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The efficiency of linear and nonlinear harvesters with different types of nonlinearity is
compared. Narrow band ambient vibrations are modelled by harmonic Gaussian noise.
We show that performance of nonlinear harvesters strongly depends on both the form of
nonlinearity and the properties of the noise. Particular forms of nonlinearities which can
produce a better than linear response are identified, and these depend on the spectral
width of the harmonic noise.

Keywords: energy harvesting; hard and soft nonlinearities; bistability; narrow-band vi-
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1. Introduction

Energy harvesting from ambient vibrations attracts great attention from the sci-

entific community due to many promising applications1,2. The idea of harvesting

consists of using an auxiliary mechanical system as a source of energy and convert-

ing energy extracted from mechanical vibrations into electrical form. A piezoelectric

transducer is typically used for the conversion because of its efficiency1. Properties

of the mechanical system is the key factor defining energy efficiency of a harvester,

and the mechanical system should be correctly tuned to the properties of ambient

vibrations. The latter vary significantly and often possess random character and a

complex form3. Typically, a resonant design of harvester is implemented1, which is

based on a linear system and allows the use of analytical expressions for optimiz-

ing of harvesting efficiency (for example in Ref. 4). However, linear behaviour of
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mechanical systems is observed in a limited range of excitations, whereas degree of

nonlinearity is growing with the reduction of the size of harvesters5. Moreover, the

resonant design has a strong limitation since it targets a harmonic form of vibra-

tion. The stochasticity and/or variability of ambient vibration obliges researchers

to explore a nonlinear design, where nonlinearity of the stiffness of a mechanical

system is the main variable parameter (see Refs. 1, 6, 7 and references therein). The

benefits of nonlinear design have been demonstrated in a number of publications

where different forms of nonlinearity have been considered (e.g. in Refs. 6 and 7).

Ambient vibration in the form of a harmonic signal and broadband noise have

been applied mainly as an external source of vibrations with respect to various

nonlinear harvesters1,2. In the case of broadband vibrations, the cut-off frequency

is higher than the natural frequency of mechanical system and, therefore, the

broadband noise can be considered as white, i.e. having uniform spectral den-

sity over the entire spectral range. The noise distribution is usually modelled

as Gaussian. White Gaussian stochastic excitation on linear and non-linear har-

vesters have been considered in a number of theoretical, numerical and experi-

mental investigations8,9,10,11,12,13 and the overall outcome have been formulated

recently by Halvorsen12 as ”nonlinear harvesters are not fundamentally better than

linear ones”, but nonlinear harvesters can be tuned to out-perform linear ones if

the intensity of white noise is known and fixed. On the contrary, harmonic form

is characterised by a single delta-peak in the spectrum. A harmonic signal and

white noise represent the two opposite limits of the idealized forms of an ambient

vibration. More realistic vibration models are more complex, e.g. a harmonic form

represents a particular case of periodic vibrations, which generally may contain

harmonics and sub-harmonics of the fundamental frequency. The role of harmonics

and sub-harmonics for nonlinear designs is practically unexplored. Together with

the spectral content, random vibrations are characterised by probability distribu-

tion which also significantly changes the performance of nonlinear harvesters14. This

effect of the shape of probability distribution on efficiency of energy harvesting has

been initially explored14,9, however, it requires further comprehensive investigation.

In this manuscript we discuss the performance of nonlinear harvesters excited

by narrow-band vibrations centred around a particular frequency. As a model of

a narrow-band vibration, we consider harmonic noise16,17 which is limited by har-

monic signal and white noise. Following previous publications6,14, several types of

non-linearities in stiffness have been considered here, aiming to explore the roles of

stiffness hardening and softening as well as the effect of bistability on the perfor-

mance of the harvesters. In section 1, the model, types of nonlinearity and proper-

ties of the harmonic noise are described. Section 2 contains the results of numerical

simulations and comparative analysis of the performances of the harvesters. The

summary and conclusions are presented in the last section of the manuscript.
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Fig. 1. (a) Schematics of a piezoelectric energy harvester under base excitation f(t). (b) Shapes
of potentials UL(x) (thick solid line), UM (x) (dashed line), UB(x) (dot-dashed line), UBP (x)
(dotted line) and US(x) (thin solid line) are shown.

