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ABSTRACT
Significantly increasing intra-node parallelism is widely recog-
nised as being a key prerequisite for reaching exascale levels
of computational performance. In future exascale systems it
is likely that this performance improvement will be realised
by increasing the parallelism available in traditional CPU
devices and using massively-parallel hardware accelerators.
The MPI programming model is starting to reach its scal-
ability limit and is unable to take advantage of hardware
accelerators; consequently, HPC centres (such as AWE) will
have to decide how to develop their existing applications
to best take advantage of future HPC system architectures.
This work seeks to evaluate OpenCL as a candidate tech-
nology for implementing an alternative hybrid programming
model, and whether it is able to deliver improved code porta-
bility whilst also maintaining or improving performance. On
certain platforms the performance of our OpenCL imple-
mentation is within 4% of an optimised native version.

Categories and Subject Descriptors
D.1.3 [Software]: Concurrent Programming—Parallel Pro-
gramming

General Terms
Performance, Experimentation, Languages

Keywords
Hydrodynamics, OpenCL, MPI, Portability, High Perfor-
mance Computing

1. INTRODUCTION
Significantly increased intra-node parallelism, relative to cur-
rent HPC architectures, is recognised as a feature of future
exascale systems [11]. This increase in parallelism is likely to
come from two sources: (i) increased CPU core counts; and
(ii) massively-parallel hardware accelerators, such as dis-
crete general-purpose graphics processing units (GPGPUs),
field-programmable gate arrays (FPGAs), accelerated pro-
cessing units (APUs) or co-processors (e.g. Intel Xeon Phi).
The OpenCL specification provides a programming frame-
work that supports all of these architectures, and guarantees
functionality portability of valid OpenCL programs. There
is, however, no guarantee of performance portability [1].

Large HPC centres have made a significant investment in
maintaining their existing scientific codebases, which typ-
ically use the message passing interface (MPI) to provide
parallelism at both the inter- and intra-node levels. How-
ever, using MPI alone can create significant problems at
scale [7]. As the number of processors rises, the amount of
memory that the MPI runtime requires becomes prohibitive.
This problem is likely to get worse as the amount of memory
available to each processor core decreases, in keeping with
current trends in HPC system design. Furthermore, MPI
provides no mechanism for codes to use attached accelera-
tor devices, which will be critical for achieving high levels of
performance on future systems.

Hybrid programming models provide a way to extend MPI-
based applications and provide a means through which new
hardware accelerator devices can be utilised. In this context,
a hybrid programming model consists of MPI for inter-node
communication, together with one or more complementary
technologies for intra-node parallelism. Due to the large,
complex codebases of many scientific applications, incremen-



tally incorporating a hybrid approach is more feasible than
rewriting an application from scratch. Potential intra-node
technologies appropriate for this model include OpenMP,
OpenACC, OpenCL and CUDA.

This work seeks to evaluate OpenCL as a candidate tech-
nology for implementing the hybrid programming model.
In particular, we examine its utility for delivering portable
performance across a range of architectures. We integrate
OpenCL with an existing MPI based Fortran code, Clover-
Leaf, and analyse the performance of the code across a range
of modern HPC architectures. Specifically, we make the fol-
lowing key contributions:

• We present a detailed description of CloverLeaf’s hy-
drodynamics algorithm, and its implementation in Op-
enCL;

• We present a performance comparison of the OpenCL
version of the code, against optimised native versions,
on a range of modern architectures, including CPUs
from Intel and AMD, GPUs from Nvidia and AMD,
and an APU from AMD;

• Finally, we present a number of optimisations to im-
prove both the performance and portability of our Op-
enCL implementation of CloverLeaf.

The remainder of this paper is organised as follows: Section
2 discusses related work in this field; Section 3 provides some
background information on the hydrodynamics scheme em-
ployed by the CloverLeaf mini-application and the OpenCL
programming model; Section 4 describes our OpenCL imple-
mentation of CloverLeaf together with information on the
optimisations we have examined; the results of our study
and our experimental setup are presented in Section 5; fi-
nally, Section 6 concludes the paper and outlines plans for
future work.

2. RELATED WORK
To date, insufficient work has been undertaken to exam-
ine whether OpenCL is a viable alternative programming
model for delivering intra-node parallelism on HPC system
architectures. This is the case for scientific applications in
general, as well as for the Lagrangian-Eulerian explicit hy-
drodynamics applications that are the focus of our work.
Even less work exists which examines whether OpenCL can
effectively deliver portable performance for these hydrocodes
across a range of current architectures. This is a key aim of
our study.

In previous work we examined alternative approaches (CUDA,
OpenCL, and OpenACC) for porting a Lagrangian-Eulerian
explicit hydrodynamics application to GPU-based systems [16].
A considerable body of work also exists which has examined
porting Smoothed Particle Hydrodynamics (SPH) applica-
tions to GPU-based systems [14, 17, 24, 25]. These SPH
applications employ mesh-less, particle based, Lagrangian
numerical methods and are therefore significantly different
to the hydrodynamics scheme used by our code. Studies
involving SPH have also predominantly focused on utilis-
ing CUDA and have not sought to examine OpenCL as an
alternative technology for delivering portable performance.

Whilst Bergen et al. produce an OpenCL version of a finite-
volume hydrodynamics application which is similar to that
involved in our work, they do not present any performance
results or compare the development, performance or porta-
bility of the application to alternative approaches or across
architectures [8]. The GAMER library also provides similar
functionality to that employed here, however it is imple-
mented entirely in CUDA and therefore does not allow the
evaluation of OpenCL as an alternative approach for deliv-
ering portable performance [26].

Brook et al. present their experiences of porting two com-
putational fluid dynamics (CFD) applications to an accel-
erator (a Euler-based solver and a BGK model Boltzmann
solver) [9]. Whilst the Euler-based solver is similar to the
application documented in our work, they focus on the Intel
Xeon Phi architecture and employ only the OpenMP pro-
gramming model.

