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Abstract

During early development, modulations in the expression of Nodal, a TGFb family member, determine the specification of
embryonic and extra-embryonic cell identities. Nodal has been extensively studied in the mouse, but aspects of its early
expression remain unaccounted for. We identified a conserved hotspot for the binding of pluripotency factors at the Nodal
locus and called this sequence ‘‘highly bound element’’ (HBE). Luciferase-based assays, the analysis of fluorescent HBE
reporter transgenes, and a conditional mutation of HBE allowed us to establish that HBE behaves as an enhancer, is
activated ahead of other Nodal enhancers in the epiblast, and is essential to Nodal expression in embryonic stem cells (ESCs)
and in the mouse embryo. We also showed that HBE enhancer activity is critically dependent on its interaction with the
pluripotency factor Oct4 and on Activin/Nodal signaling. Use of an in vitro model of epiblast maturation, relying on the
differentiation of ESCs into epiblast stem cells (EpiSCs), revealed that this process entails a shift in the regulation of Nodal
expression from an HBE-driven phase to an ASE-driven phase, ASE being another autoregulatory Nodal enhancer. Deletion
of HBE in ESCs or in EpiSCs allowed us to show that HBE, although not necessary for Nodal expression in EpiSCs, is required
in differentiating ESCs to activate the differentiation-promoting ASE and therefore controls this regulatory shift. Our findings
clarify how early Nodal expression is regulated and suggest how this regulation can promote the specification of extra-
embryonic precusors without inducing premature differentiation of epiblast cells. More generally, they open new
perspectives on how pluripotency factors achieve their function.
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Introduction

The gene Nodal encodes a TGFb family member signaling via

the Smad2/3-dependent Activin/Nodal pathway. Nodal is a key

factor during early development, required for the specification of

cell identities in embryonic and extra-embryonic lineages [1,2]. Its

re-expression in the adult has been associated with tumor

progression and its signaling pathway is essential to the mainte-

nance of human embryonic stem cells (ESCs) [3–5]. There is

therefore a broad interest in understanding how its expression is

initiated and regulated.

In the mouse, Nodal expression starts in the inner cell mass

(ICM) of the E3.5 blastocyst [6,7]. At E4.0, shortly before

implantation, Nodal is detected in the two tissues that derive from

the ICM: the epiblast, which will give rise to all fetal lineages, and

the primitive endoderm (PrE), an extra-embryonic layer [6]. Nodal

expression remains detectable in their postimplantation derivatives

up to gastrulation stages but exhibits complex dynamics,

foreshadowing the establishment of the anterior–posterior axis

and the formation of the primitive streak [1]. Its re-expression in

the node at E7.5 and in left lateral plate mesoderm at E8.0

contributes to the establishment of left–right asymmetry [1].

Nodal expression starts at E3.5, but the earliest molecular defects

characterized in Nodal2/2 embryos so far were detected after

implantation. The epiblast of Nodal2/2 embryos differentiates

prematurely and their visceral endoderm, a derivative of the PrE,

is not properly regionalized [8–10]. Pluripotent cell lines offer

convenient in vitro models to study the role of Nodal and Activin/
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Nodal signaling during epiblast development. ESCs are derived

from the nascent preimplantation epiblast [11]. They express Nodal

and have an active Activin/Nodal signaling pathway, but this is

not essential to their maintenance [3,12]. In contrast, epiblast stem

cells (EpiSCs) are derived from the postimplantation epiblast, and

their capacity to self-renew depends critically on Activin/Nodal

signaling [13,14]. When exposed to Activin and FGF, ESCs can be

converted into EpiSCs, a differentiation process dependent on

Activin/Nodal signaling and described as a transition from a

ground state of pluripotency to a primed state of pluripotency

[11,15]. This protocol is now commonly used to mimic events

surrounding the maturation of the preimplantation epiblast into

postimplantation epiblast.

Several studies showed that in ESCs Nodal expression is

dependent on pluripotency factors or on Activin/Nodal signaling

itself [16–19]. Four Nodal cis-regulatory elements are already

known. None is controlled by pluripotency factors, and only one,

ASE, is both dependent on Activin/Nodal signaling and known to

be active before implantation [6,20,21]. ASE contains two

functional FoxH1-Smad2,3 binding motifs and acts as an

autoregulatory element allowing Nodal to amplify its own

expression, notably in the postimplantation epiblast [20,21]. The

deletion of ASE results in a phenotype far less severe than that of

Nodal2/2 embryos and characterized by later patterning defects

[20], indicating that it is not required to initiate Nodal expression.

Our previous analysis of the expression profiles of fluorescent

reporter transgenes for ASE showed that, although they could

recapitulate some aspects of Nodal expression at preimplantation

stages, they could not account for the timing of its onset in the

ICM and its presence in nascent preimplantation epiblast cells [6].

This strongly suggested that these particular aspects of Nodal

expression are dependent on cis-regulatory sequences other than

ASE.

We sought to uncover how Nodal expression is initiated. We

identified a novel Nodal enhancer, which we call HBE, that

matches the expected profile. HBE is activated ahead of other

Nodal enhancers in the ICM and in the preimplantation epiblast,

and it is the predominant Nodal enhancer in ESCs. Furthermore,

HBE is a hotspot for the binding of pluripotency factors and

mediates the influence of Oct4, Klf4, and Activin/Nodal signaling

on the expression of Nodal. The deletion of HBE by homologous

recombination eliminates expression of the mutated allele in ESCs

and in the early embryo. Strikingly, it also impairs its expression

when ESCs are induced to differentiate, revealing an early

requirement for HBE to trigger the activation of at least one other

enhancer, the ASE, which drives Nodal expression in more

differentiated cell types. We find also that the deletion of HBE

in ESCs results in a region close to ASE accumulating the

repressive histone mark H3K27me3, implying that it is via its

implication in the recruitment of chromatin modifiers that HBE

controls ASE. Our findings shed light on how enhancers regulated

by the molecular machinery of pluripotency control gene

expression and drive development forward.

Results

Identification of HBE, a Novel Nodal Enhancer Active in
Pluripotent Stem Cells

One study identified Nodal as a tentative direct target of the

pluripotency factors Oct4, Sox2, and Nanog in ESCs [19]. It

showed that the expression of Nodal declined when the gene

encoding Oct4 was knocked down, whereas it was upregulated

when Nanog or Sox2 were supressed. We therefore searched

relevant ChIP data, which revealed the existence of a hotspot for

the binding of pluripotency factors, including Oct4, Nanog, Sox2,

and Klf4, in a 2 kb region lying 1 kb upstream of the Nodal

transcription start site (TSS) (Figure 1A) [22–26]. We called this

region HBE, for highly bound element. This noncoding sequence

is conserved in eutherian mammals, an indication that it may be

involved in gene regulation (Figure 1A). In ESCs, this sequence

scores positive for four criteria now used to identify active

enhancers: low levels of the repressive histone mark H3K27me3,

low levels of the active but promoter-associated histone mark

H3K4me3, high levels of the active histone marks H3K4me1 and

H3K27ac, and a binding peak of the acetyltransferase and

transcriptional coactivator p300 [27–31] (Figure S1). In contrast,

none of the known Nodal enhancers, PEE, NDE, AIE/LSE, or

ASE [32–35], appeared to bear the hallmark of an active enhancer

in ESCs (Figure S1). The ASE, however, although not bearing the

active enhancer mark H3K4me1, presents marks suggestive of

possible transcriptional activity: a binding peak for p300, high level

of H3K27ac, and a peak of the active promoter-specific

H3K4me3.

