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Abstract

Biochemical pathways have traditionally been modeled using ordinary di�erential equa-

tions (ODEs), and this approach has resulted in a huge knowledge-base of inter-species

interaction mechanisms found in biological systems. However, di�erential equation based

modeling has a few disadvantages and it has been argued that a new perspective of a

system can be derived by looking at its stochastic variant. On the other hand, col-

laboration between computer scientists and biologists has resulted in the application of

process-algebras for modeling of biological systems, which allows these systems to be

seen as concurrent and communicating sets of independent agents trying to achieve a

common goal. Process-algebra based modeling has several advantages of its own and is

gaining popularity among researchers. A problem that is apparent is that many of the

biological models that exist currently are in the form of ODEs, and there isn't an easy

way to reuse this information in creating new process-algebraic, stochastic models.

In the present work, we developed a methodology to translate simple ODE models

into stochastic π-calculus models. We used BioSPI as a platform for representation

and stochastic simulation of the process-algebraic model to study its time-dependent

behavior. We demonstrated our approach with two case studies dealing with the inuence

of Raf Kinase Inhibitor Protein (RKIP) on the Extra cellular signal Regulated Kinase

(ERK) pathway, and a molecular network that produces spontaneous oscillations in

excitable cells of Dictyostelium. We used existing mathematical models for these systems

represented with a set of di�erential equations. We applied our algorithm to extract a

set of chemical reactions from the mathematical equations and modeled the new systems

using stochastic π-calculus. To verify the accuracy of the models, we simulated it and

compared the results with the results obtained by the deterministic models. We found

the behaviour of both deterministic and stochastic models to be similar, thus proving the

stochastic π-calculus representation to be acceptable for abstraction of biological systems

described by the set of ODEs.
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Chapter 1

Introduction

A model is an abstraction of a system. An abstraction can be de�ned as a mapping from

a real-world domain to a mathematical domain, highlighting some essential properties

of a system and ignoring the complicated ones. Modeling is an important tool in the

scientist's tool kit that helps them in trying to understand reality. Accurate modeling

of even small part of reality is a non-trivial task. Yet modeling allows us to interact

iteratively with reality and test our assumptions to the extent that behaviour of a model

matches the behaviour of the real-life system. The fundamental goal of a model is to

explain existing data and to predict system behaviour.

1.1 Modeling in Biology

Recent advances in experimental and computational technologies have revolutionized bi-

ological sciences. Large projects like the human-genome project have generated massive

amounts of data. Though the project is over, the data analysis will take several years.

Molecular biology has uncovered many biological facts like gene sequences and protein

properties but this is not su�cient for understanding biological systems. Suppose that

we have succeeded in recognizing all of the genes in a cell and understood their function-

alities. This information is still local and fragmentary and does not tell us about how cell

works as a whole. Discovering all the genes and proteins in an organism is important but

at the same time there is a need to understand the structure and dynamics of the system.

As Kitano points out [Kit02a], though biological systems are said to be complex systems,

there is di�erence between them. Complex systems have large numbers of simple and

identical components which together produce complex behaviours. These components

are like black-boxes whose internal structure either does not exist or is ignored. This is
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not the case with biological systems where an individual component has an individual

internal structure and thus di�erent behaviour from other components. Selective compo-

nents interact with each other and produce coherent behaviours. Function in a complex

system of simple components emerges from properties of the network they form rather

than any speci�c element, whereas function in biological systems can be attributed to a

combination of the network and the speci�c elements involved. The intrinsic complexity

of biological systems demands that a system-level understanding should be the primary

goal of biology. A combination of experimental and computational modeling can help us

better understand biological systems.

1.1.1 Defining system biology

The view discussed above has resulted in a new perspective of looking at biological sys-

tems, where we are looking at the structure and dynamics of systems rather than focusing

on the molecular level. This approach is known as system biology. This term was �rst

coined by Hiroaki Kitano [Kit02b]. He mentioned that a system-level understanding of

a biological system can be derived from insight into four di�erent properties. These four

properties are the cornerstones of system biology and are represented in the diagram in

Figure 1.1.

Figure 1.1: Cycle in system biology

System structure includes gene regulation networks and biochemical pathways. It

is important to infer the underlying network structure that de�nes a system. Several
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databases have been designed for the collection of entities de�ning networks. They are

a good source of knowledge but many network structures are yet to be identi�ed. This

phase allows room for hypothesis based research as shown in Figure 1.2.

Figure 1.2: Hypothesis driven research. Adapted from [Kit02b]

Once the system structure has been understood, we should be able to investigate

the system dynamics. System dynamics can give a useful insight into the behaviour

of a system over time under various conditions. Analysis of the dynamics of a system

requires building a model to describe it. The purpose of the model should be carefully

considered and its abstraction level and scope must be de�ned. We will come to the

modeling techniques used in system biology in later sections. This type of analysis has

been applied in many biological simulations and has been found to be very useful in

predicting the future behaviour of a system.

The third phase of control methods emphasises on systematically controlling the mal-

functioning elements in a system and identify potential therapeutic targets for treatment

of diseases.

If we understand a system well, we should be able to design and create a new

system with some desired properties. This is very important when developing a new

drug. When synthesizing a new drug, we expect it to behave in a certain way so that

it can cure a disease. Design methods devise strategies to make such drugs or systems.

Those strategies are based on principles and knowledge about the system rather than

trial-and-error.
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1.1.2 Modeling techniques for biology

The computational approach in biology can be divided into two distinct branches: knowl-

edge discovery and simulation based analysis. Knowledge discovery or the data-mining

approach are used to �nd hidden patterns in biological data and use predictions based

on heuristics. These methods are based on statistical theories and linguistic-based ap-

proaches and are used heavily in Bio-informatics. On the other hand, simulation based

analysis is based on underlying assumptions about a system that can be tested with the

experimental data. Simulation based approaches concentrate on the dynamics of a sys-

tem and compare results with experimental data to check for missing information in the

assumptions about the system. As we shall see, the second phase of system dynamics

emphasises building models to better understand and predict a system. In this section,

we discuss various modeling and abstraction approaches used in system biology.

A good scienti�c abstraction should have four essential properties [Reg02]. First, it

should be relevant and should be able to capture the essential properties of a system. It

should be computable, to allow the simulation of dynamic behaviour and provide insight

into qualitative and quantitative behaviour of a system. The abstraction should be

understandable and should clearly explain the domain framework as well as opening new

possibilities for thinking about the problem. Finally, it should be extensible, allowing

the addition of new properties to the framework and should scale to higher levels of

organization. We will refer to these properties while discussing e�ciency of a modeling

technique.

Qualitative models

There are various techniques for modeling biological systems. Firstly there is the rep-

resentation of a system. Diagrams provide a good way to reduce complex biological

processes into one dimension. These are an easy and elegant way to represent a system

and act as natural visual aids when it comes to understanding biological systems. Di-

agrams have been widely used in biology and will continue to prevail. For this reason,

there have been many attempts to formalise the conventions used to draw them. We will

discuss some of the methods in later sections. Before we go to the examples, it would

be important to mention that diagrams have inspired many computational approaches

to look into complexities of biological systems. Topological design, clustering of network

components and graph theoretical perspectives are the most prominent amongst them.

The major shortcoming with diagrams is that they are only qualitative in nature. They

lack quantitative information which is necessary to analyse the dynamics of a system.
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A simple way to incorporate dynamics in a diagram is to introduce elementary be-

haviour into it. Boolean models are one such example. Each component of the diagram

has two logical activity states : on or o�. The state of a variable at time t + 1 can be

determined by looking at the state of the other variables at time t. Boolean diagrams for

biology look similar to electronic circuits and are advantageous due to their simplicity

and do not require detailed data for modeling. Introduced by Kau�man [Kau93] they

have since been used in understanding many biological systems. Due to their simplicity,

boolean models su�er from limited predictive power and extensibility. An example of

boolean diagram for a biological system is shown in Figure 1.3.

Figure 1.3: Example of biological boolean network. From [Dav03]

Discovery of huge amount of new biological data has resulted in the need for storage

strategies. There are many databases which are dedicated to storing biological infor-

mation, storing molecular interaction as well as complete pathways. Example of such

databases are KEGG [OGS+99]) and BIND [GIC+01]. These databases have object-

oriented schema which provide hierarchical view of molecular entities. Link between

entities are de�ned with the help of relations. The databases support query languages
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which can be used to extract information about a biological system at di�erent levels of

resolution. These databases rely on diagrams to present information about a system to

end-user. Most of the time, these diagrams are simple but interactive, like the one from

KEGG database shown in Figure 1.4. A mouse-click on an entity reveals more infor-

mation about it. These databases are an excellent option for organizing, manipulating

and visualizing data. However, they su�er from the same problem of lack of dynamic

capabilities and have serious qualitative restrictions.

Figure 1.4: Object-oriented based databases of molecular interactions.

These databases use a myriad of di�erent �le formats for storing data and that makes

the information exchange across them a very di�cult task. Kitano foresaw this problem

in the early stages of system biology and proposed a standardized way to represent data

and models using an XML-based electronic format. This became known as the System

Biology Markup Language(SBML). SBML is fast becoming an accepted standard in

system biology because of its simplicity and support for many simulation software tools.

Although the speci�cation for SBML is huge, we shall illustrate its power using a small

example.
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The skeleton of a SBML document is shown in Figure 1.5:

<model id=001 name="XYZ">

<listOfCompartments>

...

</listOfCompartments>

<listOfSpecies>

...

</listOfSpecies>

<listOfReactions>

...

</listOfReactions>

</model>

Figure 1.5: Skeleton of a SBML document

A SBML model consists of a list of compartments(at least one compartment), reacting

species and the list of reactions that take place. This information can be coded as shown

in Figure 1.6. Species elements can be represented in SBML as shown in Figure 1.7.

SBML works with many simulation softwares like CellDesigner [FK03], [cop05], [KT03]

and CellML [AACH03] etc. SBML models essentially represent chemical kinetic theory

for simulation of systems. We will discuss kinetic based modeling in later part of this

section.

Another diagrammatic representation that can be used for modeling of biological

systems is Petri Net. Petri nets have been used for the representation,simulation and

analysis of biological systems. In short, Petri net diagrams have nodes(circle) and transi-

tions(rectangle). Nodes represent molecular species and transitions represent reactions.

Every node has an integer value, known as a token associated with it. Tokens represent

the number of individual molecules for that species. Transitions(rectangular boxes) have

arcs associated with them. An incoming arc into a box represents a reactant and an out-

going one represents a product. The collection of all token numbers at any given point

represent the current state of the system. The number of token changes if a reaction

happens and this results in a new petri net. Petri nets are essentially a graphical rep-

resentation of the underlying matrix of the reaction network. A stochastic extension to

classical Petri net theory is known as stochastic Petri net(SPN), where transitions �re

with an exponentially distributed time delay. Petri nets su�er from the same problem

as other modeling techniques discussed. They do not have provision for representing the

internal dynamics of an entity. The nodes in a Petri net are black-boxes and there is

no knowledge of how they work internally. Biological entities are not like black boxes in

nature, so the diagram-based methods discussed above lack in relevance.

Another approach to building a qualitative graphical model of a biological systems is

to use Statecharts [NKH01]. Statecharts can be adapted to an object-oriented modeling
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<listOfReactions>

<reaction id="R01">

<listOfReactants>

<speciesReference species="X0" stoichiometry="1"/>

</listOfReactants>

<listOfProducts>

<speciesReference species="S1" stoichiometry="1"/>

</listOfProducts>

<listOfModifiers>

<modifierSpeciesReference species="M1"/>

</listOfModifiers>

<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<times/>

<ci> k1 </ci>

<ci> X0 </ci>

<ci> M1 </ci>

</apply>

</math>

<listOfParameters>

<parameter id="k1" value="0"/>

</listOfParameters>

</kineticLaw>

</reaction>

<reaction id="R02">

...

</reaction>

</listOfReactions>

Figure 1.6: Presenting reactions in a SBML document

<species id="S1" compartment="C1" initialConcentration="2.0"/>

Figure 1.7: De�ning species and compartment in a SBML document.

framework. They are useful tools for capturing the dynamics of a system because of their

rich and clear semantics. Biological entities in statecharts are de�ned as objects with

attributes and variables, and have compartments to show the composition of entities.

Relationships between objects are represented by showing communication links between

them. Statecharts are able to capture states of a system. Figure 1.9 illustrates this

showing a model of T cell. The usefulness of statecharts lies in the fact that they provide

a simple visual representation which allows us to zoom into the system, to understand

its behaviour at various levels of complexities. Statecharts help us understand how the

order of events and the duration of time delays inuence the behaviour of the system,

and whether contradictory behaviour in output can be explained by recognizing inner

states into di�erent clusters [NKH01]. Despite their expressiveness, statecharts have a
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Figure 1.8: A Petri net model of biomolecular dimerization reaction from [PJEG98]

.

serious limitation in handling of quantitative information.

Figure 1.9: Statechart representation of T cell. Adapted from [NKH01].

Quantitative models

In the previous section we discussed modeling techniques which were based on visual

representation of systems. Here we will discuss some numerical techniques, also known

as quantitative modeling. To begin with, we need to de�ne entities and any underlying

assumptions. The next step is to derive mathematical equations from this information.

This mathematical formulation can be studied for the state of a system at di�erent time
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points. As we saw in case of Petri nets, the collection of all the tokens(stoichiometry)

de�nes the state of a system at a given time. These tokens can collectively be seen

in the form of a matrix. This representation is one way of incorporating quantitative

information into a system.

However, stoichiometric models are di�cult to formulate and lack the time-domain

in their formulation. Absence of time-domain prevents them from being able to predict

the temporal evolution of a system. To compensate for this missing information, these

models need to be supplemented with kinetic information about how fast such reactions

occur. Usually kinetic models are expressed in terms of ordinary di�erential equations.

Such models are also known as deterministic models because a given initial condition

determines the behaviour of the underlying system. The velocity of reactions is close to

what is measured in experiments and parameter values can be measured from time-series

data. Kinetic equation based modeling has enjoyed a most favored status in biology for

a long time. Many case-studies have been performed using this method and it is still

a very useful tool for modeling biological systems. Di�erential equation based models

can be extended to more complicated form when coupled with other equations describing

other processes within the system. Di�erential equations based modeling has a very good

theoretical background and there are very e�cient tools for capturing the dynamics of

a system. Use of di�erential equations in system biology takes inspiration from control

theory where we need to control, regulate and coordinate something by means of infor-

mation feedback to achieve a goal, thus, making the whole system dynamic in nature.

Various theories like steady-state analysis and bifurcation analysis exist to analyse such

systems and they can give great insights into the behaviour of a system and make helpful

predictions.

Despite their broad spectrum, di�erential equation based kinetic models are criticized

for their assumption of continuity in molecular concentrations. These models are not

suitable for small numbers of participating biological entities that can result in signi�cant

random uctuations at population level and the di�erential equation based models may

fail to capture the randomness of system. If we look at it from the control theory point

of view, we �nd that when it comes to information feedback, control theory assumes that

target values are provided to a system designer, but this is not the case in biology where

targets are created and changed continuously. Such self-determined evolution requires

a shift in notion and some di�erent techniques should be used for their abstraction.

Several algorithms exist for stochastic simulation that account for randomness in a

system. The most popular is the Monte-carlo based Gillespie algorithm [Gil77]. The

Gillespie algorithm is based on chemical physics theory and has been found to give exact

solution for a network of chemical reactions under certain assumptions. The dynamics
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generated by the Gillespie algorithm are di�erent from ones generated by di�erential

equations due to the presence of stochastic uctuations. Details of the Gillespie algorithm

can be found in Chapter 2. The Gillespie algorithm is time-consuming and can take a

very long time to �nd set of solutions as number of reactions in a system increase. Several

other algorithms like [GP04], [Gil01], [MF98] also exist which can be used for stochastic

simulation of a system.

1.2 Process-algebra as a modeling tool

We introduced many techniques for the modeling of biological systems in the previous

section. Major approaches in modeling of such systems are inspired by control theory

which assumes that the basic entities of the system are black-boxes whose internal struc-

ture does not exist or can be ignored. These entities are fundamental objects upon

which observations can be made. Karplus [Kar77] de�ned such systems as black-boxes

with inputs and outputs as shown in Figure 1.10. The system (S) receives an input

(Excitation, E) and produces an output (Response, R).

Figure 1.10: Karplus' description of a system as black box.

But in the case of biological systems, the entities have internal structure and be-

haviours. In fact, the structure of a biological entity de�nes its function. Let us take as

an example of the protein-protein interaction shown in Figure 1.11. Three proteins A,B

and C interact with each other. Protein A binds to protein B at a particular location

and modi�es protein B. Modi�ed B interacts with protein C.