Existing work has also examined using OpenCL to deliver
portable performance within other scientific domains. Pen-
nycook presents details of the development of an OpenCL
implementation of the NAS LU benchmark [21] and a molec-
ular dynamics application [22] which achieve portable per-
formance across a range of current architectures. Similarly,
Brown et al. describe work and performance results within
the molecular dynamics domain which enables computa-
tional work to be dynamically distributed across both CPU
and GPU architectures. Both OpenCL and CUDA are com-
pared in their study [10].

Du et al. [12] and Weber et al. [29] provide direct analy-
ses of OpenCL’s ability to deliver portable performance for
applications targeting accelerator devices. Both however,
focus on different scientific domains to our work; linear al-
gebra routines and Quantum Monte Carlo simulations, re-
spectively. Additionally, Komatsu et al. [20] and Fang et
al. [13] provide detailed examinations of the performance dif-
ferences between CUDA and OpenCL, as well as OpenCL’s
ability to deliver portable performance. In his master’s the-
sis, van der Sanden evaluates the performance portability of
several image processing applications expressed in OpenCL
and provides several techniques for achieving portable per-
formance [28].

Whilst the vast majority of existing work focuses on OpenCL
applications on accelerator devices, Karrenberg and Hack
also present several techniques for improving the perfor-
mance of OpenCL codes on current CPU devices [18].

Existing studies have also examined utilising OpenCL to-
gether with message passing technologies such as MPI to de-
liver portable performance across a cluster [23, 27]. However
these studies focused on applications from different scientific
domains to our work; the Finite-Difference Time-Domain
method and molecular dynamics respectively. Kim et al.
propose a novel framework (SnuCL) which also enables Ope-
nCL applications to run in a distributed manner across a
cluster [19].
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Figure 1: The staggered grid used by CloverLeaf to solve
Euler’s equations.

3. BACKGROUND
In this section we provide details on the Hydrodynamics
scheme employed by CloverLeaf, and an overview of the
OpenCL programming model.

3.1 Hydrodynamics Scheme
CloverLeaf uses a Lagrangian-Eulerian scheme to solve Eu-
ler’s equations of compressible fluid dynamics in two spatial
dimensions. The equations are solved on a staggered grid
(see Figure 1) in which each cell centre stores the quantities
energy, density, and pressure, and each node stores a veloc-
ity vector. An explicit finite-volume method is used to solve
the equations with second-order accuracy.

The solution is advanced forward in time repeatedly until
the desired end time is reached. One iteration, or timestep,
of CloverLeaf proceeds as follows: (i) a Lagrangian step
advances the solution in time using a predictor-corrector
scheme, with the cells becoming distorted as the nodes move
due to the fluid flow; (ii) an advection step restores the cells
to their original positions by moving the nodes, and calcu-
lating the amount of material that has passed through each
cell.

The two main steps of the application can be divided into a
number of individual kernels. In this instance, we use kernel
to refer to a self-contained function which carries out one
specific step of the hydrodynamics algorithm. Each kernel
iterates over the staggered grid, updating the appropriate
quantities using the required stencil. Figure 2 shows the
Fortran code for one of the fourteen kernels that carry out
the hydrodynamic timestep. The kernels contain no sub-
routine calls and avoid using complex features like Fortran’s
derived types, making them ideal candidates for porting to
OpenCL.

Not all of the kernels used by CloverLeaf are as simple as
the example in Figure 2. However, during the initial de-
velopment of the code, we re-engineered the algorithm to
ensure that all loop-level dependencies in the kernels were
eliminated. Most of the dependencies were removed via
small code rewrites: large loops were broken into smaller
parts, extra temporary storage was employed where neces-
sary, and branches inside loops were also removed. Typi-
cally, branches within the original loop blocks were used for
error-detection, however, since CloverLeaf is a mini-applicat-
ion that handles a fixed set of robust problems, these checks

DO k = y min , y max
DO j = x min , x max

p( j , k ) = (1.4−1.0)∗d( j , k )∗ e ( j , k )
pe = (1.4−1.0)∗d( j , k )
pv = −d( j , k )∗p( j , k )

v = 1.0/ d( j , k )
s s2 = v∗v∗(p( j , k )∗pe−pv )

s s ( j , k)=SQRT( ss2 )

END DO
END DO

Figure 2: One of CloverLeaf’s fourteen hydrodynamics ker-
nels, ideal_gas. Note the simple 1-point stencil used.

can be removed without affecting the hydrodynamics sche-
me.

Each CloverLeaf kernel can have multiple implementations.
For example, both C and Fortran kernels have previously
been developed for the entire hydrodynamics scheme. The
design of CloverLeaf enables the desired kernel to be selected
at runtime. Calling these kernels is managed by a driver rou-
tine (see Figure 3), which also handles data communication
and I/O. In order to produce the OpenCL version of Clover-
Leaf, we developed a new implementation for each of these
kernel functions.

3.2 OpenCL
OpenCL is an open standard that enables parallel program-
ming of heterogeneous architectures. Managed by the Khro-
nos group and implemented by over ten vendors—including
AMD [2], Intel [3], IBM [4], and Nvidia [5]—OpenCL code
can be run on many architectures without recompilation.
Each compiler and runtime is, however, at a different stage
of maturity, so performance currently varies between ven-
dors.

The programming model used by OpenCL is similar to Nvid-
ia’s CUDA model. Therefore, mapping OpenCL programs
to GPU architectures is straightforward. The best way to
map OpenCL programs to CPU architectures, however, is
less clear.

The OpenCL programming model distinguishes between a
host CPU and an attached accelerator device such as a GPU.
The host CPU runs code written in C or C++ that makes

IF ( u s e f o r t r a n k e r n e l s ) THEN

CALL i d e a l g a s k e r n e l

ELSEIF ( u s e c k e r n e l s ) THEN

CALL i d e a l g a s k e r n e l c

ELSEIF ( u s e o p e n c l k e r n e l ) THEN

CALL i d e a l g a s k e r n e l o p e n c l

.

