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A simple proof of distance bounds
for Gaussian rough paths
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Abstract

We derive explicit distance bounds for Stratonovich iterated integrals along two
Gaussian processes (also known as signatures of Gaussian rough paths) based on
the regularity assumption of their covariance functions. Similar estimates have been
obtained recently in [Friz-Riedel, AIHP, to appear]. One advantage of our argument
is that we obtain the bound for the third level iterated integrals merely based on the
first two levels, and this reflects the intrinsic nature of rough paths. Our estimates
are sharp when both covariance functions have finite 1-variation, which includes a
large class of Gaussian processes.

Two applications of our estimates are discussed. The first one gives the a.s. con-
vergence rates for approximated solutions to rough differential equations driven by
Gaussian processes. In the second example, we show how to recover the optimal
time regularity for solutions of some rough SPDEs.

Keywords: Gaussian rough paths, iterated integrals, signatures.
AMS MSC 2010: 60G15; 60H05; 60H10; 60H35.
Submitted to EJP on October 22, 2012, final version accepted on December 7, 2013.

1 Introduction

The intersection between rough path theory and Gaussian processes has been an
active research area in recent years ([5], [6], [10]). The central idea of rough paths,
as realized by Lyons ([11]), is that the key properties needed for defining integration
against an irregular path do not only come from the path itself, but from the path
together with a sequence of iterated integrals along the path, namely

Xn
s,t =

∫
s<u1<···<un<t

dXu1 ⊗ . . .⊗ dXun . (1.1)

In particular, Lyons extension theorem shows that for paths of finite p-variation, the
first bpc levels iterated integrals determine all higher levels. For instance, if p = 1, the
path has bounded variation and the higher iterated integrals coincide with the usual
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Simple proof Gaussian rough paths

Riemann-Stieltjes integrals. However, for p ≥ 2, this is not true anymore and one has
to say what the second (and possibly higher) order iterated integrals should be before
they determine the whole rough path.

Lyons and Zeitouni ([15]) were the first to study iterated Wiener integrals in the
sense of rough paths. They provide sharp exponential bounds on the iterated integrals
of all levels by controlling the variation norm of the Lévy area. The case of more general
Gaussian processes were studied by Friz and Victoir in [5] and [6]. They showed that if
X is a Gaussian process with covariance of finite ρ-variation for some ρ ∈ [1, 2), then its
iterated integrals in the sense of (1.1) can be defined in a natural way and we can lift X
to a Gaussian rough path X.

In the recent work [4], Friz and the first author compared the two lift maps X and
Y for the joint process (X,Y ). It was shown that their average distance in rough paths
topology can be controlled by the value supt |Xt − Yt|ζL2 for some ζ > 0, and a sharp
quantitative estimate for ζ was given. In particular, it was shown that considering both
rough paths in a larger rough paths space (and therefore in a different topology) allows
for larger choices of ζ. Using this, the authors derived essentially optimal convergence
rates for Xε → X in rough paths topology when ε → 0 where Xε is a suitable approxi-
mation of X.

In order to prove this result, sharp estimates of |Xn
s,t−Yn

s,t| need to be calculated on
every level n. Under the assumption ρ ∈ [1, 3

2 ), the sample paths of X and Y are p-rough
paths for any p > 2ρ, hence we can always choose p < 3 and therefore the first two levels
determine the entire rough path. Lyons’ continuity theorem then suggests that one only
needs to give sharp estimates on level 1 and 2; the estimates on the higher levels can
be obtained from the lower levels through induction. On the other hand, interestingly,
one additional level was estimated "by hand" in [4] before performing the induction. To
understand the necessity of computing this additional term, let us note from [11] that
the standard distance for two deterministic p-rough paths takes the form of the smallest
constant Cn such that

|Xn
s,t −Yn

s,t| ≤ Cnεω(s, t)
n
p , n = 1, · · · , bpc

holds for all s < t where ω is a control function to be defined later. The exponent on the
control for the next level is expected to be

n+ 1

p
=
bpc+ 1

p
> 1, (1.2)

so when one repeats Young’s trick of dropping points in the induction argument (the
key idea of the extension theorem), condition (1.2) will ensure that one can establish a
maximal inequality for the next level. However, in the current problem where Gaussian
randomness is involved, the L2 distance for the first b2ρc iterated integrals takes the
form

|Xn
s,t −Yn

s,t|L2 < Cnεω(s, t)
1
2γ+n−1

2ρ , n = 1, 2, ρ ∈ [1,
3

2
),

where γ might be much larger than ρ. Thus, the ’n− 1’ in the exponent leaves condition
(1.2) unsatisfied, and one needs to compute the third level by hand before starting
induction on n.

In this article, we resolve the difficulty by moving part of ε to fill in the gap in the
control so that the exponent for the third level control reaches 1. In this way, we obtain
the third level estimate merely based on the first two levels, and it takes the form

|X3
s,t −Y3

s,t|L2 < C3ε
ηω(s, t),
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where η ∈ (0, 1], and its exact value depends on γ and ρ. We see that there is a 1 − η
reduction in the exponent of ε, which is due to the fact that it is used to compensate the
control exponent. This interplay between the rate exponent and the control exponent
can be viewed as an analogy to the relationship between time and space regularities for
solutions to SPDEs. We will make the above heuristic argument rigorous in section 4.
We also refer to the recent work [14] for the situation of deterministic rough paths.

Our main theorem is the following.

Theorem 1.1. Let (X,Y ) = (X1, Y 1, · · · , Xd, Y d) : [0, T ] → Rd+d be a centered Gaus-
sian process on a probability space (Ω,F , P ) where (Xi, Y i) and (Xj , Y j) are indepen-
dent for i 6= j, with continuous sample paths and covariance function R(X,Y ) : [0, T ]2 7→
R2d×2d. Assume further that there is a ρ ∈ [1, 3

2 ) such that the ρ-variation of R(X,Y ) is
bounded by a finite constant K. Choose σ > 2ρ and β < min

{
1− 2ρ

σ , 3− 2ρ
}

. Then for
every N ∈ N and q ≥ 1 there is a constant C = C(β, σ, ρ,K, q,N) such that

|%Nσ−var(X,Y)|Lq ≤ C sup
t∈[0,T ]

|Xt − Yt|βL2 .

The proof of this theorem will be postponed to section 4.2 after we have established
all the estimates needed. We first give two remarks.

Remark 1.2. We emphasize that the constant C in the above theorem depends on the
process (X,Y ) only through the parameters ρ and K.

Remark 1.3. For N = bσc, %Nσ−var denotes an inhomogeneous rough paths metric. See
section 2 for the precise definition.

Our paper is structured as follows. In section 2, we provide some important concepts
and notations from rough path theory that are necessary for our problem. In section
3, we introduce the class of Gaussian processes which possess a lift to Gaussian rough
paths and estimate the difference of two Gaussian rough paths on level one and two.
Section 4 is devoted to the proof of the main theorem. We first obtain the third level
estimate directly from the first two levels, which requires a technical extension of Lyons’
continuity theorem, and justify the heuristic argument above rigorously. All higher level
estimates are then obtained with the induction procedure in [11], and the claim of the
main theorem follows. In section 5, we give two applications of our main theorem. The
first one deals with convergence rates for Wong-Zakai approximations in the context
of rough differential equations. The second example shows how to derive optimal time
regularity for the solution of a modified stochastic heat equation seen as an evolution
in rough paths space.