A luciferase-based assay was used to test HBE’s capacity as an

enhancer in ESCs and to compare it to that of ASE and PEE, the

only Nodal enhancers known to be active at peri-implantation

stages [6,36]. This assay was done both with the minimal

promoter E1b [36] and with the 940-bp-long stretch of sequence,

termed NIS, for Nodal intervening sequence, which separates HBE

from the ORF of the gene and contains the endogenous Nodal

promoter. In both cases, HBE came out as the strongest enhancer

(Figure 1B), whereas PEE and ASE showed minimal activity and

NDE and AIE/LSE showed no activity whatsoever. We

performed the same assay in EpiSCs. This time, although HBE

still showed enhancer activity, the activity of ASE was higher while

that of PEE, NDE, and AIE/LSE was unchanged (Figure 1C).

The higher activity of ASE is consistent with it being dependent on

Activin/Nodal signaling [6,20,34] and the presence of Activin in

EpiSC culture medium. These results indicate that HBE is the

predominant Nodal enhancer in ESCs and that it is still active in

EpiSCs.

An HBE Reporter Transgene Is Activated in
Preimplantation Epiblast

To find out when and where HBE is active during embryonic

development, we generated transgenic lines where the expression

of a nuclear version of Venus-YFP is placed under the control of

Author Summary

In the early mouse embryo, Nodal, a member of the
TGFbeta superfamily of signalling proteins, promotes the
differentiation of extra-embryonic tissues, as well as tissues
within the developing embryo itself. Characterising the
regulation of Nodal gene expression is essential to
understand how Nodal signals in diverse tissue types
and at different stages of embryonic development. Four
distinct enhancer sequences have been shown to regulate
Nodal expression, although none could account for it in
the preimplantation epiblast or in embryonic stem cells.
We identified a novel enhancer, HBE, responsible for the
earliest aspects of Nodal expression. We show that
activation of HBE depends on its interaction with a well-
known pluripotency factor called Oct4. HBE itself also
controls the activation of at least one other Nodal
enhancer. Our findings clarify how early Nodal expression
is regulated and reveal how pluripotency factors may
control the onset of differentiation in embryonic tissues.

Control of Nodal Enhancers’ Sequential Activation
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HBE-NIS—that is, the 3 kb of genomic sequence directly

upstream of the Nodal ORF. The two independent HBE-YFP

mouse lines we obtained both showed the same reporter

expression profile, thus precluding the influence of position and

confirming its specificity (Figure 2). The fluorescence was first

detected at E3.5 in one or two cells of the ICM (n = 12/15

embryos analyzed; Figure 2A–A0). By E4.5, more ICM cells were

positive and the signal was stronger (Figure 2B–C0, 2E–E0). These

cells all co-expressed the pluripotency factor Oct4 (Figure 2B–B0).

Counts performed on E4.5 embryos stained for the PrE marker

Gata-4 found that 93% of epiblast cells were YFP-positive. Most

YFP-positive cells (98%) were also found to co-express the

pluripotency factor Nanog (Figure 2C–C0). This is in marked

contrast to the ASE-YFP transgene, which showed an expression

profile broadly complementary to that of Nanog in the epiblast

around the time of implantation [6], and suggests that HBE-YFP is

expressed in epiblast cells earlier than ASE-YFP. However, at

these early stages HBE-YFP expression is not restricted to the

embryonic lineage. Co-expression with Gata-4 was detected in a

subset of PrE cells in some embryos at E3.75 and E4.5 (n = 3/13

and n = 5/11, respectively; Figure 2D–D0, E–E0). There was no

expression in extra-embryonic endoderm after this (unpublished

data and Figure 2F–F0). After implantation, at E5.5, HBE-YFP

was expressed in all epiblast cells, albeit with varying levels of

intensity (n = 15/16; Figure 2F–F0). By E6.5, the expression of the

transgene in the epiblast was clearly heterogeneous (n = 13/13;

Figure 2G–G0), suggesting it was progressively downregulated in

some cells whereas it was maintained in others. Between E6.5 and

E7.5, HBE-YFP–positive cells could still be detected in the epiblast

and in all epiblast derivatives, including the extraembryonic

Figure 1. HBE is an enhancer active in pluripotent cells. (A) HBE is a hotspot for the binding of pluripotency factors and Smad3. Nodal
regulatory elements are represented by green boxes and Nodal exons by blue boxes. Binding peaks of Nanog, Sox2, Klf4, Oct4, and Smad3 at the
Nodal locus in ESCs are represented by black bars that represent either the summit of the peak of ChIP-seq data or its center for ChIP-chip data
aligned to UCSC Genome Browser on Mouse Feb. 2006 (NCBI36/mm8) Assembly (http://genome.ucsc.edu/). (B and C) Luciferase reporter assays for
early Nodal enhancers using either a minimal (E1b) or the endogenous promoter (NIS), in ESCs (B), or in EpiSCs (C). Luciferase activities are shown
relative to HBE construct. An asterisk indicates significant differences from the control (ctrl) (p,0.01).
doi:10.1371/journal.pbio.1001890.g001
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mesoderm (Figure 2G–G0 and unpublished data). However, they

constituted a steadily declining fraction of these tissues. At E8.0,

fluorescent nuclei were still detected in the node and in cells

scattered in all three germ layers along the full length of the

headfold stage embryo (Figure 2H,I). By E8.5, HBE-YFP

expression was no longer detected (unpublished data).

Although HBE-YFP fluorescence just became detectable at

E3.5, in situ hybridization with a YFP probe detected expression

of the transgene in the ICM of all E3.5 transgenic embryos

analyzed (n = 16/16; Figure 2J), whereas a similar analysis

previously detected the ASE-YFP transgene in the ICM of no

more than 50% of the embryos [6] (A.P.G. and J.C., unpublished

data).

The expression profile of HBE-YFP does account for the early

aspects of Nodal expression that were not fully recapitulated by the

ASE transgene. It suggests HBE could be involved in the

regulation of Nodal expression from its onset at E3.5 until late

gastrulation stages.

HBE Enhancer Activity Is Critically Dependent on a Single
Oct4 Binding Site

The fact that HBE is a hotspot for the binding of pluripotency

factors in ESCs suggests that this sequence is the interface enabling

these factors to modulate Nodal expression. To test this hypothesis

we first assessed the influence of Oct4 and Nanog on HBE

enhancer activity, using genetically modified ESC lines. RCNbH

Figure 2. HBE-YFP expression is detected between E3.5 and E8.0. (A–A0, B–B0, F–F0, G–G0) Detection of Oct4 and HBE-YFP in E3.5 (A–A9), E4.5
(B–B9), E5.5 (F–F9), or E6.5 (G–G9) HBE-YFP transgenic mouse embryos. (C–C0) Detection of Nanog (C) and HBE-YFP (C9) in an E4.5 HBE-YFP transgenic
mouse embryo (C0). (D–E0) Detection of Gata4 (D and E) and HBE-YFP (D9 and E9) in E3.75 (D0) or E4.5 (E0) embryos. Arrowheads indicate co-expressing
nuclei. (H–I) Expression of HBE-YFP in the epiblast (H) and the node (I) of an E7.5 embryo. Images A to I are single confocal sections. Cortical actin in
blue. n is the number of representative embryos on the total number of HBE-YFP embryos analyzed. (J) In situ hybridization for YFP in an E3.5 HBE-
YFP embryo. n is the number of stained embryos on the total number of HBE-YFP embryos analyzed. Scale bar, 25 mm (except in G, H, I, and J where
scale bar, 50 mm).
doi:10.1371/journal.pbio.1001890.g002
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PLOS Biology | www.plosbiology.org 4 June 2014 | Volume 12 | Issue 6 | e1001890



ESCs contain a conditional allele of Nanog, which can be deleted

by exposure to Tamoxifen—triggering GFP expression [37].