.

.
ENDIF

Figure 3: Runtime kernel selection for the ideal_gas kernel.



try {
i d e a l k n l . setArg (0 , x min ) ;

.

.

.
i f ( p r ed i c t == 0) {

i d e a l k n l . setArg (4 ,
CloverCL : : d e n s i t y 1 b u f f e r ) ;

} else {
i d e a l k n l . setArg (4 ,

CloverCL : : d e n s i t y 0 b u f f e r ) ;
}

} catch ( c l : : Error e r r ) {
CloverCL : : r epor tEr ro r ( err , . . . ) ;

}

CloverCL : : enqueueKernel ( i d e a l k n l , x min , x max ,
y min , y max ) ;

(a) The OpenCL C++ host side code for the ideal_gas
kernel.

for ( int k = g e t g l o b a l i d ( 1 ) ; k <= y max ;
k += g e t g l o b a l s i z e ( 1 ) ) {

for ( int j = g e t g l o b a l i d ( 0 ) ; j <= x max ;
j += g e t g l o b a l s i z e ( 0 ) ) {

double ss2 , v , pe , pv ;

p [ARRAY2D( j , k , . . . )]= (1.4−1.0)
∗d [ARRAY2D( j , k , . . . ) ]
∗e [ARRAY2D( j , k , . . . ) ] ;

pe =(1.4−1.0)∗d [ARRAY2D( j , k , . . . ) ] ;
pv=−d [ARRAY2D( j , k , . . . ) ] ∗p [ARRAY2D( j , k , . . . ) ] ;

v = 1.0/ d [ARRAY2D( j , k , . . . ) ] ;
s s2=v∗v∗(p [ARRAY2D( j , k , . . . ) ]∗ pe−pv ) ;

s s [ARRAY2D( j , k , . . . )]= sq r t ( s s2 ) ;
}

}

(b) The OpenCL device code for the ideal_gas kernel.

Figure 4: The two components of the OpenCL version of
the ideal_gas kernel. Branching is performed on the host,
and the device code closely mirrors the original Fortran.

function calls to the OpenCL library in order to control,
communicate with, and initiate tasks on one or more at-
tached devices, or on the CPU itself. The target device
or CPU runs functions (kernels) written in a subset of C99,
which can be compiled just-in-time, or loaded from a cached
binary if one exists for the target platform. OpenCL uses
the concepts of devices, compute units, processing elements,
work-groups, and work-items to control how OpenCL ker-
nels will be executed by hardware. The mapping of these
concepts to hardware is controlled by the OpenCL runtime.

Generally, an OpenCL device will be an entire CPU socket
or an attached accelerator. On a CPU architecture, both the
compute units and processing elements will be mapped to
the individual CPU cores. On a GPU this division can vary,
but compute units will typically map to a core on the device,
and processing elements will be mapped to the functional
units of the cores.

Each kernel is executed in a Single Program Multiple Data
(SPMD) manner across a one, two or three dimensional
range of work-items, with collections of these work-items be-
ing grouped together into work-groups. Work-groups map
onto a compute unit and the work-items that they contain

int k = g e t g l o b a l i d ( 1 ) ;
int j = g e t g l o b a l i d ( 0 ) ;

i f ( ( j<=x max ) && (k<=y max ) ) {
double ss2 , v , pe , pv ;

p [ARRAY2D( j , k , . . . )]= (1.4−1.0)
∗d [ARRAY2D( j , k , . . . ) ]
∗e [ARRAY2D( j , k , . . . ) ] ;

pe =(1.4−1.0)∗d [ARRAY2D( j , k , . . . ) ] ;
pv=−d [ARRAY2D( j , k , . . . ) ] ∗p [ARRAY2D( j , k , . . . ) ] ;

v = 1.0/ d [ARRAY2D( j , k , . . . ) ] ;
s s2=v∗v∗(p [ARRAY2D( j , k , . . . ) ]∗ pe−pv ) ;

s s [ARRAY2D( j , k , . . . )]= sq r t ( s s2 ) ;
}

Figure 5: The new device code for the ideal_gas kernel.

are executed by the compute unit’s associated processing
elements. The work-groups which make up a particular ker-
nel can be dispatched for execution on all available compute
units in any order. On a CPU, the processing elements of
the work-group will be scheduled across the cores using a
loop. If vector code has been generated, the processing el-
ements will be scheduled in SIMD, using the vector unit of
each CPU core. On a GPU, the processing-elements run
work-items in collections across the cores, where the col-
lection size or width depends on the device vendor; Nvidia
devices run work-items in collections of 32 whereas AMD
devices use collections of 64 work-items.

OpenCL is therefore able to easily express both task and
data parallelism within applications. The OpenCL program-
ming model provides no global synchronisation mechanism
between work-groups, although it is possible to synchronise
within a work-group. This enables OpenCL applications to
scale up or down to fit different hardware configurations.

4. IMPLEMENTATION
Integrating OpenCL with Fortran is not trivial as the C
and C++ bindings described by the OpenCL standard are
not easy to call directly from Fortran. In order to create
the OpenCL implementation of CloverLeaf, we wrote a new
OpenCL-specific version for each of the existing kernel func-
tions.

The implementation of each kernel is split into two parts:
(i) an OpenCL device-side kernel that performs the required
mathematical operations and; (ii) a host-side C++ routine
to set up the actual OpenCL kernel. The Fortran driver rou-
tine calls the C++ routine, which is responsible for transfer-
ring the required data, setting kernel arguments, and adding
the device-side kernel to the OpenCL work-queue with the
appropriate work-group size.