Notations. Throughout the paper, C,Cn, Cn(ρ, γ) will denote constants depending on
certain parameters only, and their actual values may change from line to line.
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2 Elements from Rough path theory

In this section, we introduce the concepts and definitions from rough path theory
that are necessary for our current application. For a detailed account of the theory, we
refer readers to [6], [12] and [13].

Fix the time interval [0, T ]. For all s < t ∈ [0, T ], let ∆s,t denote the simplex

{(u1, u2) | s ≤ u1 ≤ u2 ≤ t},

and we simply write ∆ for ∆0,T . In what follows, we will use x to denote an Rd-valued
path, and X to denote a stochastic process in Rd, which is a Gaussian process in the
current paper. For any integer N , let

TN (Rd) = R⊕Rd ⊕ · · · ⊕ (Rd)⊗N

denote the truncated tensor algebra. The space of all continuous bounded variation
paths x : [0, T ] → Rd is denoted by C1−var(Rd). For a path x ∈ C1−var(Rd), we use the
bold letter X to denote its n-th level iterated tensor integral:

Xn
s,t =

∫
s<u1<···<un<t

dxu1
⊗ · · · ⊗ dxun .

The lift map SN taking x to a TN (Rd)-valued path is defined by

SN (x)s,t = 1 +

N∑
n=1

Xn
s,t.

For a path x, write xs,t = xt − xs and we have xs,t = X1
s,t. It is well known that SN (x) is

a multiplicative functional, that is, for any s < u < t, we have

SN (x)s,u ⊗ SN (x)u,t = SN (x)s,t,

where the multiplication takes place in TN (Rd).
We equip each subspace (Rd)⊗n with the projective tensor norm1 | · |. If X,Y are

two multiplicative functionals in TN (Rd), then for each p ≥ 1, we define their p-variation
distance by

%Np−var(X,Y) := max
n≤N

sup
P

(∑
i

|Xn
ti,ti+1

−Yn
ti,ti+1

|
p
n

)n
p ,

where the supremum is taken over all finite partitions of the interval [0, T ]. If N = bpc,
this defines a rough paths metric and we only write %p−var(X,Y) in this case.

Remark 2.1. Note that we only consider so-called inhomogeneous rough paths metrics
in this paper. The reason for this is that the Itō-Lyons solution map for rough paths is
locally Lipschitz with respect to these metrics (cf. [6, Chapter 10]).

We define the subset GN (Rd) ⊂ TN (Rd) to be

GN (Rd) = {SN (x)0,1 : x ∈ C1−var(Rd)}.

The multiplicativity of SN implies that GN (Rd) is a group with multiplication ⊗ and
identity element 1. If x ∈ C1−var(Rd), one can show that actually SN (x)s,t ∈ GN (Rd) for
all s < t.

1The choice of the tensor norm is actually not important since we only work in finite dimensional spaces.
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Definition 2.2. A function ω : ∆ → R+ is called a control if it is continuous, vanishes
on the diagonal, and is superadditive in the sense that for any s < u < t, we have

ω(s, u) + ω(u, t) ≤ ω(s, t).

We say a multiplicative functional X in TN (Rd) has finite p-variation (p ≥ 1) con-
trolled by ω if for each n ≤ N , there exists a constant Cn such that for all s < t, we
have

|Xn
s,t| ≤ Cnω(s, t)

n
p .

Definition 2.3. Let p ≥ 1. A geometric p-rough path is a continuous path in Gbpc(Rd)

which is in the p-variation closure (w.r.t the metric %p−var) of the set of bounded varia-
tion paths. We use C0,p−var([0, T ], Gbpc(Rd)) to denote the space of geometric p-rough
paths.

By Lyon’s extension theorem (cf. [11, Theorem 2.2.1]), every (geometric) p-rough
path X can be lifted to a q-rough path for every q ≥ p. Abusing notation, we will use
the same letter X to denote this lift. We will write Xn = πn(X) where πn denotes the
projection of TN (Rd) onto the n-th tensor product, n ≤ N . If x = π1(X), we will also
use the notation

Xn
s,t =

∫
∆n
s,t

dx⊗ · · · ⊗ dx

(even though this integral does not have to exist as a limit of Riemann sums).

3 2D variation and Gaussian rough paths

If I = [a, b] is an interval, a dissection of I is a finite subset of points of the form
{a = t0 < . . . < tm = b}. The family of all dissections of I is denoted by D(I).

Let I ⊂ R be an interval and A = [a, b]× [c, d] ⊂ I×I be a rectangle. If f : I×I → V is
a function, mapping into a normed vector space V , we define the rectangular increment
f(A) by setting

f(A) := f

(
a, b

c, d

)
:= f

(
b

d

)
− f

(
a

d

)
− f

(
b

c

)
+ f

(
a

c

)
.

Definition 3.1. Let p ≥ 1 and f : I × I → V . For [s, t]× [u, v] ⊂ I × I, set

Vp(f ; [s, t]× [u, v]) :=

 sup
(ti)∈D([s,t])
(t′j)∈D([u,v])

∑
ti,t′j

∣∣∣∣f ( ti, ti+1

t′j , t
′
j+1

)∣∣∣∣p


1
p

.

If Vp(f, I × I) <∞, we say that f has finite (2D) p-variation. We also define

V∞(f ; [s, t]× [u, v]) := sup
σ,τ∈[s,t]
µ,ν∈[u,v]

∣∣∣∣f ( σ, τ

µ, ν

)∣∣∣∣
EJP 18 (2013), paper 108.
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Lemma 3.2. Let f : I × I → V be a continuous map and 1 ≤ p ≤ p′ < ∞. Assume that
f has finite p-variation. Then for every [s, t]× [u, v] ⊂ I × I we have

Vp′(f ; [s, t]× [u, v]) ≤ V∞(f ; [s, t]× [u, v])
1− p

p′ Vp(f ; [s, t]× [u, v])
p
p′

Proof. Let (ti) ∈ D([s, t]) and (t′j) ∈ D([u, v]). Then,

∑
ti,t′j

∣∣∣∣f ( ti, ti+1

t′j , t
′
j+1

)∣∣∣∣p
′

≤ V∞(f ; [s, t]× [u, v])p
′−p
∑
ti,t′j

∣∣∣∣f ( ti, ti+1

t′j , t
′
j+1

)∣∣∣∣p .
Taking the supremum over all partitions gives the claim.

Lemma 3.3. Let f : I×I → R be continuous with finite p-variation. Choose p′ such that
p′ ≥ p if p = 1 and p′ > p if p > 1. Then there is a control ω and a constant C = C(p, p′)

such that

Vp′(f ; J × J) ≤ ω(J)
1
p′ ≤ CVp(f ; J × J)

holds for every interval J ⊂ I.

Proof. Follows from [7, Theorem 1].

Let X = (X1, . . . , Xd) : I → Rd be a centered, stochastic process. Then the covari-
ance function RX(s, t) := CovX(s, t) = E(Xs ⊗Xt) is a map RX : I × I → Rd×d and we
can ask for its ρ-variation (we will use the letter ρ instead of p in this context). Clearly,
RX has finite ρ-variation if and only if for every i, j ∈ {1, . . . , d} the map s, t 7→ E(Xi

sX
j
t )

has finite ρ-variation. In particular, if Xi and Xj are independent for i 6= j, RX has
finite ρ-variation if and only if RXi has finite ρ-variation for every i = 1, . . . , d. In the
next example, we calculate the ρ-variation for the covariances of some well-known real
valued Gaussian processes. In particular, we will see that many interesting Gaussian
processes have a covariance of finite 1-variation.