As we can see, there are particular binding sites where interactions occur. Once

an interaction has occurred, molecules undergo a modi�cation and dissociates to take

part in another interaction. Thus, each protein molecule can be made up of several

domains each with individual structure and functional part. Di�erent domains interact

in a particular way through complementary motifs. An outcome of these interactions is

that the molecule may change its shape. A molecule may change its state for example

from active to inactive. A molecule may become enabled to interact with other molecule

resulting in a chain of events. The classical notion of objects without an internal structure
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Figure 1.11: Toy example of protein interaction from [Reg02].

does not capture this real-life scenario very well. This is also an example of self evolving

system which depends on the localization of complementary interactions.

We have seen Concurrency theory, especially process-calculi emerging as a tool to

model biological systems. The inspiration to use process-algebra for modeling comes

from the fact that biological systems are concurrent, heterogeneous and asynchronous

in nature. While modeling such systems, biological components are considered as con-

current process and interactions between them as process communication [Car04b]. For

example, biomolecular processes are carried out by network of protein molecules inter-

acting with each other.

The protein molecules can be seen as agents, capable of performing computation

individually. They exchange information with each other to achieve a common goal.

This is the same for concurrent systems, which are made of spatially dispersed,mobile
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and communicating computing agents and result in a di�erent computing paradigm,

known as Global Computing. The process calculi is the most popular formalism to

describe and study global computing based applications.

The potential bene�ts of studying biological systems using this theory includes under-

standing complex like systems by breaking them into smaller subsystems and analysing

their current as well as future behaviour by stochastic simulation. This approach also

works for understanding system as a whole [PC04].

There are many variations of process-calculi proposed for the abstraction of biological

systems. We will use the π-calculus [Mil99] for this work. Regev and Shapiro proposed

representing molecular systems using the π-calculus [Reg02]. It is a name-passing cal-

culus also known as the calculus for communicating mobile systems. An stochastic

version of this calculus was proposed by Priami [Pri95], which can account for quantita-

tive information in a system.

Coming back to the example in Figure 1.11, the π-calculus can prove to be a suitable

tool for modeling a system like this where the internal structure of components should be

taken into consideration. We can construct individual entities as parallel computational

processes and de�ne channels (motifs, where contact takes place) within each process.

We can alter these channels after a communication to de�ne a new motif in the molecule.

Bio-chemical reactions take place on complementary structural-chemical motifs and also

on motif types. The interaction between motifs can be abstracted by de�ning communi-

cation channels between corresponding processes. The π-calculus supports two kind of

communications. In the �rst type, a sender process sends a nil message to a receiver via

a shared communication channel. After the communication, each process may continue

as usual or change its state to become a di�erent process with di�erent channels and

di�erent behaviour. But in the other type of communication, which is unique to the

π-calculus, self-evolving behaviour for a system can be achieved. In this type of com-

munication, the sender sends a message to receiver. The message contains the names

of one or more channels. The receiver can use these channels to decide which process

it should interact with next. Passing channel names as messages allows processes to

acquire dynamic communication capabilities. These interaction links were not de�ned a

priori but are aquired during the execution of a system by computable processes. This

feature is known as mobility in the π-calculus. It can also be understood with the help

of the diagram in Figures 1.12, 1.13 and 1.14. The diagrams represent a system at di�er-

ent time intervals with di�erent topological con�gurations. In Figure 1.12, the system

has four nodes with a de�ned path for interaction (shown as edges in the graph). The

system might undergo transitions and become like that shown in Figure 1.13, where a

component D along with its connecting links vanishes from the system. Alternatively,
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Figure 1.12: Initial con�guration. From [Mil99]

Figure 1.13: Another con�guration. From [Mil99]

the system in Figure 1.12 can become like that in Figure 1.14, where node D splits in two

nodes D1 and D2 resulting in a new topological con�guration for the whole system. The

π-calculus is capable of handling such dynamics via its mobility feature. We will discuss

formal notations and construction of such systems using the π-calculus in chapter 3.

The abstraction presented by π-calculus is not su�cient for it to be a good mod-

eling tool. It should also come with a way of handling quantitative information and

should allow dynamic simulation for time-dependent behaviour of a system. The non-

deterministic aspect of π-calculus was replaced with a stochastic one by extending the

original calculus to stochastic π-calculus [Pri95]. We use a modi�ed version of stochas-

tic π-calculus which was incorporated into BioSPI tool [Reg02]. BioSPI is a platform

for developing programs in the π-calculus [RSS01]. We use the BioSPI platform for the

implementation of our stochastic π-calculus programs. BioSPI takes its inspiration from

the Gillespie algorithm for the implementation of its stochastic engine. The semantics

of the π-calculus are extended to accommodate reaction rates in channel objects. An
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Figure 1.14: Yet another con�guration for 1.12. From [Mil99]

explicit clock was introduced in the system which advanced in uneven steps depending

on a probability distribution de�ned by the Gillespie algorithm. The process of selecting

objects for communication was also extended from a non-deterministic one to a stochas-

tic one as de�ned by the Gillespie algorithm. Details about the BioSPI tool can be found

in chapter 3.

Representing a system using the π-calculus has another advantage in form of the no-

tation used for representing biological systems. Kohn suggested notations to represent

biological systems and those notations could be converted into kinetic equations accord-

ing to a set of guidelines [Koh99]. Though the dynamics of a system can be captured

using Kohn's diagram (after converting the representations to equations), the represen-

tation itself is static in nature. Another problem with such diagrams is the page-size. If

a diagram becomes larger than a page, it becomes less appealing. Cardelli argues that an

alternative approach is to devise a textual notation for this purpose which does not have

any page-size limit [Car]. He mentions in his paper [Car] that the π-calculus enriched

with stochastic semantics is a suitable tool for describing biological activities at molec-

ular level as well as higher level of organization. He further argues that the π-calculus'

extension to Ambient calculus [AR04] can incorporate the notion of compartments and

complexes in biological systems. The textual notation of π-calculus is not only dynamic

but it also provides a direct simulation of the system. The notations can be written in

the form of computer programs using the stochastic semantics of the π-calculus and can

be passed into BioSPI for execution. BioSPI uses its underlying stochastic machine and

produces quantitative data for further numerical or statistical analysis. In this case, we

do not need to convert the notations to di�erential or di�erence equations and then sim-

ulate them. The BioSPI uses the Gillespie algorithm which is a well proven algorithm for

the stochastic simulation of biomolecular systems and works well for systems with rela-

tively low number of molecules, a situation where continuous deterministic approaches
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may fail.

According to Cardelli, another bene�t of using the π-calculus as modeling tool is that

it allows model checking to be used for validation of models [AR04]. Temporal model

checking can be used for analysing if a system can reach a particular state or not, or, if

it is necessary to reach one particular state before reaching another state. Quantitative

model checkers can help us analyse quantitative values associated with di�erent elements

in the system whereas probabilistic model checkers based on Markov chain models can

be applied to analyse systems showing probabilistic behaviour.

1.2.1 Current work in field of process-algebra for System biology

Researchers from theoretical computer science community have been developing other

tools as well (apart from BioSPI) for modeling of biological systems. We will briey

discuss a few of them in this section.

Cardelli and Phillips [PC04] have developed Stochastic Pi-machine SPiM. SPiM is

based on a variant of stochastic π-calculus and provides a formal description of how a

stochastic π-calculus process can be executed. The simulator for SPiM has been written

in OCaml functional language and uses the Gillespie algorithm as basis for stochastic

simulation.

Another stochastic simulator is PEPA system [GH94] which has been used recently

for the stochastic simulation of biological systems [CGH04]. PEPA is a Markovian

process-algebra which incorporates activity durations and probabilistic choices. It has

been successfully used to determine performance related problems in the design of in-

formation systems but PEPA does not the use dynamic name-passing feature (as in the

π-calculus) which is important for modeling of biological systems.

Another tool, PRISM [MKP01], is a probabilistic model checker and supports three

types of models namely, discrete time markov chain,continuous time markov chain and

markov decision processes. PRISM supports probabilistic temporal logic for model check-

ing and has been used in number of case studies from biological domain [CVGO05, pria,

prib].
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1.3 Motivation for the present work

The previous section charts out some of the bene�ts of using the π-calculus as a modeling

tool for system biology. As we have seen, biological systems have traditionally been mod-

eled using di�erential equations. A vast amount of knowledge about biological systems

has been published in form of deterministic di�erential equations. A plethora of tools

have been developed for simulation of such systems. Some of the prominent examples

include CellML [AACH03], CellDesigner [FK03] and E-Cell [KT03]. These tools pro-

vide complete platform for designing and simulating a biological system, which includes

representing a biological system and providing a deterministic as well as stochastic sim-

ulation for those systems. These tools have their own notations for representation of a

system and are SBML compliant. These tools have bene�ts of using traditional model-

ing techniques but lack in the key features of the π-calculus such as self-evolution of a

system, being able to capture internal structure of the smallest entities and dynamical

representation of a system etc. The main motivation for our work comes from this miss-

ing link. If we want to extend these already existing di�erential equation systems with

new found information about them, so that we can look at these systems from a di�erent

perspective, we need to �rst convert those systems from the di�erential equation domain

to the π-calculus domain. We can also get a stochastic simulation for these deterministic

systems. Our work concentrates on the automated conversion of deterministic di�eren-

tial equation models to the stochastic π-calculus notations. The resulting notations we

obtain are in form of complete programs which could be directly run on the BioSPI sys-

tem for stochastic simulation. BioSPI produces time-dependent quantitative information

for each process involved in the program in the form of a tab-separated �le. This �le can

be used for further mathematical analysis to look into behaviour of a system.

1.4 Our approach

Our approach to convert a di�erential equation model to a π-calculus model can be

divided into four steps.

� In the �rst step, we implement an ordinary di�erential equation(ODE) model in

Matlab and use its di�erential equation solver to solve it. A Matlab implementation

of a model helps us analyse its dynamic behaviour. The quantitative results are col-

lected for all the species at the steady-state of the system and their time-dependent

behaviour are plotted in form of graphs.
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� In the second step, a chemical reaction based representation is derived from the

system described by ODEs. The new representation has one chemical reaction

for each rate constant in the ODE model and can be described as the reaction-

centric approach. To ensure that the information that we have collected is correct,

we implement a stochastic version of the system in Matlab and compare the time-

dependent behaviour of the species to the results obtained during the deterministic

simulation. We also compare the stochastic results with other software like Copasi

[cop05], Stode [GK01] and Dynetica [LYY03] for further assurance.

� When we are satis�ed with the results obtained in the above step, we generate

another set of chemical reactions which is based on the progressive and decay

terms of ODEs. This approach is reactant-centric as it describes the whole system

with the production and depletion activities of each species. The reactant-centric

approach is similar to the reaction-centric approach in terms of information content

and forms a basis for the stochastic π-calculus model.

� In the fourth phase, a stochastic π-calculus model is constructed with the set of

chemical reactions obtained in the previous step. The model is executed on BioSPI

platform and results are compared with the results obtained by deterministic and

stochastic simulations in the previous steps.

1.5 Demonstration by two new case-studies

We demonstrate our approach of porting di�erential equation models to the stochastic

π-calculus models with the help of two real-life biological systems. The two case studies

are inuence of Raf Kinase Inhibitor Protein (RKIP) on the Extracellular signal

Regulated Kinase(ERK) Signaling pathway [CSK+03] and A molecular network that

produces spontaneous oscillations in excitable cells of Dictyostelium [ML98]. We will

discuss the implementation of these systems in detail in chapters 4 and 5 respectively.

1.6 Summary

This chapter started with a brief overview of an emerging discipline, system biology. We

discussed various modeling and simulation strategies which are useful for understanding

biological systems. We discussed their strengths and weaknesses and introduced the

π-calculus as a computational paradigm for modeling biological systems. We presented

the motivation for the work in this document and briey outlined the plan to achieve it.
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Chapter 2 presents the mathematical background of our work and Chapter 3 discusses the

theoretical and implementational aspects of the π-calculus and its stochastic extension.

Chapters 4 and 5 detail the methods used for porting di�erential equation based models

to the stochastic π-calculus models.
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Chapter 2

Mathematical Background

2.1 Introduction

Chemical kinetics is the study of speed with which a chemical reaction occurs and the

factors that a�ect the speed. The speed of a reaction is determined by the rate of change

in concentrations of reactants and products. Take for example a simple chemical reaction

where a reactant A is converted to a product B

AGGGAB

Here, the velocity,v can be de�ned as

v = −
d[A]

dt
=

d[B]

dt
(2.1)

When we want to relate experimentally determined initial velocity to concentrations

of reactants, we introduce a rate equation as

v =
d[A]

dt
= −k[A]n (2.2)

where [A] is the concentration of the reactant A. Concentrations are usually measured

in Moles/Litre. The variable `k' is known as the rate constant and `n' is an integer

which de�nes the order of a reaction. In general, rate of reaction is proportional to the

concentration of each reactant raised to power of its stoichiometry. This is known as the

law of mass-action.
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Chemical reactions can be classi�ed by their order or their molecularity 1. We saw in

equation 2.2, the rate of equation depends on the order n. n is always found by doing

experiments and is speci�c for a reactant. In the above case, the order of reaction with

respect to A is 1. Overall order of a reaction is found by adding all individual orders in

the reaction. In case of reaction like A+B −→ C , the rate equation will be v = k[A]1[B]1,

here, the order of reaction with respect to A and B is still 1, but the overall order of

reaction becomes 2. The point to be noted is that order of a reaction does not depend

on stoichiometry of a reaction as a reaction of third order can have v = k[A]1[B]2 or

v = k[A]2[B]1.

To analyse the behaviour of a system with respect to time, we write down a set

of ordinary di�erential equations (ODEs) with rate constants (`k' terms, measured in

M/sec) and initial concentrations(M/litre) speci�ed. Once it is done, the entire system

can be determined by solving these ODEs, either analytically or numerically.

2.2 Michaelis-Menten kinetics

A special case of chemical kinetics is Michaelis-Menten kinetics. It can be understood

with help of a simple example from Enzymology that can be expressed as

E + S
k1

GGGGGGBFGGGGGG

k2

ES
k3

GGGGGGA E + P

where Enzyme(E) interacts with Substrate(S) to make an ES complex. The rate

constant for formation of ES is de�ned as k1 and the rate for dissociation of ES complex

is de�ned as k2. The conversion of Product(P) from ES occurs at rate k3. The initial

velocity of an enzyme-catalysed reaction is dependent on the present amount of substrate

and enzyme concentration. The development of rate equation which allows the velocity of

reaction to be correlated with the amount of enzyme is called Michaelis-Menten equation.

The formulation of this equation is based on three assumptions. First, the complex ES

is in a steady state i.e the concentration of ES remains constant even though many

molecules of substrate are converted to the product via ES. The second assumption

states, all the molecules of Enzyme are converted to ES complex and there is no free

enzyme molecule under saturating conditions. This occurs in case of high concentration

of substrates. The third assumption is, if all the enzyme molecules are in ES , then

1The number of reactant molecular entities that are involved in the "microscopic chemical event"

constituting an elementary reaction.
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the rate of formation of product will be maximum. Under these conditions, the rate of

formation of product will be maximal.

Vmax = k3[ES] (2.3)

The initial velocity, v0 is represented as

velocity = v0 =
Vmax.[S]

km + [S]
(2.4)

where

km =
k2 + k3

k1

(2.5)

km is called Michaelis-Menten constant whereas the above velocity equation is known

as the Michaelis-Menten equation. In case of substrate population not being very much

greater than the number of enzyme molecules present or k3 not being much lower than

other rate constants, the above assumptions fail. It is unclear to what extent these

assumptions depend on the absolute particle number in the system. This is a problem

for particle based simulations of such systems.

2.3 Lotka-Volterra model

A basic model for interaction of two competing species was proposed by Lotka [Lot25]

and, independently, by Volterra [Vol26]. The model can be understood with help of three

reactions

N1 GGGA 2N1

N1 + N2 GGGA 2N2

N2 GGGA 0

Here N1 and N2 represent Prey and Predator species respectively. The �rst reac-

tion depicts prey reproduction. The second reaction represents consumption of preys
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by predators , resulting in increase in predator population. The third reaction repre-

sents death of predators due to natural causes. If we assign rate k1,k2 and k3 to above

mentioned reactions respectively, we can formulate ODEs as

d[N1]

dt
= k1[N1] − k2[N1][N2] (2.6)

d[N2]

dt
= k2[N1][N2] − k3[N2] (2.7)

These set of equations can be solved analytically or numerically to understand the

evolutionary behaviour of the system. In later sections we will discuss how to solve and

analyse ordinary di�erential equations.