Since each kernel performs a well defined mathematical func-
tion, and the Fortran versions avoid the use of any complex
language features, writing the OpenCL kernels is almost a
direct translation. To finalise the OpenCL kernels however,
a few changes needed to be made to produce the initial im-
plementation (see Figure 4b). The loops over the staggered
grid (see Figure 2) were re-factored to account for the fact
that one work-item is launched per grid point. Consequently



the lower-bound of each loop became the global ID of the
individual work-items and the upper-bound of each loop be-
came the global size of the particular work-group. To
ensure that each cell is only updated once, the loop incre-
ments by the global size every iteration. This loop allows
the kernel to produce the correct answer when launched with
less work items than there are cells in the problem. In or-
der to produce comparable results to the Fortran kernel, all
computation is performed in double precision.

4.1 Implementation Decisions & Initial Opti-
misations

Each C++ setup routine relies on a static class, CloverCL,
which provides common functionality for all the different
setup routines. We moved as much logic as possible from the
actual kernel functions into this static class. This helped to
ensure that particular pieces of logic (e.g. the kernel setArg
commands) are only re-executed when absolutely necessary
thus improving overall performance.

The OpenCL buffers and kernels are created, stored and
managed from within this class, allowing buffers to be shared
between kernels. This buffer sharing was particular im-
portant for obtaining high performance across all architec-
tures. It also facilitated achieving full device residency of
the OpenCL implementation on architectures which are con-
structed from accelerator based devices (e.g. GPGPUs) at-
tached via a PCI bus to the main system nodes. Achieving
full device residency and thus minimising data movement
across the relatively slow PCI bus was crucial in achieving
high performance on many current architectures.

The use of OpenCL wait operations was also minimised in
the initial implementation via the use of a single in-order
work-queue and global event objects stored in the static class
(CloverCL). This enabled a dependency chain to be estab-
lished between the invocations of each kernel within each
timestep of the algorithm. The overall algorithm thus pro-
ceeds by continually adding kernel invocations to the work-
queue in the order that they are required to be executed,
with the queue’s in-order properties providing the necessary
synchronisation between the various kernels.

The static class also contains other methods that provide
an additional layer of abstraction around common OpenCL
routines. One method, enqueueKernel, provides a wrapper
around enqueueNDRangeKernel. By passing all calls that
add a kernel to the work-queue through this function, we
can ensure that the number of work items launched will
always be a multiple of the preferred work-group multiple1.
We found this approach delivered important performance
benefits with the initial implementation by improving the
execution efficiency of the OpenCL kernels on several current
hardware devices.

All Fortran intrinsic operations (such as SIGN, MAX etc.)
were also replaced with the corresponding OpenCL built-in
function to ensure optimal performance.

The majority of the control code in the original Fortran ker-
nels was moved into the C++ setup routines. Figure 4a

1CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE

Cray XK6

Processor AMD Opteron 6272
GPU Nvidia X2090
Compute Nodes 40
CPUs/Node 1
GPUs/Node 1
Total CPUs 40
Total GPUs 40
CPU Memory/Node 32GB
GPU Memory/Node 6GB
Interconnect Cray “Gemini”
Compilers Cray 4.1.40, GNU 4.7.2
MPI Cray MPI (Mpich2) v5.6.2.2
OpenCL/CUDA Nvidia CUDA Toolkit 5.0

Table 2: Summary of Cray XK6 hardware.

illustrates this for the ideal_gas kernel. This ensures that
branching is also always performed on the host instead of
on any attached device, enabling the device kernels to avoid
stalls and thus maintain higher levels of performance.

To improve the performance of the OpenCL/MPI integra-
tion in CloverLeaf we employed the OpenCL built-in clEn-

queueReadBufferRect function to read back only the min-
imum amount of required data from the OpenCL buffers,
directly into the MPI communication buffers. The original
data ordering within the MPI communication buffers was
altered to better integrate with the clEnqueueReadBuffer-

Rect function. This removes the requirement to explicitly
pack the communication buffers on the target device us-
ing a separate OpenCL kernel and makes use of an opti-
mised OpenCL built-in function. Similarly we also employ
the OpenCL clEnqueueWriteBufferRect function for trans-
ferring data back to the OpenCL buffers following an MPI
communication operation.

4.2 Reduction Operations
Reduction operations are required by CloverLeaf in two lo-
cations: timestep control, and summary printouts of inter-
mediate results. Since the timestep value is calculated fre-
quently, it is crucial we utilise a high performance reduction
implementation. We were unable to find a general optimised
reduction operation written in OpenCL, and consequently
had to implement our own reduction operations.

The OpenCL reduction functions were implemented as sep-
arate kernels. Their operation differs significantly from the
Fortran and C kernels which either use nested loops to iter-
ate over the entire source array, or OpenMP reduction prim-
itives. Due to the architectural differences between CPUs
and GPUs, we developed two OpenCL reduction kernels.
Whilst these kernels are not portable across architectures
it makes sense to specialise them, as reductions are funda-
mental to scientific applications and the kernels could be
reused across many applications. Ultimately, our view is
that reduction operations should be provided by a library,
and therefore specialising them would not affect the porta-
bility of the actual application code.

The reduction kernel that targets GPU devices is based on
work presented by Harris, although we generalise his method
to arbitrary sized arrays [15]. We employ a multi-level tree-
based approach in which kernel launches are used as syn-
chronisation points between levels of the tree. The tree con-



Discrete CPUs Integrated CPU/GPU Discrete GPUs
Xeon E3-1240 Opteron 6272 Trinity A10-5800K Tesla K20 FirePro V7800

Manufacturer Intel AMD AMD Nvidia AMD
Compute Units 8 16 6 13 18
Proc. Elements 8 16 384 2496 1440
Peak SPa (GFlop/s) 211 - - 3520 2000

Peak DPb (GFlop/s) - 147 - 1170 400
Clock Speed (GHz) 3.3 2.1 0.8 0.705 -
Mem. Capacity (GB) 16 32 2 5 2
Mem. Speed (GHz) 1.333 1.6 1.866 - -
Mem. Bandwidth (GB/s) 21 36.5 - 208 128
Total Drawn Power (W) 80 115 100 - 138

Host Compilers Intel 12.1 & 13.1 Cray 4.1.40c GNU 4.7.2 GNU 4.7.2 Intel 13.1
Intel Host Flags -O3 -ipo -no-prec-div -restrict

-fno-alias -fp-model strict -fp-model source -prec-div -prec-sqrt
GNU Host Flags -O3 -march=native -funroll-loops
Cray Host Flags -em -ra -h

OpenMP Libraries Cray, Intel

Intel OpenCL SDK Intel OpenCL 2012 & 2013
AMD OpenCL SDK AMD APP 2.7
Nvidia SDK CUDA Toolkit 5.0
OpenCL Flags -cl-mad-enable -cl-fast-relaxed-math
CUDA Flags -gencode arch=compute_30, code=sm_35

a Single Precision
b Double Precision
c GNU 4.7.2 used for OpenCL runs.