Example 3.4. (i) Let X = B be a Brownian motion. Then RB(s, t) = min{s, t} and
thus, for A = [s, t]× [u, v],

|R(A)| = |(s, t) ∩ (u, v)| =
∫

[s,t]×[u,v]

δx=y dx dy.

This shows that RB has finite 1-variation on any interval I.

(ii) More generally, let f : [0, T ]→ R be a left-continuous, locally bounded function.
Set

Xt =

∫ t

0

f(r) dBr.

Then, for A = [s, t] ∩ [u, v] we have by the Itō isometry,

RX(A) = E

[∫
[s,t]

f dB

∫
[u,v]

f dB

]
=

∫
[s,t]×[u,v]

δx=yf(x)f(y) dx dy

which shows that RX has finite 1-variation.
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(iii) Let X be an Ornstein-Uhlenbeck process, i.e. X is the solution of the SDE

dXt = −θXt dt+ σ dBt (3.1)

for some θ, σ > 0. If we claim that X0 = 0, one can show that X is centered,
Gaussian and a direct calculation shows that the covariance of X has finite
1-variation on any interval [0, T ]. The same is true considering the stationary
solution of (3.1) instead.

(iv) If X is a continuous Gaussian martingale, it can be written as a time-changed
Brownian motion. Since the ρ-variation of its covariance is invariant under
time-change, X has again a covariance of finite 1-variation.

(v) If X : [0, T ]→ R is centered Gaussian with X0 = 0, we can define a Gaussian
bridge by

XBridge(t) = Xt − t
XT

T
.

One can easily show that if the covariance of X has finite ρ-variation, the same is
true for XBridge. In particular, the covariance of a Brownian bridge has finite
1-variation.

Next, we cite the fundamental existence result about Gaussian rough paths. For a
proof, cf. [5] or [6, Chapter 15].

Theorem 3.5 (Friz, Victoir). Let X : [0, T ] → Rd be a centered Gaussian process with
continuous sample paths and independent components. Assume that there is a ρ ∈
[1, 2) such that Vρ(RX ; [0, T ]2) < ∞. Then X admits a lift X to a process whose sam-
ple paths are geometric p-rough paths for any p > 2ρ, i.e. with sample paths in
C0,p−var([0, T ], Gbpc(Rd)) and π1(Xs,t) = Xt −Xs for any s < t.

In the next proposition, we give an upper L2-estimate for the difference of two Gaus-
sian rough paths on the first two levels.

Proposition 3.6. Let (X,Y ) = (X1, Y 1, · · · , Xd, Y d) : [0, T ]→ Rd+d be a centered Gaus-
sian process with continuous sample paths where (Xi, Y i) and (Xj , Y j) are independent
for i 6= j. Let ρ ∈ [1, 3

2 ) and assume that Vρ′(R(X,Y ), [0, T ]2) ≤ K < +∞ for a constant
K > 0 where ρ′ < ρ in the case ρ > 1 and ρ′ = 1 in the case ρ = 1. Let γ ≥ ρ such that
1
γ + 1

ρ > 1. Then there are constants C0, C1, C2 dependending on ρ, ρ′, γ and K and a
control ω such that ω(0, T ) ≤ C0 and

|Xs,t − Ys,t|L2 ≤ C1 sup
u∈[s,t]

|Xu − Yu|
1− ργ
L2 ω(s, t)

1
2γ

and ∣∣∣∣∫ t

s

Xs,u ⊗ dXu −
∫ t

s

Ys,u ⊗ dYu
∣∣∣∣
L2

≤ C2 sup
u∈[s,t]

|Xu − Yu|
1− ργ
L2 ω(s, t)

1
2γ+ 1

2ρ

hold for every s < t.

Proof. Note first that, by assumption on Vρ′(R(X,Y ); [0, T ]2), Lemma 3.3 guarantees that
there is a control ω and a constant c1 = c1(ρ, ρ′) such that

Vρ(RX ; [s, t]2) ∨ Vρ(RY ; [s, t]2) ∨ Vρ(R(X−Y ); [s, t]2) ≤ ω(s, t)1/ρ
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holds for all s < t and i = 1, . . . , d with the property that ω(0, T ) ≤ c1K
ρ =: C0. We will

estimate both levels componentwise. We start with the first level. Let i ∈ {1, . . . , d}.
Then, ∣∣Xi

s,t − Y is,t
∣∣2
L2 =

∣∣∣∣R(Xi−Y i)

(
s, t

s, t

)∣∣∣∣
≤ Vγ(R(X−Y ); [s, t]2)

and thus

|Xs,t − Ys,t|L2 ≤ c2
√
Vγ(R(X−Y ); [s, t]2).

For the second level, consider first the case i = j. We have, using that (X,Y ) is Gaussian
and that we are dealing with geometric rough paths,∣∣∣∣∫ t

s

Xi
s,u dX

i
u −

∫ t

s

Y is,u dY
i
u

∣∣∣∣
L2

=
1

2

∣∣(Xi
s,t)

2 − (Y is,t)
2
∣∣
L2

=
1

2

∣∣(Xi
s,t − Y is,t)(Xi

s,t + Y is,t)
∣∣
L2

≤ c3
∣∣Xi

s,t − Y is,t
∣∣
L2

(
|Xi

s,t|L2 + |Y is,t|L2

)
.

From the first part, we know that∣∣Xi
s,t − Y is,t

∣∣
L2 ≤

√
Vγ(R(X−Y ); [s, t]2).

Furthermore,

|Xi
s,t|L2 =

√∣∣∣∣RX ( s, t

s, t

)∣∣∣∣ ≤√Vρ(RX ; [s, t]2) ≤ ω(s, t)
1
2ρ

and the same holds for |Y is,t|L2 . Hence∣∣∣∣∫ t

s

Xi
s,u dX

i
u −

∫ t

s

Y is,u dY
i
u

∣∣∣∣
L2

≤ c4
√
Vγ(R(X−Y ); [s, t]2)ω(s, t)

1
2ρ .

For i 6= j, ∣∣∣∣∫ t

s

Xi
s,u dX

j
u −

∫ t

s

Y is,u dY
j
u

∣∣∣∣
L2

≤
∣∣∣∣∫ t

s

(Xi − Y i)s,u dXj
u

∣∣∣∣
L2

+

∣∣∣∣∫ t

s

Y is,u d(Xj − Y j)u
∣∣∣∣
L2

.

We estimate the first term. From independence,

E

[(∫ t

s

(Xi − Y i)s,u dXj
u

)2
]

=

∫
[s,t]2

R(Xi−Y i)

(
s, u

s, v

)
dRXj (u, v)

where the integral on the right is a 2D Young integral.2 By a 2D Young estimate (cf.
[16]),∣∣∣∣∣

∫
[s,t]2

R(Xi−Y i)

(
s, u

s, v

)
dRXj (u, v)

∣∣∣∣∣ ≤ c5(ρ, γ)Vγ(R(Xi−Y i); [s, t]2)Vρ(RXj ; [s, t]2)

≤ c6Vγ(R(X−Y ); [s, t]2)ω(s, t)1/ρ.

