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Abstract

Natural images have a great deal of self-similarity in a sense that a part of an image can

replace another part with a slight deformation. We employ affine symmetry to address

the self-relationship, i.e. rotation, scaling, shearing and translation. In this report, var-

ious applications are presented exploiting affine symmetry in images. Firstly, an image

coding technique is discussed that uses affine symmetric redundancy between blocks. This

poses an interesting approach as opposed to the recent directional Wavelet based trend.

Experiments show visually acceptable picture quality at low bitrates. Secondly, a segmen-

tation algorithm is presented that analyses images in a similar manner to the image coding

application. The algorithm uses a directional shape extracted from the local Fourier spec-

trum. From the obtained shape, a feature is extracted using the affine-invariant Fourier

descriptor. Experimental evaluation on structural textures shows encouraging results and

application on natural images demonstrates identification of texture objects. Thirdly, a

denoising technique that combines Independent Component Analysis (ICA) and the Mul-

tiresolution Fourier Transform (MFT) is presented. This technique inherits the ability

to find bases adaptively from given data using ICA and the computational efficiency of

the MFT. Another denoising approach is demonstrated that utilises the shape information

from the segmentation algorithm as a thresholding mechanism. The experimental results

are promising even compared with the recent directional transform such as the Curvelet.

Lastly, future research directions are briefly mentioned.
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Chapter 1

Image Coding

1.1 Introduction

Natural images contain considerable redundancy and this is exploited by state of the art

wavelet image compression techniques(1). A recent tendency is to decompose the image into

various directional subbands(2). In this context, exploiting the affine symmetric redundancy

residing between blocks, namely translation, scaling and rotation, offers a different view-

point from which to tackle the compression task. This approach resembles fractal theory as

only a single prototypical block is needed to replicate other blocks of similar texture. Hsu

and Wilson developed a two-component analysis(3), a framework that combines a struc-

tural component which identifies the affine transformation from block to block as shown in

Fig.1.1 and a stochastic residual component. The technique provides high fidelity in the

reconstruction of periodic texture. Recently, the framework was extended for affine invari-

ant segmentation of natural images by Bhalerao and Wilson(4). Without loss of generality,

a natural image comprises regions of different textural pattern. Classification of blocks

into self-similar groups and selection of the most representative blocks have paramount im-

pact on the visual quality of reconstruction. They showed that a clustering approach is

appropriate and performs well for a supervised case(4). We propose a practical algorithm

1



2 Chapter 1. Image Coding

Figure 1.1: Affine symmetric texture synthesis

based on Independent Component Analysis(ICA) for an unsupervised case, resulting in

near-optimal prototypical blocks. We also present an alternative structural transformation

estimation technique with minimal computational complexity and a parameter entropy cod-

ing strategy. In section 1.2, we briefly review two-component analysis before introducing

classification of blocks in section 1.3. In section 1.4, we explore structure transform esti-

mation and discuss an alternative approach. In section 1.5, an efficient parameter coding

strategy is described. Finally, experimental results are reported and conclusions are drawn.

1.2 Two-Component Analysis

The two-component framework(3) combines a structural element based on the 2D affine

relationships between texture patches and a stochastic element designed to account for the

unpredictable variations in the texture. We focus on only the structural component. Given

an optimal prototypical block fi and a region of self-similarity composed of affine symmetric

blocks, a target patch, fj is estimated as

f̂j(y) = αijfi(Tij(y)) Tij(y) = Aijy + tij (1.1)

α2
ij = Σf2

i (y)/Σf2
j (y) (1.2)
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where y = (p, q)T , 0 ≤ p, q ≤ N , Tij is a 2D affine transformation of the coordinates of

prototype fi, and αij is an intensity scaling coefficient. Fig.1.1 illustrates the concept. The

Fourier transform is used to reduce the search space by separating the linear and translation

estimations which relate to amplitude and phase respectively. For the linear part, Aij , a two

energy cluster model is employed to represent the spectra using angular variance analysis.

This is conducted to discover angles, θ1 and θ2, which minimise the sum of the variances,

σ2. Readers are referred to (3) for details.

σ2(θ1, θ2) = Σx∈Λ|x| · ||x − µ||2 (1.3)

where µ is the centroid of a cluster and Λ is a set of coordinates in the subdivision formed

by θ1 and θ2. The corresponding affine transform is found by aligning the centroids of a

cluster in the prototype and the target. Translation, tij is shown as a phase gradient which

is found from the location of the peak in the cross-correlation.

max(F−1fi(x) · f̃j(x)) f̃ = Tij(fj(x)) (1.4)

The resulting blocks are stitched together using a squared cosine mask, W , of size B × B,

W (p, q) = cos2[πp/2B]cos2[πq/2B] (1.5)

1.3 Classification and Prototype Selection

Classification and the identification of appropriate prototypical blocks is an essential step

to exploiting affine-symmetry in our approach. The most obvious procedure is to perform

an exhaustive search. That is, to compute the transformation error for all combinations of

prototype and target and then to choose those that minimise the overall error. This leads

to the discovery of the optimal prototype block but is clearly a computationally arduous
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Figure 1.2: ICA overcomplete basis functions

task given the number of combinations. The computational burden can be halved under

the symmetry assumption:

∀x, y |f(x, y) − f(y, x)| ∼= 0 (1.6)

where f(x, y) transforms x to fit y. Nonetheless, the computational requirement becomes

prohibitive as the image size increases.