Luciferase assays showed that the enhancer activity of HBE was

not affected by the resulting absence of Nanog (Figure 3A),

indicating that it is not via HBE that Nanog represses Nodal

expression [19]. Successful deletion of Nanog was confirmed by the

up-regulation of GFP and the downregulation of Nanog itself

(Figure S2A–B0), whereas Oct4 expression was maintained (Figure

S2C–D0). In contrast, in ZHBTc4 ESCs, where Doxycyclin

treatment induces a knockdown of Oct4 [38], Oct4 depletion

drastically down-regulated the expression of HBE constructs

(Figure 3B), suggesting that HBE mediates the influence of Oct4

on Nodal expression [19]. Successful down-regulation of Oct4 was

confirmed by immunofluorescence (Figure S2E–F9). However,

these experiments could not establish whether the activity of HBE

required a direct interaction between this enhancer and Oct4.

A systematic analysis was then undertaken to determine how the

major pluripotency factors known to bind HBE contribute to its

transcriptional activity in ESCs. Sequence comparison among

eutherian mammals had uncovered four conserved regions within

HBE, which we called HBE1 to 4 (Figure 3C). We used the BiFa

bioinformatic tool [6,39] to identify putative binding sites for

Oct4, Nanog, Sox2, and Klf4 over the entire HBE sequences

(Figure 3C and Figure S3A). Putative binding sites for Nanog/

Sox2 (2), Sox2 (1), Klf4 (10), and Oct4 (3) were found in HBE2

and 3. Only these two regions showed significant enhancer

activity, which was drastically increased when these two sequences

were combined (Figure 3D). Fragments of HBE23 of increasing

Figure 3. HBE enhancer activity depends on Oct4. (A, B, D–F) Luciferase reporter assays in ESCs using either a minimal (E1b) promoter or the
endogenous sequence (NIS). (A) HBE activity before and after Nanog deletion in RCNbH cells. (B) HBE activity before and after Oct4 inactivation in
ZHBTc4 cells. An asterisk denotes significant differences between Oct4+ and Oct4 – (p,0.01). (C) Positions of putative binding sites for Nanog, Sox2,
Klf4, and Oct4 on HBE subregions 1 to 4 (Figure S3A). An asterisk indicates the main Oct4 binding site detailed in (G). (D) Transcriptional activity of
HBE subregions. An asterisk indicates significant differences from control (ctrl) (p,0.01). (E) Transcriptional activity of HBE 2–3 serial deletions. (F)
Effect of mutations on transcriptional activity of HBE 2–3. NS*, all Nanog and Sox2 sites are mutated; K*, all Klf4 sites are mutated; O*, main Oct4 site is
mutated; NSKO*, all sites identified in (C) are mutated. An asterisk denotes significant differences from HBE 2–3 (p,0.01). (G) Conservation of the
main Oct4 binding site in eutherian mammals. Canonical Oct4 binding site is underlined, and extended Oct4 binding is shaded in yellow. (H–I0)
Electroporation of a WT (H) or a mutant (I) HBE-YFP construct in mouse blastocysts. mCherry was coelectroporated as a positive control. n is the
number of YFP-positive (H) or negative (I) embryos on the total number of mCherry-positive embryos analyzed. Single confocal sections. Cortical
actin in blue. Scale bar, 25 mm.
doi:10.1371/journal.pbio.1001890.g003
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lengths were then assayed to identify subregions that are critical for

this activity. Significant increases in enhancer activity were seen

when fragments HBE2d, which contains a cluster of putative Klf4

binding sites, and HBE3d, which contains putative Oct4 and

Nanog/Sox2 binding sites, were added to the reporter construct

(Figure 3E). The addition of HBE3d resulted in the most dramatic

gain in enhancer activity.

To assess the relevance of these binding sites to HBE enhancer

activity, they were all mutated in HBE23-E1b and HBE-NIS

luciferase constructs. Point mutations were designed with the help

of the BiFa algorithm so as to prevent binding of the relevant

transcription factor to its putative target sequence, while

minimizing effects on the binding of other transcription factors.

The impact of each mutation on transcription was first assessed

separately and then in combination with others. We found that

putative binding sites for all four factors—Nanog, Sox2, Oct4, and

Klf4—were contributing to HBE23 enhancer activity in ESCs

(Figure 3F). Mutations in Klf4 and Oct4 binding sites were,

however, far more detrimental to this activity than mutations in

Nanog and Sox2 binding sites. In particular, the elimination of the

first Oct4 binding site in HBE3d was the single mutation causing

the most dramatic drop in luciferase activity (Figure 3F). Its

combination with mutations in the two other putative Oct4

binding sites did not reduce this activity further (Figure S3B). We

confirmed that this single mutation was able to prevent the binding

of Oct4 in gel shift assays with ESC extracts (Figure S4A).

Mutations in Nanog and Sox2 putative binding sites only had a

significant impact on Luciferase activity when they were all

combined in an NIS-driven construct, and still the decrease was

modest (Figure 3F). The BiFa algorithm identified all putative

Nanog binding sites in HBE as putative, lower ranking, Sox2

binding sites. In gel shift assays, extract from Nanog-depleted

RCNbH ESCs slowed the migration of the target sequence we

tested, indicating that it was bound by one other factor at least

(Figure S4B). The mutated version of the sequence, however,

prevented this binding, indicating that although some factor, such

as Sox2, could possibly compensate for the absence of Nanog in

RCNbH ESCs, our mutation allowed the contribution of their

common binding sites to HBE and Nodal regulation to be assessed.

Together with the Oct4 result, this suggested that our approach to

mutation design was effective. We found that the addition of all

Nanog and Sox2 mutated binding sites to a construct already

containing all Klf4 and Oct4 mutated binding sites did not reduce

its transcriptional activity further (NSKO*; Figure 3F), suggesting

that the contribution of Nanog and Sox2 to HBE enhancer activity

is secondary to that of Oct4 and Klf4.

Notably, we found that the first Oct4 binding site in HBE3d, the

one most critical to HBE enhancer activity, is the most conserved

of all the putative binding sites we identified in HBE, as it is the

only one present in all mammalian genomes tested so far

(Figure 3G). Furthermore, this conserved stretch of DNA contains

an extended version of the Oct4 binding site that recent evidence

suggests can be bound by Oct4 alone and is critical to its

reprogramming function [40,41].

To confirm the relevance of our findings to the regulation of

HBE in vivo, we electroporated eight-cell stage embryos with

constructs in which a nuclear version of Venus-YFP is under the

control of either native HBE or its KO* version, where all Klf4

and Oct4 putative binding sites are mutated. Electroporation

efficiency was assessed by co-electroporating a construct express-

ing mCherry under the control of the strong promoter CAG.