Table 1: Hardware and software configuration.

tinues until the input to a particular level is small enough
to fit within one OpenCL work-group on a given device. In
the final level of the tree a single work-group is launched
on one compute unit of the associated device, which then
calculates the final result of the reduction operation. In all
stages each work-item within the reduction kernel reads two
values from global memory and applies the binary reduc-
tion operator to them, storing the result in local memory.
These global memory operations are aligned on the device’s
preferred vector width to enable the coalescing of memory
operations and to ensure efficient bandwidth utilisation.

Next, a tree-based reduction occurs on the partial results
stored within the local memories. In this phase the number
of active threads is halved in each iteration, until all the
partial results have been reduced to one single value. Here
the local memory references are arranged to avoid memory
bank conflicts to ensure efficient bandwidth utilisation. This
single value is then written by one thread back to global
memory for the next level of the reduction tree to operate
on.

To reduce the number of levels within the reduction tree
(and thus the number of kernel launches) we maximise the
number of work-items launched within each particular work-
group. Thus, for each work-group, the number of input
values read from global memory into the local memories is
maximised, relative to the one value written back to global
memory. We always ensure that the number of work-items
launched for the reduction kernels is a power of 2, and an ex-
act multiple of the preferred vector width of the device. Our
implementation generalises to handle arbitrary sized arrays
by limiting, if required, the number of data values read from
global memory by the last work-group. Instead, work-items
beyond this limit insert dummy values into their correspond-
ing local memory locations. This ensures that the tree-based
part of the reduction is always balanced.

The reduction kernel that targets CPU devices operates in
a similar manner. Here, we employ a two-level hierarchical
approach in which kernel launches are again used to synchro-
nise between the two levels. In the first level, the input array
is partitioned so that it is distributed as evenly as possible
across all the available cores of the CPU. If required, the last
work-group is again limited to handle uneven distributions
of arbitrary sized arrays. Only one work-item is launched
for each core of the associated CPU and all work-groups are
initialised to only contain one work-item. Each work-item
then sequentially reduces the data values within the portion
of the input array assigned to it and stores the resultant
value back into memory. The number of partial results out-
put from this phase is therefore equal to the number of cores
available on the CPU.

In the second stage of the reduction only one work-item is
launched on one core of the associated CPU. This work-item
operates on the array of partial results produced from the
previous stage, reducing them sequentially and then out-
putting the final result.

4.3 Additional Optimisations
Several additional candidate optimisations were subsequently
applied to the initial implementation with the aim of further
improving performance. Table 3 shows the affect of these op-
timisations on the overall performance of CloverLeaf on two
current but distinctly different target architectures, an Intel
Xeon E3-1240 CPU and an Nvidia Tesla K20 (Kepler) GPU.

After the development of the initial implementation perfor-
mance was particularly poor on CPU-based architectures.
This was caused, at least on the Intel architecture, partly
by current generations of the Intel OpenCL compilers be-
ing unable to successfully vectorise several computationally-
expensive kernels. Using the vectorisation reports from the
Intel compiler we determined that this was due to a combi-
nation of the top-level double loop nest and the array/buffer



indexing scheme employed in the initial implementation of
these kernels (see Figure 4b). The initial implementation
employed a preprocessor macro to map between the original
Fortran array index scheme and the underlying OpenCL in-
dex scheme. In certain circumstances this caused the initial
array index to be set to a negative value before subsequently
being mapped back to the appropriate positive index value
expected by the OpenCL implementation.

To remedy this situation we subsequently reimplemented the
OpenCL device-side kernels, removing the original top-level
double loop nest structure (see Figure 4b) and replacing
it with a single if-test (see Figure 5). This if-test pre-
vents grid points from being recalculated or buffers from
being accessed beyond their bounds when the kernels are
executed with additional work-items due to the NDRange-
rounding mechanism mentioned previously. We also used
OpenCL’s NDRange-offset facilities to remove the previous
array index calculation scheme. This now operates directly
in the address range expected by the OpenCL implementa-
tions and prevents the index value from being initialised to
a negative value. Implementing these optimisations enabled
all the kernels within CloverLeaf to be successfully vectorised
by the Intel OpenCL compiler involved in this study.

We examined the affect on overall performance of employ-
ing the OpenCL preprocessor to replace all constant val-
ues within the device-side kernels prior to their compilation.
This removed the need to explicitly pass these values into
the kernels at run-time via OpenCL’s setArg mechanism.
Additionally we also employed the preprocessor in combina-
tion with OpenCL’s NDRange-offset mechanism to minimise
the array/buffer index arithmetic within the kernels.

The in-order command queue used in the initial implementa-
tion appropriately captures the dependency chain and syn-
chronisation requirements of the vast majority of kernel in-
vocations within the application. This approach however
places unnecessary synchronisation constraints on the ker-
nels at two locations in each timestep: when multiple re-
duction operations are required in parallel during the Field
Summary kernel; and when multiple Update Halo kernels
are launched to operate in parallel on different data buffers.
We therefore employed an additional out-of-order command
queue to operate alongside the original in-order command
queue.