1.3.1 Independent Component Analysis (ICA)

ICA and its variants have been proposed to provide representations that utilise a set of linear

basis functions(5; 6). What the approaches have in common is that they try to reduce the

information redundancy by capturing the statistical structure in the images, beyond second

order information. ICA finds a linear non-orthogonal coordinate system in multivariate

data, determined by the higher-order statistics. ICA produces an overcomplete set of basis

functions, as shown in Fig.1.2, which is well localised in frequency and orientation. This

allows one to the find common structure between blocks as well as how similar they are to

each other.
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Figure 1.3: Classification: a coarse reconstruction formed from a limited number of ICA
bases and a different number of bases for different blocks

1.3.2 Classification

Despite the fact that ICA identifies common directional linear structures, it is not trivial to

estimate affine invariance between blocks with only the discovered basis functions. However,

the number of the directional linear bases in each block captured by ICA is affine invariant

feature as shown in Fig.1.3. This makes sense as it is unlikely to fit one to another if the

number of directional linear features does not match. The different number of significant

basis functions for each block can be found as

Σk
i∈swi

Σw
≤ c 0 ≤ k ≤ kmax (1.7)

where wi is the weight of bi, c is a constant, and s is a set of basis function indices sorted by

wi/ ‖ bi ‖ where bi is the basis function. kmax is the maximum number of basis functions

for a block. Blocks are grouped based on the number of significant basis functions in each

block. Blocks in each group are compared, if they are not affine invariant, the group is
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Figure 1.4: Selected prototypes and classification map

sub-divided. This can prevent different texture blocks with the same number of directional

features from being in the same group. A classification map is shown in Fig.1.4. For each

group, a prototypical block is given by

max{Σ(|wi|/e2)} (1.8)

where e2 is the eigenvalue of the 2nd principal component. This results in a block composed

of strong directional bases with high weights.

1.4 Structural Transform Estimation

The two-component analysis accurately estimates the texture’s structure. However, it is

often the case that a two-cluster model produces an incorrect estimate particularly for direc-

tional texture. Calway addressed this problem using a simple metric(7). It is assumed that

two clusters are present when σ2
1+2/σ2

min < 1 holds. However, the metric provides a false

prediction in some cases, as shown in Fig.1.5. Bhalerao and Wilson developed an alternative

strategy to overcome this problem, utilising the Gaussian mixture model(GMM)(8; 4). The
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amplitude spectrum is modeled as a two-dimensional, two component Gaussian mixture

and approximated using the Levenberg-Marquardt(LM) algorithm. The LM is a non-linear

optimisation and requires that the partial derivative of each parameter is known. With

the estimated Gaussian mixture model, the LM is applied again to find an optimal affine

transformation applied to the Gaussian mixture that best fits the amplitude spectrum of

the target block in a least-square error sense. Although this strategy overcomes the fore-

mentioned problem, it increases the computational requirement by introducing another step

to fit the model to the spectrum.

1.4.1 Alternative Method

Expectation Maximisation for GMM

Expectation Maximisation (EM)(9) is an estimation algorithm driven by each data points’

probability of membership to a particular class. The EM is a favourite in statistics due to

its simplicity and fast convergence rate, but is apt to fall into local optima. Estimation is

achieved by repeating two steps, an E-step and M-step. An example follows with respect

to the Gaussian mixture model. The E-step computes expected classes for all data points

for each class and is given by

P (ωi|xk, µt, ct) =
p(xk|ωi, µi, ci)ωi

Σc
j=1

p(xk|ωj , µj, cj)ωj
(1.9)

where µ, c and ω are the centre, covarian matrix and weight of each Gaussian model. In

the M-step, the maximum likelihood is estimated given the new membership distribution

for the data

µi =
ΣkP (ωi|xk, µt, ct)xk

ΣkP (ωi|xk, µt, ct)
(1.10)
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Figure 1.5: Finger print image test: (left)original image,(middle)reconstruction by two-
component method, (right) by modified EM for GMM

ci =
ΣkP (ωi|xk, µt, ct)(xk − µi)(xk − µi)

T

ΣkP (ωi|xk, µt, ct)
(1.11)

ωi =
ΣkP (ωi|xk, µt, ct)

#data point
(1.12)

Combination of GMM and Two-Component Analysis

The clustering problem in the two-component analysis arose from assuming two clusters

model in a single cluster spectrum(3), leading to two centroids µi, sit too close. These

centroids result in severe deformation when aligned to centroids based on two-cluster data.

A method to determine the effective number of clusters and which does not increase the

computational requirement is a useful step forward. Our work adopts the GMM estimation

of(4) and the alignment of centroids from (3). The LM is substituted by a modified EM,

in which the principle component of the Gaussian model is utilised in favour of controlling

its orientation and breadth. The Gaussian mixture model is used not just to model the

amplitude spectrum but each constituent Gaussian model represents a different directional

feature.
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Figure 1.6: Magnitude modeling using EM : (left to right) image block, magnitude spectrum,
gaussian mixture before EM iteration, and approximation after iteration

Modified EM for GMM

The Gaussian mixture is initialised as having constituent Gaussian models evenly dis-

tributed between 0 and π to avoid local minima. This is done by assigning a designated

vector as the principal component of each model. As shown in Fig.1.6, a six directional

Gaussian mixture model is used initially to approximate the spectrum. One component is

fixed as being non-directional

covMatrix(0, 0) = covMatrix(1, 1) (1.13)

with ωi = 0.4. This is to assure the directional components focus on significant features

without being distracted by the scattered high frequency data. As iteration progresses,

components are fixed as additional background components when their degree of direction-

ality, e2/e1 < 0.6, or their weights are negligible (ωi < 0.05), and are excluded in the

M-step. As it converges, components left non-fixed are assumed to represent different di-

rectional features. These in turn provide an affine transformation by aligning the principal

components of two significant Gaussian models. If more than two Gaussian models are left

non-fixed, then the model with the least weight, ωi, and the one with the closest Euclidean