2The reader might feel a bit uncomfortable at this point asking why it is allowed to put expectation inside
the integral (which is not even an integral in Riemann-Stieltjes sense). However, this can be made rigorous by
dealing with processes which have sample paths of bounded variation first and passing to the limit afterwards
(cf. [5, 6, 4, 2]). We decided not to go too much into detail here in order not to distract the reader from the
main ideas and to improve the readability.
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The second term is treated exactly in the same way. Summarizing, we have shown
that ∣∣∣∣∫ t

s

Xs,u ⊗ dXu −
∫ t

s

Ys,u ⊗ dYu
∣∣∣∣
L2

≤ C
√
Vγ(R(X−Y ); [s, t]2)ω(s, t)

1
2ρ .

Finally, by Lemma 3.2

Vγ(R(X−Y ); [s, t]2) ≤ V∞(R(X−Y ); [s, t]2)1−ρ/γω(s, t)1/γ

and by the Cauchy-Schwarz inequality

V∞(R(X−Y ); [s, t]2) ≤ 4 sup
u∈[s,t]

|Xu − Yu|2L2

which gives the claim.

Corollary 3.7. Under the assumptions of Proposition 3.6, for every γ satisfying γ ≥ ρ

and 1
γ + 1

ρ > 1, and every p > 2ρ and γ′ > γ, there is a (random) control ω̂ such that

|Xn
s,t| ≤ ω̂(s, t)n/p (3.2)

|Yn
s,t| ≤ ω̂(s, t)n/p (3.3)

|Xn
s,t −Yn

s,t| ≤ εω̂(s, t)
1

2γ′+
n−1
p (3.4)

holds a.s. for all s < t and n = 1, 2 where ε = supu∈[0,T ] |Xu − Yu|
1− ργ
L2 . Furthermore,

there is a constant C = C(p, ρ, γ, γ′,K) such that

|ω̂(0, T )|Lq ≤ CT (qp/2 + qγ
′
)

holds for all q ≥ 1.

Proof. Let ω be the control from Proposition 3.6. We know that

|Xn
s,t −Yn

s,t|L2 ≤ c1εω(s, t)
1
2γ+n−1

2ρ

holds for a constant c1 for all s < t and n = 1, 2. Furthermore, |Xn
s,t|L2 ≤ c2ω(s, t)

n
2ρ

for a constant c2 for all s < t and n = 1, 2 and the same holds for Y (this just follows
from setting Y = const. and γ = ρ in Proposition 3.6). Now introduce a new process
X̃ : [0, T ]→ Rd on the same sample space as X such that for all sample points, we have

X̃ω(0,t)/ω(0,T ) = Xt, ∀t ∈ [0, T ],

and define Ỹ in the same way. Then X̃, Ỹ are well defined, multiplicative, and we can
replace the control ω by c3K|t − s| for the two re-parametrized processes. Using that
(X,Y ) is Gaussian, we may conclude that Xn

s,t, Y
n
s,t and Xn

s,t −Yn
s,t are elements in the

n-th Wiener chaos for any s < t (cf. [5, Proposition 21]), hence we can pass from L2 to
Lq estimates (cf. [5, Lemma 22]), thus

|X̃n
s,t|Lq ≤ c4(

√
qK1/ρ)n|t− s|

n
2ρ (3.5)

|Ỹn
s,t|Lq ≤ c4(

√
qK1/ρ)n|t− s|

n
2ρ (3.6)

|X̃n
s,t − Ỹn

s,t|Lq ≤ ε̃c4(
√
qK1/ρ)n|t− s|

1
2γ+

(n−1)
2ρ (3.7)

EJP 18 (2013), paper 108.
Page 9/22

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2387
http://ejp.ejpecp.org/


Simple proof Gaussian rough paths

holds for all s < t, n = 1, 2 and q ≥ 1 with ε̃ = εK
1
2γ−

1
2ρ . Using Lemma 6.1 in the

appendix, we see that there is a constant c5 = c5(p, ρ, γ, γ′,K) such that∣∣∣∣∣ sup
s<t∈[0,T ]

|X̃n
s,t|

|t− s|n/p

∣∣∣∣∣
Lq

≤ c5qn/2 (3.8)∣∣∣∣∣ sup
s<t∈[0,T ]

|Ỹn
s,t|

|t− s|n/p

∣∣∣∣∣
Lq

≤ c5qn/2 (3.9)∣∣∣∣∣ sup
s<t∈[0,T ]

|X̃n
s,t − Ỹn

s,t|
|t− s|1/p(n)

∣∣∣∣∣
Lq

≤ εc5qn/2 (3.10)

hold for q sufficiently large and n = 1, 2 where 1
p(n) = 1

2γ′ + n−1
p . Set

ω̂nX(s, t) := sup
D⊂[s,t]

∑
ti∈D
|Xn

ti,ti+1
|p/n

ω̂nY (s, t) := sup
D⊂[s,t]

∑
ti∈D
|Yn

ti,ti+1
|p/n

ω̂nX−Y (s, t) := sup
D⊂[s,t]

∑
ti∈D
|Xn

ti,ti+1
−Yn

ti,ti+1
|p(n)

and

ω̂(s, t) :=
∑
n=1,2

ω̂nX(s, t) + ω̂nY (s, t) + ε
1

p(n) ω̂nX−Y (s, t).

for s < t. Clearly, ω̂ fulfils (3.2), (3.3) and (3.4). Moreover, the notion of p-variation is
invariant under reparametrization, hence

ω̂nX(0, T ) = sup
D⊂[0,T ]

∑
ti∈D
|Xn

ti,ti+1
|p/n = sup

D⊂[0,T ]

∑
ti∈D
|X̃n

ti,ti+1
|p/n ≤ T sup

s<t∈[0,T ]

|X̃n
s,t|p/n

|t− s|

and a similar estimate holds for ω̂nY (0, T ) and ω̂nX−Y (0, T ). By the triangle inequality and
the estimates (3.5), (3.6) and (3.7),

|ω̂(0, T )|Lq ≤
∑
n=1,2

|ω̂nX(0, T )|Lq + |ω̂nY (0, T )|Lq + ε
1

p(n) |ω̂nX−Y (0, T )|Lq

≤ c6T
(
qp/2 + q

p(1)
2 + qp(2)

)
≤ c7T (qp/2 + qγ

′
)

for q large enough. We can extend the estimate to all q ≥ 1 by making the constant
larger if necessary.

Corollary 3.8. Let ω̂ be the random control defined in the previous corollary. Then, for
every n, there exists a constant cn such that

|Xn
s,t| < cnω̂(s, t)

n
p , |Yn

s,t| < cnω̂(s, t)
n
p

a.s. for all s < t. The constants cn are deterministic and can be chosen such that
cn ≤ 2n

(n/p)! , where x! := Γ(x+ 1).

Proof. Follows from the extension theorem, cf. [11, Theorem 2.2.1] or [12, Theorem
3.7].
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4 Main estimates

In what follows, we let p ∈ (2ρ, 3). Let γ ≥ ρ such that 1
γ + 1

ρ > 1. We write

log+ x = max{x, 0}, and set

ε = sup
u∈[0,T ]

|Xu − Yu|
1− ργ
L2 .

4.1 Higher level estimates

We first introduce some notations. Suppose X is a multiplicative functional in
TN (Rd) with finite p-variation controlled by ω, N ≥ bpc. Then, define

X̂s,t = 1 +

N∑
n=1

Xn
s,t ∈ TN+1(Rd).