Kernels which can execute in parallel are enqueued in the
out-of-order command queue in batches separated by en-

queueBarrier or enqueueWaitForEvents operations which
provide synchronisation constructs between these batches.
A global event object is used to delay the execution of the
first parallel batch of kernels in this queue until the im-
mediate preceding kernel has finished executing within the
in-order queue. On particular platforms, however, we found
it to be more performant to employ event-wait operations
between the kernel batches rather than explicitly enqueu-
ing barrier operations. We speculate here that on these
platforms the enqueuing of the barrier operations does not
cause the preceding batch of kernels to be executed on the
actual target device, but leave the confirmation of this hy-
pothesis to future work.

Our initial implementation relied on the underlying OpenCL
runtime system selecting the most appropriate local work-
group size for each kernel invocation, passing NULL instead of
an NDRange to the appropriate argument when each kernel is
enqueued. We therefore examined the effect on performance
of explicitly specifying the local workgroup size rather than
relying on the underlying runtime system.

Additionally we also examined the effect on performance of
explicitly calling the OpenCL flush operation directly after
each kernel is enqueued. With the aim of potentially im-
proving the speed with which kernels are dispatched and ex-
ecuted on the target devices. To facilitate further potential
optimisations the restrict keyword was also subsequently
added to the buffer definitions within each device-side ker-
nel to indicate to the OpenCL compiler that pointer-aliasing
is not employed. Similarly, to potentially improve the effi-
ciency with which data values are read back from the buffers
within the device-side kernels we also examined the affect of
employing the enqueueMapBuffer operations instead of the
enqueue[Read|Write]Buffer operations used in the initial
implementation.

Finally we examined whether the technique of merging ker-
nels could deliver any performance benefits for our OpenCL
implementation of CloverLeaf. During this optimisation we
examined merging kernels at three different places within
the overall algorithm/timestep. Specifically merging: the
light-weight, predominantly memory copy dominated, Up-
date Halo kernels; several more computationally intense ad-
vection kernels; and also merging the first stage of the re-
duction operations into the immediately preceding kernels.

5. RESULTS
The OpenCL standard guarantees the functional portability
of programs. A standards-compliant OpenCL program that
works on a GPU will also work on a CPU, however, there
is no guarantee of performance. To assess the “performance
portability”—whether the same codebase can be performant
on many devices—of our OpenCL implementation of Clover-
Leaf we conducted a series of experiments.

5.1 Experimental Setup
The hardware and software setup used in these experiments
is detailed in Tables 1 and 2. In order to fully evaluate the
performance and portability of our code, we used a wide
range of hardware, including: CPUs from AMD and Intel;
GPUs from AMD and Nvidia; and one APU from AMD.
All performance results presented show the total applica-
tion wall-clock time in seconds. Except where noted, all
hardware is paired with the corresponding vendor’s OpenCL
SDK and runtime. Table 1 also lists the flags used to com-
pile the OpenCL kernels, although we only observed these
having a minimal effect on performance.

To provide a baseline against which to compare the perfor-
mance of our OpenCL implementation we also conducted a
performance study using, where available, native versions of
CloverLeaf optimised for the particular devices. For CPU
devices this involved comparing our OpenCL implementa-
tion against an optimised OpenMP version of CloverLeaf,
which does not currently utilise vector intrinsic operations;
and for the Nvidia GPU device, against an optimised CUDA



Version Tesla K20 (s) Xeon E3-1240 (s)

Initial version 65.65 477.82a/ 1657.59b

Remove loops (RL) 61.31 453.58
RL + Out-of-order queue (OoOQ) 56.29 449.46
RL + flush after kernel enqueue (F) 61.30 454.75
RL + Add restrict keyword (R) 61.64 452.22
RL + Preprocessor constants (PC) 59.55 457.69
RL + Fix local workgroup (FLWG) 57.24 451.78
RL + Map/Unmap Buffers (MUmB) 63.59 453.28
RL + Merge Update Halo Kernels (MUHK) 56.76 447.77
RL + Merge two pairs of advection kernels (MAK) 61.35 454.67

RL + FLWG + Merge Reductions into Kernels (MR) 57.17 -
RL + OoOQ + MUHK 53.95 446.18

RL + PC + min array index arithmetic (AIA) 59.76 458.25
RL + OoOQ + PC 54.71 455.16
RL + OoOQ + PC + FLWG 51.84 455.47
RL + OoOQ + PC + FLWG + MUHK 49.16 449.46

a Intel OCL 2013
b Intel OCL 2012

Table 3: OpenCL optimisations: runtime of the 9602 problem.

version. Table 1 contains information on the specific OpenMP
and CUDA implementations used on each architecture. For
AMD GPU devices no such comparison was performed, as
OpenCL is the native language on these devices.

CloverLeaf is configured to simulate the effects of a small,
high-density region of ideal gas expanding into a larger, low-
density region of the same gas, causing a shock-front to form.
The configuration is altered by varying the number of cells
used in the computational mesh. Finer mesh resolutions
increase both the runtime and memory usage of the simu-
lation. In this study we focused on two different problem
configurations from the standard CloverLeaf benchmarking
suite. We used the 9602 problem executed for 2955 timesteps
to analyse the portability of our OpenCL implementation
across a range of hardware devices.

5.2 Optimisations Results Analysis
During the development of our OpenCL implementation of
CloverLeaf we analysed the performance of the candidate
optimisations outlined in Section 4.3, on two alternative pro-
cessor architectures, an Intel Xeon E3-1240 CPU and a Tesla
K20 (Kepler) GPU from Nvidia. Table 3 presents the re-
sults from these optimisation experiments and Table 1 con-
tains more detailed information on the software and hard-
ware setup employed. To assess the success of each of these
optimisations we used the 9602 benchmark problem from the
standard CloverLeaf benchmarking suite. This benchmark
problem contains approximately 1 million cells, and executes
for a simulated 15.5 microseconds (2955 timesteps).