L2 distance to its principal vector Xi are merged as their median. Further iterations are

performed until the number of models becomes equal to the number of components of the

mixture model of the prototypical block.
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1.5 Parameter Entropy Coding Strategy

1.5.1 Zero-Basis Region

Using a single prototype to represent a set of self-similar blocks sounds efficient. However,

each structural transformation from prototype to target block entails six affine parameters,

a costly representation, particularly for a homogeneous block. The simpler the structure

of the block’s contents, the less efficient it is to use the structural transform, in terms of

bitrate. It is required to distinguish blocks that are better represented by the structural

transform from those that are not. We have already solved this problem from the ICA

result obtained in Fig.1.4. Blocks containing only non-directional or lowpass filtered like

bases as given below are replicated by intensity scaling only, for which Eq.(2) is modified as

αij = E[y] if
‖bi‖ ≥ bthre

e2 ≥ e2thre

(1.14)

where E is the mean of the block, and αij is applied on a unit intensity block instead of

the prototype.

1.5.2 Vector Quantisation

Another issue making compression of the transform parameters difficult is that they are

floating point numbers and sensitive to loss of significant digits when limited precision is

applied. We encode centroid coordinates instead of affine parameters. Limited precision

can be flexibly applied depending on the probability of the centroids. For a 16 × 16 block,

a grid is given depending on the distance, d from the centre.

if (0 < d < 1||7 < d < 8) apply double-pel

else if(2 < d < 4) apply half-pel

else apply full-pel

(1.15)
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Each centroid coordinate pair can be converted into a single byte when a 16 × 16 block

is considered. Therefore, a transform parameter results in three bytes including offset

coordinates, prior to first-order entropy coding. First-order entropy coding can be used as,

due to the symmetric property of the Fourier transform, centroid neighbourhood redundancy

is less likely to exist.

1.6 Experimental Evaluation

The algorithm was executed on the lowest two levels of the Laplacian pyramid. A block

entails six parameters for the affine transform, an intensity scale and a prototype id. They

are separately encoded using arithmetic coding. An image of size W ×H requires 2W/B ×

2H/B blocks of size B×B, the low-pass image of the Laplacian pyramid of size W/4×H/4

and N prototypes of size B×B. The algorithm was tested on several images of size 512×512

and a block size of 16×16. The results are shown in Table.1.1, where each column represents

the algorithm with different options. A and B are with prototype selection by ICA, and

C and D are with manually selected prototypes. A and C are with a classification map

by ICA and B and D are with application of all prototypes to the whole image. E is

JPEG2000. The top five rows are with three prototypes and the bottom five rows are

with two prototypes. Manually selected prototypes may not be optimal choices, however

these were the best combinations of those tested. The images are better reconstructed with

manually selected prototypes than with ICA based prototypes but the difference is only

0.1dB. We believe that the differences with the optimal prototype based reconstruction

would be insignificant. The more prototypes the better the reconstruction but jaguar and

giraffe in A and B show the opposite effect. This is due to the weak-classification and sub-

optimal prototypes. Comparing A with B and C with D demonstrates that the Zero-Basis

Region is an effective strategy to reduce bitrate and that classification by the number of

directional features is effective. In general, the rate distortion performance does not match
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Table 1.1: Experimental Results [PSNR and bitrate(bpp)]

/#prototype A B C D E

25.18 25.35 25.25 25.45 30.18

barbara/3 0.35 0.52 0.43 0.52 0.35

23.56 23.62 23.76 23.81 27.38

frog/3 0.43 0.49 0.37 0.50 0.43

27.25 27.40 27.25 27.39 32.75

giraffe/3 0.35 0.50 0.33 0.50 0.35

22.64 22.79 22.84 23.04 28.07

jaguar/3 0.34 0.51 0.37 0.52 0.34

29.17 29.26 29.21 29.33 34.52

lena/3 0.28 0.50 0.37 0.50 0.28

23.44 23.45 25.50 25.73 27.31

barbara/2 0.21 0.39 0.25 0.39 0.21

23.36 23.40 23.69 23.74 25.98

frog/2 0.27 0.37 0.21 0.37 0.27

27.31 27.44 27.20 27.33 30.94

giraffe/2 0.22 0.38 0.20 0.38 0.22

22.67 22.83 22.74 22.93 26.25

jaguar/2 0.21 0.38 0.21 0.38 0.21

29.17 29.25 29.22 29.32 31.55

lena/2 0.14 0.38 0.26 0.38 0.14

that of JPEG2000, however our technique provides a satisfying result in that high frequency

information is preserved. This is demonstrated by the reconstruction of A and D shown in

Fig.1.7.

1.7 Conclusion

An alternative image compression technique exploiting the affine symmetric redundancy

present in natural images has been discussed. The main difficulty lies in the selection of

prototypical blocks as natural images are often composed of various textures. The tech-

nique involves classification of blocks into self-similar groups as well as the selection of an

optimal block in each group. A near-optimal solution is suggested that performs ICA based
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classification by directional features and which selects the most representative block as the

prototype. The reconstruction quality differs by only 0.1dB from those reconstructed by

manually selected prototypes. A computationally efficient structural component estimation

technique is presented, with an adaptive accuracy integerisation strategy. The work may be

useful in applications where detailed texture is preferred to blurred images at low bitrates.
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Figure 1.7: Affine symmetric texture synthesis results with three prototypes (from top to
bottom) frog, giraffe, lena, barbara, and jaguar (left to right) original image, classi-
fication map, reconstruction by applying all prototypes to the whole image(D) and map
based reconstruction(A)
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Chapter 2

Image Denoising

2.1 Introduction

Directional information is an important feature of images, and is exploited in many image

processing applications. This chapter presents an empirical study of image denoising based

on directional patterns. From the literature, the directional Wavelet transform, such as

the Curvelet, has proven effective for denoising purposes. We introduce the Multiresolution

Fourier Transform (MFT) facilitated with a multi-directional filter. From a statistical view-

point, Independent Component Analysis (ICA) is drawing increasing attention. A combined

solution is presented that benefits from the efficiency of the MFT and the data adaptive-

ness of ICA. Experimental results are very encouraging, even compared with other recent

directional transforms such as the Curvelet.