Electroporated embryos were cultured 30 h, allowing most of

them to reach the blastocyst stage. A majority of the embryos that

had been electroporated with the native HBE construct (n = 19/

24) showed YFP expression in a few cells. In contrast, embryos

that had been electroporated with the mutated HBE-KO*

construct showed only very weak or undetectable expression of

YFP (12/12; Figure 3H–I0).

These results indicate that both in ESCs and in preimplantation

embryos, HBE is under the control of pluripotency transcription

factors, notably Oct4 and Klf4, whose cognate binding sites are

critical to its enhancer activity.

The Enhancer Activity of HBE Is Also Dependent on
Activin/Nodal Signaling

The fact that not all E3.5 to E4.5 Oct4-positive ICM cells

expressed HBE-YFP in transgenic embryos suggested that some

other factor was essential for the activation of HBE. Several studies

have shown that Nodal expression in ESCs is dependent on

Activin/Nodal signaling [16–18]. Furthermore, a recent genome-

wide ChIP study showed that, in ESCs, pSmad3 co-occupies the

genome with Oct4, with which it forms a complex, and that this

correlated with sensitivity to TGFb signaling for Oct4-bound

genes [42]. Notably, this study showed that with respect to Nodal

expression, Oct-4 depletion led to a 5-fold reduction in its response

to Activin exposure. Two of the positions where both Oct4 and

Smad3 were found to bind are within HBE (Figure 1A). Our own

results showed that reporter constructs and reporter transgenes for

the Activin/Nodal signaling-dependent ASE had very limited

transcriptional activity in ESCs (this study, and N. Sasaki, A.B.,

and J.C., unpublished results). Together, these data strongly

suggested that Activin/Nodal signaling might be the other signal

required to elicit HBE activation in preimplantation epiblast. To

test this hypothesis, we cultured E2.5 HBE-YFP embryos for 48 h

in the presence of 40 mM SB-431542, a pharmacological inhibitor

of the type I Activin receptors ALK4, 5, and 7 [43]. We found that

SB-431542–treated embryos had a similar number of Oct4-

positive cells as DMSO-treated control embryos, indicating that at

this concentration the formation of the ICM is not significantly

affected (Figure 4A–E). SB-431542 exposure nevertheless resulted

in a drastic reduction of the percentage of YFP-positive embryos

and of YFP-positive cells among Oct4-positive ones. In addition,

cells that expressed the transgene in SB-431542–treated embryos

did so at a lower level than their counterparts in DMSO-treated

embryos (unpublished data). We conclude that HBE-YFP

expression is dependent on Activin/Nodal signaling, presumably

reflecting a similar requirement for the activation of the

endogenous HBE.

HBE Conditions ASE Activation in Differentiating ESCs
Having established that HBE is an enhancer active in ESCs and

in the mouse embryo, we assessed its contribution to Nodal

expression. We generated a targeting construct in which HBE was

floxed and the first 80 bp of Nodal ORF were replaced by the

coding sequence for a destabilized nuclear Venus-YFP, so that the

expression of the modified allele could be monitored (Figure S5A

and Figure 5A). Successful targeting of the Nodal locus in ESCs was

confirmed by PCR and Southern hybridization (Figure S5B–D).

Almost all recombinant cells expressed the YFP, although at

different levels (Figure 5B–B0). In contrast, Cre-mediated deletion

of HBE resulted in most cells having completely lost YFP

expression 2 d after transfection, indicating that HBE is essential

to Nodal expression in ESCs (Figure 5C–C0). The few cells

expressing YFP (,7% of total) tended to be found at the periphery

of colonies and to have low or no Oct4 expression, suggesting they

corresponded to differentiating cells in which Nodal expression was

driven by other enhancers.
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To investigate this possibility, we analyzed the expression of the

HBE-deleted allele in EpiSCs, where our luciferase-based assays

had shown that ASE is the predominant Nodal enhancer. We thus

induced ESCs carrying the conditional HBE allele NodalcondHBE-YFP

to differentiate into EpiSCs. Real-time PCR (RT-PCR) analysis of

the expression dynamics of four key markers—Klf4, Oct4, FgF5,

and Bra—confirmed the successful conversion of the cells to an

EpiSC identity (Figure S6A). RT-PCR analysis showed that the

NodalcondHBE-YFP allele and the wild-type (WT) Nodal allele followed

similar expression dynamics, indicating that the conditional allele

is a fair reporter of WT Nodal expression (Figure S6B and

unpublished data). EpiScs carrying the NodalcondHBE-YFP allele were

then transfected with two constructs expressing either the Cre

recombinase or the fluorescent marker mCherry. Widespread

mCherry expression confirmed that transfection was efficient

(Figure S6C–C9), whereas RT-PCR on genomic DNA showed

that HBE deletion frequency was close to 90% 4 d after

transfection (Figure S6D). We found that 6 d after transfection

the expression of NodalDHBE-YFP was maintained at a level similar to

that of the undeleted allele (Figure 5D–E0, Figure S6E). This result

indicates that HBE is not required for the expression of Nodal in

EpiSCs, which is thus driven by another Nodal enhancer,

presumably ASE.

To investigate the dynamics of the transition from an HBE-

driven Nodal expression to an ASE-driven one, we induced ESCs

carrying either the conditional HBE allele NodalcondHBE-YFP or the

HBE-deleted allele NodalDHBE-YFP to differentiate into EpiSCs.

RT-PCR analysis showed, as expected, that the expression of

NodalDHBE-YFP was much lower than that of NodalcondHBE-YFP at the

beginning (Figure 6A). Surprisingly, it did not recover, even after

10 d of differentiation. Comparison with the expression of the

undeleted allele showed an average difference of about 80%, and

immunofluorescence detected the YFP in just a few cells

(Figure 6B–D0). Like in ESC colonies, these rare YFP-positive

cells had lower or no Oct4 expression (Figure 6D0). Together with

the earlier finding that HBE is not required for NodalDHBE-YFP

expression in EpiSCs, this indicates that prior to its deletion in

EpiSCs, HBE contributed to a modification of the locus critical for

the activation of ASE, which allowed NodalDHBE-YFP to be

expressed in EpiSCs. These results demonstrate that during the

conversion of ESCs into EpiSCs, HBE is initially required to

promote the activation of ASE.

As ASE is dependent on Activin/Nodal signaling and as Nodal

in NodalDHBE-YFP cells is still produced by the WT allele, we

hypothesised that HBE is required to potentiate the activation of

ASE at the chromatin level. We used ChIP to track changes in the

distribution of the mutually exclusive H3K27me3 and H3K27ac

histone marks at different positions in the locus. This analysis

revealed that after HBE deletion, a region 59 to the ASE sees a 2.5-

fold increase of the repressive H3K27me3 mark and a 2-fold

decrease of the active H3K27ac mark. These modifications are

specific to the recombinant allele. No changes were detected at the

39 end of the autoregulatory enhancer. No changes either were

detected immediately upstream and downstream of the deleted

HBE (Figure 6E–G). This result demonstrates that HBE controls

the chromatin status of a region adjacent to ASE and therefore

suggests that it is via the recruitement of chromatin modifiers that

HBE exerts an influence over ASE activation.

HBE Is Required for Nodal Expression in the Mouse
Embryo

To investigate whether HBE is necessary for the expression of

Nodal in vivo as it is in vitro, chimeric embryos were generated.

NodalcondHBE-YFP and NodalDHBE-YFP cells were first stably transfected

with mCherry so that they could be traced in chimeric embryos.