Through these experiments we were able to improve the per-
formance of our initial OpenCL implementation of Clover-
Leaf by 25.1% on the Nvidia K20 platform, down from 65.56s
to 49.16s and from 477.82s to 446.18s (a 6.6% improvement)
on the Intel Xeon E3-1240 architecture. Table 3 also shows
the performance improvements which Intel have made to
their OpenCL compiler and runtime system between the
2012 and 2013 releases. Our initial OpenCL version takes
1657.89s when Intel’s 2012 OpenCL SDK is used compared
to only 477.82s when Intel’s 2013 SDK is employed, an im-
provement of 71.2%.

Using the reporting capabilities of Intel’s offline OpenCL
compiler we were able to determine that the compiler was
unable to vectorise 23 kernels within the initial version. Im-
plementing the remove loops optimisation (see Section 4.3
and Figures 4b and 5) enabled the compiler to successfully
vectorise the problematic kernels and reduced the overall
runtime of the benchmark by 24.24s (5.1%) on the Xeon
CPU architecture. This optimisation was also effective on
the Nvidia K20 architecture, reducing the overall runtime
by 4.34s (6.6%).

Employing an out-of-order command queue where appropri-
ate within CloverLeaf also proved to be effective, reducing
overall runtime by 5.02s (8.2%) and 4.12s (0.9%) respec-
tively on the GPU and CPU architectures compared to the
equivalent version which did not employ this technique. Ad-
ditionally fixing the local workgroup size of the kernels when
they are enqueued, rather than letting the OpenCL runtime
select an appropriate configuration, also delivered a perfor-
mance improvement on both architectures. Although the
performance improvement was more significant on the Ke-
pler GPU, 4.1s (6.6%) compared to only 1.8s (0.4%) on the
Xeon CPU. Using the OpenCL preprocessor to pass constant
values into the kernels during compilation rather than at
runtime also delivered a performance improvement of 1.76s
(2.9%) on the GPU architecture. Surprisingly, however, in
our experiments this optimisation actually slightly reduced
performance on the CPU platform by 4.1s (0.9%). We are
still investigating the reason for this effect and will report
on it in future work.

Using the OpenCL flush construct immediately after a ker-
nel is enqueued and the restrict keyword on the data
buffers did not significantly affect performance on either ar-
chitecture. With the runtimes of versions which employed
these optimisations being almost identical to equivalent ver-
sions which did not. Similarly using the OpenCL map and
unmap constructs when reading data back from buffer objects
also did not affect performance on the CPU architecture,
although it did reduce performance on the GPU architec-
ture by 2.3s (3.7%). We believe that this is likely due to
this mechanism being less effective than the OpenCL buffer
read constructs, over the PCI-bus which connects the GPU



Device OpenCL (s) Native (s) Slowdown (%)

Xeon E3-1240 449.46 432.08 4.02
Opteron 6272 798.67 475.59 67.93
Trinity A10-5800K 648.97 - -
Tesla K20 49.16 42.78 14.91
Firepro V7800 87.39 - -

Table 4: Runtime of the 9602 problem.

to the host processor.

We also examined the effect of merging OpenCL kernels
within the application. Merging several of the short, com-
putationally light, Update Halo kernels delivered a signifi-
cant performance improvement on both architectures. On
the GPU this improved performance by 4.55s (7.4%) and
by 5.8s (1.3%) on the CPU architecture. However merging
several of the longer, more computationally intense advec-
tion kernels did not deliver a significant affect on the overall
runtime of the application.

Building on this analysis we subsequently created versions
of CloverLeaf which contained the most successful optimi-
sations discussed above. The last 4 lines of Table 3 detail
the performance of these versions. On the GPU architecture
the most successful version combined: the remove loops; the
out-of-order queue; the preprocessing of constants; the fixing
of the local workgroup size and the merging of the update-
halo kernels optimisations. This version reduced the overall
runtime by 16.5s (25.1%) on the GPU architecture, com-
pared to the initial implementation, and by 28.4s (5.9%) on
the CPU architecture. However on the CPU architecture the
most performant version only employed: the remove loops;
the out-of-order queue and the merge update-halo kernels
optimisations. This version reduced the overall runtime of
the application by 31.6s (6.6%) compared to the initial ver-
sion.

5.3 Single-Node Results Analysis
Following our analysis in Section 5.2 we selected the most
performant version of CloverLeaf on the K20 GPU architec-
ture to function as the reference version for the remainder
of our experiments.

To evaluate the “performance portability” of this version
we conducted a series of experiments, again using the 9602

benchmark problem (executed for 2955 timesteps), on each
of the five hardware platforms described in Table 1. The ap-
proximate memory usage of this problem is 500MB, meaning
it will fit within the available memory on all of the devices
employed in this study. We compared the total application
wall-time of our OpenCL implementation against the best
native version of the code on each particular platform. Fig-
ure 4 contains the results of our experiments.

On the CPU-based architectures of the Intel Xeon E3-1240
and the AMD Opteron 6272 our OpenCL implementation
was within 17.4s and 323.05s respectively of the optimised
native OpenMP implementation. On the GPU-based ar-
chitectures our implementation took 87.39s on the AMD
Firepro V7800 and 49.16s on the Nvidia Tesla K20. The
same benchmark problem running on the GPU component
of an AMD A10-5800K (AMD’s Trinity line of APUs) took
648.97s.
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Figure 6: Wall-times for the 9602 problem weak scaled.

Whilst in all cases the performance of our OpenCL imple-
mentation does not quite match the performance of the na-
tive implementations. It is within only 4.02% of the perfor-
mance of the optimised native OpenMP version on the Intel
Xeon E3-1240 platform, however, performance on the AMD
Opteron 6272 (Interlagos) CPU architecture is more disap-
pointing. On this platform our OpenCL implementation
experiences a 67.9% slowdown in performance compared to
an equivalent optimised OpenMP version. We believe that
this is due, at least partially, to the AMD OpenCL runtime
being unable to generate vector instructions unless vector
types or operations are explicitly used within the OpenCL
code. As we do not currently employ these constructs in our
OpenCL implementation, we plan to validate this hypothesis
in future work.