Then, X̂ is multiplicative in TN , but in general not in TN+1. For any partition D = {s =

u0 < u1 < · · · < uL < uL+1 = t}, define

X̂D
s,t := X̂s,u1

⊗ · · · ⊗ X̂uL,t ∈ TN+1(Rd).

The following lemma gives a construction of the unique multiplicative extension of X to
higher degrees. It was first proved in Theorem 2.2.1 in [11].

Lemma 4.1. Let X be a multiplicative functional in TN . Let D = {s < u1 < · · · < uL <

t} be any partition of (s, t), and Dj denote the partition with the point uj removed from
D. Then,

X̂D
s,t − X̂Dj

s,t =

N∑
n=1

Xn
uj−1,uj ⊗XN+1−n

uj ,uj+1
∈ TN+1(Rd). (4.1)

In particular, its projection onto the subspace TN is the 0-vector. Suppose further that
X has finite p-variation controlled by ω, and N ≥ bpc, then the limit

lim
|D|→0

X̂D
s,t ∈ TN+1(Rd)

exists. Furthermore, it is the unique multiplicative extension of X to TN+1 with finite
p-variation controlled by ω.

Theorem 4.2. Let (X,Y ) and ρ, γ as in Proposition 3.6. Then for every p ∈ (2ρ, 3) and
γ′ > γ there exists a constant C3 depending on p and γ′ and a (random) control ω̂ such
that for all q ≥ 1, we have

|ω̂(0, T )|Lq ≤M < +∞,

where M = M(p, ρ, γ, γ′,K, q), and the following holds a.s. for all [s, t]:

(i) If 1
2γ′ + 2

p > 1, then

|X3
s,t −Y3

s,t| < C3εω̂(s, t)
1

2γ′+
2
p .
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(ii) If 1
2γ′ + 2

p = 1, then

|X3
s,t −Y3

s,t| < C3ε · (1 + log+
[
ω̂(0, T )/ε

1− p
2γ′
]
) · ω̂(s, t).

(iii) If 1
2γ′ + 2

p < 1, then

|X3
s,t −Y3

s,t| < C3ε
3−p

1−p/2γ′ ω̂(s, t),

Proof. Let s < t ∈ [0, T ] and let ω̂ be the (random) control defined in Corollary 3.7. Then,
by the same corollary, for every q ≥ 1, |ω̂(0, T )|Lq ≤ M . Fix an enhanced sample rough
path (X,Y) up to level 2 and for simplicity, we will use ω to denote the corresponding
realisation of the (random) control ω̂. We can assume without loss of generality that

ε < ω(s, t)
1
p−

1
2γ′ , (4.2)

otherwise the triangle inequality and Corollary 3.8 readily imply the stated estimates.
Let D = {s = u0 < · · · < uL+1 = t} be a dissection. Then (cf. [11, Lemma 2.2.1]), there
exists a j such that

ω(uj−1, uj+1) ≤ 2

L
ω(s, t), L ≥ 1. (4.3)

Let Dj denote the dissection with the point uj removed from D. Then, we have

|(X̂D
s,t − ŶD

s,t)
3| < |(X̂Dj

s,t − ŶDj

s,t )3|+
2∑
k=1

(|Rk
uj−1,uj ⊗ X3−k

uj ,uj+1
|

+ |Xkuj−1,uj ⊗R3−k
uj ,uj+1

|+ |Rk
uj−1,uj ⊗R3−k

uj ,uj+1
|),

where Rs,t = Ys,t − Xs,t. By assumption,

|Rk
uj−1,uj ⊗R3−k

uj ,uj+1
| < C ·min

{
ε
( 1

L
ω(s, t)

) 1
2γ′+

2
p ,
( 1

L
ω(s, t)

) 3
p

}
, (4.4)

and similar inequalities hold for the other two terms in the bracket. Thus, we have

|(X̂D
s,t − ŶD

s,t)
3| < |(X̂Dj

s,t − ŶDj

s,t )3|+ C3 min

{
ε
( 1

L
ω(s, t)

) 1
2γ′+

2
p ,
( 1

L
ω(s, t)

) 3
p

}
.

Let N be the integer for which[
1

N + 1
ω(s, t)

] 1
p−

1
2γ′

≤ ε <
[

1

N
ω(s, t)

] 1
p−

1
2γ′

, (4.5)

then

ε[
1

L
ω(s, t)]

1
2γ′+

2
p < [

1

L
ω(s, t)]

3
p

if and only if L ≤ N . By Lemma 4.1, we have

X3
s,t = lim

|D|→0
(X̂D

s,t)
3, Y3

s,t = lim
|D|→0

(ŶD
s,t)

3.

Thus, for a fixed partition D, we choose a point each time according to (4.3), and drop
them successively. By letting |D| → +∞, we have

|X3
s,t −Y3

s,t| ≤ C3

[
ε

N∑
L=1

( 1

L
ω(s, t)

) 1
2γ′+

2
p +

+∞∑
L=N+1

( 1

L
ω(s, t)

) 3
p

]
.
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Approximating the sums by integrals, we have

|X3
s,t −Y3

s,t| < C3[εω(s, t)
1

2γ′+
2
p (1 +

∫ N

1

x
−( 1

2γ′+
2
p )
dx) + ω(s, t)

3
p

∫ +∞

N

x−
3
p dx].

Compute the second integral, and use

[
1

N + 1
ω(s, t)]

( 1
p−

1
2γ′ ) ≤ ε,

we obtain

|X3
s,t −Y3

s,t| < C3[εω(s, t)
1

2γ′+
2
p (1 +

∫ N

1

x
−( 1

2γ′+
2
p )
dx) + ε

3−p
1−p/2γ′ ω(s, t)]. (4.6)

Now we apply the above estimates to the three situations respectively.

1. 1
2γ′ + 2

p > 1.

In this case, the integral∫ N

1

x
−( 1

2γ′+
2
p )
dx <

∫ +∞

1

x
−( 1

2γ′+
2
p )
dx < +∞

converges. On the other hand, (4.2) implies

ε
3−p

1−p/2γ′ ω(s, t) < εω(s, t)
1

2γ′+
2
p ,

thus, from (4.6), we get

|X3
s,t −Y3

s,t| < C3εω(s, t)
1

2γ′+
2
p .

2. 1
2γ′ + 2

p = 1.

In this case, 1
p −

1
2γ′ = 3−p

p , and 3−p
1−p/2γ′ = 1. Thus, by the second inequality in (4.5), we

have ∫ N

1

x−1dx = logN < logω(s, t)− p

3− p
log ε.

On the other hand, (4.2) gives

logω(s, t)− p

3− p
log ε > 0.

Combining the previous two bounds with (4.6), we get

|X3
s,t −Y3

s,t| < C3ε[1 + logω(s, t)− p

3− p
log ε]ω(s, t).

We can simplify the above inequality to

|X3
s,t −Y3

s,t| < C3ε[1 + log+(ω(0, T )/ε
p

3−p )]ω(s, t),

where we have also included the possibility of ε ≥ ω(0, T )
3
p−1.