2.4 Concept of equilibrium

An equilibrium is a point de�ned in a variable space at which the system is at rest. The

behaviour of the system does not change at these points and these points are also called

stationary or singular points. An equilibrium of a system can be determined by solving

set of simultaneous equations by setting the RHS of di�erential equations to zero i.e in

above case d[N1]/dt = 0 and d[N2]/dt = 0 should give the equilibrium points.

k1[N1] − k2[N1][N2] = 0 (2.8)

k2[N1][N2] − k3[N2] = 0 (2.9)

Solving these systems for N1 and N2 we have,

[N1] = 0, [N2] = 0 (2.10)

and

[N1] =
k3

k2

, [N2] =
k1

k2

(2.11)

Analysis of equilibrium points can reveal the stability of the system. Stability or

instability of a system can be understood by an example of a pendulum. A pendulum

is in stable position when it is at rest and is hanging at the bottom-most point in its
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trajectory, whereas it is unstable when it is at the top-most point. At the top-most

point, it is momentarily at rest but a little perturbation can result into pendulum falling

in either of the directions, hence the instability. Study of equilibrium point is important

because we assume that most of the natural systems try to reach it to achieve stable

state. To study that how a system reaches a stable state, we need to specify initial

conditions for our system and assign values to the rate constants.

The solution to di�erential equations can be studied in various ways and one of the

easy ways is to plot the response of a variable against time. Another simple way is to plot

two variables against each other as time passes and study their behaviour by following the

trajectory. Such plots are known as phase-plane plots and are very e�ective in studying

the behaviour of a system. The above Lotka-Volterra system was simulated with initial

parameters, [N1] = 10,[N2] = 3 and rate constants k1 = 1,k2 = 0.1 and k3 = 0.1. The

equilibrium points of system are at (N1 = 0, N2 = 0) and (N1 = 1, N2 = 10). The plots

are drawn in �gure 2.1 and �gure 2.2.

Figure 2.1: Lotka model : Predator and prey

2.5 Numerical solutions to ODEs

In this section, we will discuss general mathematical techniques which can be used for

solving a set of ordinary di�erential equations. Solutions to di�erential equations cannot

be found explicitly in terms of known functions, so an approximate solution for a given
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Figure 2.2: Phase plane diagram of Lotka model

data is determined by numerical computations on a computer. The basic idea is to

discretize a given di�erential equation to obtain a system of equations with a �nite

number of unknowns, which may be solved using a computer to produce an approximate

solution. The numerical methods for solving ordinary di�erential equations are methods

of integrating a system of �rst order di�erential equations, since higher order ordinary

di�erential equations can be reduced to a set of �rst order ODE's.

The type of di�erential equation system which is particularly di�cult to deal with is

one which exhibits extremes of dynamic behaviour. These systems have periods of time

during which the response changes very slowly and sometimes in other periods, possibly

very brief, the response is extremely fast. Such systems are known as sti� systems of

di�erential equations. The problem with numerical solution to di�erential equations is

the very small step size length δt, which is appropriate when the system is evolving at

fast rate but is a limiting factor when the system is changing very slow. This results into

excessive amount of computational time. The step size cannot be increased because it

would result in poor performance during the high bursts. The solution lies in choosing

an adaptive method which moves with a small step size up and down steep slopes and

lengthens its pace while encountering plains and plateaux.
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2.5.1 Runge-Kutta method

An accurate method of numerically solving di�erential equations is classical Runge-Kutta

method of fourth order. This method requires computation of four auxiliary variables

k1, k2, k3, k4 and then the new value yn+1 is computed.

Given initial values x0, y0, step-size h and total number of steps N, we can approx-

imate yn+1 to the solution y(xn+1) at xn+1 = x0 + (n + 1)h, for n = 0, 1, .....N − 1

as

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4) (2.12)

where,

k1 = hf(xn, yn)

k2 = hf(xn +
1

2
h, yn +

1

2
k1)

k3 = hf(xn +
1

2
h, yn +

1

2
k2)

k4 = hf(xn + h, yn + k3)

xn+1 = xn + h

Runge-Kutta(RK) is of great practical importance and is an e�cient computational

algorithm. It is also numerically stable.

E. Fehlberg proposed and developed error control by using two Runge-Kutta methods

[Feh68] of di�erent orders to improve from (xn, yn) to (xn+1, yn+1). The di�erence of

computed y-value at xn+1 gives an error estimate to be used for step-size control. Runge-

Kutta-Fehlberg formula has become quite popular and can be given as follows.

Fehlberg’s fifth-order RK method

yn+1 = yn + γ1k1 + ... + γ6k6 (2.13)

with coe�cient vector γ = [γ1...γ6]

γ = [
16

135
0

6656

12825

28561

56430

−9

50

2

55
] (2.14)

Fehlberg’s fourth-order RK method is
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y∗
n+1 = yn + γ∗

1k1 + ... + γ∗
5k5 (2.15)

with coe�cient vector

γ = [
25

216
0

1408

2565

2197

4104

−1

5
] (2.16)

In both formulas 6 di�erent function evaluations are used :

k1 = hf(xn, yn)

k2 = hf(xn +
1

4
h, yn +

1

4
k1)

k3 = hf(xn +
3

8
h, yn +

3

32
k1 +

9

32
k2)

k4 = hf(xn +
12

13
h, yn +

1932

2197
k1 −

7200

2197
k2 +

7296

2197
k3)

k5 = hf(xn + h, yn +
439

216
k1 − 8k2 +

3680

513
k3 −

845

4104
k4)

k6 = hf(xn +
1

2
h, yn −

8

27
k1 + 2k2 −

3544

2565
k3 +

1859

4104
k4 −

11

40
k5)

Runge-kutta fourth and �fth order method form the basis for Matlab's ordinary

di�erential equation solver, ode45, which we will use for our purpose while discussing

the case studies in later chapters.

2.5.2 Implementation of ODE solver in Matlab

Most of the mathematical programming for this project has been done in Matlab. Matlab

comes with its own suite of ordinary di�erential equation solvers which has implemen-

tation of many well-known algorithms for solving ODEs. We use 'ode45' solver for our

purpose. ode45 is an automatic step-size Runge-Kutta-Fehlberg integration methods.

ode45 uses a fourth and �fth order pair of formulas for higher accuracy. Automatic step-

size Runge-Kutta algorithms take larger steps where the solution is more slowly changing.

Since ode45 uses higher order formulas, it usually takes fewer integration steps and gives

a solution more rapidly. Matlab manual recommends that ode45 is the �rst solver that

we should use for our problems. The point to be noted is that ode45 is a solver for

non-sti� problems. If we want to solve sti� problems, we should use ode15s,ode23s etc.

depending on various factors like crude error tolerance, order of accuracy desired etc.
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A typical syntax for invoking an ODE solver in Matlab is

[T,Y] = solver(odefun,tspan,y0)

or

[T,Y] = solver(odefun,tspan,y0,options)

where,

� `solver' can be a prede�ned routine in Matlab for solving ODEs. Examples of solver

are ode45, ode23 etc.

� `odefun' represents a function-handler in Matlab. A system of di�erential equation

is coded in M-�le programming format as a function and it can be called indi-

rectly by means of function-handler. A function-handler can be mapped with the

corresponding function by simply specifying

odefun = @functionname

� 'y0' in the argument list of solver is a vector having initial values for parameters

in the system.

� 'tspan' de�nes the time duration for which the system should be run to evaluate

the ODEs.

� 'options' is a Matlab structure of optional parameters that change the default in-

tegration properties. The various properties that can be set are Relative error

tolerance, absolute tolerance, initial step size, maximum step size etc. The list

of optional parameters is huge and Matlab provides many ways of adjusting their

values for simulation of systems. These properties have pre-de�ned default values

set which can be changed if desired.

� T is a column vector of time points.

� Y is the solution array. Each row in y corresponds to the solution at a time returned

in the corresponding row of T.
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2.6 Representation of system and derivation of ODEs

Ordinary di�erential equation models can be derived from a graphical representation of

a system. Voit, in his book on computational biochemistry [Voi00] proposed a method

to convert biochemical interaction maps into a set of di�erential equations. He named

the mathematical system an S-system.

The formulation of a mathematical model from a representation map can be best un-

derstood with an example. Consider a reaction, X1 → X2. Production of X2 is dependent

on X1, whereas X1 itself is decaying with some rate. Consider a function, V describing

the change in X2 as a function of X1. Substrate depletion and product formulation can

be represented as

dX1

dt
= −V(X1).

dX2

dt
= V(X1).

For a bi-substrate reaction, like X1 + X2 → X3, the dynamics of X3 can be represented as

dX3

dt
= V(X1, X2).

The left hand side of ODEs signi�es rate of change in concentration of species Xi, and

V is a function of concentration of species that a�ect the dynamics of Xi. In general,

in a system of biochemical reactions, Xi will be a product of one or more reactions and

the substrate for one or more other reactions. Thus, the total change in concentration

of a species is a combination of production and depletion. So, V can be considered as

having two parts V+ and V−, depicting production and depletion functions respectively.

In general, the change in concentration for a species Xi can be represented as

dXi

dt
= V+

i (X1, X2, ..., Xn) − V−
i (X1, X2, ..., Xn)

Note that the negative term of the above equation represents the depletion and the

positive term represents the production for Xi. Consider another example shown in �gure

2.3, where there is a constant inux of X1 into the system and degradation of X1 depends

on X1 itself and also on the enzyme,X3. The system can be described as follows

dX1

dt
= α − V−

1 (X1, X3).
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Figure 2.3: Conversion of X1 to X2, catalyzed by X3. From [Voi00]

dX2

dt
= V−

1 (X1, X3) − V−
2 (X2)

To analyse the system , we need to determine what V−
1 and V−

2 are. Voit claims in

his book, that nobody know the answer to this question but numerous considerations of

properties and dynamic reactions of biochemical systems suggest that a representation for

a process V+
i or V−

i is given by a product of power-law functions of those and only those

variables that a�ect this process; the product is further multiplied by a rate constant

that determines the speed of the process. The power-law representation of the processes

V−
1 (X1, X3) and V−

2 (X2) are βXa
1Xb

3 and γXc
2 respectively. α and β are rate constants and

a,b,c represent number of same type of processes participating, or in terms of chemical

reactions, a,b,c represent stoichiometry of a chemical reaction. To generalize this model,

production rate constants are denoted as αi and degradation rate constants as βi. In

these production term, the power is called g and in the degradation, it is called h.

So, in the above mentioned example, a,b and c can be replaced with h11,h13 and h22

respectively. The �rst index represents the reaction and the second index represents the

species. The parameters αi and gij are always used for production terms and βi and hij

are always used for degradation terms. So,

V+
i (X1, X2, ..., Xn, Xn+1, ..., Xn+m) = αiX

gi1

1 X
gi2

2 ...Xgin
n , X

gi,n+1

n+1 ...X
gi,n+m
n+m

V−
i (X1, X2, ..., Xn, Xn+1, ..., Xn+m) = βiX

hi1
1 Xhi2

2 ...Xhin
n , X

hi,n+1

n+1 ...X
hi,n+m
n+m

The complete system can be represented in the following form

dXi

dt
= αi

n+m∏
j=1

X
gij

j − βi

n+m∏
j=1

X
hij

j for i = 1,2,....n (2.17)

The system is known as S-system, where S refers to synergism and saturation of

the investigated system as both are fundamental properties of biochemical and biological

systems.
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As a note, it would be interesting to point out an application of this approach. Many

public-domain pathway databases (for example KEGG(Kyoto Encyclopedia of Genes

and Genomes) [OGS+99]) describe pathway information with the help of interaction

maps, as shown in �gure 1.4. This representation is common with most of the databases

based on the object-oriented design principle. Though, they may not follow the rules

for drawing interaction maps, as proposed by Voit, but the idea of deriving di�erential

equation model from such representations remains the same.

2.7 Stochastic Simulation

While deterministic kinetics is good for large scale chemistry, it does not adequately

represents the discrete and stochastic behaviour of intracellular biochemical pathways.

As Gillespie pointed out in his paper [Gil77], despite the usefulness of di�erential equation

approach for chemical kinetics, there is something left to be desired at physical level.

First, di�erential equation approach assumes that the time evolution of a chemically

reactive system is both deterministic and continuous. In reality, the time evolution

of a biochemical system is neither deterministic nor continuous. It is not continuous

because the molecular population level of a chemical species can be changed only by a

discrete integer value and not by some fraction. And second, the time-evolution is not

deterministic either because chemical reactions do not take place at regular intervals or

in a deterministic fashion. Chemical events take place when a molecule collides with

another molecule while moving around randomly, driven by Brownian motion. This

results into a new approach of stochastic modeling of chemical systems. There are states

associated with both the models which represent the behaviour of system at various

time-points. For deterministic systems, a state is a list of concentration of each chemical

species and concentrations are continuous whereas in stochastic models, a state is number

of molecules of each chemical species that exist in system and it changes discretely, how

and when it changes is probabilistic in nature.

2.7.1 Gillespie’s Stochastic Simulation Algorithm (SSA)

Gillespie proposed an algorithm for exact stochastic simulation of coupled chemical reac-

tions [Gil77] based on chemical physics. The algorithm was concerned with a well-stirred

solution of �xed volume at constant temperature. Note that this is the assumption for

the algorithm. The algorithm is based on the fact that molecules are driven by Brownian

motion and keep colliding with each other. Some of the collisions result in chemical reac-
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tions. Molecules are distributed randomly and uniformly in the solution. The algorithm

proposes a way to compute that which reaction will occur next and when it will take

place.

Gillespie's algorithm associates a probability aµ with every reaction and aµ is calcu-

lated as

aµ = cµ × hµ (2.18)

where cµ is stochastic rate constant and hµ is the `hazard' associated with each

reaction. The factor cµ can be constant but hµ needs to be calculated every time for all

the reactions.

cµ =
ki

∏Lµ

j=1(lµj!)

VKµ−1
(2.19)

and

hµ =

Lµ∏
j=1

(
Yj

lµj

)
(2.20)

ki are the deterministic rate constants for the chemical reactions. Each reaction µ

has Kµ participating reactants, of which there are Lµ di�erent types. For each type there

are lµj identical reactants, thus Kµ =
∑Lµ

j=1 lµj. The factor Yj represents the population

of reactant j at that time.

Gillespie's algorithm works as follows:

1. The sum of the probabilities a0 is calculated as

a0 =

M∑
j=1

aµ (2.21)

2. A random number r1 in the interval [0, 1] is generated and used to determine the

time at which the next reaction occurs:

δt = −ln(r1/a0) (2.22)

3. A second random number r2 is generated, such that
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µ−1∑
v=1

av

a0

≤ r2 ≤
µ∑

v=1

av

a0

(2.23)

r2 is used to determine the next reaction. This is de�ned to be the next reaction µ.

The population is updated according to the reaction chosen and the time is incremented.

The process continues till a time-threshold is reached or system attains a steady-state.

2.7.2 Implementation issues with Gillespie’s algorithm

Most of the literature on biochemical reaction is dominated by deterministic kinetics.

In order to carry out stochastic simulation of such systems, we can use deterministic

kinetic rates and convert them to corresponding stochastic kinetic rates as mentioned

by Gillespie's algorithm. The other issue that requires attention is the representation

of amount of species in both the models. Deterministic models have amount of species

represented as Moles/litre whereas in stochastic models, the amount is represented as a

discrete integer value. Since, Gillespie's algorithm assumes that reactions are happening

in a well-stirred container, we need to know the volume of the container,V, to compute

the number of molecules present for a particular species.

First, we discuss how to convert concentration to number of molecules. Let X be a

species with amount [X] Moles in a volume of V litres. Then, there are total [X] × V

moles of X which is equal to A × [X] × V molecules of X, where A = 6.023 × 1023 is

Avogadro's constant.

Now, we look at the relationship between deterministic and stochastic rate constants.

We will refer to the formula proposed by Gillespie in the above section and illustrate it

for di�erent orders of reaction.

Consider a Zeroth order reaction,

0
k

GGGGGAX

where k is a deterministic rate constant and is usually represented in units of Ms−1.

X is produced at a rate of AkV molecules per second. We can simply write the corre-

sponding stochastic rate constant, c as

c = A× V × k (2.24)
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For a �rst order reaction such as

X
k

GGGGGA...

the rate of equation is k[X] Moles per second. X is reducing at the rate of nAV[X]k

molecules per second. The stochastic rate law for this reaction is nAV[X]c. So the

stochastic rate constant, c for a �rst order reaction will be

c = k (2.25)

Similarly for a second order reaction

X + Y
k

GGGGGA...

The deterministic rate law is k[X][Y] Moles per second. The deterministic speed of

the reaction is A[X][Y]Vk molecules per second. The stochastic rate law for the reaction

is c × (A[X]V) × (A[Y]V) molecules per second. Equating them, we get

c× (A[X]V)× (A[Y]V) = A[X][Y]Vk ⇒ c =
k

AV
(2.26)

Similarly, we can perform conversions for higher order reactions as well but they are

not very often used in stochastic kinetic model. Once we have performed conversions of

amount and rate constants, we can use Gillespie's algorithm for stochastic simulation of

a chemically reacting system.

We used Gillespie's algorithm for simulation of chemical systems discussed in case-

studies chapter. There is a Matlab implementation of Gillespie's algorithm presented in

Appendix. For detailed information on Gillespie's algorithm, one can refer to [Gil77].