2. Harvester and noise models

The harvester model consists of mechanical and electrical parts (Fig. 1(a)) forming

the following three-dimensional system18

ẋ = y

ẏ = −αy − dU(x)

dx
+ χz + f(t) (2.1)

ż = −λz − κy

The Mechanical part is defined by variables x and y ≡ ẋ, and describes the dynam-

ics of a cantilever beam. Coordinate z corresponds to the electrical part and it is

proportional to the voltage arisen from the interaction between piezoceramic lay-

ers and beam bending. This interaction is characterised by parameters κ and χ; λ

describes reactivity and resistance of the electrical part. Properties of the mechan-

ical part are regulated by damping α and stiffness dU(x)/dx; U(x) is the potential

energy of the beam. The power extracted can be defined as follows:

P = ρ
1

T

∫ T

0

z2(t)dt (2.2)

where ρ corresponds to load conductivity19 and it is set to 1 (ρ = 1) for simplic-

ity. T is the time interval used to calculate the output power and the term f(t)

corresponds to ambient vibration. Values of other parameters are fixed as follows:

α = 0.02, χ = 0.05, λ = 0.05, κ = 0.518. The term dU(x)/dx = k(x) describes non-

linearity of stiffness in (2.1) and can be adjusted by changing the beam geometry

and/or by coupling the beam with external elements, e.g. magnets20. The potential

energy U(x) stored in the beam is related to the stiffness U(x) =
∫
k(x)xdx and

this potential energy (potential profile) is used here to characterize the system’s
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nonlinearity. In this way, the resonant (linear) harvester has parabolic potential

UL(x) = k0
x2

2
(2.3)

and its resonant frequency depends on the value of stiffness k0; we fix it to k0 = 1.

Monostable and bistable harvesters, which have been studied experimentally in

Refs. 18-20, can be considered as having the following potential profiles, respectively

UM (x) =
x2

2
+

x4

2

UB(x) = −x2

4
+

x4

2
(2.4)

These forms are selected to match the resonant (natural) frequency of the linear

harvester in linearized versions of the profiles. The monostable potential represents

a harvester with hard nonlinearity, whereas the bistable profile has two states (bista-

bility) and demonstrates soft nonlinearity for vibration in the vicinity of one of the

states. In order to separate these two properties of softening and bistability, two

additional potentials have been considered: a piece wise parabolic bistable potential

UPB(x) with minimized softening of nonlinearity and a monostable harvester with

soft nonlinearity US(x)

UPB(x) =


(x− 0.5)2/2 if x < −xs

−9x2/2 + c1 if |x| ≤ xs

(x+ 0.5)2/2 if x > xs

xs = 0.05 (2.5)

US(x) =

{
log[cosh(x)] if |x| < xb

x2/2 + c2 if |x| > xb
xb = 3. (2.6)

Here, c1 and c2 are constants: c1 = 5x2
s − 0.5xs + 0.125, c2 = log[cosh(xb)]x

2
b/2.

Note that softening nonlinearity in US(x) is observed in a limited range of deviation

x to avoid instability of the system. All potentials ((Fig. 1(b))) have same natural

frequency of intra-well motion: ω0 ≈ 0.988.