Small groups of these cells were then aggregated with E2.5

morulae, and the resulting blastocysts were either cultured in vitro

until the equivalent of stage E4.5 or reimplanted into pseudo-

pregnant mice and allowed to develop in utero until the equivalent

of stage E6.5. Chimerism was very high as judged by the number

of mCherry-positive cells in the epiblast of the aggregation

chimeras. Embryos generated from NodalcondHBE-YFP cells expressed

YFP in the epiblast (n = 34/48 of stage E4.5 and 7/7 of stage E6.5

embryos analyzed; Figure 7A and C), and this expression was

consistent with the expected expression profile for Nodal, notably

showing a restriction to the proximal posterior epiblast at E6.5. In

contrast, embryos generated from NodalDHBE-YFP cells did not

express the fluorescent marker or expressed it at very low levels in

just a few cells (n = 44/45 of stage E4.5 and 7/7 of stage E6.5

embryos analyzed; Figure 7B and D), indicating that HBE is

required for the activation of Nodal transcription in epiblast cells in

vivo, as in vitro differentiation experiments suggested.

Discussion

HBE Is an MTL at the Nodal Locus
Genome-wide ChIP studies have shown that in ESCs,

pluripotency factors co-occupy the genome at specific multi-

transcription factor-binding loci (MTL) through which they

control the pluripotent state of the cells [22,24–26,44]. These

studies led to the view that the core transcription factors of the

Figure 4. HBE-YFP expression in the blastocyst is dependent
on Activin/Nodal signaling. (A–B) Detection of Oct4 (A, B) and HBE-
YFP (A9, B9) in transgenic mouse blastocysts cultured either in DMSO (A–
A0) or SB431542 (B–B0). Scale bar, 25 mm. Single confocal sections.
Cortical actin in blue. (C) Percentage of YFP-positive embryos after 24 h
culture in DMSO or in SB431542. (D) Percentage of YFP positive ICM
nuclei in embryos after 24 h culture in DMSO or SB431542. An asterisk
indicates significant difference from the control (ctrl) (p,0.01). (E)
Number of Oct4-positive ICM cells per embryo after 24 h culture in
DMSO or in SB431542.
doi:10.1371/journal.pbio.1001890.g004

Control of Nodal Enhancers’ Sequential Activation

PLOS Biology | www.plosbiology.org 7 June 2014 | Volume 12 | Issue 6 | e1001890



pluripotency gene regulatory network (GRN), Oct4, Nanog, and

Sox2, form an interconnected autoregulatory loop that positively

regulates their own promoters, activate the expression of genes

necessary to maintain the pluripotent state, and contribute to the

repression of genes promoting differentiation [45–47]. We

identified HBE as an MTL at the Nodal locus. Our results confirm

that this region is a target of the molecular machinery of

pluripotency and of the Activin/Nodal signaling pathway, as

ChIP studies predicted [22,24–26,42].

HBE Enhancer Activity Depends on Pluripotency Factors
and Activin/Nodal Signaling

We found that HBE has enhancer activity in ESCs, as was the

case for all Oct4/Sox2/Nanog MTLs tested so far [22,47]. HBE is

in fact the only Nodal enhancer active in ESCs. Moreover, it is

activated early on during mouse embryonic development.

Transgenic embryos expressing YFP under the control of HBE

up-regulate the fluorescent marker in the ICM of the E3.5

blastocyst. Its expression is then restricted to the embryonic

epiblast and is maintained in its embryonic and extra-embryonic

derivatives until organogenesis starts at E8.5, at which point Oct4

expression and pluripotency are lost [48].

We showed that the enhancer activity of HBE is dependent on

Oct4 and Klf family members. In fact Oct4 is the master

pluripotency factor most critical to this activity. This is consistent

with studies suggesting that unlike other master pluripotency

factors, Oct4 is a strong transcriptional activator [49]. It appears to

function as a pioneer factor at enhancers, opening up the

chromatin and allowing other factors, such as pSmad3, to access

their binding sites [42]. The main Oct4 binding site in HBE is the

only one of all the putative pluripotency factors binding sites we

identified that is extensively conserved among placental mammals,

suggesting that HBE evolved around this particular sequence.

We also found that the enhancer activity of HBE is dependent on

Activin/Nodal signaling and we showed previously that Activin/

Nodal signaling is activated in Nodal2/2 blastocysts [6]. In other

animal models, there is consistent evidence of another TGFb family

member acting upstream of early Nodal expression [50–54]. Gdf1

and Gdf3, two possible TGFb-related candidates in the mouse,

appear however unable to activate the Smad2/3 pathway at

physiological concentrations [55–57]. This was confirmed when we

showed that Gdf3 cannot replace Nodal in vivo [6]. Better candidate

ligands for the early activation of the Smad2/3 pathway and of

HBE are thus Activins, which are present in the ICM as well as in

the oviduct and uterine epithelia prior to implantation [58]. Because

Nodal was also found to be expressed in the endometrium of E3.5

pregnant females, one cannot discount the possibility that Nodal of

maternal origin might be involved in the induction of Nodal

expression in the embryo [59].

Nodal Expression Undergoes a Regulatory Shift During
Epiblast Maturation

The finding that the onset of Nodal expression is dependent on

the pluripotency GRN coincides with a growing realization that in

the context of the embryo so-called pluripotency factors are in fact

actively engaged in promoting development. Nanog, described as

Figure 5. HBE is required for Nodal expression in ESCs but not in EpiSCs. (A) Depiction of the two Nodal alleles (WT on top and recombinant
at the bottom) before and after Cre recombination. (B–C0) Expression of Oct4 (B, C) and YFP (B9, C9) in recombinant ESCs before (B–B0) and after (C–C0)
Cre recombination. (D–E0) Expression of Oct4 (D, E) and YFP (D9, E9) in recombinant EpiSCs, 6 d after transfection with a control plasmid (D–D0) or
with Cre recombinase (E–E0). Single confocal sections. n is the number of YFP-positive colonies. Scale bar, 25 mm.
doi:10.1371/journal.pbio.1001890.g005
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the guardian of pluripotency in ESCs [37], is required in epiblast

precursors to promote, by a non-cell-autonomous mechanism, the

differentiation of adjacent PrE precursors [60]. It has also been

shown recently that Oct4 promotes PrE development through

both cell-autonomous and non-cell-autonomous mechanisms, and

more generally favors embryo development via its control of

multiple metabolic pathways [61]. Recent work indicates that

Activin/Nodal signaling may first be required in the PrE around

E4.0 to specify a subset of Lefty1-expressing PrE cells, the

descendants of which will later give rise to the distal visceral

endoderm (DVE), a group of cells playing a critical role during the

establishment of AP polarity [2,7]. It is therefore possible that the

HBE-dependent expression of Nodal in the blastocyst contributes to

this initial regionalization of the PrE. During the transition from

pre-implantation to postimplantation epiblast, Nodal undergoes a

regulatory shift, from an HBE-driven phase to an ASE-driven one,

which correlates with an increase in its expression levels and an

up-regulation of differentiation promoting downstream targets,

also seen in EpiSCs [6,13,14]. In ESCs, most genes involved in

lineage specification are in a poised state that is transcriptionaly

silent but ready to be activated by developmental signals. This

state is defined by the presence of both active and repressive

histone marks on the promoters of these genes. Repressive marks

are introduced by chromatin modifiers locally recruited by Oct4,

Sox2, and Nanog [47]. Smad2/3 complexes, activated by the

Activin/Nodal pathway, can remove these repressive marks and

induce the expression of downstream targets such as Gsc and

Mixl1. Yet although Nodal is expressed in ESCs, Gsc and Mixl1

remain poised in these cells. This can be partly explained by the

relatively low level of Nodal expression in ESCs and by the co-

expression of genes known to restrain its signaling activity, such as

Smad7, Lefty1, and Lefty2. These data suggest that in the blastocyst

components of the Activin/Nodal signaling pathway are tightly

regulated to ensure proper embryonic and extra-embryonic

development. Initially, activation of Nodal by HBE produces low

levels of the signal that specify certain extra-embryonic precusors,

possibly of the DVE, while minimizing the exposure and the

response of nascent epiblast to prevent its premature differentia-

tion. During subsequent stages of development the autoregulatory

ASE takes over. This shift from an HBE-driven phase to an ASE-

driven one results in an amplification of the Nodal signal, which

triggers the differentiation of the epiblast.