Gillespie's algorithm has been applied to many in silico biological simulations to

study stochastic phenomena [AA98]. But Gillespie algorithm takes huge computational

time for a system with large number of reactions. Several other algorithms have been

suggested to improve the performance. Gillespie himself came with some new algorithms

which could be used for this purpose [GP04], [Gil01]. Some other examples for stochastic

simulation of biomolecular systems include Next reaction method [GB00] proposed by

Gibson and Bruck and stochsim [MF98] algorithm developed by Morton-Firth.
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BioSPI's mathematical engine implements Gillespie algorithm for stochastic simula-

tion of stochastic π-calculus models.

2.8 Software tools

We used several mathematical software tools for veri�cation of our results. A brief

introduction to these tools is provided in this section.

2.8.1 STODE

Stode [GK01] was developed to enable the automatic parsing and stochastic simulation

of a biochemical system initially described by a set of ordinary di�erential equations.

It developed by Kummer group and later became part of a widely used biochemical

network simulator, Copasi [cop05]. Stode uses the Gillespie algorithm for simulation of

stochastic systems. It takes as input a set of di�erential equations in its own speci�ed

format and extracts the relevant parameters before performing a stochastic simulation

of the system. It shows the extracted information in a XML-type format.

2.8.2 COPASI

COPASI [cop05] stands for Complex Pathway Simulator and is a widely used tool for

simulation and analysis of biochemical networks. COPASI has an interface which lets

us create a model of the system by specifying its details. To do so, we need to identify

the species and the reactions occurring in the system. The user-interface of COPASI

can be used for modeling of a biochemical system and the model can be simulated using

deterministic and stochastic methods.

2.8.3 Dynetica

Dynetica [LYY03] is a simulator of dynamic networks to facilitate model building for

networks that can be expressed as reaction networks. It program facilitates easy con-

struction of models for genetic networks. Dynetica can perform time-course simulation

of a system using deterministic or stochastic algorithms. Dynetica also provides visual

representation of each model for interactive manipulation and interrogation.
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2.9 Summary

This chapter provides the basic mathematical background needed for our work. The

chapter started with an introduction to chemical kinetics and discussed di�erential equa-

tion based modeling in brief. The chapter compares deterministic di�erential equation

based modeling approach with stochastic modeling approach. The chapter later presents

Gillespie algorithm and its implementation issues. A brief introduction to some third-

party mathematical software programs which we will use for our work, was also presented

in the last section. Next chapter discusses the π-calculus and its stochastic variant. It

also introduces BioSPI platform that is used for compiling and executing programs writ-

ten in the π-calculus and its stochastic variant.
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Chapter 3

The π-calculus

3.1 Introduction

In this chapter, we provide an introduction to the π-calculus, a calculus for concur-

rent communicating processes [Mil99]. Conventional computing paradigms like Turing

machine,register machines and lambda calculus focus on the computational behaviour

of a machine. The essential activity in these computational models involves reading or

writing on a medium or invoking a procedure with parameters. The communication ac-

tivity of a system is not rigorously de�ned in these paradigms. The π-calculus presents

a model of computation where the basic action between di�erent processes is commu-

nication . Another important aspect of the π-calculus is the behavioural equivalence of

two interacting systems. This means specifying how a designed system should behave.

A designed system is said to be correct if its behaviour is equivalent to its speci�cations.

When we discuss communication, we discuss the topology of connections in a network.

As Milner mentions, physical system has permanent links where virtual systems like

world wide web have symbolic links. Symbolic links can be created or destroyed on the

y, depending on the situation. Air-tra�c control, Global positioning systems (GPS),

General Packet Radio Service(GPRS) systems in mobile phones etc. are example of

networks which use symbolic links. We use diagrams(�gure 1.12, 1.13 and 1.14) from

chapter 1 for discussing the topology of a system.

As we see in �gure 1.12, there are four processes A, B, C, and D in a system denoted

as circles. The communication path in the system is described as a link between two

nodes. Over the time, a communication path between processes might remain unchanged

or could change to something as shown in �gure 1.13, where the node D dies and its
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connecting links disappear. Another possibility is, the original system of �gure 1.12 can

evolve as shown in �gure 1.14, where node D spawns another node D2 and itself becomes

D1, resulting in a new topological structure for the system.

This evolution in topological con�guration of communicating links is known as mo-

bility in a system. The π-calculus is a suitable abstraction paradigm for such mobile

systems. Another important aspect of the π-calculus is the behavioural equivalence of

two di�erent systems. Behavioural equivalence can be understood with the following

example. Conside a system having a deterministic �nite automaton as shown in �gure

3.1. According to the classical theory of automata, there exists an equivalent non-

Figure 3.1: Deterministic �nite automaton. From [Mil99]

deterministic �nite automaton as shown in �gure 3.2, which accepts the same regular

language as the deterministic �nite automaton shown in �gure 3.1. Both of the au-

Figure 3.2: Non-Deterministic �nite automaton. From [Mil99]

tomata are equivalent because they accept the same regular language, even though their

way of execution is di�erent. In case of real-life systems, nondeterminism can not be ex-

plained in this way and a nondeterministic automaton can not be equated behaviourally
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with a deterministic one [Mil99]. The π-calculus focuses on behavioural equivalence of

two interacting systems. This is important to know because unless we know about the

similarity or di�erence in their behaviour, it is di�cult to correctly explain what those

systems do.

3.2 Constructs in π-calculus

Within the π-calculus, there are two main entities, channels and processes. Processes

communicate with each other over channels by a handshake. The calculus itself can be

divided into three parts, which include

� formally describing the states in a system by a syntax,

� having a mechanism to compare two states of a system and determining if they are

equivalent by congruence laws and

� proposing a set of reduction rules to de�ne the change in the state of a system

after a communication event.

3.2.1 Communication Action

The starting point is a set of names, which are used to name communication channels

and the values passed along those channels. Channel names are denoted as a,b,....z etc.

whereas processes are represented by P,Q,...and can have the forms shown in table 3.1.

Pre�xes α::= x ! [ ] Output nil message on channel x
x ! [y1, y2...., yn] Output [y1, y2...., yn] on channel x
x ? [ ] Input nil message on x
x ? [y1, y2...., yn] Input [y1, y2...., yn] on channel x

Processes P ::= 0 Nil
α, P Pre�x
P + P Choice
P|P Composition
if x = y then P Match
if x 6= y then P Mismatch
(new x)P Restriction
A(y1, y2, ...yn) Parametric process identi�er

Table 3.1: The π-calculus syntax

There are two type of actions associated with a channel. Output action, denoted

by x![y1, y2...., yn], sends a message as a tuple [y1, y2...., yn] along a channel, named
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x, from one process to another process. The complementary input action of accepting

the tuple [y1, y2...., yn] is performed by another process at channel x and is denoted as

x?[s1, s2...., sn]. Here [s1, s2...., sn] are placeholders for receiving [y1, y2...., yn]. Messages

can be empty and the input and output can be represented as x?[ ] and x![ ] respectively.

Looking at the representations of the processes in table 3.1, a process can have several

forms -

� The empty process 0, which cannot perform any further action.

� Pre�x action α, P , which can be interpreted as x![ ], P or as some other form de�ned

in table 3.1, can be understood as a process which outputs nil message at channel

x and becomes process P. While interpreting α, P as x![y1], P, we understand that

a message can be received at the channel x, and y1 is a placeholder for incoming

message, the process itself can continue as P.

� A mutually exclusive choice P+Q states that a process can continue either as P or

as Q, but not both.

� A composition, represented as P|Q represents parallel concurrent execution of pro-

cesses P and Q. Processes P and Q can execute independently and are free to

communicate with each other.

� A match, if x = y then P, states that a process will behave as P if x and y are

same, otherwise nothing will happen.

� A mismatch, if x 6= y then P, states that a process will behave as P if x and y are

not same, otherwise no action will take place.

� new is known as restriction operator and is used for restricting a name to a local

process. The name can be used for interaction within the process but can not be

used for interaction between process and its environment.

3.2.2 Congruence laws

The π-calculus introduces structural congruence laws to identify processes that repre-

sent the same action. The processes might be syntactically di�erent because of linearity

of the language but these laws identify processes where it is obvious from their structure

that they are the same. For example processes P|Q and Q|P represent the same action

but are syntactically di�erent. Both the choice (+ and ;) and composition (|) operations

are commutative and associative in nature. The 0 process does not perform any action
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so it does not have any behaviour and it can safely be discarded while discussing pro-

cess congruence. There are two types of channels in the π-calculus: free and bounded.

Bounded channels are the ones which are in use for communication (input placeholder)

or are the restricted ones. As for example, a bounded channel y can have a representation

as either x ? [y], P or (new y) P . All other channels are free. Input placeholder channel

names are replaced after the communication by the actual channel name received, like ,

x?[y], P can become x?[z], (z/yP) where channel name y is being replaced by z. A detailed

discussion on congruence laws can be found in [Reg02].

3.2.3 Operational Semantics

The operational semantics of the π-calculus de�nes rules for inter-process communica-

tion. As stated earlier, a communication takes place across a shared channel between

two processes and it involves message passing. The messages can be nil or can contain

names of the channels to be used for further communication by the receiving process.

The communication is captured by the semantics of the π-calculus, where the pre�xes

associated with both the communicating process are eliminated and the remainder rep-

resents the new processes. There are �ve main rules, COMM, PREFIX, PAR, RES and

STRUCT for communication and these are summarised in table 3.2.

The α term in table 3.2 is de�ned in table 3.1. COMM rule states the basic premise

of a communication between any two processes by message passing. The tuple(message)

contains the names and should be passed on a shared channel. A communication is suc-

cessful if the received and the sent tuples have the same arity. Once the message has been

received, the placeholders for names at the receiving channel are replaced by the actual

names received in the message by the renaming operation. PREFIX states occurrence of

an action and simply eliminates the pre�x associated with a process to give it a new form.

Pre�xing also induces a sequential order on a communication. Communication under

parallel composition(PAR) implies that a communication between two sub-processes of

P is independent of the presence of another additional concurrent process Q. Similarly,

RES rule states that external restriction on a channel in a process should not a�ect the

ability of internal sub-processes to communicate. The STRUCT rule is important as it

suggests that structurally congruent processes undergo similar reductions.

These reduction rules do not specify which communication will occur. They only

specify which communications are allowed to occur and what would be the structure

of processes involved after a communication has taken place. A system is capable of

self-evolution with dynamic message passing among processes and the communication

between processes in the system is non-deterministic in nature.

41



a?[x1,x2,...,xn],P|a![y1,y2,...,yn],Q
P{y1/x1,...,yn/xn}|Q

COMM

α,P
α→P

PREFIX

P
α→P ′,BoundName(α)∪FreeName(Q)=0

P|Q
α→P ′|Q

PAR

P
α→P ′,x 6∈α

(new x).P
α→(new x).P ′ RES

P ′ ∼=P,P
α→Q,Q ′ ∼=Q

P ′ α→Q ′ STRUCT

P
α→P ′

P+Q
α→P ′ SUM

P
α→P ′

if x=x then P
α→P ′ MATCH

P
α→P ′,x 6=y

if x 6= ythen P
α→P ′ MISMATCH

Table 3.2: Operational semantics in the π-calculus.

3.3 Stochastic π-calculus

The original framework for the π-calculus is non-deterministic in nature and all the com-

munications in a system are equally likely to occur. But in case of biomolecular systems,

a reaction occurs with a particular rate at a random time. To use the π-calculus as a

modeling tool for biomolecular systems, the existing calculus needs to be extended to

accommodate the quantitative information. Chemical reactions are modeled by com-

munication between two processes in the π-calculus. Processes represent molecules. The

communication mechanism in the π-calculus should accommodate two features to cor-

rectly represent a chemical reaction, the reaction rate and the time for its occurrence. We

discussed in section 2.7 about the need for stochastic simulation of a biomolecular system

and described the Gillespie algorithm in section 2.7.1 which is an algorithm for the exact

stochastic simulation of coupled chemical reactions. We now introduce an extension of

the π-calculus to adopt the Gillespie algorithm in its framework [Reg02]. This approach

has two bene�ts. First, the π-calculus abstraction allows representation of a chemical

reaction between di�erent molecules having complementary motifs by communication

across di�erent processes over the speci�ed channels. Second, by handling channel ob-

jects according to speci�cations by the Gillespie algorithm, we can implement Gillespie's

stochastic framework in the existing π-calculus. There are many versions of stochas-
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tic π-calculus available [Pri95, PC04, PRSS01], but we will concentrate on the version

presented in [Reg02] because it is speci�cally adapted for the modeling of biomolecular

systems.

In order to extend the π-calculus to accommodate the Gillespie algorithm, a few

changes are required in the existing framework. Every channel has an associated base

rate. The actual rate for a channel is computed according to its base rate and the

number of processes o�ering to communicate over that channel. An explicit clock is

introduced for time-evolution of the system which advances in variable steps by Gillespie

algorithm according to the actual channel rates at each state of the system. The choice for

communications in a system depends on stochastic selection of channels and is governed

by conditions proposed by Gillespie algorithm 2.7. Rest of the syntax remains identical

to the non-stochastic version of calculus.

There are di�erent types of elementary reactions which use di�erent kind of de�ned

channels. They can be summarized as follows :

� Asymmetric biomolecular reaction, which involve two reactants from two di�erent

species are represented by two di�erent processes using a regular type channel. The

actual rate for this type of reaction is Base rate×#senders×#receivers

� Symmetric biomolecular reaction involving two reactants from same species are

represented by two identical processes using a symmetric type channel. The actual

rate for this communication is Base rate× (#senders×#receivers)/2.

� Unimolecular reactions which involve only a single reactant can either communicate

over a regular public channel with rate = Base rate×1×receivers or over a regular

private channel with rate = Base rate× 1× 1.

We now introduce a formal representation of the stochastic π-calculus. A detailed

description can be found in [Reg02]. A base rate,r, a non-negative number,is associated

with a channel name and it appears in each of communication pre�xes, like (x, r), P. The

processes are assumed to be in head normal form. A process P is in head normal form

if it is either the null process or

P ≡
∑

(πi, ri), Pi and ∀i 6= j. sbj(πi) 6= sbj(πj)

where sbj(π) denotes the pre�x π's output or input link (e.g. if π is a!b(a?b) then sbj(π)

is a!(a?)). The actual reaction rates depend on the number of interacting processes, two

auxiliary functions, In,Out : 2P ×N → N, are de�ned to inductively count the number

of receive and send operations on a channel x enabled in a process.
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Inx(P) = 0 if P ::= 0

|{(πi, ri)|i ∈ I ∧ sbj(πi) = x?}| if P ::=
∑

(πi, ri), Pi

Inx(P1) + Inx(P2) if P ::= P1|P2

Inx(Q) if P ::= new z . Q and z 6= x

0 if P ::= new z . Q and z = x

Outx is similarly de�ned, by replacing any occurrence of In with Out and condition

sbj(πi) = x? with sbj(πi) = x![Reg02].

Table 3.3 summarizes the operational semantics of stochastic π-calculus. N represents

set of all names. Parameter rb,r0 and r1 represent a channel's base rate, quantity of

processes o�ering to send and quantity of processes o�ering to receive actions on the

channel respectively. r0 and r1 are computed compositionally via Inx and Outx during

transitions.

Asymmetric communication(x 6∈ H)(StochAsym)

... + (x!{z}, r),Q|(x?{y}, r).P + ...
x,rb.1.1→ Q|P{z/y}

Symmetric communication(x 6∈ H)(StochSym)

... + (x!{z}, r),Q|(x?{y}, r).P|... + (x!{z}, r),Q|(x?{y}, r).P
x,1/2.rb.2.(2−1)→ Q|P{z/y}

Communication under parallel composition(StochPAR)

ifP
x,rb.r0.r1→ P ′then P|Q

x,rb.r ′
0.r ′

1→ P ′|Q,where r ′0 = r0 + Inx(Q) and r ′1 = r1 + Outx(Q)

Communication under restriction(StochRes)

if P
x,rb.r0.r1→ P ′ then new x.P

x,rb.r0.r1→ new x.P ′

Communication and structural congruence(StochStruct)

if Q ∼= P, P
x,rb.r0.r1→ P ′, and P ′ ∼= Q ′ then Q

x,rb.r0.r1→ Q ′

Table 3.3: Operational semantics of stochastic π-calculus from [Reg02]

Modeling a chemical reaction in stochastic π-calculus

Modeling of a chemical reaction in stochastic π-calculus can be understood with help of

a small example. Let A and B be two protein molecules interacting with each other to

44



produce two di�erent molecules C and D. The initial quantity of A and B before the

occurrence of the reaction is nA and nB respectively. The base rate for the reaction is

k. To model this system, we represent molecules A and B as processes which become

processes C and D respectively after the reaction. The chemical reaction between these

processes can be represented as a complementary communication taking place over a

channel. Let the name of the channel be `reaction1'. The processes A and B can be

de�ned as

A ::= reaction1?[ ], C.