For modelling, a narrow-band vibration harmonic noise f(t) as an ambient

source has been applied which is an output of a second-order linear system driven

by random noise ξ(t)

f̈(t) + Γḟ(t) + ω2
hf(t) =

√
Dξ(t) . (2.7)

Here, ξ(t) is white Gaussian noise with zero mean, ⟨ξ(t)⟩ = 0 and delta-correlated

central moment, ⟨ξ(t)ξ(0)⟩ = δ(0), D is intensity of noise, Γ and ωh are parameters

defining width and location of the peak in f(t) spectrum. Intensity of the harmonic

noise is D/Γ, and spectrum Sff (ω) of the system (2.7) has the following form16

Sff (ω) =
D

2π [ω2Γ2 + (ω2 − ω2
h)

2]
, (2.8)

with a peak located at frequency ωp =
√
ω2
h − Γ2/2 and of width ∆ω ≈ Γ. This

expression is valid for an underdamped case ω2
h ≥ Γ2/2 which is considered below.
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This harmonic noise represents stochastic fluctuations of various civil structures

which normally have a distinct natural frequency. Therefore, this is a more realistic

model than white noise. Note that in the limit Γ → 0 spectrum Sff (ω) tends to

a delta-peak, i.e. the spectrum of a harmonic signal, whereas in the limit Γ ≫ ωh

function Sff (ω) becomes flat and approaches the spectrum of white noise.
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Fig. 2. Frequency response of the linear harvester, S(ω) (solid line) and spectra of harmonic
noise, S(ω) ≡ Sff (ω) for different widths are shown: ∆ω ≈ 0.02 (dashed line), ∆ω ≈ 0.125 (dash-
dotted line), ∆ω ≈ 0.49 (dotted line). All curves are normalized by maximal value Smax(ω) to
have maximum equal to 1. Ordinate is logarithmic.

Influence of the width of the spectral band of the harmonic noise on harvester

efficiency is considered here. The location of the spectral peak of (2.7) is fixed and

equal to ωp = 1.0 and the following three values for the width are discussed: ∆ω ≈
0.02, 0.125, 0.49. Corresponding spectra for different widths are shown in Fig. 2

alongside with frequency response of a linear harvester. The frequency response

was calculated analytically (see Ref. 4 for an example of derivation of frequency

response). The performance of linear and nonlinear harvesters under excitation

in the form of harmonic noise was analyzed via numerical simulations; The Heun

numerical scheme (see Refs. 21 and 22 for details) was used for simulations of

coupled systems (2.1) and (2.7).

3. Results

3.1. Harmonic signal

Before considering system’s response to random excitations, let us discuss responses

of system (2.1) with different nonlinearities to harmonic signal f(t) ≡ fs(t) =

A sin(ωt). Gain γ = P/A2 as a function of the signal frequency ω (frequency re-

sponse) was calculated, and a comparison of the responses of the linear harvesters

with responses of monostable and bistable harvesters was performed. The frequency
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response γ(ω) of the linear harvester with UL(ω) (solid line in Fig. 2) does not de-

pend on amplitude A and coincides with the responses of nonlinear harvesters for

small values of amplitude, i.e. when a linearized model of the harvesters is valid.

Nonlinearities change the frequency responses significantly with an increase of A

(Fig. 3). A region of hysteresis with co-existing multiple solutions for the same

external force is observed for both potentials UM (x) and UB(x). However, nonlin-

earity hardening in monostable harvester leads to shifting of the resonant frequency

(a maximum of γ) to the higher frequency region (Fig. 3(a)), whereas a softening of

nonlinearity in bistable systems shifts the resonant frequency to the low frequency

region (Fig. 3(b)). The narrow peak of linear case (solid line in Fig. 2) is replaced

by a wider peak when nonlinearity starts to play its crucial role (Fig. 3). This

widening of the frequency response was suggested by a number of authors6,7 to be

considered as beneficial for using in nonlinear harvesters. A rational behind this is

that, if the frequency is varied in some range, then an integral response of nonlin-

ear system exceeds the narrow-band response of the corresponding linear harvester.

