of
∏

i∈Z
(∂Uei−1 × ∂Uei

) endowed with the supremum norm. The Jacobi length
of a concatenation is the formal sum∑

i∈Z

Sε(yi−1, xi) + S(xi, yi, 0, τε(xi, yi)).

Rewrite this (which does not change the critical points) by adding and subtracting
∑

i∈Z
S+(xi)+

S−(yi) and subtracting the constant term
∑

i∈Z
− ε log |ε|

µ1(Oei
)
, to obtain, using (27), the formal

functional

W(z, ε) =
∑

i

wε(yi−1, xi) + εr(xi, yi, ε)

with

wε(yi−1, xi) = S−(yi−1) + Sε(yi−1, xi) + S+(xi).

Note that since xi ∈ ∂Uei
then S+(xi) = δ, and similarly S−(yi) = δ, but we write hε more

generally in case one might prefer to take different curves around Oei
from ∂Uei

. Further, we
define a map

F : Z × R → l∞,

(z, ε) �→ {Fi(z, ε)}i∈Z,

where l∞ is the subspace of (R2 × R
2)Z with bounded supremum norm and Fi = Dzi

W .
(Remark: although the value of W may be infinite due to the summation over all i ∈ Z,
the definition of Fi makes sense because the derivative is taken with respect to zi (not with
respect to z) and there are only finitely many terms having variable zi in the summation.) It
is not difficult to see that F is a C1 function. By our construction, z† is the only solution for
F(z, 0) = 0 and corresponds to an admissible sequence of hetero/homoclinic trajectories (i.e.
an AI-trajectory) associated with z†.
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Proposition 25. For slightly negative or positive ε, a point z∗(ε) = z∗ = {(y∗
i−1, x

∗
i )}i∈Z

which is a zero of F(·, ε) corresponds to a trajectory ϒ of energy ε.

Proof. This is Maupertuis’s principle. It can be checked by differentiation. �

Lemma 26. For each i ∈ Z, the function Fi(·, 0) on �yi−1 × �xi
has a non-degenerate zero

at z
†
i = (y

†
i−1, x

†
i ).

Proof. Fi((yi−1, xi), 0) is the derivative of the sum of actions

w0(yi−1, xi) = S−(yi−1) + S0(yi−1, xi) + S+(xi)

which is the Jacobi length from Oei−1 to Oei
via the points yi−1, xi . In addition, �i−1,i (≡ �ki

)

is the concatenation ω−
yi−1

· qyi−1,xi
· ω+

xi
. Hence a zero of Fi(·, 0) is a critical point of the

action functional that is restricted to a finite-dimensional submanifold consisting of broken
trajectories with break points yi−1 and xi connecting Oei−1 to Oei

. Thus, the lemma follows
from the assumption that �i−1,i is a non-degenerate hetero/homoclinic trajectory. �

Proof of theorem 23. Theorem 23 is a consequence of proposition 25 and lemma 26. The
sequence of hetero/homoclinic trajectories {�ki

}i∈Z corresponds to a non-degenerate zero of
F(·, 0) and the implicit function theorem gives rise to a locally unique continuation provided
ε0 < ε < ε1 for some ε0 < 0 < ε1. The values of ε0 and ε1 can be chosen independent of the
sequence {�ki

}i∈Z because ki ∈ K and K is a finite set. �

Proof of proposition 24. The sequence {(x†
i , v

†
i )}i∈Z corresponds to a unique sequence

z† = {(y†
i−1, x

†
i )}i∈Z, which is a simple zero of F(·, 0). Therefore, there is a C1-function

z∗(ε) = {z∗
i (ε)}i∈Z = {(y∗

i−1(ε), x
∗
i (ε)}i∈Z in the space Z such that F(z∗(ε), ε) = 0 if

ε0 < ε < ε1 for some ε0 < 0 < ε1 by lemma 26 and the implicit function theorem. For
each integer i, the point ((y∗

i−1(ε), x
∗
i (ε)) corresponds C1-diffeomorphic to (x∗

i (ε), v∗
i (ε)).