We found that HBE is required in differentiating ESCs for the

activation of ASE. When HBE is deleted in EpiSCs, ASE, the

predominant Nodal enhancer in this cell type, is active. However, if

HBE deletion occurs in ESCs, before their differentiation into

EpiSCs, ASE does not drive expression of the gene. Our results

suggest that once bound to HBE, master pluripotency factors

induce local modifications of the chromatin that in turn affect the

ability of the ASE to interact with the adjacent promoter, and thus

Nodal expression levels. Changes in the combination of HBE-

bound factors, such as those taking place during epiblast

maturation or ESC to EpiSC transition, could modify the effect

HBE has on ASE.

Figure 6. HBE is required to activate ASE during ESC to EpiSC differentiation. (A) RT-qPCR analysis of YFP expression during 10 d of ESC to
EpiSC differentiation of NodalcondHBE-YFP(HBE+) and NodalDHBE-YFP(HBE2) ESCs. One representative experiment. (B) Percentage of difference of YFP
mRNA levels between NodalDHBE-YFP and NodalcondHBE-YFP cells during 10 d of ESC to EpiSC differentiation. Error bars represent the mean + SD of
triplicates and two independent experiments. (C–D0) Expression of Oct4 (C, D) and Venus-YFP (C9, D9) in NodalcondHBE-YFP (C–C0) and NodalDHBE-YFP (D–
D0) ESCs after 10 d of differentiation into EpiSC single confocal sections. n is the number of YFP-positive (C) or YFP-negative (D) samples on the total
number of analyzed samples. Scale bar, 25 mm. (E) Part of the Nodal locus in the WT and the recombinant alleles comprising HBE, the first Nodal exon,
and ASE and showing the position of regions 1–5 amplified in the ChIP experiments shown in (F) and (G). (F–G) ChIP with anti-H3K27me3 (F), anti-
H3K27ac (G), or anti-GFP (F–G) antibodies on material from NodalcondHBE-YFP ESCs (green bars) and NodalDHBE-YFP ESCs (red bars). The position in the
locus of amplified regions 1–5 is shown in (E). An asterisk denotes significant differences between NodalcondHBE-YFP and NodalDHBE-YFP ESCs (p,0.01).
doi:10.1371/journal.pbio.1001890.g006
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Nanog and Oct4 Are Possible Players in the HBE to ASE
Transition

Although Nodal is expressed in ESCs, the autoregulatory

enhancer ASE is not active in these cells. One hypothesis is that

Nanog acts at the Nodal locus to prevent ASE activation. We found

previously that the expression of the ASE-YFP reporter transgene

is only detected in epiblast cells with low or no Nanog [6]. This is

consistent with the results of luciferase assays in ESCs and EpiSCs

that correlate a higher level of ASE transcriptional activity with a

lower level of Nanog. Nanog depletion in ESCs results in an

increase in Nodal expression [19], yet we found that Nanog

depletion, or the elimination of Nanog binding sites, had no effect

on the transcriptional activity of HBE. Because Nanog binds only

HBE at the Nodal locus in ESCs, it must act from this position to

prevent ASE activation. This would keep Nodal expression, and

thus Activin/Nodal signaling, low as long as Nanog is present. Its

down-regulation during the conversion of ESCs into EpiSCs

signaling by unlocking ASE would then allow an increase in

Activin/Nodal.

The dependency of ASE activity on HBE may also involve

Oct4, but in a role opposite to that proposed for Nanog. HBE-

bound Oct4 could promote ASE activation. The mechanism

described for the activation of poised genes by companion

Trim33-Smad2/3 and Smad4-Smad2/3 complexes [62] suggests

a similar scenario for the HBE-dependent activation of ASE. The

Oct4-Smad3 complex bound on HBE could initiate chromatin

modifications that would then allow the interaction of ASE with

the adjacent promoter, leading to the transcriptional activation of

Nodal by the autoregulatory element and the amplification of the

Nodal signal. The results obtained in aggregation chimeras suggest

that ASE may not be the only Nodal enhancer whose activation is

controlled by HBE. The lack of expression of the NodalDHBE-YFP

allele in proximal and posterior epiblast cells at E6.5, where Nodal

expression was shown to be independent of ASE, but where

transgenic PEE reporters were found to be expressed [6,20,63], do

suggest a similar influence on PEE.

The implication of Oct4 in such an unlocking mechanism

would be consistent with recent studies showing that the capacity

of ESCs to differentiate is critically dependent on the level of Oct4

not being too low [64,65]. Such a mechanism may concern the

regulation of differentiation-promoting genes other than Nodal.

Further studies will be necessary to test these hypotheses and get a

better understanding of how HBE-bound factors contribute to the

regulation of Nodal expression.

To conclude, our results complete the picture on the regulation

of Nodal at early stages. They show that HBE has a dual role,

acting both as an enhancer and as a modulator of the activity of

other regulatory elements. Our analysis of its regulation and mode

of action furthers our understanding of the distinct roles assumed

by master pluripotency factors and of the complex fashion in

which the molecular machinery of pluripotency controls gene

expression (Figure 8). It is likely that similar mechanisms are

involved in the regulation of genes other than Nodal. Our results

are consistent with the notion that the need to control Activin/

Nodal signaling is one of the leading influences on the evolution of

the pluripotency GRN.

Materials and Methods

Ethics Statement
Experiments were performed in accordance with French

Agricultural Ministry and European guidelines for the care and

use of laboratory animals. The project has been reviewed and

approved by the Animal Experimentation Ethical Committee

Buffon (CEEA-40). It is recorded under the following reference:

CEB-35-2012.

Figure 7. HBE is required for activation of Nodal in the early mouse embryo. Detection of mCherry (A, B, C, and D) and YFP (A9, B9, C9, and
D9) in E4.5 (A–B0) or E6.5 (C–D0) aggregation chimeras generated from NodalcondHBE-YFP (A–A0 and C–C0) or NodalDHBE-YFP (B–B0 and D–D0) ES cells and
WT embryos. Images are single confocal sections. Cortical actin in blue. n is the number of representative embryos on the total number of embryos
analyzed. Scale bar, 25 mm for E4.5 embryos and 50 mm for E6.5 embryos.
doi:10.1371/journal.pbio.1001890.g007
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Bio-Informatics Analysis
Potential binding sites at endogenous and mutated sequences were

scored statistically using the Binding Factor (BiFa) tool [6]. Weight

matrices from the TRANSFAC database v2009.4 [66] were used.