B ::= reaction1![ ], D.

The actual occurrence of the reaction can be abstracted as:

reaction1?[ ], C | reaction1![ ], D

GGGA

C | D

This simple π-calculus module can be extended to its stochastic version by making

few changes. First, the reaction channel i.e. reaction1 is assigned a base value of k as

reaction1(k) in the beginning of the program. k is a non-negative real number and is

computed for a reaction according to the Gillespie's algorithm.Second step is to compute

the actual rate for the reaction. The actual rate of the reaction depends on the base

value as well as the type of the reaction as described earlier in this section. The actual

rate values are calculated at every step and the vary according to time. For this example,

the actual rate for reaction between A and B can be calculated as:

k × nA × nB

The magnitude of nA and nB change after the reaction and the new quantities are

used for the calculation of actual rate in the next iteration. The remaining steps are

to choose the next communication and time-step according to the Gillespie algorithm.

The procedure is repeated for a speci�ed time period or till a system has reached its

steady-state.
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3.4 BioSPI: A platform for the π-calculus model

BioSPI [Reg02] is an implementation framework for the π-calculus and its stochastic

extension. BioSPI is implemented in Flat Concurrent Prolog [Sha87] and the imple-

mentation itself is embedded in the Logix System [W.Sb, W.Sa]. Logix system can

be installed on Linux, Sgi and Solaris platforms. We used the BioSPI system on the

Linux platform. In this section, we will give a brief introduction to writing programs in

stochastic π-calculus and executing them on BioSPI.

3.4.1 Representing simple processes

The basic unit of computation is a process. The simplest process is represented as 0

which has no observable behaviour. A process is always declared by a capitalized name

in BioSPI.

Donothing ::= 0 .

Donothing is a process which has no behaviour. A system can be composed of dif-

ferent concurrent processes. This composition is represented by PAR(|) operator in the

π-calculus. A parallel composition of multiple processes can be represented as

BigSystem ::= OneSmallProcess | AnotherSmallProcess .

OneSmallProcess ::= 0 .

AnotherSmallProcess :: = 0 .

It represents a system named Bigsystem, which is composed of two processes OneSmallProcess

and AnotherSmallProcess. Both the processes operate concurrently within BigSystem

in a mutually exclusive way.

3.4.2 Communication in BioSPI

Processes communicate with each other on channels, on which they may send messages

to each other. There are two types of channels: a public channel which can be used by

all the processes in a system or a private channel which is private to a process. Channel

are declared with names starting with a lower-case letter.
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A send action over a channel x is denoted as x![ ] , where [ ] stands for a nil mes-

sage. We can send messages along with channel x as x![y1, y2, ..., yn], where the tuple

(y1, y2, ...yn) can have names of channels to be passed on to other process communi-

cating over that channel. Similarly, a receive action is denoted as x?[ ] , where a nil

message is received at the channel x. A receive action with message can be denoted like

x?[y1, y2, ..., yn], where the tuple (y1, y2, ..., yn) is a place-holder for actual message and

is replaced by the actual message after the communication. Once the communication is

over, a process is allowed to retain its state and iterate in the same way as earlier, or, it

can change its state and become some other process. This scenario can be represented

by the π-calculus code in the following way

public(x).

BigSystem ::= OneSmallProcess | AnotherSmallProcess .

OneSmallProcess ::= x ! [ ] , 0 .

AnotherSmallProcess :: = x ? [ ] , 0 .

The comma in�x operator (,) is used to separate a sequence of actions. In the above

code, the message sent across the channel x is an empty message. A message with con-

tent can be sent as

public(x).

BigSystem ::= OneSmallProcess | AnotherSmallProcess | YetAnotherProcess.

OneSmallProcess ::= x ! {z} , 0 .

AnotherSmallProcess :: = x ? {w}, w ! [ ] , 0 .

YetAnotherProcess ::= z ? [ ] , 0 .

OneSmallProcess sends a channel name z, as a message to AnotherSmallProcess

through channel x. AnotherSmallProcess receives the information and w is replaced

with z, making the process enable to communicate with YetAnotherProcess at channel

z. More than one channel names can be passed in a message as a tuple x!{z, p, q}.

A private channel is used for communication within the same process. It is known

only within that process and its scope is limited. In the π-calculus, a private channel is

declared with a new keyword but for BioSPI implementation, a private channel is de-

clared during the process declaration, using + operator and is distinct from other public

channels even if they have the same name.
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public(w,x,y,z).

BigSystem ::= OneSmallProcess | AnotherSmallProcess .

OneSmallProcess + x ::= y ! {x} , ( x ! {w} , 0 ; y ! {z} , 0) .

AnotherSmallProcess :: = x ? , 0 .

In this code, x is a private channel associated with OneSmallProcess and is di�erent

from the public channel x in AnotherSmallProcess. The operator `;' is called choice

operator and is used for signifying that a process is capable of o�ering more than one

mutually exclusive communications. This is same as the `+' operator in original π-

calculus.

3.4.3 Stochastic programs

BioSPI has an extension for running the stochastic π-calculus programs. The general

structure of syntax remains the same as mentioned above but for stochastic programs,

the channels are assigned rates. Rates for a channel can be assigned as

Rate_1 => 2.0 .

global{

reaction_1(Rate_1).

}.

or simply,

global{

reaction_1(2.0).

}.

global keyword declares that reaction 1 is a public channel.The underlying engine of

BioSPI uses the Gillespie algorithm and necessary calculations are performed as discussed

in section 3.3.

48



3.4.4 Operating on BioSPI platform

We will introduce some of the commands important to run the BioSPI system. Pro-

grams for BioSPI platform have .cp extension. A �le is compiled using a command c(�le

name). A �le named `nacl.cp' can be compiled as shown in �gure 3.4.4. The command

@c(nacl)

<1> started

<1> source : /dcs/taps/ritesh/Aspic-release/Tutorial/nacl_example/nacl.cp -

20050513112458

<1> interpret : export([System / 2, Na / 0, Na_plus /0, Cl / 0, Cl_minus / 0]

)

<1> file : /dcs/taps/ritesh/Aspic-release/Tutorial/nacl_example/nacl.bin -

written

<1> terminated

Figure 3.3: Compiling a �le in the BioSPI platform

to execute a program is run.

run(Goal)

run(Goal,Limit)

Goal speci�es the module of the program that we want to execute. The �rst form

executes inde�nitely, the second form continues until Limit units of internal time have

elapsed. The compiled �le can be run as shown in �gure 3.4.4. In this case a module

System is run with parameters (2,2) for 1 unit of time speci�ed by BioSPI system.

@run(nacl#"System"(2,2),1)

<2> started

done @1.029526 : seconds = 0

Figure 3.4: Executing a program in BioSPI

Another command record, resets the session and executes all the goals until Limit. It

also records their behaviour on a named �le as shown in �gure 3.4.4.

record(Goal,File,Limit)

@record(nacl#"System"(2,2),nacl_out_1,1)

<3> started

done @1.009714 : seconds = 0

Figure 3.5: Recording the output of a program in BioSPI

The �le generated by the record command needs to be processed to produce the re-

sults in a tabular format which is suitable for plotting graphs. The �le is passed through
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a PERL program `spi2t', which in turn generates two �les. For example,

% spi2t nacl out 1

produces, nacl out 1.names and nacl out 1.table. Column 1 of .table �le has time infor-

mation and rest of the columns have quantitative information about all active processes

in the system. A small �le with .name extension has one line, listing all the column

names in .table �le and an association of those names with the array columns in the

corresponding .table �le.

3.5 Summary

The π-calculus, a computational paradigm for concurrent,communicating, mobile sys-

tems is introduced in this chapter. We presented the formal representation of the

π-calculus and its stochastic variant. We discussed various constructs of stochastic

π-calculus which were speci�cally designed for modeling of biochemical systems. We

demonstrated with small code snippets how a π-calculus program can be constructed.

We discussed the BioSPI tool and how it can be used for compiling and executing pro-

grams written in the π-calculus and its stochastic variant. In the later chapters, we will

demonstrate how these concepts can be applied for modeling biochemical systems on the

BioSPI platform.
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Chapter 4

Method and The Case Study of
RKIP on ERK Pathway

4.1 Overview of the methodology proposed

This chapter discusses a method to port an ordinary di�erential equations(ODE) based

model to a stochastic π-calculus model. Chapter 2 and 3 provide the necessary theoretical

background needed for our work. We will discuss the method along with the case study

of the inuence of Raf Kinase Inhibitor Protein (RKIP) on the Extracellular signal

Regulated Kinase(ERK) Signaling pathway. Before we discuss the case study and

the method in detail, a brief outline of the method (independent of the case study) is

presented here.

The method to port ODE based system to stochastic π-calculus based model involves

several steps.

1. In the �rst step, an ODE based model, also known as continuous deterministic

model is coded on Matlab platform. The model is run with parameters and initial

conditions as speci�ed in the publication where the model was �rst presented. The

quantitative results are collected for all the species at the steady-state of the system.

Time-dependent behaviour of these species are plotted in form of graphs.

2. In the second step, we derive a chemical equation based representation for the

system described by ODEs. This representation has one chemical reaction for each

rate constant de�ned in the ODE model, and can be described as a reaction-

centric approach. The new model with chemical reactions is coded on Matlab

for stochastic simulation according to the Gillespie algorithm. The rate constants
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and the initial concentrations of the species are taken from the ODE model and

necessary conversions, as proposed by the Gillespie algorithm are performed and

incorporated in the new model. The stochastic simulation is run and the results

are collected. To check that the information encoded and the results obtained from

the stochastic model are correct, we use several third-party software tools namely,

Copasi, Stode and Dynetica. These tools facilitate building of biological models

for their deterministic and stochastic simulation.

3. When we are satis�ed with the results obtained in step 2, we generate another set of

chemical reactions which is based on the progressive and decay terms of ODEs. This

approach is reactant-centric as it describes the whole system with the production

and depletion activities of each species. The reactant-centric approach is similar

to the reaction-centric approach in terms of information content and forms a basis

for the stochastic π-calculus model.

4. A stochastic π-calculus model is constructed with the set of chemical reactions

obtained in step 3. The model is executed on BioSPI platform and results are

compared with the results obtained in the previous steps.

The ODEs in step 1 were taken directly from the published literature and imple-

mented in Matlab. In the second step, the chemical equation based representation for

the system was derived by us by looking at the graphical representation of the system

in the publication and the rate constants were obtained from the same source. The

Gillespie algorithm for the chemical reactions was implemented by us in Matlab and is

presented in Appendix A.3. The derivation of chemical equations in step 3 was auto-

mated by a Java program written by us and the details can be found in further section.

The π-calculus programs were manually written with the help of output generated by

the Java program in step 3.

In later sections, we will discuss the proposed methodology in detail with the help of

the RKIP-ERK system.

4.2 Introduction to the case study

The Ras/Raf-1/MEK/ERK pathway is a ubiquitous pathway that conveys mitogenic

and di�erentiation signals from the cell membrane to the nucleus. An important area

of research is the role that the kinase inhibitor protein RKIP plays in the behavior of

the pathway. The mathematical model for the inuence of RKIP on the ERK signaling
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pathway was proposed by Cho et.al [CSK+03] and can be explained with the help of the

diagram in Figure 4.1.

Figure 4.1: Graphical representation of ERK pathway regulated by RKIP [CSK+03]

Cho et.al [CSK+03] explain Figure 4.1 as follows. m1 denotes the concentration

of activated Raf-1 (also known as Raf-1∗), m2 denotes the concentration of RKIP, m3

denotes the concentration of Raf-1∗/RKIP complex, and so on. First, RKIP inhibits Raf-

1∗ to phosphorylate MEK by binding to Raf-1∗ and forms a Raf-1∗/RKIP complex. Free

Raf-1∗ phosphorylates MEK and converts inactive MEK into MEK-PP. MEK-PP binds

to ERK and phosphorylates it to active ERK-PP. ERK-PP interacts with Raf-1∗/RKIP

complex to form another complex, Raf-1∗/RKIP/ERK-PP. Then ERK-PP phosporylates

RKIP into RKIP-P causing the release of Raf-1∗ from RKIP-P. ERK is dephosphorylated

by Protein Phosphatase 2A(PP2A) and MAPK Phosphates, MKPs. The expression of

MKP-1 is transcriptionally induced by ERK. Raf-1∗ returns to its original state after

being released from the Raf-1∗/RKIP/ERK-PP complex. The RKIP-phosphotase(RP)

is arti�cially introduced to complete this model by showing dephosphorylation of RKIP-

P into the original active state RKIP. After dephosphorylation RKIP binds to Raf-1∗

and suppresses further phosphorylation and activation of MEK.

53



4.3 Mathematical formulation of the model

The RKIP-ERK model was mathematically expressed with a set of nonlinear ordinary

di�erential equations (ODEs) based on the mass action enzyme kinetics of the system

[CSK+03]. This is a simple model with 11 species and one di�erential equation for each

species. The set of ODEs describing the system are as follows

dm1(t)

dt
= −k1m1(t)m2(t) + k2m3(t) + k5m4(t) (4.1)

dm2(t)

dt
= −k1m1(t)m2(t) + k2m3(t) + k11m11(t) (4.2)

dm3(t)

dt
= k1m1(t)m2(t) − k2m3(t) − k3m3(t)m9(t) + k4m4(t) (4.3)

dm4(t)

dt
= k3m3(t)m9(t) − k4m4(t) − k5m4(t) (4.4)

dm5(t)

dt
= k5m4(t) − k6m5(t)m7(t) + k7m8(t) (4.5)

dm6(t)

dt
= k5m4(t) − k9m6(t)m10(t) + k10m11(t) (4.6)

dm7(t)

dt
= −k6m5(t)m7(t) + k7m8(t) + k8m8(t) (4.7)

dm8(t)

dt
= k6m5(t)m7(t) − k7m8(t) − k8m8(t) (4.8)

dm9(t)

dt
= −k3m3(t)m9(t) + k4m4(t) + k8m8(t) (4.9)

dm10(t)

dt
= −k9m6(t)m10(t) + k10m11(t) + k11m11(t) (4.10)

dm11(t)

dt
= k9m6(t)m10(t) − k10m11(t) − k11m11(t) (4.11)

Parameter estimation for non-linear di�erential equations is a non-trivial task and the

above mentioned work [CSK+03] suggested a novel parameter estimation technique for

mathematical modeling. In this approach, authors �rst discretisized the non-linear ODEs

into algebraic di�erence equations which were linear with respect to the parameters and

then solved the transformed linear algebraic di�erence equations to obtain parameter

values at each frozen points. The �nal parameter values were obtained using regression

techniques on those points. For this particular mathematical model the estimated values

for the parameters are as mentioned in table 4.1.
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Parameter Estimated Value

k1 0.53

k2 0.0072

k3 0.625

k4 0.00245

k5 0.0315

k6 0.8

k7 0.0075

k8 0.071

k9 0.92

k10 0.00122

k11 0.87

Table 4.1: Deterministic rate constants from [CSK+03]

The system was simulated in the Matlab environment with the help of its ODE solver

routine, ode45. The results are discussed in the last section of the chapter.

4.4 Extracting information from deterministic model

The RKIP-ERK system model has the information about the system in form of ODEs.

ODEs are higher level mathematical abstraction of biomolecular activities happening

at the lower level. The lower level activities can be represented in form of chemical

reactions taking place in the system. We discussed in chapter 2, there is a relation

between a graphical representation and formulation of di�erential equations from that

representation. Calder et. al have also expressed the RKIP-ERK pathway as producer-

consumer relationship while discussing the PEPA model for this system [CGH05]. On our

course to chart out a stochastic π-calculus model from the di�erential equation model,

we need to present the mathematical information in a di�erent form.

The π-calculus has two important constituents, processes and channels. We extract

chemical equation like representation from ODE model, where species can be represented

as processes and their interactions as channels. The graphical representation of RKIP-

ERK system as a producer-consumer interpretation, results in 11 chemical equations

capturing the interactions in the system. The chemical reactions can be represented

in �gure 4.2. These reactions provide a lower level abstraction of interaction among

molecules in RKIP-ERK system. We pass this system to a stochastic simulator to analyse

the dynamics of this system. The implementation of stochastic simulator is discussed in
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R1 : m1 + m2

k1

GGGGGGAm3

R2 : m3

k2

GGGGGGAm1 + m2

R3 : m3 + m9

k3

GGGGGGAm4

R4 : m4

k4

GGGGGGAm3 + m9

R5 : m4

k5

GGGGGGAm1 + m5 + m6

R6 : m8

k6

GGGGGGAm5 + m7

R7 : m5 + m7

k7

GGGGGGAm8

R8 : m8

k8

GGGGGGAm7 + m9

R9 : m11

k9

GGGGGGAm5 + m10

R10 : m6 + m10

k10

GGGGGGGAm11

R11 : m11

k11

GGGGGGGAm2 + m10

Figure 4.2: Producer-consumer view of RKIP on ERK.
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section 4.5.