3. 1
2γ′ + 2

p < 1.
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Now we have

1 +

∫ N

1

x
−( 1

2γ′+
2
p )
dx < CN

1− 1
2γ′−

2
p < C · ε−(1− 1

2γ′−
2
p )/ 1

p−
1

2γ′ ω(s, t)
1− 1

2γ′−
2
p ,

where the second inequality follows from (4.5). Combining the above bound with (4.6),
we obtain

|X3
s,t −Y3

s,t| < C3ε
3−p

1−p/2γ′ ω(s, t).

The following theorem, obtained with the standard induction argument, gives esti-
mates for all levels n = 1, 2, · · · .

Theorem 4.3. Let (X,Y ) and ρ, γ as in Proposition 3.6, p ∈ (2ρ, 3) and γ′ > γ. Then
there exists a (random) control ω̂ such that for every q ≥ 1, we have

|ω̂(0, T )|Lq ≤M

where M = M(p, ρ, γ, γ′, q,K), and for each n there exists a (deterministic) constant Cn
depending on p and γ′ such that a.s. for all [s, t]:

(i) If 1
2γ′ + 2

p > 1, then we have

|Xn
s,t −Yn

s,t| < Cnεω̂(s, t)
1

2γ′+
n−1
p

(ii) If 1
2γ′ + 2

p = 1, then we have

|Xn
s,t −Yn

s,t| < Cnε · (1 + log+
[
ω̂(0, T )/ε

1− p
2γ′
]
) · ω̂(s, t)

1
2γ′+

n−1
p .

(iii) If 1
2γ′ + 2

p < 1, then for all s < t and all small ε, we have

|Xn
s,t −Yn

s,t| < Cnε
3−p

1−p/2γ′ ω̂(s, t)
n−1+{p}

p (4.7)

where {p} denotes the fractional part of p, i.e. {p} = p− bpc = p− 2.

Proof. We prove the case when 1
2γ′ + 2

p < 1; the other two situations are similar. Let
ω̂ be the control in the previous theorem. Fix an enhanced sample path (X,Y), the
corresponding realisation ω of ω̂, and s < t ∈ [0, T ]. We may still assume (4.2) without
loss of generality (otherwise we just apply Corollary 3.8). Thus, for n = 1, 2, we have

|Xn
s,t −Yn

s,t| < εω(s, t)
1

2γ′+
n−1
p < Cnε

3−p
1−p/2γ′ ω(s, t)

n−1+{p}
p ,

where the second inequality comes from (4.2). The above inequality also holds for n = 3

by the previous theorem. Now, suppose (4.7) holds for n = 1, · · · , k, where k ≥ 3, then
for level n = k + 1, we have in the exponent

n− 1 + {p}
p

> 1,

so that the usual induction procedure works (cf. [11], Theorem 2.2.2.). Thus, we prove
(4.7) for all n.
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4.2 Proof of Theorem 1.1

Proof. We distinguish two cases:
Case 1: Assume that 1− 2ρ

σ ≤ 3−2ρ, i.e. 1 ≤ 1
ρ + 1

σ . This means that for every choice
γ < σ/2 we have

1

ρ
+

1

2γ
> 1.

We can choose γ close to σ/2 such that also

β < 1− ρ

γ
.

Now choose p and γ′ such that 2ρ < p < σ, γ < γ′ < σ/2 and

2

p
+

1

2γ′
> 1.

Theorem 4.3 implies that

|Xn
s,t −Yn

s,t| < Cnεω̂(s, t)
1

2γ′+
n−1
p

holds for any s < t and n ∈ N. Our choices on p and γ′ imply that 1
2γ′ + n

p ≥
n
σ for every

n, therefore

%Nσ−var(X,Y) ≤ CN ε max
n=1,...,N

ω̂(0, T )
1

2γ′+
n−1
p

= CN sup
u∈[0,T ]

|Xu − Yu|
1− ργ
L2 max

n=1,...,N
ω̂(0, T )

n−1+{p}
p .

Taking the Lq norm on both sides gives the claim.
Case 2: Now let 3− 2ρ < 1− 2ρ

σ , i.e.

1

ρ
+

1

σ
< 1. (4.8)

Choose γ such that

ρ < γ < min

{
ρ

ρ− 1
,
σ

2

}
.

We claim that we can choose γ such that also

1

ρ
+

1

2γ
< 1 (4.9)

holds. Indeed: In the case γ < σ/2 ≤ ρ
ρ−1 , we may choose γ close to σ/2 using (4.8) to

obtain (4.9). The case γ < ρ
ρ−1 < σ/2 may only happen if ρ > 1, i.e. we may chose γ

close to ρ
ρ−1 to get (4.9) which shows the claim. Now choose p > 2ρ and γ′ ∈ (γ, σ/2)

with the properties that β < 3 − p < 3 − 2ρ and 2ρ
γ = p

γ′ hold. With these choices,
2
p + 1

2γ′ < 1 and the corresponding estimate of Theorem 4.3 shows that

|Xn
s,t −Yn

s,t| < Cnε
3−p

1−ρ/γ ω̂(s, t)
n−1+{p}

p

holds for every s < t and n ∈ N. Since

σ(n− 1 + {p})
np

=
σ

p

(
1 +

p− 3

n

)
≥ σ

(
1− 2

p

)
≥ 2γ

(
1− 1

ρ

)
≥ 1
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we may conclude that

%Nσ−var(X,Y) ≤ CN ε
3−p

1−ρ/γ max
n=1,...,N

ω̂(0, T )
n−1+{p}

p

= CN sup
u∈[0,T ]

|Xu − Yu|3−pL2 max
n=1,...,N

ω̂(0, T )
n−1+{p}

p .

Taking Lq norms yields the assertion.

5 Applications

5.1 Convergence rates of rough differential equation

Consider the rough differential equation of the form

dYt =

d∑
i=1

Vi(Yt) dX
i
t =: V (Yt) dXt; Y0 ∈ Re (5.1)

where X is a centered Gaussian process in Rd with independent components and V =

(Vi)
d
i=1 a collection of bounded, smooth vector fields with bounded derivatives in Re.

Rough path theory gives meaning to the pathwise solution to (5.1) in the case when the
covariance RX has finite ρ-variation for some ρ < 2. Assume that ρ ∈ [1, 3

2 ) and that
there is a constant K such that

Vρ(RX ; [s, t]2) ≤ K|t− s|
1
ρ (5.2)

for all s < t (note that this condition implies that the sample paths of X are α-Hölder for
all α < 1

2ρ ). For simplicity, we also assume that [0, T ] = [0, 1]. For every k ∈ N, we can
approximate the sample paths of X piecewise linear at the time points {0 < 1/k < 2/k <

. . . < (k−1)/k < 1}. We will denote this process by X(k). Clearly, X(k) → X uniformly as
k →∞. Now we substitute X by X(k) in (5.1), solve the equation and obtain a solution
Y (k); we call this the Wong-Zakai approximation of Y . One can show, using rough path
theory, that Y (k) → Y a.s. in uniform topology as k → ∞. The proposition below is an
immediate consequence of Theorem 1.1 and gives us rates of convergence.

Proposition 5.1. The mesh size 1
k Wong-Zakai approximation converges uniformly to

the solution of (5.1) with a.s. rate at least k−( 3
2ρ−1−δ) for any δ ∈ (0, 3

2ρ−1). In particular,

the rate is arbitrarily close to 1
2 when ρ = 1, which is the sharp rate in that case.

Proof. First, one shows that (5.2) implies that

sup
t∈[0,1]

|X(k)
t −Xt|L2 = O(k−

1
2ρ ).