The alignment of the main Oct4 binding site was retrieved from the

Ensembl database release 73. It belongs to «36 eutherian mammals

EPO LOW COVERAGE» (positions 61,416,797 to 61,416,833 on

mouse chromosome 10). The alignment was visualized using Jalview

2.8 [67] using data for a subset of available species.

ES Cell Culture and Transfection
See Materials and Methods S1 for detailed CCE, ZHbTc4, and

RCNbH mouse ES cell culture conditions. Inhibition of Oct4

expression in ZHbTc4 cells was induced with 0.1 mg/ml

Doxycyclin (Sigma), whereas Nanog knock-down in RCNbH cells

was induced with 1 mM 4-Hydroxy-Tamoxifen (Sigma). We

transiently transfected 200,000 ES cells with 1 mg of any of Firefly

Luciferase constructs and 0.05 mg of the pCAG-Renilla Luciferase

construct (in 50 ml DMEM) and 2 ml Lipofectamine 2000

(Invitrogen—in 50 ml DMEM) according to the manufacturer’s

instructions and harvested them 24 h after transfection.

ESC to EpiSC Differentiation
ES cells were grown as previously described [13]. EpiSC-like

colonies start to appear at passage 3 (day 6), and colonies were

passaged by mechanical dissociation after 30 s treatment with

accutase at room temperature. Colonies were passaged every 2 d

and diluted 3 to 4 times.

Site-Directed Mutagenesis
Site-directed mutagenesis of HBE was performed by two rounds

of PCR amplification. First, complementary primers containing

the point mutations as well as primers complementary to the 59 or

the 39 ends of the sequence were used to amplify the two parts of

HBE that contain the mutated sequence at one end. Then, the two

parts were used as the template for the amplification of the whole

sequence, using the end primers alone. Multiple point mutations

were introduced sequentially. See Materials and Methods S1 for

primer sequences.

Luciferase Assay
The luciferase activities of the cell lysates were measured by

means of the Dual-Luciferase Reporter Assay System (Promega) in

a Berthold Centro LB 960 device. The activity of the firefly

luciferase was measured for 60 s, whereas the activity of the

Renilla luciferase was measured for 0.5 s. Finally, the normalised

values for HBE and HBE23 were arbitrarily set to 10. Activities

are reported as mean standard errors of a minimum of three

independent experiments.

RT-PCR
Total RNA was prepared using NucleoSpin RNA Kit (MN)

followed by DNaseI (Roche) treatment. First-strand cDNA was

synthesised using Vilo reverse transcriptase (Invitrogen). Real-time

PCR was performed using FastStart SYBR Green Master (Roche).

Gene expression was determined relative to Gapdh using standard

curve calibration. All quantitative PCR reactions were performed

in LightCycler 480 (Roche). See Materials and Methods S1 for

primer sequences.

Reporter Constructs and Transgenesis
A DNA construct expressing Venus-YFP fused to 3 NLS was

linearised, gel-purified, and resuspended in Tris 10 mM, EDTA

0.25 mM, pH 7.5. Transgenic founders were obtained after

Figure 8. Model for regulatory shift from HBE to ASE during epiblast maturation. (A) In the late preimplantation epiblast and in ES cells,
pluripotency factors (mainly Oct4) and Nodal/Activin signaling activate HBE, which up-regulates Nodal. However, Nanog bound on HBE represses ASE
so that expression levels of Nodal remain low. (B) In the postimplantation epiblast and in EpiSCs, changes in the combination of HBE-bound factors
allow ASE to take over from HBE as the predominant enhancer driving Nodal expression, and the positive regulatory loop between Nodal and ASE is
established, leading to higher expression levels.
doi:10.1371/journal.pbio.1001890.g008
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microinjection of the DNA into (C57BL/6 6 CBA) F2 fertilized

eggs (1 or 2 ng/ml in injection buffer). Heterozygous embryos

carrying the HBE-Venus transgene were generated by mating

homozygous transgenic males with WT Sw females. The

genotyping was done as described for the ASE-YFP transgene [6].

Embryo Collection, Electroporation, and Culture
Mice mating and embryo collection were as described [6].

Eight-cell stage uncompacted Swiss 6Swiss mouse embryos were

collected in M2 (Sigma), shelled in Tyrode’s solution (Sigma), and

electroporated in a flat electrode chamber with a 1 mm gap

between the electrodes (BTX Inc., San Diego, CA) in 16 HBS

DNA solution containing 0.25 mg/ml of the mCherry expressing

control plasmid and 1 mg/ml of the Venus expressing experimental

plasmid. Two sets of four pulses of 1 ms each at 25 V were

delivered, with 100 ms intervals between the pulses and a 1 min

interval between the two sets of inverted polarity. The embryos

were then cultured in G2 (Vitrolife) at 37uC and 5% CO2 for 30 h.

Inhibition of ALK4/5/7 Receptors
Eight-cell stage uncompacted transgenic ASE-YFP embryos

were transferred to an eight-well Netwell plate (Costar) with 400 ml

of G2v5PLUS (Vitrolife). They were cultured for 48 h at 37 uC/

5% CO2 in the presence of 20, 40, or 50 mM SB-431542 (Sigma)

in DMSO, to test for dose toxicity and effectiveness. Control

embryos were cultured in the presence of the same amount of

DMSO. We found as previously that treatment with 40 mM SB-

431542 was required to significantly decrease the activity of the

ASE-YFP transgene [6]. This dose was not toxic for cultured

embryos and was thus chosen to perform similar inhibition

experiments on eight-cell stage uncompacted transgenic HBE-YFP

embryos.

Immunofluorescence
Cells on coverslips were fixed in 4% paraformaldehyde,

permeabilized in PBS/0.3% Triton blocked with 10% FBS in

PBS, and incubated with the primary and secondary antibodies

(diluted in blocking solution). Nuclei were marked with DAPI-

D9564 (Sigma) and cortical actin was marked with 0.5 mg/ml

Alexa 647-conjugated Phalloidin (both Molecular probes) and the

coverslips mounted on slides with Mowiol 4–88 (Sigma). Immu-

nofluorescence on embryo were done as described [6]. See

Materials and Methods S1 for antibody combinations.

In Situ Hybridization
ISH was performed as described previously [6].

Homologous Recombination
166106 CK35 ES cells were transfected with 20 mg of linearised

homologous recombination construct containing 12 Kb of the

Nodal locus with Venus-YFP fused to three NLS and a PEST

sequence replacing the first exon of the gene, two loxP sequences

flanking the HBE, a Neo cassette flanked by two FRTs, and a dtA

cassette. Transfection was performed by electroporation in two

batches of 0.5 ml each in an 0.4 mm gap Biorad cuvette using the

Biorad GenePulser and its Capacitance Extender at 200 V and

950 mF capacitance. Selection was performed with 0.2 mg/ml

G418. Recombinant clones were further tested by PCR and

Southern hybridization.

Chromatin Immunoprecipitation (ChIP)
ChIP experiments were performed as described [68]. All ChIPs

were done in triplicate and analyzed by duplicate qPCRs.

Real-time PCR was performed on Roche Lightcycler using Roche

SYBR Green mix (Roche, Switzerland). Five genomic regions

were chosen on the Nodal locus as shown on Figure 6F. The

occupancy of these regions was quantified by quantitative PCR

analysis of the ratio of the ChIP signal versus the input signal. The

following antibodies were used: anti-acetyl K27-Histone H3

(abcam, ab4729) and anti-trimethyl K2-Histone H3 (Millipore,

07-449), and for mock ChIP, anti-GFP (lifetechnologies, A11122).