4.5 Implementation of stochastic model in Matlab

Section 4.4 summarizes the activities in RKIP-ERK system with the help of chemical

reaction representation. This information is enough to construct a stochastic model of

this system. To have a stochastic model, we need to perform a few conversions from

deterministic domain to stochastic domain. First, we need to convert concentration of

species from M/litre to number of molecules/litre and second, we need to convert de-

terministic rate constants to stochastic rate constants. We use the Gillespie algorithm

[Gil77] for stochastic simulation of the system. The choice of the Gillespie algorithm

depends on the fact that BioSPI [RSS01] uses the Gillespie algorithm as its stochas-

tic simulation engine and we want to use BioSPI as a platform for implementation of

our stochastic π-calculus model. To ensure that we encode correct information in the

stochastic π-calculus implementation, we simulate the whole system on our own version

of the Gillespie algorithm written in the Matlab environment. A complete stochastic

model of this system is given in Appendix A.3.

First, we need to look at the representation of amount in both the models. Amount

of any reactant in a deterministic model is represented with its concentration measured

in M i.e. Moles per Liter. Whereas in a stochastic model, the amount is always an

integer which represents the total number of molecules of a reactant. In order to carry

out the conversion of concentration to number of molecules, we need to �x a constant

volume V for the cell. V is measured in liters. For the simulation of our pathway model,

we keep V = 1.0e-22 liter.

The continuous deterministic simulation of the system was achieved with the ini-

tial population of reactants as mentioned in Table 4.2. The concentration given is in

M(Moles/liter) and we need to convert it into number of molecules to achieve stochastic

simulation. For a given concentration of a reactant X of [X]M in a volume of V liters,

there are [X] × V moles of reactant X and hence number of molecules, NAV = A × [X]

× V , where A = 6.023× 1023 is Avogadro's constant.

The Gillespie algorithm proposes ways to perform the conversion of deterministic

rates to stochastic rates. The details of the algorithm can be found in chapter 2. We

write the stochastic rate constants for the above 11 equations as shown in table 4.3.

The whole system can be simulated with the Gillespie algorithm for some �xed time
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Reactant Initial concentration(M)

Raf-1* 2.5

RKIP 2.5

Raf-1/RKIP 0

RAF/RKIP/ERK 0

ERK 0

RKIP-P 0

MEK-PP 2.5

MEK-PP/ERK 0

ERK-PP 2.5

RP 3

RKIP-P/RP 0

Table 4.2: Initial concentration of reactants in RKIP-ERK system. From [CSK+03]

duration (100 time units in our case) and can be analysed for its behaviour. The above

obtained chemical reactions are represented in form of a matrix(as shown in Figure 4.3) of

11 × 11 (reactions × species) dimension. The matrix has entries as +1,−1 or 0 according

to a species' production, consumption or non-participation in a reaction.

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11

R1 -1 -1 +1 0 0 0 0 0 0 0 0

R2 +1 +1 -1 0 0 0 0 0 0 0 0

R3 0 0 -1 +1 0 0 0 0 -1 0 0

R4 0 0 +1 -1 0 0 0 0 +1 0 0

R5 +1 0 0 -1 +1 +1 0 0 0 0 0

R6 0 0 0 0 +1 0 +1 -1 0 0 0

R7 0 0 0 0 -1 0 -1 +1 0 0 0

R8 0 0 0 0 0 0 +1 -1 +1 0 0

R9 0 0 0 0 +1 0 0 0 0 +1 -1

R10 0 0 0 0 0 -1 0 0 0 -1 +1

R11 0 +1 0 0 0 0 0 0 0 +1 -1

Figure 4.3: Reaction matrix for RKIP-ERK system for Gillespie algorithm

The matrix representation helps in the calculation of propensities of species during

the execution of the Gillespie algorithm. We change the amount of species after a reaction

with a discrete integer value. In our implementation, that integer value is 1. The amount

of a species is either increased by 1 or reduced by 1.
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Reaction Number Deterministic rate Stochastic rate

k1 0.53 0.0087

k2 0.0072 0.0072

k3 0.625 0.0103

k4 0.00245 0.00245

k5 0.0315 0.0315

k6 0.8 0.0132

k7 0.0075 0.0075

k8 0.071 0.071

k9 0.92 0.0152

k10 0.00122 0.00122

k11 0.87 0.87

Table 4.3: Deterministic and stochastic rates

The stochastic implementation of the system was performed to gather its quantitative

behaviour with respect to the Gillespie algorithm. We verify the results and the formu-

lation of chemical reactions with STODE and COPASI softwares. An implementation of

the Gillespie algorithm for the complete system is presented in the appendix A.3.

4.5.1 Verification of the model with STODE

The results obtained in the previous section were compared with STODE [GK01]. STODE

takes as input a set of di�erential equations and extracts the relevant parameters before

performing a stochastic simulation of a system. Our �rst goal to verify that we inter-

preted the ODE based system with correct set of chemical equations was con�rmed by

this software. Stode has its own format for input of data (set of ODEs and the param-

eters) and it shows the extracted information in a XML-based �le format. Information

obtained from Stode helped us verify that the extracted chemical reaction were in syn-

chronization with Stode's approach and we could use this information for designing of

the stochastic π-calculus model in BioSPI.

4.5.2 Verification of the model with COPASI

To double-check the information that we gathered was correct, we decided to port the

complete model of the system to COPASI and ran the stochastic simulation, so that

the results could later be compared with our implementation of the Gillespie algorithm.
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It also provided a good opportunity to learn COPASI as a tool. To make a model in

COPASI, we needed to identify the species and the reactions occurring in the system.

So, instead of giving di�erential equations as input (as we did for STODE), we gave

the chemical reactions as input along with their reaction-rates and the size of the cell.

COPASI gathered all the information and generated a set of di�erential equations for a

deterministic simulation of the system. The di�erential equations obtained were the same

as the equations de�ned in original paper by Cho et.al. This way we con�rmed that our

approach was correct, �rst, with the veri�cation by STODE where we gave di�erential

equations as input and generated the chemical equations and then second, with COPASI

where we gave chemical equations as input and generated di�erential equations. COPASI

also supports deterministic as well as stochastic simulation of the system. Our system

was run for 100 time units for stochastic simulation and the results are presented in form

of graphs along with the BioSPI simulation results in appendix B. The results were also

used for comparison with our matlab program for accuracy of our code.

4.6 Constructing a stochastic π-calculus model

Once we were satis�ed with our stochastic model of RKIP-ERK system, �rst with our

own implementation of the Gillespie algorithm and then with the use of STODE and

COPASI, we proceeded to build the stochastic π-calculus model of the system with the

help of information obtained in the previous sections.

In the ordinary di�erential equation representation of the system, there is one equa-

tion for each reactant, detailing the involvement of other reactants in the system on the

dynamics of that reactant. One way to look at the RKIP-ERK system was, in form of

chemical equations discussed in section 4.4. That approach was reaction-centric ap-

proach where we concentrated on total count of rate constants (k terms) and de�ned

one chemical equation for each rate constant. Another way to look at the RKIP-ERK

system, is to follow reactant-centric approach where we concentrate on each reactant

rather than the rate constants. We derive reactant-centric information from the ODE

model itself.

In order to derive reactant-centric representation from the ODEs, we consider two

types of reactions for any species. First type is progressive reactions and the other is

decay reactions, as suggested by Voit in [Voi00] and discussed in section 2.6. Any reaction

that enhances the concentration of a species falls in the category of progressive reactions,

whereas any reaction which lowers the the concentration of any species is called a decay

reaction. The positive and negative terms of the ODE represent progressive and decay
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factors associated with that species. The terms can be treated individually and can be

represented in form of individual chemical equations with corresponding kinetic rates.

Individual consideration of terms can also be interpreted in a graphical form, as shown

in �gure 4.1. We interpret each di�erential equation as a set of chemical reactions in the

following way.

For the di�erential equation 4.1, there are three terms in all. The two terms,k2m3(t)

and k5m4(t) are progressive whereas the third term, k1m1(t)m2(t) is a decay term. The

term k2m3(t) can be interpreted as, the species m3 produces m1 with the rate k2. It can

be represented in form of a chemical equation as

m3

k2

GGGGGGAm1

Here, m1 is being produced at the rate k2 × m3. Similarly, the other progressive

reaction results in

m4

k5

GGGGGGAm1

whereas, the decay reaction in this case is

m1 + m2

k1

GGGGGGA0 + m2

In this case, m1 is getting consumed but the consumption rate depends on [m1] ×
[m2]×k5. It should be noted that the reactant m2 does not get a�ected with this reaction

and is just there to inuence the decay rate of m1 according to the Gillespie algorithm.

The non-decaying nature of m2 for this reaction is represented by keeping m2 preserved

on the RHS of the chemical equation. m2, like other reactants in the system has its own

set of progressive and decay reactions. Considering it for all the species in the system,

their progressive and decay reactions can be summarized in Table 4.4.

The new set of chemical reactions represented in Table 4.4 have the same information

as the 11 chemical reactions in section 4.4. If we look carefully, the new set of reactions

(listed in Table 4.4)are just rearrangement and combinations of terms de�ned in the

original set of 11 reactions. This new representation depicts a process or reactant-centric

approach which is more suitable for creating a stochastic π-calculus model, as it is easier

to think about a problem from a process point of view rather than a channel point
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Species Progressive reactions Decay reactions

m1 m3

k2
GGGGGGGAm1 m1 + m2

k1
GGGGGGGA0 + m2

m4

k5
GGGGGGGAm1

m2 m3

k2
GGGGGGGAm2 m1 + m2

k1
GGGGGGGA0 + m1

m11

k11
GGGGGGGGAm2

m3 m1 + m2

k1
GGGGGGGAm3 m3

k2
GGGGGGGA0

m4

k4
GGGGGGGAm3 m3 + m9

k3
GGGGGGGA0 + m9

m4 m3 + m9

k3
GGGGGGGAm4 m4

k4
GGGGGGGA0

m4

k5
GGGGGGGA0

m5 m4

k5
GGGGGGGAm5 m5 + m7

k6
GGGGGGGA0 + m7

m8

k7
GGGGGGGAm5

m6 m4

k5
GGGGGGGAm6 m6 + m10

k9
GGGGGGGA0 + m10

m11

k10
GGGGGGGGAm6

m7 m8

k7
GGGGGGGAm7 m5 + m7

k6
GGGGGGGA0 + m5

m8

k8
GGGGGGGAm7

m8 m5 + m7

k6
GGGGGGGAm8 m8

k8
GGGGGGGA0

m8

k7
GGGGGGGA0

m9 m8

k8
GGGGGGGAm9 m3 + m9

k3
GGGGGGGA0 + m3

m4

k4
GGGGGGGAm9

m10 m11

k10
GGGGGGGGAm10 m6 + m10

k9
GGGGGGGA0 + m6

m11

k11
GGGGGGGGAm10

m11 m6 + m10

k9
GGGGGGGAm11 m11

k10
GGGGGGGGA0

m11

k11
GGGGGGGGA0

Table 4.4: Progressive and Decay reactions in RKIP on ERK.
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of view. We will use these new set of reactions for implementation of the stochastic

π-calculus model.

Automation of the process

The process of deriving the information in the reactant-centric form is automated and

can be explained in brief as follows.

The automation was achieved using a java program. The program took Matlab �le

as input and extracted the progressive and decay reactions. The input Matlab �le was

the same as the one used in section 4.3 for deterministic simulation of the RKIP-ERK

system. The code snippet for describing di�erential equations mentioned in section 4.3

is shown in Figure 4.6.

dydt = [

-k1*y(1)*y(2) + k2*y(3) + k5*y(4) % m1

-k1*y(1)*y(2) + k2*y(3) + k11*y(11) % m2

k1*y(1)*y(2) - k2*y(3) - k3*y(3)*y(9) + k4*y(4) % m3

k3*y(3)*y(9) - k4*y(4) - k5*y(4) % m4

k5*y(4) - k6*y(5)*y(7) + k7*y(8) % m5

k5*y(4) - k9*y(6)*y(10) + k10*y(11) % m6

-k6*y(5)*y(7) + k7*y(8) + k8*y(8) % m7

k6*y(5)*y(7) - k7*y(8) - k8*y(8) % m8

-k3*y(3)*y(9) + k4*y(4) + k8*y(8) % m9

-k9*y(6)*y(10) + k10*y(11) + k11*y(11) % m10

k9*y(6)*y(10) - k10*y(11) - k11*y(11) % m11

];

Figure 4.4: Matlab code snippet for RKIP-ERK pathway

The following steps were required to extract the information detailing progressive

and decay reactions from the ODEs. The process is explained with an example.

1. The input Matlab �le was parsed to extract the text describing the ODEs. A queue

data structure, ODE collection was created to store this information, with each cell

in ODE collection containing one ODE.

For example, an entry for the species `m3', will look like -

Ode_collection[3] = "k1*y(1)*y(2) - k2*y(3) - k3*y(3)*y(9) + k4*y(4) % m3"

2. While implementing the Matlab code, we took care that every line expressing an

ODE ends with a comment as shown in Figure 4.6. The comments helped us map

the 'y' terms of the code with the original name of reactants as described in the

original model.

The y terms in ODE collection were replaced by the original names m1,m2...etc.
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Ode_collection[3] = "k1*m1*m2 - k2*m3 - k3*m3*m9 + k4*m4 % m3 "

3. Another data structure, Species collection was created and can be understood with

the diagram in Figure 4.6. Each element in Species collection contained the name

Figure 4.5: Visualization of data structure Species collection

of the species that it represented and had two queues named \Progressive" and

\Decay" to contain the progressive and decay terms of respective ODEs de�ning

that species.

4. For each entry in ODE collection, extract the ODE expression for that species.

Parse the expression into positive and negative terms.

If a term is positive, add it in the Progressive queue of corresponding entry in

Species collection.

If a term is negative, add it in the Decay queue of corresponding entry in Species collection.

An example of entries for m3 can be seen in �gure 4.6

Figure 4.6: Species collection with entry for species m3
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5. For every entry in Species Collection scan the Progressive queue and display pro-

gressive reactions like

< m1 >< m2 > |k1| < m3 >,< m4 > |k4| < m3 >

Scan the Decay queue and display decay reactions like

< m3 > |k2| < 0 >,< m3 >< m9 > |k3| < 0 >< m9 >

Implementation of stochastic π-calculus model

In this section we will study the implementation of stochastic π-calculus model for the

chemical reactions obtained in the previous section. We use BioSPI [RSS01] as the

platform for the implementation and analysis of our model. The abstraction of a bio-

molecular system is achieved in two steps. First, we create a complete description of the

system using the syntax of stochastic π-calculus and then we compute on the abstracted

representation to gain insight into its behaviour. BioSPI uses the Gillespie algorithm to

achieve stochastic simulation of the system. Gillespie's stochastic framework is imple-

mented within the π-calculus by handling channel objects in the same way as Gillespie

handles reaction objects as discussed in section 3.3. The model was constructed with

11 processes and 34 channels, processes representing species(or reactants) and the chan-

nels representing the interactions in the system. This information was gathered in the

previous section where we generated chemical reactions from the progressive and decay

terms of the ODEs. As we can see, the system has only bi-molecular or uni-molecular

reactions. A reaction can be represented with the abstraction of species as processes,

where they communicate with each other with a complementary communication action

performed on a speci�c channel. For example, a reaction like

A + B
k1

GGGGGGAC

can be represented as

A ::= reaction1 ! [ ] , C.

B ::= reaction1 ? [ ] , true.

where reaction1 is the name of the channel which facilitates the communication

between A and B. In the above representation A sends a nil message on the channel
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reaction1 and B receives a nil message on the same channel. A gets converted to C,

whereas B is consumed in the reaction, becoming a `0' process in terms of the π-calculus.

`0' process is denoted with a keyword `true' in BioSPI . The actual occurrence of the

reaction can be represented as

A | B

reaction1![ ], C | reaction1?[ ], true.

GGGA

C | true

The reaction rate k1 is associated with the channel reaction1 and is also called as the

base rate of a reaction (See section 3.3 for details). The association between a channel

name and a base rate is declared in the beginning of the program and will be discussed

shortly hereafter.

BioSPI requires at least two processes for communication to happen. It is �ne when

we deal with bi-molecular reactions where we have two species communicating to each

other. But in the case of unimolecular reactions, a single molecule undergoes a reaction

to yield product(s) and we need a communication partner to model this. To overcome

this problem, we introduce a dummy process Timer which works as an arti�cial commu-

nication counterpart. For example, a species D decays into E and F.

D
k2

GGGGGGAE + F

This can be modeled as

D ::= reaction2 ? [ ] , E | F.

Timer(reaction2) ::= reaction2 ! [ ], Timer(ch).

We can generalize the declaration for `Timer' process as :

Timer(ch) ::= ch ! [ ], Timer(ch).
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The parametric declaration of Timer Process allows us to use it for di�erent channel

parameters for di�erent unimolecular reactions.