On the Nvidia K20 architecture our OpenCL is closer to the
performance of the optimised native CUDA implementation,
experiencing only a 6.4s (14.91%) drop in performance.

5.4 Multi-Node Results Analysis
To fully assess OpenCL’s suitability as a candidate technol-
ogy for implementing the hybrid programming model, we
integrated our OpenCL implementation of CloverLeaf with
the existing MPI implementation. In this new implemen-
tation OpenCL is used for all intra-node computation and
communication, and MPI is utilised for all inter-node com-
munication.

To assess the performance of our OpenCL implementation
we conducted a scaling study which examined the perfor-
mance of the code when applied to the standard 9602 cell
problem from the CloverLeaf benchmarking suite. We weak
scaled this particular problem class on the Cray XK6 plat-
form described in Table 2, from 1 GPU up to 32 GPUs. To
provide a baseline against which to compare the performance
and scalability of our OpenCL implementation, we also con-
ducted an equivalent weak scaling study of the same problem
using an optimised CUDA based version of CloverLeaf.

The results from both of these scaling experiments can be
found in Figure 6. This demonstrates that whilst the per-



formance of our MPI+OpenCL based implementation is not
able to match that of the optimised native MPI+CUDA ver-
sion it is able to demonstrate broadly similar scaling be-
haviour. Although the initial scalability is slightly worse at
lower node counts both versions follow a very similar trend
in the experiments on higher numbers of nodes/GPUs.

5.5 Portability Analysis
Although the performance of our OpenCL implementation
is not able to quite match that of the native versions of
the code, it does exhibit significantly improved portability
across a range of architectures. The CUDA and OpenMP
versions of the code are effectively confined to Nvidia GPUs
and CPU devices respectively. This improved portability
offered from a single code base for, in some cases, only a
relatively small performance penalty may be an extremely
attractive trade-off for HPC sites as they attempt to cope
with ever increasing workloads and a myriad of complex pro-
gramming models and architectures.

6. CONCLUSIONS
As the heterogeneity of architectures and levels of on-node
parallelism increase in the approach to the era of exascale
computing, harnessing the power of both host and accel-
erator devices will become critically important. Memory
constraints are also limiting the scalability of pure-MPI ap-
plications, and alternative hybrid programming approaches
must be considered.

The results presented here demonstrate that OpenCL pro-
vides a viable mechanism for achieving portable performance
in scientific codes. Using OpenCL for CloverLeaf, an ex-
plicit Lagrangian-Eulerian hydrodynamics application, we
have extended the promise of functional portability to one of
performance portability. On certain platforms our OpenCL
based implementation is only 4% slower that an equiva-
lent optimised native implementation, although it can be as
much as 68% slower on others. It is also extremely likely that
this performance gap will shrink even further as more opti-
misations are implemented as the development of CloverLeaf
continues.

Our OpenCL implementation has the added advantage of
exhibiting significantly superior portability when compared
to the alternative implementations of CloverLeaf. It is the
only implementation which, from a single code-base, is able
to execute across the diverse range of current HPC archi-
tectures involved in this study. This increased portability
may well be an extremely attractive trade-off against raw
performance for HPC sites as they struggle to cope with in-
creasingly complex programming models and architectures.
We have also shown that OpenCL is a viable technology
for combining with MPI in order to implement the hybrid
programming model.

Additionally this work has demonstrated that developing
OpenCL kernels and codes in particular ways is critical for
achieving good performance. We found that removing loop
structures; employing out-of-order command queues; merg-
ing kernels; explicitly specifying a local workgroup size and
using the OpenCL preprocessor for constant values particu-
larly key to improving performance.

In future work we plan to apply further optimisations to our
OpenCL implementation of CloverLeaf, including investigat-
ing the effect of using explicit vector types and operations.
In particular we plan to examine the cause of the large slow-
down we experienced on the AMD Interlagos platform and
explore potential optimisations for this architecture. We
also intend to examine in more detail the affect of setting
different local workgroup sizes for the various OpenCL ker-
nels within CloverLeaf. We feel that this may be a suitable
area for employing an auto-tuning mechanism to automat-
ically select an optimal configuration. Additionally we aim
to examine approaches for merging more of the kernels and
utilising one dimensional arrangements of work-items to pro-
cess multiple grid points per work-item.

We also plan to investigate a more advanced hybrid model,
in which the CPU does not act as merely a host, but shares
some of the computational work with the attached acceler-
ator device. This may prove particularly effective on inte-
grated CPU-GPU devices such as AMD APUs, on which we
also plan to evaluate the effect of the “zero-copy” OpenCL
constructs.

To further assess OpenCL’s suitability as a technology for
implementing the hybrid programming model. We plan to
analyse the overall memory consumption of our implementa-
tion compared to alternative approaches and explore whether
explicitly packing the MPI communication buffers on the at-
tached GPU devices can deliver any performance advantages
compared to the OpenCL built-in functions.

With the aim of further improving the reduction operations
within CloverLeaf, we intend to evaluate the recently re-
leased ArrayFire software from Accelereyes [6] and to eval-
uate the improvements made to the atomic operations on
Nvidia’s new Kepler architecture. We also intend to fur-
ther optimise our reduction kernels and incorporate them
into an optimised library which others can use for their own
OpenCL projects.

Finally, we hope to evaluate the performance of the OpenCL
version of CloverLeaf on a wider range of platforms, includ-
ing Intel Xeon Phi products, Altera FPGA devices, and
ARM-based APUs such as the Samsung Exynos 5250. Ad-
ditionally, we also intend to examine how best to execute
OpenCL codes across multi-CPU nodes which contain nu-
merous NUMA (non-Uniform Memory Access) regions and
to investigate the effect device fissioning has upon perfor-
mance on these platforms.
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