Removal of noise from noisy images to obtain the unknown original image is often

referred to as denoising. Gaussian additive white noise has a frequency spectrum that is

continuous and uniform over a specified frequency band. It is spatially uncorrelated, and

17



18 Chapter 2. Image Denoising

the noise for each pixel is independent and identically distributed (iid).

f̄ = f + ξ (2.1)

where f̄ is the noisy image, f is the original image and ξ is i.i.d. noise. Images are

assumed to be linear-shift invariant, and linear methods such as the Wiener filter and

the Kalman filter are often employed for denoising. Linear denoising methods are simple

and inexpensive to implement, however they tend to blur the edge structure of the image,

structure that is very important to the human visual system. The Markov random field, as

well as various extensions, has been utilised to model the contextual information embedded

in image formation. Partial differential equation (PDE)-based techniques (1) have also

attracted much attention recently, in which image details are preserved by adding an edge

detection term. The Single Value Decomposition method decomposes the column space

of the observation matrix into a dominant and a subordinate part, revealing which of its

subspaces can be attributed to the noise-free signal and which can be attributed to the

noise (2). It is often assumed that these two subspaces are orthogonal to each other, which

implies that signal and noise are independent. In a similar manner, a blind source separation

or the Independent Component Analysis (ICA) decomposes signals assuming the following

relation between components (3).

P (A ∧ B) = P (A) · P (B) (2.2)

where A and B are the independent components of signal. Given sufficiently large number

of components, a few of the components can be pure noise components.

The Wavelet transform can decompose the original signal into a smooth part (lowpass) and

a detailed part (highpass). For most signals, energy is mainly distributed in the smooth

subband, and energy in the detail subband is clustered to a few large wavelet coefficients,

corresponding to the edge structure of the original signal. Donoho and his colleagues (4)
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pioneered a wavelet denoising scheme by using soft thresholding and hard thresholding.

This approach, with the orthonormal wavelet, thresholds the wavelet transform coefficients

within the detail subband. It is well known that Donoho’s method offers the advantages

of smoothness and adaptation. However, as Coifman and Donoho pointed out, this algo-

rithm exhibits visual artefacts: Gibbs phenomena in the neighbourhood of discontinuities.

However, the fundamental limitation of the orthonormal wavelet transform is the limited

directional subband regardless of scale. In response, Starck and colleagues (5) proposed

the Curvelet transform that extracts directional features in multi-scale using the Ridgelet.

Later, other similar transforms followed such as the Contourlet which also consists of direc-

tional filter banks (6). These transforms are proven effective in denoising. Compared with

these new techniques, a much older technique with inherent directional feature recognition

can achieve similar performance with a directional filter, that is the Multiresolution Fourier

Transform (MFT). We present the ICA-MFT combined algorithm as well as the MFT with

a multi-directional filter.

The chapter is organised as follows. The next section starts with an introduction to

ICA in the context of the denoising task. In section.2.3, denoising using the MFT with a

Gaussian mask is explored and a combined approach is described in section.2.4. Section.2.5

introduces the MFT facilitated with a multi-directional filter based on Radon analysis.

Section.3.4 reports an experimental comparison with other state-of-the-art techniques (5).

2.2 ICA Based Approach

Independent Component Analysis (ICA) has been frequently applied to computational neu-

roscience and the modelling of simple and complex cells in the human primary visual cortex

(V1) (3; 7) which is responsible for directional feature identification. Recently, an ICA

based denoising method has been developed by Hyvarinen and his colleagues (8). The basic

motivation behind this method is that the ICA components of many signals are often very



20 Chapter 2. Image Denoising

sparse so one can remove noise in the ICA domain.

x = As (2.3)

where x, A and s are the observed data, a linear mixing matrix and the source (latent)

data respectively, which are independent and nongaussian. Unlike the wavelet-based de-

noising methods, an ICA based method uses a representation that is estimated solely by the

statistical properties of the available data. The estimation of the ICA data model can be

reduced to the search for uncorrelated directions in which the components are as nongaus-

sian as possible and as a result the independent components have a sparse (supergaussian)

distribution as possible. Hyvarinen developed a sparse code based noise shrinkage method

similar to the wavelet shrinkage method (8).

x = As + v (2.4)

where v is a Gaussian noise vector and x the noisy signal. An approximate version of s, ŝ

can be obtained, applying shrinkage on Â−1x. The components, Â−1x (neuron from a phys-

iological viewpoint) with small activities are assumed as noise and shrunken, retaining only

a few components with large activities (8). This, however differs in the following aspects.

The shrinkage nonlinearities are estimated separately for each component, as opposed to

a single fixed model in wavelet shrinkage. Also maximum-likelihood estimation is used in

the nonlinearity estimation instead of minimax estimation. This method assumes training

to estimate the orthogonal basis with noise-free data that has similar statistical proper-

ties. However, we attempted denoising without prior-training with empirically optimized

settings.
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2.3 MFT Based Approach

The ability to capture the directional patterns which exist at various locations, scale and

orientation is a recent research trend in the image processing community. For example, the

curvelet (5) represents a curve as a superposition of functions of various lengths and width

controlling orientation across various scales. Various implementations have been proposed

such as the curvelet, contourlet, brushlet, etc. The same ability can be found in the Multi-

resolution Fourier Transform (MFT) (9). The MFT has been proposed as a combination

of STFT and the wavelet. With the windowing function g(t), the transform of a function

f ∈ L2(R) at position u, frequency ξ and scale s is defined as below.