Another important point is to generate an appropriate number of processes(or species)

for simulation. This is important from the point of view of consumption and production

of molecules in the system. Since the stochastic simulation is based on the actual num-

ber of molecules, it is important to create appropriate number of copies of a process(or

species) before we start with the simulation of the system. This task can be achieved

with a small recursive code -

Create_M1(C)::= {C =< 0} , true ;

{C > 0} , {C--} | M1 | self .

Here C is the number of copies we want to make for process M1. C can be provided

externally and the appropriate value for C can be calculated by the method discussed in

section 4.5 where we obtain the number of molecules from concentration of a species.

While writing the code it is important to follow the conventions de�ned by BioSPI

and that includes the way a process or a channel should be named. As for example, the

name of a channel starts with a capital letter as mentioned in its speci�cation. If the

name starts with a small letter, it can result into an error. In our program speci�cation,

the reactions are represented by channels and all our channels are global in nature. A

speci�c reaction is modeled on a speci�c channel. The concurrent behaviour of the

system is speci�ed in the process module called 'System' with its constituent process-

names separated by a `|'. We did not require the mobility feature of the π-calculus for

our purpose.

We needed to associate base rates with communication channels to introduce stochas-

tic behaviour in the model. Base rates were calculated according to the Gillespie algo-

rithm for the set of 34 equations derived in Table 4.4 for the modeling of RKIP-ERK

system. A correspondence between actual kinetic constants and base rates of channels

is summarised in the table 4.5.

We discussed the essential steps required to model the reactions listed in Table 4.4.

The dynamics of the procedure can be understood with the help of an example. Consider

the reactants M1 and M2 from Table 4.4. M1 and M2 can be represented as processes

in BioSPI which participate in certain communication activites represented in form of

reactions. Processes M1 and M2 can be de�ned as

67



M1 ::= reaction_3 ? [] , true ;

reaction_6 ? [], M1 ;

reaction_7 ? [], M1 .

M2 ::= reaction_3 ! [] , M2 ;

reaction_6 ! [], true ;

reaction_7 ! [], M2 | M3 .

reaction 3,reaction 6 and reaction 7 are the communication channels where M1 and

M2 can interact with each other and become di�erent processes depending on their

speci�cation in the de�nition. Consider an interaction between M1 and M2 at channel

reaction 3.

M1 | M2

reaction 3?[ ], true | reaction 3![ ],M2.

GGGA

true | M2

After the communication, M1 becomes 0 but M2 remains as it was. In other words,

the quantity of M1 was decreased by 1 whereas the quantity of M2 remained in-

tact. The above communication can be seen as an abstraction of the chemical reaction

m1 + m2

k1

GGGGGGA0 + m2, which is the decay reaction of M1 listed in Table 4.4. reaction 3

is the name of the channel and has a base rate associated with it. The base rate is

calculated accroding to the Gillespie algorithm and depends on the deterministic rate

constants, in this case k1. The base rates for each communication channel in the system

are listed in Table 4.5.

Similarly, the communication over the channel reaction 6 is
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M1 | M2

reaction 6?[ ],M1 | reaction 6![ ], true.

GGGA

M1 | true

This communication models the decay reaction for M2, m1 + m2

k1

GGGGGGA0 + m1. The

communication over channel reaction 7 can be seen as

M1 | M2

reaction 7?[ ],M1 | reaction 7![ ],M2 | M3.

GGGA

M1 | M2 | M3

M1 and M2 remain intact after the communication and a new instance of M3 is

spawned, indicating no decay in the population of M1 and M2 and an increase in the

quantity of M3. This communication represents the progressive reaction for M3, m1 +

m2

k1

GGGGGGAm3.

The complete speci�cation for the RKIP-ERK pathway can be found in appendix

A.1. The model was simulated on the BioSPI platform with the command

record(erk\_spi\#"System"(151,151,0,0,0,0,151,0,151,181,0),"erk\_out",100)

where erk spi is the name of the program �le and System is the main process

name which need to be run. (151,151,0,0,0,0,151,0,151,181,0) are the number of pro-

cesses(representing molecules in the true sense) that participate in the simulation. These

numbers are obtained by conversion of concentration to number of molecules as discussed

in section 4.5. erk out is the output �le where simulation results are written and 100

speci�es the time units in seconds for which the simulation should be run.
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Figure 4.7: Raf-1* (Deterministic simu-

lation)

Figure 4.8: Raf-1*(Stochastic simula-

tion)

4.7 Results

The BioSPI model was run for 30 times and the results were averaged over and compared

with the ODE model to check if the models was in agreement with each other or not.

The results for individual components are obtained and represented in form of graphs

in appendix B. The system reached a steady-state after some time. This behaviour

is shown by both the models, stochastic one as well as the deterministic one. Table

4.6 summarizes the results obtained. The results obtained by ODE model are listed in

second column of the table and are in M/litre unit. Concentrations are converted to

number of molecules and are listed in the third column of the table. Column four and

�ve represent the number of molecules obtained by Copasi and BioSPI respectively. As

we see, the number of molecules in third, fourth and �fth column are fairly close to each

other.

A comparative graphs of deterministic and stochastic model for Raf-1* are shown

in Figure 4.4 and 4.5 respectively. Both the graphs exhibit the similar behaviour. The

stochastic graph contains the curves obtained by COPASI and BioSPI both. Both the

curves are overlapping and display similarity. The deterministic and stochastic graphs

for other species in the system can be found in appendix B.

The stochastic graphs for ERK (Figure 4.6 and 4.7), RKPI-P/RP and RKIP-P (�g-

ures shown in appendix B) are di�erent from the deterministic ones. There are many

horizontal lines present in their stochastic graphs, which indicate that these reactions do

not take place very frequently compared to other reactions. The horizontal lines are due
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Figure 4.9: ERK (Deterministic simula-

tion)

Figure 4.10: ERK (Stochastic simula-

tion)

to the large time-lag between two occurrence of the same reaction. This behaviour can-

not be determined by looking at their deterministic model graphs. Looking at the table

4.6, we �nd that one reason for less frequent occurrence of reactions involving ERK and

RKIP-P can be attributed to their low concentrations. RKIP-P/RP is a complex made

from RKIP-P, so it also has less frequent involvement among the reactions composing

the system. If we just compare the quantities of these reactants in the deterministic

and stochastic models, as shown in table 4.6 and also looking at the range of concen-

tration(for deterministic graph) and number of molecules (for stochastic graph), we see

that they uctuate in the same range, which means that quantitatively, both the models

are equivalent but the stochastic behaviour indicates about the frequency of reactions as

well, which is not evident with the deterministic model. A similar explanation holds true

for reactants RP (Figure C) and Raf-1*/RKIP (Figure B) as well. Though the stochastic

plots display the similar trend as their deterministic counterparts, there seems to be a

gap between trajectories produced by Copasi and BioSPI. It is because the range of y-

axis is very small(30 and 50 respectively) for these plots caompared to other plots where

the y-values range from 0 to 160. These plots focus only on the speci�c range to clearly

display the dynamics of the ractants.

We see that the graphs obtained from stochastic simulation show enough uctua-

tions but still maintain the basic behaviour displayed by the graphs in the deterministic

model. The study of these uctuations can be helpful for understanding the system in

a better way. The stochastic simulation of the system can also reveal about individual

participation of a species or a reaction in that system.

The results produced by the BioSPI model of the system indicate that our approach

for conversion of the deterministic model to the stochastic model is in the right direction.
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This is con�rmed with comparison of quantities of the species at the steady state, and

their overall behaviour shown in form of graphs. The similar behaviour displayed by

COPASI and BioSPI indicate that both the approaches, reaction-centric and reactant-

centric, produce similar behaviour.

4.8 Summary

We developed a methodology to port a ordinary di�erential equation based biological

model to stochastic π-calculus model. We started with a case-study of the inuence of

Raf Kinase Inhibitor Protein (RKIP) on the Extracellular signal Regulated Kinase(ERK)

Signaling pathway and implemented a deterministic model as mentioned in [CSK+03].

On our course to convert this system into a process-algebra model, we �rst converted

them into set of chemical equations with corresponding reaction rates and implemented

it on our own version of the Gillespie algorithm. The information was checked for

authenticity with the help of software packages STODE and COPASI. The set of chemical

equations were automatically rearranged and combined in a way to facilitate easy coding

for the stochastic π-calculus model. Channels in the π-calculus model were assigned base

rates according to the Gillespie algorithm. The stochastic and deterministic simulation

results are presented in the form of graphs in appendix B. In chapter 5, we will discuss

another case study of a molecular network that produces spontaneous oscillations in

excitable cells of Dictyostelium, and apply the same technique to port the di�erential

equation based model to stochastic π-calculus model.
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Channel Number Deterministic rate Stochastic rate

Reaction 1 0.0072 0.0072

Reaction 2 0.0315 0.0315

Reaction 3 0.53 0.0087

Reaction 4 0.0072 0.0072

Reaction 5 0.87 0.87

Reaction 6 0.53 0.0087

Reaction 7 0.53 0.0087

Reaction 8 0.00245 0.00245

Reaction 9 0.0072 0.0072

Reaction 10 0.625 0.0103

Reaction 11 0.625 0.0103

Reaction 12 0.00245 0.00245

Reaction 13 0.0315 0.0315

Reaction 14 0.0315 0.0315

Reaction 15 0.0075 0.0075

Reaction 16 0.8 0.0132

Reaction 17 0.0315 0.0315

Reaction 18 0.00122 0.00122

Reaction 19 0.92 0.0152

Reaction 20 0.0075 0.0075

Reaction 21 0.071 0.071

Reaction 22 0.8 0.0132

Reaction 23 0.8 0.0132

Reaction 24 0.071 0.071

Reaction 25 0.0075 0.0075

Reaction 26 0.071 0.071

Reaction 27 0.00245 0.00245

Reaction 28 0.625 0.0103

Reaction 29 0.00122 0.00122

Reaction 30 0.87 0.87

Reaction 31 0.92 0.0152

Reaction 32 0.92 0.0152

Reaction 33 0.00122 0.00122

Reaction 34 0.87 0.87

Table 4.5: Deterministic and stochastic rates
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Species Concen(M/lit.) #molecules Copasi BioSPI

Raf-1* (m1) 0.36 23 19 18

RKIP (m2) 0.28 16.86 15 20

Raf-1*/RKIP (m3) 0.54 32.52 35 45

Raf-1*/RKIP/ERK-PP (m4) 1.6 96.3 98 109

ERK (m5) 0.038 2.28 3 3

RKIP-P (m6) 0.0185 1.11 3 2

MEK-PP (m7) 1.79 107.81 104 95

MEK-PP/ERK (m8) 0.7 42.16 46 40

ERK-PP (m9) 0.159 9.57 5 5

RP (m10) 2.942 177.07 179 163

RKIP-P/RP (m11) 0.057 3.43 1 2

Table 4.6: Comparison table for RKIP-ERK results.
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Chapter 5

Case Study of The Dictyostelium
Model

5.1 Introduction

A molecular network that produces spontaneous oscillations in excitable cells of Dic-

tyostelium was presented by Michael Laub and William Loomis [ML98]. They simulated

the molecular network of underlying adenosine 3',5'-cyclic monophosphate(cAMP) os-

cillations observed in �elds of chemotactic Dictyostelium discoideum cells. The circuit

described in the �gure below produced the spontaneous oscillations in cAMP observed

during the early development of D. discoideum and could account for the synchroniza-

tion of the cells necessary for chemotaxis and further development. The circuit is named

aggregation circuit and it can be understood as follows. The double horizontal line rep-

resents the membrane surface of a cell. ACA activates when extracellular cAMP binds to

the surface receptor CAR1. Pulses of cAMP are produced after the activation of ACA.

CAR1 activates the protein kinase ERK2 that may send signals to ACA. An alternate

circuit exists where activation of ACA by CAR1 is not dependent on ERK2. Accumula-

tion of internal cAMP activates kinase PKA by binding to regulatory unit of PKA. ERK2

is inactivated by PKA and no longer inhibits the cAMP phosphodiesterase REGA by

phosphorylating it. Activated REG A can hydrolyse internal cAMP. CAR1 is phospho-

rylated when PKA is activated. Hydrolysis of cAMP by REGA inhibits PKA activity

and protein phosphates return CAR1 to high a�nity state. The circuit was explained

with the help of a set of ordinary di�erential equations as explained in the next section.
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Figure 5.1: Aggregation Stage network [ML98]

5.2 Mathematical formulation of the model

Network model of Dictyostelium was represented in form of a set of ordinary di�erential

equations [ML98]. There are seven di�erential equations detailing dynamics of seven

species present in the system. The equations are as follows

d[ACA]

dt
= k1[ERK2] − k2[ACA] (5.1)

d[PKA]

dt
= k3[internalcAMP] − k4[PKA] (5.2)

d[ERK2]

dt
= k5[CAR1] − k6[ERK2][PKA] (5.3)

d[REGA]

dt
= k7 − k8[REGA][ERK2] (5.4)

d[internalcAMP]

dt
= k9[ACA] − k10[REGA][internalcAMP] (5.5)

d[externalcAMP]

dt
= k11[ACA] − k12[externalcAMP] (5.6)

d[CAR1]

dt
= k13[externalcAMP] − k14[cAR1][PKA] (5.7)

The values for deterministic kinetic constants and their roles are given in table 5.1.
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Parameter Value Role

k1 1.4 k1 a�ects activation of ACA (adenylyl cyclase).

k2 0.9 k2 a�ects inactivation of ACA.

k3 2.5 k3 a�ects activation of PKA (protein kinase).

k4 1.5 k4 a�ects inactivation of PKA.

k5 0.6 k5 a�ects activation of ERK2 (protein kinase).

k6 0.8 k6 a�ects inactivation of ERK2.

k7 2.0 k7 a�ects activation of RegA (internal phosphodiesterase).

k8 1.3 k8 a�ects inactivation of RegA.

k9 0.3 k9 is the proportion of cAMP not secreted.

k10 0.8 k10 a�ects the breakdown of internal cAMP.

k11 0.7 k11 is the proportion of cAMP secreted.

k12 4.9 k12 is the activity of PdsA (extracellular phosphodiesterase).

k13 18.0 k13 a�ects activation of CAR1 (cAMP receptor).

k14 1.5 k14 a�ects inactivation of CAR1.

Table 5.1: Kinetic constants for Dictyostelium deterministic model

The system was simulated in the Matlab environment with the help of its ODE solver

routine, ode45. ode45 is automatic step-size Runge-Kutta-Fehlberg integration methods.

Automatic step-size Runge-Kutta algorithms take larger steps where the solution is more

slowly changing. ode45 uses higher order formulas so it usually takes fewer integration

steps and gives a solution more rapidly. The results for this continuous deterministic

model are displayed in graphical format in the result section and in appendix C.

5.3 Extracting information from the deterministic model

We follow the same procedure and conventions that we followed for the RKIP-ERK

case study in the previous chapter. We analyse each term of a di�erential equation and

classify them as progressive or decay terms according to their sign. This was achieved

through the automated process discussed in section 4.6.We extract chemical equation

representation of the system from ODEs and list them in table 5.2.
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Species Progressive reactions Decay reactions

ACA ERK2
k1

GGGGGGGAACA ACA
k2

GGGGGGGA0

PKA cAMPi
k3

GGGGGGGAPKA PKA
k4

GGGGGGGA0

ERK2 CAR1
k5

GGGGGGGAERK2 ERK2 + PKA
k6

GGGGGGGA0 + PKA

REGA 0
k7

GGGGGGGAREGA ERK2 + REGA
k8

GGGGGGGA0 + ERK2

cAMPi ACA
k9

GGGGGGGAcAMPi REGA + cAMPi
k10

GGGGGGGGA0 + REGA

cAMPe ACA
k11

GGGGGGGGAcAMPe cAMPe
k12

GGGGGGGGA0

CAR1 cAMPe
k13

GGGGGGGGACAR1 PKA + CAR1
k14

GGGGGGGGA0

Table 5.2: Progressive and decay reactions in Dictyostelium model

5.4 Implementation of the stochastic model

Stochastic modeling of the system was achieved by running the set of chemical equations

through our implementation of Gillespie's algorithm. An important thing to note for this

system is, there are 14 reactions which represent all individual terms of di�erential equa-

tions. So, for this case, the reaction-centric model is same as the reactant-centric model.

To run the system with the Gillespie algorithm, we �rst convert concentrations of species

from Moles/litre to molecules/litre and then we perform conversion of deterministic rate

constants to stochastic rate constants.

Deterministic simulation of the system was achieved with the following initial quan-

tity for each reactant

ACA PKA ERK2 REGA cAMPi cAMPe CAR1

1.0 1.0 1.0 1.0 1.0 0.1 1.0

Concentrations were converted into number of molecules/litre by multiplying the

concentration quantity with the Avogadro's number and the volume of the container.