However, this conclusion only holds true if the system stays on the upper branch of

the response, otherwise the integral response of the lower branch is significantly less

than the response for linear case. Thus, stability of the upper branch is important

and it has to be taken into account for an efficient harvester design. The stability

can be assessed via the consideration of an additional stochastic term in (2.1) and

by nonlocal stability analysis (see for example Ref. 15). Majority of the research

articles devoted to energy harvesting has so far failed to consider the stability is-

sue. It is particularly important as the presence of additional perturbations can

easily lead to a switch between the upper and lower branches of the resonant curve

and, therefore, a procedure for recovering the high amplitude solution needs to be

implemented.
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Fig. 3. Examples of frequency responses (output voltage gain versus excitation frequency) of
nonlinear harvesters with UM (x) (figure (a)) and UB(x) (figure (b)) are shown. Ordinate is loga-
rithmic.

Note, that the maximal possible response is larger for soft nonlinearity and
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smaller for hard nonlinearity, so this fact may lead to a conclusion that the soft

nonlinearity is more efficient (see for instance Ref. 6). This difference, however,

results from the frequency response being scaled by 1/ω2; such scaling is observed

in linear case too. Therefore, for an unambiguous comparison of different system’s

performances, the same frequency range should be considered.

3.2. Harmonic noise

Harmonic noise possesses stochastic nature, i.e. includes perturbations. This fact, in

contract to harmonic signal, allows for the implicit characterization of the stability

of the system and its solution. Stochastic noise requires longer simulations and the

use of statistical quantities, which are based on averaging, for characterization of

the system’s response. As in the previous section, the gain γ = PΓ/D describing

the efficiency of harvesting from vibrations is considered here. The value P has been

calculated from a single trajectory , z(t), within an extended time interval T = 107.

In linear case the efficiency of energy harvesting depends on both Γ and ωh,

but does not depend on intensity D. For the nonlinear cases, all three parameters

are important. Note, that the output frequency response is defined by the product

of the frequency responses of harmonic noise and the harvester and, therefore, in

contrast to the harmonic signal, we cannot conclude that a linear system is more

efficient for any finite width of noise spectrum.

Let us start the analysis with a discussion of the performance of the harvester

within frequency range ∆ω = 0.02 which is close to the width of the peak in

the frequency response of corresponding linear harvester (Fig. 2). The gain for all

nonlinear harvesters, except for the monostable one, is equal or less than the gain

of the linear system (Fig. 4(a)). The gain of both nonlinear and linear harvesters

coincides within the range of noise intensities where harvesters can be linearised,

and it decreases when nonlinearity contributes to the responses. However, the gain

of the monostable harvester demonstrates improvement, as compared to linear case,

for a region of noise intensity (between D = 10−6 and 10−8). In this region, the

spectral peak (Fig. 5(a)) becomes wider and its height is very close to the height

of the peak of the linear system. A similar widening of spectral peak is observed

for all the other nonlinear harvesters; the heights of the peaks, however, reduce

simultaneously with widening, and the resulting output becomes poorer than for

the linear harvester (Fig. 5(b)). Both bistable harvesters show gain decrease as

transitions between the states begin. Later, with the transitions becoming more

frequent and the amplitude of noise excitations comparable to the barrier between

the states (i.e. when fluctuations do not feel the presence of the barrier), the gain

increases. In the bistable harvester UB(x) further increase of the noise intensity

leads to gain decrease due to the form of nonlinearity of the potential profile,

whereas the parabolic bistable harvester UPB(x) tends to show a linear response for

larger noise intensities because its profile becomes parabolic for larger deviations.

Note, that similar responses were observed for all harvesters with the width of
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spectral band reduced by a factor 2, i.e. ∆ω = 0.01.