See Materials and Methods S1 for primer sequences.

Generation of Aggregation Chimeras
NodalcondHBE-YFP and NodalDHBE-YFP ES cells were labelled with

nuclear mCherry by transfection with a plasmid expressing

mCherry under the control of the strong promoter CAG and

the neomycin resistance gene. mCherry-positive cells were selected

with 0.2 mg/ml G418. Eight-cell stage Swiss 6 Swiss mouse

embryos were collected in M2 (Sigma), shelled in Tyrode’s

solution (Sigma), and co-cultured in G2 (Vitrolife) at 37uC and 5%

CO2 with groups of 10–15 of mCherry labelled, NodalcondHBE-YFP,

or NodalDHBE-YFP ES cells. Aggregated chimeras were cultured in

G2 for 60–72 h until they reached the equivalent of stage E4.5 or

transferred 36 h later into the uterus (up to 10 blastocysts) of E2.5

pseudopregnant mice, where they developped until they reached

the equivalent of stage E6.5.

Imaging and Image Processing
Acquisitions of fixed embryos were performed at Imago Seine

Core Facility using confocal microscopes (Zeiss LSM 710 and

780). See supplementary experimental procedures for details

(Materials and Methods S1). The total number of cells and/or of

labeled cells was obtained by counting cell nuclei manually. All

images shown in the article are one 5 mm confocal section.

Supporting Information

Figure S1 HBE contains epigenetic signatures characteristic of

active enhancers. ChIP-seq data for H3K4me3, H3K27me3, and

H3K4me1 were subtracks of the Broad H3 ChIP-seq track in the

UCSC genome browser on Mouse Feb. 2006 (NCBI36/mm8)

Assembly and represent ChIP-seq density signal. ChIP-seq data

for p300 and H3K27ac were wig files corresponding to the

reference paper extracted from GEO (Accession GSE24165) and

uploaded in the UCSC genome browser (http://genome.ucsc.

edu/).

(TIF)

Figure S2 Confirmation of Nanog deletion in RCNbH ES cells

and Oct4 inhibition in ZHBTc4 ES cells. (A–B0) RCNbH cells,

stained for GFP (A9 and B9) and Nanog (A0 and B0) before (A–A0)

and after (B–B0) deletion of Nanog by the addition of Tamoxifen.

(C–D0) RCNbH cells, stained for GFP (C9 and D9) and Oct4 (C0

and D0) before (C–C0) and after (D–D0) deletion of Nanog by the

addition of Tamoxifen. (E–F9) ZHBTc4 cells, stained for Oct4

before (E9) and after (F9) inhibition of Oct4 by the addition of

doxycyclin. DAPI stains ESC nuclei. One confocal section. Scale

bar, 25 mm.

(TIF)

Figure S3 Pluripotency factor binding sites in HBE. (A)

Sequence of HBE. Regions 1–4 are separated by ‘‘//’’. Subregions

a–d within regions 2 and 3 are separated by ‘‘/’’. Transcription

factor binding sites of interest are highlighted. The mutated

nucleotides are underlined. Long clusters of transcription factor

binding sites that were deleted are in bold characters. Nanog and

Oct4 binding sites tested in gel shift assays are in black boxes.
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(B) Luciferase reporter assays on ESCs using the minimal

promoter E1b. Luciferase activity before (HBE23) and after

mutation of the main Oct4 binding site (HBE23-O*) or of all three

Oct4 binding sites (HBE23-O*). Luciferase activities are shown

relative to HBE23 construct fixed to 10 arbitrary units. Bars

represent mean 6 SD of a minimum of three independent

experiments performed for each condition. Ctrl, control E1b

vector.

(TIF)

Figure S4 Oct4 specifically binds the identified conserved Oct4

binding site in ESCs. Representative gel-shift assays performed

with ES cell extracts and double-strand 32P oligonucleotide. (A)

ZHBTc4 ES cells (Doxycyclin treated – Z+, in which Oct4 was

depleted – or not – Z–). Oct4 oligonucleotide corresponding to the

main Oct4 binding site, WT, or mutated (MUT) as in the

luciferase assay constructs (Figure S3B). The migration of WT

oligonucleotides were shifted in the presence of Z– cell extract

expressing Oct4 (line 5A), but not in absence of Oct4 (Z+ cells, line

12A). Oct4 specific antibodies destabilized the complexes (line 6A).

This shift was not observed with mutated oligonucleotides (MUT,

line 10A). (B) RCNbH ES cells (tamoxifen treated – R+, in which

Nanog was depleted – or not – R–). Nanog oligonucleotide

corresponding to the identified Nanog binding site in HBE2a,

WT, or mutated (MUT) as in the luciferase assay constructs. The

migration of WT oligonucleotides in the presence of R– cell extract

expressing Nanog (line 2B) or R+ cell extract without any Nanog

(6B) was shifted, but not that of mutated oligonucleotides (lines 9B

and 11B). This shift was not observed with mutated oligonucle-

otides (MUT, line 10A). Arrows, nonspecific DNA–protein

complexes (not abolished by incubation with the cold probe).

Arrowheads, specific DNA–protein complexes. Vertical bar,

typical HSF/HSE complexes, loaded as a positive control of the

assay to assess the quality of ES cell extracts. HSE (Heat Shock

Element) is bound by HSFs, transcription factors highly expressed

in ES cells and in preimplantation embryos [69].

(TIF)

Figure S5 Homologous recombination in ESCs. (A) Represen-

tation of the homologous recombination strategy. Probes,

restriction sites, and the resulting fragments are depicted. (B)

Southern blot showing successful targeting of the 59 end of the

homologous recombination construct. 59 probe used. (C) Southern

blot showing successful targeting of the 39 end of the homologous

recombination construct. 39 probe used. (D) Southern blot

showing conservation in the recombinant allele of the 59 loxP

sequence. loxP probe used. (E) Representation of HBE deletion in

the recombinant allele. (F) Southern blot showing successful HBE

deletion after transfection of the Cre recombinase. Venus probe

used. Each gel was photographed after ethidium bromide staining,

and the image of the ladder lane was associated with that of the

corresponding autoradiogramme.

(TIF)

Figure S6 HBE is dispensable for Nodal expression in EpiSCs.

(A) Representative RT-qPCR for several different markers

confirming the differentiation of ES cells into EpiSCs, in

NodalcondHBE-YFP(HBE+) and NodalDHBE-YFP(HBE–) ES cells during

10 d of differentiation into EpiSCs. (B) Representative RT-qPCR

showing changes in Nodal and YFP expression of NodalcondHBE-

YFP(HBE+) ES cells during 10 d of differentiation into EpiSCs. (C–

C9) mCherry expression confirming the efficient transfection of the

Cre recombinase in NodalcondHBE-YFP EpiSCs cells 6 d after the

transfection. The field is the same as in Figure 5D–E. (D) Genomic

RT-PCR showing efficiency of conditional HBE allele deletion

after transfection with Cre recombinase. (E) RT-PCR showing

levels of YFP in NodalcondHBE-YFP EpiS cells cultured for 6 d after

transfection of Cre recombinase to delete HBE (+Cre).

(TIF)

Materials and Methods S1 Supplementary materials and

methods.

(DOCX)
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