Mf(u, ξ, s) =
1√
s

∫ +∞

−∞
f(t)g(s(t− u))e−iξtdt (2.5)

The Laplacian pyramid is used to decompose the image according to frequency which shows

isotropic behavior. At each scale, the windowed Fourier transform is applied with the same

window. The high frequency directional patterns can be observed in the Fourier local

spectrum. This is where an elliptical shape of Gaussian filtering is suggested in (10) as

follows.

G(x) =
1

2π
(
−xT C−1x

2
) (2.6)

where C is a covariance matrix, which can be obtained from the inertia tensor of the

spectrum. Experimental denoising results are presented in section.3.4.

2.4 ICA-MFT Combined Approach

The methods in the previous two sections approach the denoising problem in a different way.

The ICA-based method uses purely statistical properties of the available data, adapting to

the data. As a result, it requires larger computation even without a training process, as the

specified number of bases increases. The second approach takes advantage of the Fourier
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Figure 2.1: Radon-MFT Denoising (noisy image, a multi-directional filter on spectrum and
denoised image

transform of which the magnitude spectrum exhibits a directional energy pattern. The

nonlinearity of the Gaussian function formed by the inertia tensor from the spectrum is used

for soft-thesholding. Yet, it is difficult to represent a multi-directional pattern with a single

Gaussian model. A Gaussian mixture model could be employed (11), but its estimation

can increase the computational burden and also there is always the local minima problem.

These two methods can be combined in a way that an algorithm can be computationally

efficient and also adaptive to data, in two steps.

1. Perform ICA on each subband of the MFT with a limited number of components

specified, for instance one third of the number of components needed than when ICA is

performed alone. This ratio needs to be determined adaptively and accurately so that

no component with a meaningful pattern is not discarded. The discarded components

are assumed to represent pure noise. This reduces the computation significantly.

2. Apply a 2D Gaussian filter obtained from the Fourier spectrum of the bases found in

step.1. As most of the components are localised in orientation as well as frequency, a

much narrower Gaussian model that fits the data can be obtained from the spectrum.

2.5 MFT-Radon Approach

The last approach benefits most from the fact that the ICA decomposes a block of a specific

frequency band comprising multi-directional features into a set of bases localized in orienta-
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Table 2.1: SNR Results for different noise levels

Noise(dB) Curvelet DDCT TIWP MFT ICA ICA-MFT Radon-MFT

lena 5 17.55 17.44 18.91 18.97 18.74 19.50 19.43
10 18.67 18.56 21.05 21.61 19.51 21.32 21.82

15 19.40 19.37 23.49 24.42 21.48 22.65 24.55

20 19.83 19.80 26.21 26.80 22.98 23.01 27.67

jaguar 5 12.19 12.18 15.41 15.45 12.24 12.66 13.36
10 12.88 12.84 18.11 17.90 12.66 13.71 17.72
15 13.24 13.26 20.94 19.89 13.28 15.23 21.04

20 13.43 13.42 23.85 21.07 14.38 14.59 23.54

tion, so that the elliptical shape of the Gaussian filter obtained from the local spectrum fits

the Fourier spectrum of the basis well. In this way, the inherent denoising capability of ICA

discussed earlier combines with that of the MFT. Alternatively, however, we can replace

ICA by providing a multi-directional filter using the Radon transform as shown in Fig.2.1.

The Radon transform integrates a 2D function, f over the set of lines that are at a distance,

s from the origin with the angle, θ between the line and the axis. The transform is related

to the Fourier transform by the projection-slice theorem. A slice through the origin of the

Fourier transform of the function, f , which is parallel to the projection line, is equal to the

Fourier transform of the Radon projection of the function onto a line, s = 0. Therefore, the

Radon projection on the local spectrum can form a closed shape, S consisting of a set of

point as below

S = {[r(θ)cosθ, r(θ)sinθ]T} (2.7)

r(θ) = ci · ΣΣ|F (x, y)|δ(xcosθ + ysinθ) (2.8)

where ci indicates a normalization constant at MFT scale i, and F is the Fourier spectrum.

The shape is used instead of the elliptical shape for the Gaussian filter for hard-thresholding,

i.e. coefficients outside the shape are zeroed.
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Source Noisy Curvelet

DDCT TIWP MFT

ICA ICA-MFT Radon-MFT

Figure 2.2: Comparative test : Lena
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Source Noisy Curvelet

DDCT TIWP MFT

ICA ICA-MFT Radon-MFT

Figure 2.3: Comparative test : Jaguar
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2.6 Experimental Results

The MFT was implemented on the Laplacian pyramid with 3 scale levels and a 50% over-

lapping cos2 window of 16×16. For the Radon-MFT, the window size is increased to 32×32

for a better directional analysis. We tested ICA, ICA-MFT and Radon-MFT against other

directional basis transforms, i.e. Curvelet (5), Directional Cosine Transform (DDCT) (10),

MFT-Gaussian Filtering(MFT)(10) and Translation Invariant Wavelet Packet (TIWP). The

test images are Lena and Jaguar as shown in Fig.2.2 and Fig.2.3, with comparative results

on a noisy image of 15 dB. In Fig.2.2, Lena has a region of fur/feathers on her hat that

creating multi-directional patterns, while the rest of the image is either homogeneous or

directional. Clearly most of the methods with directional bases preserve the texture while