The hyperbolicity follows from the uniform hyperbolicity of the set Aε in theorems 5
and 6. �

Proof of theorems 5 and 6. The set 
A0 with the product topology is a Cantor set as soon
as the corresponding graph is non-trivial (communicating with at least one branch point). The
mapping composed of the following mappings∏

i∈Z

(x
†
i , v

†
i )

f1−→
∏
i∈Z

(y
†
i−1, x

†
i )

�ε−→
∏
i∈Z

(y∗
i−1(ε), x

∗
i (ε))

f2−→
∏
i∈Z

(x∗
i (ε), v∗

i (ε))

is continuous in the product topologies because f1, �ε and f2 are all continuous (see, for
example [16]). The projection

∏
i∈Z

(x∗
i (ε), v∗

i (ε))
π−→ (x∗

0 (ε), v∗
0(ε)) is also continuous. Let

gε := π ◦ f2 ◦ �ε ◦ f1. Thence the two sets

gε(
A0) := Aε

and 
A0 with the product topologies are homeomorphic to each other because all f1, �ε ,
f2 and π are injective. The homeomorphism g−1

ε is then the desired conjugacy: because
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gε ◦ P0({(x†
i , v

†
i }i∈Z) = (x∗

1 (ε), v∗
1(ε)) by the time translation invariance of the system, the

following diagram is commutative


A0 � {(x†
i , v

†
i )}i∈Z

P0−−−−→ {(x†
i+1, v

†
i+1)}i∈Z ∈ 
A0

gε

� �gε

Aε � (x∗
0 (ε), v∗

0(ε)) −−−−→
Pε

(x∗
1 (ε), v∗

1(ε)) ∈ Aε .

The proof of uniform hyperbolicity and the estimate of Lyapunov exponents are in a
similar manner to that of [10]. We were able to define W(·, ε) because any xi ∈ �xi

can be
connected to any yi ∈ �yi

by a unique (up to time shift) trajectory of energy ε provided that
the time needed to travel from xi to yi is sufficiently long, also any yi ∈ �yi

can be connected
to any xi+1 ∈ �xi+1 by a unique (up to time shift) trajectory of energy ε provided the trajectory
is near �i,i+1. Actually, given a pair xi ∈ �xi

and xi+1 ∈ �xi+1 , it determines a unique (up to
time shift) trajectory of energy ε connecting them by gluing the aforementioned two unique
trajectories because the aforementioned yi can be determined uniquely by xi and xi+1 and the
resulting trajectory has no velocity discontinuity at yi . Indeed, our non-degeneracy condition
implies that xi+1 is not conjugate to Oei

, therefore

det D2
yi
(w0(yi, xi+1)) �= 0.

Then for small ε we can locally solve the equation

Dyi
(wε(yi, xi+1) + ε r(xi, yi, ε)) = 0

for

yi = χ(xi, xi+1, ε).

So we can define

Sε(xi, xi+1) := wε(χ(xi, xi+1, ε), xi+1) + ε r(xi, χ(xi, xi+1, ε), ε).

Therefore, we reduce W(·, ε) to a functional �ε of the sequence x = {xi}i∈Z only,

�ε(x) :=
∑
i∈Z

Sε(xi, xi+1).

Critical points of �ε correspond to orbits of the symplectic map with the generating
function Sε(xi, xi+1). It was proved by Aubry et al [2] that if the generating function has
non-degenerate mixed second derivative (i.e. the twist condition) then the non-degeneracy of
a critical point of �ε is equivalent to uniform hyperbolicity of the corresponding orbit of the
associated symplectic twist map.

The Poincaré map Pε : (xi, vi) �→ (xi+1, vi+1) defined in (28) is C2, and can be
generated by

Dxi+1Sε(xi, xi+1) = vi+1, Dxi
Sε(xi, xi+1) = −vi.

Consequently, non-degeneracy of D2
xixi+1

Sε(xi, xi+1) is equivalent to boundedness of the
derivative of Pε :

‖ (
D2

xixi+1
Sε(xi, xi+1)

)−1 ‖ � Cε−1 ⇐⇒ ‖DPε(xi, vi)‖ � cε−1

for some constants C and c.
Proposition 21 implies that the time τ̃ε needed to connect xi and xi+1 is of order log |ε|−1,

the Poincaré map Pε , as a time-̃τε map induced from the Lagrangian flow, is thus uniformly
C1 bounded by c|ε|−1, where τ̃ε = τε(xi, χ(xi, xi+1, ε)) + Tε(χ(xi, xi+1, ε), xi+1). This gives
an upper bound of the Lyapunov exponents. A lower bound of this order comes from the proof
of proposition 1 of [2]. Note that the Lyapunov exponents of orbits of the topological Markov
chain depend on the eigenvalues at the maxima, and the angles turned there if circular. �
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