Now let us discuss a larger peak width ∆ω = 0.125 (Fig. 4(b)). The harvesters

with bistable profile UB(x) and soft nonlinearity US(x) demonstrate qualitatively

similar behaviour to the case considered above (Fig. 4(a)). However, the quantita-

tive difference between the gain values for UB(x) and US(x) profiles and for the

linear case becomes smaller. The monostable harvester with UM (x) demonstrates

a monotonic decline of the gain and the effect of the gain improvement disappears,

whereas the parabolic bistable harvester shows a larger gain compared to linear case

for a certain region of noise intensity. In this region, the parabolic bistable harvester

performs relatively rare transitions between its states. As a result, a new spectral

peak is observed around zero frequency, and this peak is effectively widening the

peak around ωh. On the other hand, the height of the peak at ωh is comparable

to one observed for the linear response (Fig. 6(a)). With a noise intensity increase,

the peak at ωh becomes wider, however its height reduces causing gain decrease

(Fig. 6(b)).
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Fig. 4. Voltage gain of harvesters with UL(x) (marker +), UM (x) (marker ⃝), UB(x) (marker
2), UBP (x) (marker 3) and US(x) (marker △) versus noise intensity are shown for different values
of width ∆ω: ∆ω = 0.02 (a), ∆ω = 0.125 (b), ∆ω = 0.49 (c). Axes are logarithmic.

More dramatic changes in frequency responses are observed for a peak with

∆ω = 0.49 (Fig. 4(c)). This peak is significantly wider than the peak in the fre-

quency response of a linear harvester (see Fig. 2). The gain for the monostable har-



Nonlinear Energy Harvesting from Random Narrow-band Excitations 9

0.5 1 1.5

10
−8

10
−6

10
−4

ω

S
(ω

)

(a)

0.5 1 1.5

10
−8

10
−6

10
−4

ω

S
(ω

)

(b)

Fig. 5. Voltage output spectra of the linear (solid line) and monostable (dashed line) harvesters
are shown for noise intensities D = 10−7 (a) and D = 10−6 (b). The spectral width of noise is
∆ω = 0.02. Ordinate is logarithmic.
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Fig. 6. Voltage output spectra of linear (solid line) and parabolic bistable (dashed line) harvesters
are shown for noise intensities D = 2.5 · 10−5 (a) and D = 10−4 (b). The spectral width of noise
is ∆ω = 0.125. Ordinate is logarithmic.

vester monotonically decays. The bistable harvester UB(x) has significantly better

(than linear) efficiency within a region of noise intensities, but the efficiency drops

significantly for larger noise. Remarkably, efficiencies for harvesters with profiles

UPB(x) and US(x) are equal or better than in the linear case in the whole region

of noise intensities considered above. An improvement with respect to linear re-

sponse is observed in the regions where nonlinearities contribute to the response by

widening the peaks and/or inducing new peaks in the spectrum. Note, that similar

responses are observed when the peak width ∆ω of harmonic noise is greater than

0.49 and up to the white noise limit.

4. Conclusions

Our results show a complex interplay between particular forms of nonlinearities and

properties of noise excitations. For various widths of spectral peak ∆ω of harmonic

noise considered there was possible to select a nonlinear harvester with better effi-
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ciency than for corresponding linear system. In other words, an efficiency of energy

harvesting from vibrations in the form of harmonic noise can be improved by careful

selection of the form of harvester nonlinearities.

Hard and soft nonlinearities define differences in the harvester’s response for

both the small and large widths ∆ω of spectral band. The use of a bistable con-

figuration is beneficial for a wide frequency peak and it is most pronounced in the

white noise limit. Two considered profiles UPB(x) and US(x), having a piece-wise

shape and combining parabolic and non-parabolic parts, provide same or better

efficiency than a linear harvester for wide band noise.

References

1. S. Priya and D. J. E. Inman, Energy Harvesting Technologies (Springer, New-York,
2009).

2. T. Kazmierski and S. E. Beeby, Energy Harvesting Systems: Principles, Modeling and
Applications (Springer, New-York, 2011).

3. D. Zhu, M. Tudor and S. Beeby, “Strategies for increasing the operating frequency
range of vibration energy harvesters: a review”, Meas. Sci. Technol. 21 (2010)
022001(29).

4. M. Al Ahmad, A. M. Elshurafa, K. N. Salama and H. N. Alshareef, “Determination
of maximum power transfer conditions of bimorph piezoelectric energy harvesters”, J
Appl. Phys. 111 (2012) 102812(4).