TIWP produces quite a blurred image. The MFT, ICA-MFT and Radon-MFT show better

results. Jaguar consists of a blob pattern on the jaguar skin. The Curvelet and DDCT

suffers from the Gibb’s phenomenon while both ICA based approaches show rather blurred

images. Because of the various orientations in the blob jaguar texture, most ICA bases are

used for orientation. The MFT and Radon-MFT generally show better results with much

lower computational cost than the other methods. This is true for both test images. The

Radon-MFT preserves the multi-directional pattern better than the MFT. The results of

experiments with various noise levels are presented numerically (SNR) in Table.2.1 (whole

image). In Lena, Radon-MFT shows good SNR result and preserves edge structures as

shown in Fig.2.2 and Fig.2.3. In Jaguar, despite TIWP shows good SNR result , the edge

structures are quite blurred.

2.7 Conclusion

There are many approaches to tackle image denoising. Wavelet shrinkage has proven ef-

fective in denoising various kinds of image. An extension of the Wavelet transform with

directional subbands became popular as it can isolate directional sigularity. ICA has also
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been found useful in denoising. It has a different theoretical background, however, it is

linked to the directional basis transforms as ICA shares the localization of orientation of

bases. The main difference stands out in how the bases are obtained. The Wavelet is a

self-similarity transform (like the Fourier transform) in which a set of source waveforms is

predefined. On the other hand, ICA finds bases from the available data set using the inde-

pendence relationship. We have reported a combined approach that is efficient and adaptive

to the data, utilizing the fact that the ICA basis is localized in orientation. We have also

developed another method replacing the ICA by multi-directional filtering in the MFT. In

general it has shown better denoising performance compared with other directional basis

transforms, with much lower computational requirement.
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Chapter 3

Image Segmentation

3.1 Introduction

Many natural textures comprise structural patterns and show strong self-similarity. We

use affine symmetry to address the self-similarity relationship; that is a patch of texture

can represent other similar patches after affine transformation. Based on this model, we

demonstrate efficient segmentation of structural textures. The algorithm employs the Multi-

resolution Fourier Transform and uses Radon analysis to obtain a directional shape from

the local spectrum. This process offers reasonable noise robustness for directional feature

detection. From the obtained shape, a feature is extracted using the affine-invariant Fourier

descriptor. Experimental evaluation on structural textures shows encouraging results and

application on natural images demonstrates identification of texture objects.

Image segmentation is a well-known problem in the image processing and computer vi-

sion community. Its application covers a wide range of areas such as tracking, surveillance,

medical imaging, robot navigation and many more. Texture plays an important role in ac-

curate image segmentation. Segmentation itself is a mathematically well-defined task that

splits and joins groups of pixels depending on whether they share the same feature. Texture

29
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segmentation has been studied for decades (1; 2; 3) but some problems remain unresolved

due to the inherent difficulties. Texture is an ambiguous term. There is no clear definition

but one might suggest primitive patterns that are repeated in a periodic manner. There are

two prominent approaches to define texture. One approach defines a primitive individual

element, texton that comprises texture (4). The other approach (2; 3) derives primitive

statistical feature vectors from a group of pixels where the visual element is difficult to

observe, for example the texture of grass. In this paper, we consider the special class of

texture that exhibits a structural pattern such as reptile skin, brick wall and Jaguar blobs.

Our approach is similar to that of the texton. We assume that texture is a region that is

self-correlated by affine symmetry and a prototypical block can represent the remainder of

region. Previously, Wilson and Li (1) showed texture segmentation based on the same prin-

ciple and demonstrated promising results. They used the residue after affine transformation

between blocks as a distance metric in the clustering. This method requires considerable

computation as the affine transform of all possible pairs of blocks is calculated. Later,

Bhalerao and Wilson reduced the computation by using the Fourier spectrum as a feature

vector and having multiple deformed centroids of the same prototypical block by scale and

orientation (5). However, both approaches require manual selection of the initial prototyp-

ical blocks. Park et al (6) showed unsupervised block classification based on the number

of directional features using independent component analysis (ICA). We present a texture

segmentation algorithm that is affine invariant, requires comparatively little computation

and is unsupervised. This chapter is organized as follows. Section.3.2 covers affine invari-

ant feature extraction. Section.3.3 illustrates the overall process. Section.refexperiments

reports the experimental results. Lastly, conclusions are drawn.
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3.2 Affine Invariant Features

We present an efficient (short) and affine invariant feature based on directional information.

We employ the Multi-resolution Fourier Transform with 16 × 16 cos2 window and use the

high frequency band that exhibits pure patterns. The directional information is extracted

from the local spectrum using Radon analysis. The extraction proceeds as follows: (1)

Fourier transform (2) Directional shape Radon analysis (3) Affine invariant Fourier shape

description. The convex hull area ratio, which will be explained later, is not taken as a

feature, however it can indicate the presence of strong directional patterns and can be used

for selecting a representative block in each group.

3.2.1 Fourier Transform Spectrum

A general affine transformation AT in R
2 space is defined as

AT (x) = Ax + t (3.1)

The Fourier transform is well utilized in (1; 5) to separate the affine transform, AT, into

a linear part, A, which affects only the magnitude spectrum and a translational part, t

that is exhibited as a phase gradient. One can observe a linear affine deformation of the

magnitude spectrum such as rotation, scaling and shearing between blocks, regardless of

the translational difference. We extract directional information from the local magnitude

spectrum, which is then described by an affine invariant descriptor.

3.2.2 Directional Shape Radon Analysis

The radon transform, RT, integrates a 2D function, f over the set of lines that are a distance,

s from the origin with the angle, θ between the line and the axis.