One can show (cf. [6, Chapter 15.2.3]) that there is a constant C such that

sup
k∈N

Vρ(R(X,X(k)); [s, t]2) ≤ C|t− s|
1
ρ

holds for all s < t. By choosing q large enough, a Borel-Cantelli type argument applied
to Theorem 1.1 shows that %σ−var(X,X

(k))→ 0 a.s. for k →∞ with rate arbitrarily close

to k−β , any β <
{

1
2ρ −

1
σ ,

3
2ρ − 1

}
. Choosing σ large enough, we obtain the desired rate.
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Using the local Lipschitz property of the Itō Lyons map (cf. [6, Theorem 10.26]), we
conclude that the Wong-Zakai convergence rate is faster than

k−( 3
2ρ−1−δ)

for any δ > 0 (but not for δ = 0).

Remark 5.2. For ρ ∈ (1, 3
2 ), the rate above is not optimal. In fact, the sharp rate in this

case is ’almost’ 1
ρ −

1
2 , as shown in [4]. The reason for the non-optimality of the rate

is that we obtain the third level estimate merely based on the first two levels, which
leads to a reduction in the exponent in the rate. On the other hand, this method does
not use any Gaussian structure on the third level, and can be applied to more general
processes. For the case ρ = 1, we recover the sharp rate of ’almost’ 1

2 .

5.2 The stochastic heat equation

In the theory of stochastic partial differential equations (SPDEs), one typically con-
siders the SPDE as an evolution equation in a function space. When it comes to the
question of time and space regularity of the solution, one discovers that they will de-
pend on the particular choice of this space. As a rule of thumb, the smaller the space,
the lower the time regularity ([9], Section 5.1). The most prominent examples of such
spaces are Hilbert spaces, typically Sobolev spaces. However, in some cases, it can be
useful to choose rough paths spaces instead ([10]). A natural question now is whether
the known regularity results for Hilbert spaces are also true for rough paths spaces. In
this section, we study the example of a modified stochastic heat equation for which we
can give a positive answer.

Consider the stochastic heat equation:

dψ = (∂xx − 1)ψ dt+ σ dW (5.3)

where σ is a positive constant, the spatial variable x takes values in [0, 2π], W is space-
time white noise, i.e. a standard cylindrical Wiener process on L2([0, 2π],Rd), and ψ

denotes the stationary solution with values in Rd. The solution ψ is known to be almost
1
4 -Hölder continuous in time and almost 1

2 -Hölder continuous in space (cf. [9]). In the
next Theorem, we show that this is also the case if we consider the solution as an
evolution equation in the appropriate rough paths space.

Theorem 5.3. Let p > 2. Then, for any fixed t ≥ 0, the process x 7→ ψt(x) is a Gaussian
process (in space) which can be lifted to an enhanced Gaussian process Ψt(·), a process
with sample paths in C0,p−var([0, 2π], Gbpc(Rd)). Moreover, t 7→ Ψt(·) has a Hölder con-
tinuous modification (which we denote by the same symbol). More precisely, for every

α ∈
(

0, 1
4 −

1
2p

)
, there exists a (random) constant C such that

%p−var(Ψs,Ψt) ≤ C|t− s|α

holds almost surely for all s < t. In particular, choosing p large gives a time regularity
of almost 1

4 -Hölder.
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Proof. The fact that x 7→ ψt(x) can be lifted to a process with rough sample paths and
that there is some Hölder-continuity in time was shown in Lemma 3.1 in [10], see also
[2]. We quickly repeat the argument and show where we can use our results in order to
derive the exact Hölder exponents. Using the standard Fourier basis

ek(x) =


1√
π

sin(kx) if k > 0
1√
2π

if k = 0
1√
π

cos(kx) if k < 0

the equation (5.3) can be rewritten as a system of SDEs

dY kt = −(k2 + 1)Y kt dt+ σ dW k
t

where (W k)k∈Z is a collection of independent standard Brownian motions and (Y k)k∈Z
are the stationary solutions of the SDEs, i.e. a collection of centered, independent,
stationary Ornstein-Uhlenbeck processes. The solution of (5.3) is thus given by the
infinite sum ψt(x) =

∑
k∈Z Y

k
t ek(x). One can easily see that

E [ψs(x)⊗ ψt(y)] =
σ2

4π

∑
k∈Z

cos(k(x− y))

1 + k2
e−(1+k2)|t−s| × Id

where Id denotes the identity matrix in Rd×d. In particular, for s = t,

E [ψt(x)⊗ ψt(y)] = K(x− y)× Id

where K is given by

K(x) =
σ2

4 sinh(π)
cosh(|x| − π)

for x ∈ [−π, π] and extended periodically for the remaining values of x (this can be
derived by a Fourier expansion of the function x 7→ cosh(|x| − π)). In particular, one can
calculate that x 7→ ψt(x) is a Gaussian process with covariance of finite 1-variation (see
the remark at the end of the section for this fact), hence ψt can be lifted to process Ψt

with sample paths in the rough paths space C0,p−var([0, 2π], Gbpc(Rd)) for any p > 2.
Furthermore, for any s < t, x 7→ (ψs(x), ψt(x)) is a Gaussian process which fulfils

the assumptions of Theorem 1.1 and the covariance R(ψs,ψt) also has finite 1-variation,
uniformly bounded for all s < t, hence

sup
s<t
|R(ψs,ψt)|1−var;[0,2π]2 =: c1 <∞.

Therefore, for any β ∈ (1, p/2) and q ≥ 1 there is a constant C = C(p, β, c1, q) such that

|%p−var(Ψs,Ψt)|Lq ≤ C sup
x∈[0,2π]

|ψt(x)− ψs(x)|βL2

holds for all s < t. A straightforward calculation (cf. [10, Lemma 3.1]) shows that

|ψt(x)− ψs(x)|L2 ≤ c2|t− s|1/4

for a constant c2.
Since C0,p−var is a Polish space, we can apply the usual Kolmogorov continuity crite-

rion to conclude.
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Remark 5.4. We emphasize that here, for every fixed t, the process ψt(·) is a Gaussian
process, where the spatial variable x should now be viewed as ’time’. This idea is due
to M.Hairer. Knowing that the spatial regularity is ’almost’ 1/2 for every fixed time t,
one could guess that covariance of this spatial Gaussian process has finite 1-variation.
For a formal calculation, we refer to [9] or [2].

6 Appendix

The next Lemma is a slight modification of [6, Theorem A.13]. The proof follows the
ideas of [2, Theorem 3.1].

Lemma 6.1 (Kolmogorov for multiplicative functionals). Let X,Y : [0, T ]× Ω→ TN (V )

be random multiplicative functionals and assume that X(ω) and Y(ω) are continuous
for all ω ∈ Ω. Let β, δ ∈ (0, 1] and choose β′ < β and δ′ < δ. Assume that there is a
constant M > 0 such that

|Xn
s,t|Lq/n ≤Mn|t− s|nβ

|Yn
s,t|Lq/n ≤Mn|t− s|nβ

|Xn
s,t −Yn

s,t|Lq/n ≤Mnε|t− s|δ+(n−1)β

hold for all s < t ∈ [0, T ] and n = 1, . . . , N where ε is a positive constant and q ≥ q0

where

q0 := 1 +

(
1

β − β′
∨ 1

δ − δ′

)
.