5. R. Lifshitz and M. C. Cross, Nonlinear Dynamics of Nanomechanical and Microme-
chanical Resonators (Wiley-VCH Verlag GmbH & Co. KGaA, 2009), pp. 1–52.

6. D. S. Nguyen, E. Halvorsen, G. U. Jensen and A. Vogl, “Fabrication and characteriza-
tion of a wideband MEMS energy harvester utilizing nonlinear springs”, J Micromech.
and Micrieng. 20 (2010) 125009(4).

7. R. Ramlan, M. Brennan, B. Mace and I. Kovacic, “Potential benefits of a non-linear
stiffness in an energy harvesting device”, Nonlinear Dyn 59 (2010) 545–558.

8. M. F. Daqaq, “Transduction of a bistable inductive generator driven by white ex-
ponentially correlated Gaussian noise”, Journal of sound and Vibration 330 (2011)
2254–2664.

9. G.Litak, M. Borowiec, M. I. Friswell and S. Adhikari, “Energy harvesting in a mag-
netopiezelastic system driven by random excitations with uniform and Gaussian dis-
tributions”, Journal of Theoretical and Applied Mechanics, 49 (2011) 757–764.

10. M. Martens, U. von Wagner and G. Litak, “Stationary response of nonlinear magne-
topiezoelectric energy harvester systems under stochastic excitation”, Eur. Phys. J.
Special Topics 222 (2013) 1665–1673.

11. S. Zhao and A. Erturk, “On stochastic excitation of mono bistable electrostatic power
generators: Relative advantages and tradeoffs in physical system”, Applied Physics
Letters 102 (2013) 103902.

12. E. Halvorsen, “Fundamental issues in nonlinear wideband- vibration energy harvest-
ing”, Physical Review E 87 (2013) 042129.

13. P. Kumar, S. Narayanan, S. Adhikari and M. I. Friswell, “Fokker-Planck equation
analysis of randomly excited nonlinear energy harvester”, Journal of sound and Vi-
bration 333 (2014) 2040–2053.

14. N. A. Khovanova and I. A. Khovanov, “The role of excitations statistic and nonlinear-
ity in energy harvesting from random impulsive excitations”, Applied Physics Letters
99 (2011) 144101(3).



Nonlinear Energy Harvesting from Random Narrow-band Excitations 11

15. N. A. Khovanova and J. Windelen, “Minimal energy control of a nanoelectromechan-
ical memory element”, Applied Physics Letters 101 (2012) 024104(3).

16. L. Schimansky-Geier and C. Zulicke, “Harmonic noise: Effect on bistable systems”,
Zeitschrift fur Physik B Condensed Matter 79 (1990) 451–460.

17. M. I. Dykman, P. V. E. McClintock, N. D. Stein and N. G. Stocks, “Quasi-
monochromatic noise – newfeatures of fluctuations in noise-driven nonlinear systems”,
Phys. Rev. Lett. 67 (1991) 933–936.

18. G. Litak, M. Friswell and S. Adhikari, “Magnetopiezoelastic energy harvesting driven
by random excitations”, Appl. Phys. Lett. 96 (2010) 214103–1–214103–3.

19. A. Erturk, J. Hoffmann and D. J. Inman, “A piezomagnetoelastic structure for broad-
band vibration energy harvesting”, Appl. Phys. Lett. 94 (2009) 254102(3).

20. F. Cottone, H. Vocca and L. Gammaitoni, “Nonlinear energy harvesting”, Phys. Rev.
Lett. 102 (2009) 080601(4).

21. R. Mannella, “Integration of stochastic differential equations on a computer”, Inter-
national Journal of Modern Physics C 13 (2002) 1177–1195.

22. I. A. Khovanov, “Array enhancement of stochastic synchronization and signal-to-noise
ratio gain in the nonlinear regime of signal transmission”, Phys. Rev. E 77 (2008)
011124(12).