RT (θ, x) = ΣΣf(x, y)δ(xcosθ + ysinθ − s) (3.2)
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Figure 3.1: Structural texture samples: brick, weave, reptile and the same sample with white
Gaussian noise (5dB) (top) and Fourier magnitude spectrum of the texture and extracted
shape (bottom)

The transform is related to the Fourier transform by the projection-slice theorem. A slice

through the origin of the Fourier transform of the function, f , which is parallel to the

projection line, is equal to the Fourier transform of the Radon projection of the function

onto a line. We use the Radon transform as a means of analysing the spectrum. As

the projection-slice shows, the Fourier spectrum can uncover the directional pattern of the

source. A projection of slices at multiple angles evenly distributed around a resolution, [0 2π]

can reveal a directional pattern of the function by forming a closed shape, S consisting of

a set of points as below:

S = {[r(θ)cosθ, r(θ)sinθ]T} (3.3)

r(θ) = ΣΣ|F (x, y)|δ(xcosθ + ysinθ − s)/eσ2

(3.4)

where c and σ2 indicate a normalization constant and variance of the Fourier slice, respec-

tively. Fig.3.1 shows the sample texture in the top row and the extracted directional shapes.

The right three texture samples are identical to those on the left except for the addition of

white Gaussian noise (5dB). As shown, the extracted shapes (red) are consistent regardless

of the presence of noise.



3.2. Affine Invariant Features 33

Figure 3.2: Segmentation test of texture composites: texture composite and classification
result in pair, both texture samples are added with white Gaussian noise (15dB)

3.2.3 Affine Invariant Shape Descriptor

Given a shape, S, its constituent boundary pixels, C, [x(t), y(t)]T are traversed to yield a

parametric equation based on the affine length of a closed curve, as below. This is linear

under affine transformation and also yields the same parameters, independent of the initial

representation.
∫

3
√

ẋ(t)ÿ(t) − ẏ(t)ẍ(t)dt (3.5)

where the number of dots indicate the order of the derivatives. Having encoded the bound-

ary as a function of the parameter, taking the Fourier transform of the boundary equation

results in [U, V ]T , where U and V are Fourier coefficients referring to the x and y coor-

dinates respectively. Since the Fourier transform is a linear operator, the equation below

holds

[Uk, Vk]
T = A[U0

k , V 0
k ]T (3.6)

where [U0, V0]
T denotes the same coefficients from the affine transform of the reference

block. By including another coefficient and extending eq. (6) to a 2 × 2 matrix, obtaining

their determinants reveals a linear factor. A simple division of both sides by either side

produces an absolute affine invariant feature. For more details, readers are referred to (7).
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3.2.4 Convex Hull - Area Ratio

The convex hull area ratio is another affine invariant metric. Although this metric is not

used as a feature in our algorithm, it can reveal whether strong direction patterns are present

in a sample block. This follows the same idea as in (6), where a simple isometric measure

based on PCA was used to determine the most representative block in a class under two

observations. One is choosing block in a same class will not make significant improvement

to approximate other blocks. The other is that only one directional singularity is likely to

exist as the window size gets smaller (16 × 16). Nevertheless, the metric does not work

well in the case of multiple directional features. The convex hull is obtained efficiently by

a Grahams scan. Given a set of points, s , the convex hull area ratio, R is given as

R(s) =
Area(s)

Area(ConvexHull(s))
Area([x, y]T ) =

1

2
ΣN−1

i=0 xiyi+1 − xi+1yi (3.7)

where N denotes the number of points. The convex hull of the shape is shown in (green)

in Fig.3.1.

3.3 Affine Invariant Classification

This section shows the overall workflow of our segmentation algorithm. Regarding the

window size for texture analysis, there is a problem known as the class-boundary uncertainty

i.e. if we confine the analysis to a small window, we get a better resolution of segmentation

but we lose confidence of texture characteristics within the window. On the other hand,

a bigger window allows a better analysis of texture but results in a coarse resolution of

segmentation. An adequate solution is a multi-resolution approach. Texture information

at the top level passes on to the lower level and is combined recursively as a top-down

approach. We use the Multi-resolution Fourier Transform (MFT) as given below(8). For a
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given scale(s), frequency(ξ), position(u) and image f(x), the 2D MFT is defined as,

Mf(u, ξ, s) =
1√
s

∫ +∞

−∞
f(t)w(s(t − u))e−iξtdt (3.8)

where w denotes an appropriate window function as given below.

w(x) = cos2[πp/2B]cos2[πq/2B] (3.9)

where x = [p, q]T and B is block size. Having applied the MFT on a source image, the

affine invariant features are extracted from the Fourier magnitude spectrum at each scale

using directional shape radon analysis followed by an affine invariant shape descriptor. The

resultant features, v at the bottom scale are joined together with the quadtree parent as

follows:

Feature(i, j) = {p0(V ), p1(V ), · · · pk(V )} (3.10)

pk(Vi,j) = V⌊i/2k⌋,⌊j/2k⌋,k Vi,j,k = ωk × {vi,j,k} (3.11)

where ωi and k refer to a weight and scale respectively. The combined features are fed into

a K-means clustering algorithm. Prior knowledge of the number of classes is required due

to the nature of the algorithm. The K-means clustering is chosen only for simplicity as our

main focus is to determine an effective affine invariant feature. A random field approach

may be of interest if convergence of the number of classes is desired (1; 9).

3.4 Experiments

We intended the affine-invariant features to be robust to noise. The algorithm was tested

using simple composites of sample structural textures to which Gaussian noise was added

(15dB), as shown in Fig.3.2. Firstly, it is observed that the directional shapes obtained

from the Fourier transform were too jagged due to the scattered high-frequency coefficients,
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which in turn disrupts the affine invariant description and results in a poor clustering.