Then there is a constant C = C(N, β, β′, δ, δ′) such that∣∣∣∣∣ sup
s<t∈[0,T ]

|Xn
s,t|

|t− s|nβ′

∣∣∣∣∣
L
q
n

≤ CMn (6.1)∣∣∣∣∣ sup
s<t∈[0,T ]

|Yn
s,t|

|t− s|nβ′

∣∣∣∣∣
L
q
n

≤ CMn (6.2)∣∣∣∣∣ sup
s<t∈[0,T ]

|Xn
s,t −Yn

s,t|
|t− s|δ′+(n−1)β′

∣∣∣∣∣
L
q
n

≤ CMnε (6.3)

hold for all n = 1, . . . , N .

Proof. W.l.o.g., we may assume T = 1. Let (Dk)k∈N be the sequence of dyadic partitions
of the interval [0, 1), i.e. Dk =

{
l

2k
: l = 0, . . . , 2k − 1

}
. Clearly, |Dk| = 1

#Dk
= 2−k. Set

Kn
k,X := max

ti∈Dk
|Xn

ti,ti+1
|

Kn
k,Y := max

ti∈Dk
|Yn

ti,ti+1
|

Kn
k,X−Y :=

1

ε
max
ti∈Dk

|Xn
ti,ti+1

−Yn
ti,ti+1

|

for n = 1, . . . , N and k ∈ N. By assumption, we have

E|Kn
k,X |

q
n ≤ E

∑
ti∈Dk

|Xn
ti,ti+1

|
q
n ≤ #Dk max

ti∈Dk
E|Xn

ti,ti+1
|
q
n ≤Mq|Dk|qβ−1.

EJP 18 (2013), paper 108.
Page 19/22

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2387
http://ejp.ejpecp.org/


Simple proof Gaussian rough paths

In the same way one estimates Kn
k,Y and Kn

k,X−Y , hence

|Kn
k,X |Lq/n ≤Mn|Dk|nβ−n/q (6.4)

|Kn
k,Y |Lq/n ≤Mn|Dk|nβ−n/q (6.5)

|Kn
k,X−Y |Lq/n ≤Mn|Dk|δ+(n−1)β−n/q. (6.6)

Note the following fact: For any dyadic rationals s < t, i.e. s < t ∈ ∆ :=
⋃∞
k=1Dk, there

is a m ∈ N such that |Dm+1| < |t− s| ≤ |Dm| and a partition

s = τ0 < τ1 < . . . < τN = t (6.7)

of the interval [s, t) with the property that for any i = 0, . . . , N − 1 there is a k ≥ m + 1

with [τi, τi+1) ∈ Dk, but for fixed k ≥ m + 1 there are at most two such intervals con-
tained in Dk.

Step 1: We claim that for every n = 1, . . . , N there is a real random variable Kn
X

such that |Kn
X |Lq/n ≤Mnc where c = c(β, β′, δ, δ′) and that for any dyadic rationals s < t

and m, (τi)
N
i=0 chosen as in (6.7) we have

N−1∑
i=0

|Xn
τi,τi+1

|
|t− s|nβ′

≤ Kn
X . (6.8)

Furthermore, the estimate (6.8) also holds for Yn and a random variable Kn
Y . Indeed:

By the choice of m and (τi)
N
i=0,

N−1∑
i=0

|Xn
τi,τi+1

|
|t− s|nβ′

≤
∞∑

k=m+1

2Kn
k,X

|Dm+1|nβ′
≤ 2

∞∑
k=m+1

Kn
k,X

|Dk|nβ′
≤ 2

∞∑
k=1

Kn
k,X

|Dk|nβ′
=: Kn

X .

It remains to prove that |Kn
X |Lq/n ≤ Mnc. By the triangle inequality and the estimate

(6.4), ∣∣∣∣∣
∞∑
k=1

Kn
k,X

|Dk|nβ′

∣∣∣∣∣
Lq/n

≤Mn
∞∑
k=1

|Dk|n(β−1/q−β′) ≤Mn
∞∑
k=1

|Dk|(β−1/q0−β′) <∞

since β − 1/q0 − β′ > 0 which shows the claim.

Step 2: We show that (6.1) and (6.2) hold for all n = 1, . . . , N . It is enough to
consider X. Note first that, due to continuity, it is enough to show the estimate for

sups<t∈∆
|Xn
s,t|

|t−s|nβ′ . By induction over n: For n = 1, this just follows from the usual Kol-

mogorov continuity criterion. Assume that the estimate is proven up to level n − 1.
Let s < t be any dyadic rationals and choose m and (τi)

N
i=0 as in (6.7). Since X is a

multiplicative functional,

|Xn
s,t| ≤

N−1∑
i=0

|Xn
τi,τi+1

|+
n−1∑
l=1

max
i=1,...,N

|Xn−l
s,τi |

N−1∑
i=0

|Xl
τi,τi+1

|

and thus, using step 1,

|Xn
s,t|

|t− s|nβ′
≤
N−1∑
i=0

|Xn
τi,τi+1

|
|t− s|nβ′

+

n−1∑
l=1

sup
u<v∈∆

|Xn−l
u,v |

|v − u|(n−l)β′
N−1∑
i=0

|Xl
τi,τi+1

|
|t− s|lβ′

≤ Kn
X +

n−1∑
l=1

sup
u<v∈∆

|Xn−l
u,v |

|v − u|(n−l)β′
Kl
X .
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We can now take the supremum over all s < t ∈ ∆ on the left. Taking the Lq/n-norm on
both sides, using first the triangle, then the Hölder inequality and the estimates from
step 1 together with the induction hypothesis gives the claim.

Step 3: As in step 1, we claim that for any n = 1, . . . , N there is a random variable
Kn
X−Y ∈ Lq/n such that for any dyadic rationals s < t and m, (τi)

N
i=0 chosen as above we

have

N−1∑
i=0

|Xn
τi,τi+1

−Yn
τi,τi+1

|
|t− s|δ′+(n−1)β′

≤ Kn
X−Y ε. (6.9)

Furthermore, we claim that |Kn
X−Y |Lq/n ≤ Mnc̃ where c̃ = c̃(β, β′, δ, δ′). The proof

follows the lines of step 1, setting

1

ε

N−1∑
i=0

|Xn
τi,τi+1

−Yn
τi,τi+1

|
|t− s|δ′+(n−1)β′

≤ 2

∞∑
k=1

Kn
k,X−Y

|Dk|δ′+(n−1)β′
=: Kn

X−Y .

Step 4: We prove that (6.3) holds for all n = 1, . . . , N . By induction over n: The case
n = 1 is again just the usual Kolmogorov continuity criterion applied to t 7→ ε−1(Xt−Yt).
Assume the assertion is shown up to level n − 1 and chose two dyadic rationals s < t.
Using the multiplicative property, we have

|Xn
s,t −Yn

s,t| ≤
N−1∑
i=0

|Xn
τi,τi+1

−Yn
τi,τi+1

|+
n−1∑
l=1

max
i=1,...,N

|Xn−l
s,τi |

N−1∑
i=0

|Xl
τi,τi+1

−Yl
τi,τi+1

|

+

n−1∑
l=1

max
i=1,...,N

|Xn−l
s,τi −Yn−l

s,τi |
N−1∑
i=0

|Yl
τi,τi+1

|.

Now we proceed as in step 2, using the estimates from step 1 to step 3 and the induction
hypothesis.
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