Consequently, the scattered high-frequency coefficients are removed using minimax thresh-

olding before the Radon projection and the Gaussian smoothing filter is applied to the

shape boundary. This, in fact, makes the shape-extraction robust to noise. The classifi-

cation result shows the extracted shapes that are colored according to classes in Fig.3.2.

Secondly, many shapes from the bottom level (16 × 16) of the MFT were elliptical, which

makes affine invariant shape description useless. Starting with a window of 32 × 32 at the

bottom level still produces an acceptable result. However, we have found that using the

size of the shape at the bottom level feature produces a better result. This is because the

shape size increases with the strength and directionality of the feature and decreases as the

directional pattern becomes less significant. The clustering algorithm orders them by shape

area. It is probable that different textures with the same number of directional features

fall into the same class, but it is the most information we can gather at the bottom level.

The structural information from a bigger window is passed on from the parent block and

combined together as discussed Section.3.3. Having successfully tested the algorithm on

the sample test image set, the natural images, jaguar and zebra were used. Each of the

natural test images has a different characteristic texture. Fig.3.3 shows the original image,

block classification result (3 classes), segmented texture and reconstruction. Jaguar blob

texture is segmented well, but there are some holes in zebra stripes segmentation that are

resulted from the smaller window size than the bold strips of zebra. To see if the block

classification result is indeed affine symmetric, the image is reconstructed by selecting a

prototypical block in each class and replacing other blocks by the affine transformed proto-

type. The affine model is estimated using the two-component method (10; 11; 12; 6) and

the prototype blocks were chosen by eq.(3.7). A non-affine invariant classification would

have resulted in an odd image, for instance, the log featuring blobs of the jaguar. The

reconstruction quality varies around 25dB in PSNR and is visually acceptable. This work

not only presents an interesting approach to the segmentation task but also offers a feasi-
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Figure 3.3: Block classification test on natural images: jaguar (top) and zebra (bottom),
original image, classification result, segmentation and reconstruction (by column)

ble solution for efficient implementation. We intend to employ this algorithm in our affine

image coding system described in (6).

3.5 Conclusion

Affine invariance has been applied to segment self-similar texture previously by many re-

searchers. However, the complexity of the algorithms has prohibited their practical imple-

mentation. Our motivation has been to develop a computationally efficient image texture

classification algorithm while maintaining the texture discrimination power of previous ap-

proaches (1; 5). We have demonstrated a simple and efficient approach utilizing affine

invariant shape description. Experimental evaluation indicates acceptable segmentation

results for structural texture such as brick wall, jaguar and reptile skin, and also the algo-

rithms robustness to noise. Further study using a random field may improve results. The

presented work is of interest where efficient texture segmentation is demanded.
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Chapter 4

Future work

4.1 Image Coding

The work presented has shown a direction in which affine symmetric image coding can

compete with a current image coding system, the Wavelet transform image coding, at very

competitive bitrates. At the current stage, however, the coder has a high computational

complexity due to the block clustering process involving ICA, and also the clustering is not

accurate enough. The clustering is an essential step in our algorithm that classifies blocks

by affine-symmetry. An efficient approach is required that can replace ICA. We plan to

deploy our segmentation algorithm for that purpose. Secondly, the bit-allocation problem

should be addressed so that natural quality degradation is allowed as the bitrate decreases.

4.2 Image Denoising

The work presented has shown a combined approach of a self-similarity transform and blind

source separation (or computational efficiency versus adaptiveness). In this approach, ICA

is performed with a limited number of components, resulting in significant computation

reduction, and then an oriented Gaussian filter is applied on the bases. Also, we suggested

an efficient approach utilising a multi-directional filter. Denoising is not only an integrated
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functionality in our image coder but also the understanding behind denoising aids solving the

bit-allocation problem in image coding. This work can be useful to optimise rate-distortion

of the image coder.

4.3 Image Segmentation

We have demonstrated a simple and efficient approach utilizing affine invariant shape de-

scription. Experimental evaluation indicates acceptable segmentation results for structural

texture such as brick wall, jaguar and reptile skin, and also the algorithm’s robustness to

noise. Application on certain natural images shows identification of texture object. This is

very encouraging and potentially the technique can be used in image retrieval and indexing

applications. The algorithm is also a good candidate to be employed in image coder since

it is simple and computationally inexpensive. However, work still remains to make the

algorithm more robust to various kinds of images.

4.4 Video: Motion Estimation

Motion estimation is a natural application from affine-symmetry theory. Current video

motion estimation in standard video codecs assumes rigid movement which fails to capture

real motion such as rotation. Mesh based motion estimation is a more advanced technique,

however, sharing each grid point with its neighbouring nodes constrains a full realisation of

the affine transform. Due to grid points connected to multiple adjacent triangles, in effect

it is impossible to describe even a simple rotation perfectly(1). Furthermore, the estimation

process is expensive. We plan to use a similar approach to that used in section 3.1 along

time axis. The resulting parameters can be excessive, thus an appropriate parameter coding

technique should also be developed. Distributed video coding is worth investigating for this

purpose (2; 3).
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4.5 Video: Texture Synthesis

Texture synthesis is one possible applications of affine symmetric segmentation as the seg-

mentation result allows one to determine which block can be simply substituted by another

similar block with slight deformation. Having performed image segmentation and sharing

its results with the decoder, one might send a short indication to save bits to encode a part

of a certain texture by substituting it with one already received. This approach is already

being tested by many researchers and regarded as a feasible solution to further improve the

compression performance of image coding as well as of video coding.
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