We assumed the �xed volume of the cell to be , V = 1.0e-22 litre. Hence, number of

molecules in the container can be calculated as , NAV = A × [X] × V where A = 6.023

× 1023 is the Avogadro's constant and [X] is concentration of species in M/litre.

The second step was to convert deterministic rate constants to stochastic rate con-

stants according to the Gillepie algorithm. The converted stochastic rate constants are

shown in table 5.3.
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Reaction Number Deterministic rate Stochastic rate

Reaction-1 1.4 1.4

Reaction-2 0.9 0.9

Reaction-3 2.5 2.5

Reaction-4 1.5 1.5

Reaction-5 0.6 0.6

Reaction-6 0.8 0.0132

Reaction-7 2.0 120.46

Reaction-8 1.3 0.0215

Reaction-9 0.3 0.3

Reaction-10 0.8 0.0132

Reaction-11 0.7 0.7

Reaction-12 4.9 4.9

Reaction-13 18.0 18.0

Reaction-14 1.5 0.0249

Table 5.3: Deterministic and stochastic rates for Dictyostelium model

Once the simulation was performed, we check the results with Dynetica software

[LYY03] and then ported the model to the BioSPI platform.

5.5 Verification of system with Dynetica

The above discussed Dictyostelium example has earlier been modeled using the Dynet-

ica software. We came across this example when learning about the Dynetica software.

Dynetica model was run for both deterministic and stochastic simulation. Deterministic

simulation was achieved with fourth order Runge-Kutta method whereas the stochastic

simulation was achieved with the Gillespie algorithm. Our stochastic and determin-

istic simulation results obtained from our Matlab implementation of the system, were

con�rmed with the results obtained by Dynetica for accuracy. We present stochastic

simulation results from Dynetica and BioSPI models for this case study in the result

section.
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5.6 Stochastic π-calculus model of the system

To implement the Dictyostelium on the BioSPI system, we used the same approach

that we applied for the earlier case-study of RKIP-ERK pathway. The stochastic π cal-

culus program was constructed from the information given in form of progressive and

decay reactions listed in table 5.2. Species were modeled as processes and reactions as

communication channels. The channels were assigned stochastic rates derived from de-

terministic rates as listed in table 5.3. Communications in the system were coded with

methods discussed in section 4.6, in the same way as the RKIP-ERK pathway model.

The system was simulated with arguments :

record(dict spi#"System"(60,60,60,60,60,6,60,1),"dict out",100)

The complete implementation of BioSPI program is divided in two �les. First �le,

rates dicto.cp has de�nitions of stochastic reaction rates that can be applied for the com-

munication channels in the system, and the second �le dict spi.cp contains the speci�ca-

tion for the whole system. The complete implementation of this case study is presented

in Appendix A.2.

5.7 Results

The system was run for 30 times and the results obtained were averaged over before

putting in form of graphs. The graphs for species ACA are shown in Figure 5.2 and 5.3.

The graphs for all other species in the system are shown in appendix C. The graphs

displaying stochastic behaviour have two curves, one generated from the Dynetica soft-

ware and the other from the BioSPI implementation of the model. We can see that both

curves are closely matched and follow the similar pattern, indicating that our approach

with the BioSPI model is in agreement with Dynetica's approach of understanding the

system. We can also see that the behaviour of individual components match well with

the behaviour shown by their counterparts in the deterministic model. The graphs for

all the species in the deterministic model display the oscillation property. The similar

behaviour can be seen in the stochastic graphs also.

The phase-plane graphs of one species against another are also interesting. Examples

of phase plane graphs for ACA vs. REGA are shown in Figure 5.4 and 5.5. Appendix C

contains more example of phase-plane plots. For clarity purpose, we present only BioSPI
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Figure 5.2: ACA (Deterministic simula-

tion)

Figure 5.3: ACA (Stochastic simula-

tion)

results while drawing phase-planes. They follow the similar trajectories as described

by the deterministic model but also involve lots of deviation while trying to maintain

the basic behaviour. Study of such deviations merged with knowledge of molecular

biology can provide more insights for such systems. In this example also, we see that the

stochastic simulation reveals the non-stationary behaviour of the system which was not

evident in the deterministic model. The results obtained in this case-study also indicate

that the method developed in the previous chapter, for porting of an ODE based model

to a stochastic π-calculus model applies for this case study also and produces the desired

results.

5.8 Summary

We presented a new case study of oscillations in excitable cells of Dictyostelium. We

applied the same methodology that we developed in the previous chapter, where we

studied the RKIP-ERK signaling pathway. The results obtained with this case study

suggest that our approach is acceptable for porting of ordinary di�erential equation

based models to stochastic π-calculus based models. A more comprehensive knowledge

of molecular biology can be useful for interpreting the results produced by these models.
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Figure 5.4: Phase-plane plot ACA vs.

REGA(Deterministic simulation)

Figure 5.5: Phase plane plot ACA vs.

REGA(Stochastic simulation)
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Chapter 6

Conclusion

This thesis is a result of a single year's research on modeling and simulation of biological

systems, using the stochastic π-calculus. We developed a methodology to port an ordi-

nary di�erential equation based model of a biological system to a stochastic π-calculus

model. In order to conclude the presentation of this work, we will summarize the or-

ganisation of each chapter in this thesis and their main achievements. We will discuss

some of the open issues that are relevant to our approach and the future directions for

the presented work.

6.1 Recapitulation

We started with an introduction to an emerging discipline, system biology. We discussed

various qualitative and quantitative modeling techniques used for describing and arti-

�cially simulating biological systems. We introduced the π-calculus and its stochastic

variant as a modeling tool and discussed its advantages. We then, developed a method-

ology to extract information from an ordinary di�erential equation based model of a

biological system , to port it to a stochastic π-calculus model. We demonstrated our

approach with the help of two real biological case studies, discussed in Chapters 4 and

5. On a per chapter basis, the topics described in this thesis have been :

� Chapter - 1

– introduction to system biology and its goals.

– qualitative modeling techniques for modeling of biological systems.
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– quantitative modeling techniques for dynamic simulation of a biological sys-

tem.

– comparison between traditional modeling approaches.

– bene�ts of using π-calculus for modeling of biological systems.

� Chapter - 2

– chemical kinetics and use of ordinary di�erential equations to model them.

– Euler and Runge-kutta methods to numerically solve a set of ordinary di�er-

ential equations and how to use ODE solvers in Matlab.

– derivation of an ODE based model from a graphical representation of a system.

– need for stochastic simulation

– Gillespie's algorithm for exact simulation of coupled chemical reactions

– practical implementation issues with the Gillespie algorithm.

� Chapter - 3

– introduction to the π-calculus.

– formal presentation of π-calculus with various rules and semantics explained.

– stochastic extension of the π-calculus and its relationship with the Gillespie

algorithm.

– BioSPI as a tool for compiling and executing π-calculus based programs, and

an introduction to developing small programs on the BioSPI platform.

� Chapter - 4

– overview of the methodology proposed.

– discussed di�erential equation based mathematical model of RKIP on ERK

pathway.

– implementation of a stochastic model based on the reaction-centric approach

and its simulation using the Gillespie algorithm.

– implementation of the stochastic model in STODE and COPASI softwares.

– automated formulation of a reactant-centric model from the original ODE

model of RKIP-ERK system.

– implementation of stochastic π-calculus model for RKIP-ERK system.
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– comparison of results for deterministic and stochastic simulations. Graphs

also represent that reaction-centric and reactant-centric approaches are the

same.

� Chapter - 5

– discussed di�erential equation based mathematical model of oscillations in

excitable cells of Dictyostelium.

– implementation of a stochastic model based on the reaction-centric approach

and its simulation using the Gillespie algorithm.

– implementation of the stochastic model in Dynetica.

– automated formulation of a reactant-centric model from the original ODE

model of the molecular network describing oscillation in Dictyostelium.

– implementation of stochastic π-calculus model of the original system described

in form of ODEs.

– comparison of results for deterministic and stochastic simulations.

6.2 Discussion

The complexity of biological systems has motivated researchers from various disciplines

to develop computational methods to represent, and simulate these systems in more re-

alistic ways. Several research groups are developing software tools which can facilitate

building complex computational models of biological systems. To name a few, CellDe-

signer [FK03], CellML [AACH03], E-Cell [KT03] etc. are the most popular modeling

platforms among researchers. One can build a model by following speci�cations pro-

posed by them and run the model for deterministic and stochastic simulation. These

tools have the bene�ts of using the traditional modeling techniques but they lack the

key features of the π-calculus, such as self-evolution of a system, being able to capture

internal structure of smallest entities and dynamical representation of a system using the

syntax of the calculus.

Abstract process-algebra based modeling is relatively new for system biology and is

gaining popularity among researchers. Recent publications from the theoretical science

community have supported this issue [Car04a, Car05, Reg02] and various case studies

including the recently concluded ones like transcription in bacteria [Kut05] and gene reg-

ulation in Bacteriophage λ [KN04] provide evidence for the correctness of the approach.
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Most of the biological models exist in the form of ordinary di�erential equations.

These models are continuously re�ned and scaled with new discoveries about their sys-

tems. Tools like CellDesigner, CellML etc. not only allow building new models but

also facilitate porting of old ones, which can be revised to introduce new information.

In order to promote the stochastic π-calculus based modeling of biological systems, it

is important to use the vast knowledge captured in form of ordinary di�erential equa-

tion based models. These models can not only be extended, but they can also be used

for stochastic analysis of the biological systems they represent. The approach is more

relevant for biochemical systems where the focus is on measurement and dynamics of

species' population. Section 2.6 discusses a method to obtain ODE representation from

a graphical description of a biochemical system. Our approach takes inspiration from

that method and is suitable for handling such ODEs. To the best of our knowledge, no

attempt has been made for automated porting of ordinary di�erential equation based

models to the stochastic π-calculus based models. We demonstrated our approach with

two case studies discussed in chapter 4 and 5. The complete implementation of these

systems have been given in appendix. The results obtained by the stochastic simulations

indicate that our approach is acceptable.

The case study of RKIP on the ERK pathway is a widely discussed case study among

researchers from theoretical computer science community and has several references in

recent publications [CGH04, CVGO05]. The work also gave us an opportunity to come

up with a stochastic π-calculus model for RKIP on ERK pathway which has never been

performed before. A PEPA model of RKIP-ERK was presented by Calder et al [CGH04],

but the paper does not give su�cient mathematical details of the results produced by

the model, otherwise, it could have been useful to quantitatively compare the BioSPI

model with the PEPA model.

The present work doesn't require the use of mobility feature of π-calculus. It is the

�rst step in developing a process algebra model with more details. The primary goal of

this approach is to port the existing ODE models to a process-algebraic environment.

Those models can be further extended with more biological information about the sys-

tem. An example can be found in the BioSPI model of bacterial transcription [Kut05],

where biologically observed phenomena were modeled in form of communication to create

a π-calculus model.

Our approach is weak in handling of di�erential equations having complicated terms.

For example, we look at a small sub-system of Cell cycle regulation [JJT01] proposed by

Tyson and Novak de�ned by the following di�erential equations :
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d[CycB]

dt
= k1 − (k ′

2 + k2"[Cdh1])[CycB] (6.1)

d[Cdh1]

dt
=

(k ′
3 + k3"A)(1 − [Cdh1])

J3 + 1 − [Cdh1]
−

k4m[CycB][Cdh1]

J4 + [Cdh1]
(6.2)

The above ODEs have more complicated forms than the ODEs used in our case-

studies. These ODEs involve normalized terms, Michaelis constants as J's in the system

and representations like (1 - [Cdh1]), which simply means concentration of non-active

Cdh1, if the total amount of Cdh1 present in the system is 1 unit. We cannot simply

apply the method discussed in previous chapters for cases like these. The system can still

be captured in the form of ODE with progressive and decay terms, but the handling of

variables in this case requires improved mathematical approaches. Handling of Michaelis-

Menten constant during conversion of deterministic to stochastic modeling is still an open

area for discussion [RA03, MSA05, Gou05], and our proposed methodology should be

extended to interpret more complicated terms in di�erential equations in a better way.

Our proposed method for porting ODE based models to stochastic π-calculus models

is partially automated. We implement original models described in form of ODEs on the

Matlab platform for deterministic simulation. The Matlab code for stochastic simulation

of reaction-centric model is generic, only the input matrix (having entries 0,+1,−1) needs

to be adjusted according to the system. The formulation of reactant-centric model in

form of chemical reactions is automated. This process of automation can be extended for

automatic generation of stochastic π-calculus code. A math routine can be implemented

to convert deterministic reaction rates to corresponding base rates for the channels.

Another important problem arises, where the stochastic version might not be a suit-

able modeling strategy for a system. This question has to do with the choice of model:

deterministic or stochastic. If some species exist in small quantities (eg. 4,7,10 etc.),

stochastic modeling is the only way to model such systems. This is also true when the

system has switching behaviour. A deterministic model (ODE based kinetics) should

be used when we have large numbers of entities (like 30000,40000 etc.) in the system.

If our system lies in one of the above groups, the usual methods will work, otherwise,

if we are in a situation where some numbers are in magnitude like 1,2,4..and some in

magnitude of 20000,30000 which is very likely in a single model in real life modeling, we

require a `hybrid approach '. Hybrid approach requires some of the parts of a model to

be modeled using deterministic approach and some with stochastic approach. Extending

our work to accommodate hybrid approaches of modeling, and combining it with the

expressive power of stochastic π-calculus syntax can prove to be a very useful approach.
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We need to extend BioSPI's mathematical engine. The present engine supports only

the Gillespie algorithm for mathematical simulation of a system. A recent version of

BioSPI (version 3) has a support for writing BioAmbient programs. BioAmbients is

a modi�ed version of Ambient π-calculus proposed by Cardelli and Gordon [AR04].

BioAmbients can provide abstraction for compartments in a cell. Compartments intro-

duce a notion of location. Many entities in a biological system may be within or outside

a given compartment. One of the features of the π-calculus to capture the internal

structure of a biological entity can be realised with this approach. But the simulation

still lacks the notion of 3-dimensional space. The �rst step in this direction would be

to handle space as a lattice of ambients, and di�usion of molecules as movement across

them.

The lack of graphical representation for π-calculus models is a major disadvantage

of this approach. The whole approach of using the stochastic π-calculus as a tool for

modeling can become very appealing if we can provide graphical visualization for a

model. Phillips and Cardelli [PC04] proposed a graphical representation of their ver-

sion of stochastic π-calculus, a similar methodology can be developed for our version of

stochastic π-calculus also.

A model checker can be developed for models developed in stochastic π-calculus.

Stochastic model checking can be a useful tool for quantitative analysis of queries like, if

the population of a certain species reaches a particular point, it will remain at that level

thereafter.
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Appendix A

Computational Models

A.1 BioSPI implementation of Case-study I

File : rates.cp

Rate_1 => 0.0072.

Rate_2 => 0.0315 .

Rate_3 => 0.0087 .

Rate_4 => 0.0072 .

Rate_5 => 0.87 .

Rate_6 => 0.0087 .

Rate_7 => 0.0087 .

Rate_8 => 0.00245 .

Rate_9 => 0.0072 .

Rate_10 => 0.0103 .

Rate_11 => 0.0103 .

Rate_12 => 0.00245 .

Rate_13 => 0.0315 .

Rate_14 => 0.0315 .

Rate_15 => 0.0075 .

Rate_16 => 0.0132 .

Rate_17 => 0.0315 .

Rate_18 => 0.00122 .

Rate_19 => 0.0152 .

Rate_20 => 0.0075 .

Rate_21 => 0.071 .

Rate_22 => 0.0132.

Rate_23 => 0.0132.

Rate_24 => 0.071 .

Rate_25 => 0.0075 .

Rate_26 => 0.071 .

Rate_27 => 0.00245 .

Rate_28 => 0.0103 .

Rate_29 => 0.00122 .

Rate_30 => 0.87 .

Rate_31 => 0.0152 .

Rate_32 => 0.0152 .

Rate_33 => 0.00122 .
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Rate_34 => 0.87 .

File : erk spi.cp

-language(spifcp).

-include(rates).

global(

reaction_1(Rate_1),

reaction_2(Rate_2),

reaction_3(Rate_3),

reaction_4(Rate_4),

reaction_5(Rate_5),

reaction_6(Rate_6),

reaction_7(Rate_7),

reaction_8(Rate_8),

reaction_9(Rate_9),

reaction_10(Rate_10),

reaction_11(Rate_11),

reaction_12(Rate_12),

reaction_13(Rate_13),

reaction_14(Rate_14),

reaction_15(Rate_15),

reaction_16(Rate_16),

reaction_17(Rate_17),

reaction_18(Rate_18),

reaction_19(Rate_19),

reaction_20(Rate_20),

reaction_21(Rate_21),

reaction_22(Rate_22),

reaction_23(Rate_23),

reaction_24(Rate_24),

reaction_25(Rate_25),

reaction_26(Rate_26),

reaction_27(Rate_27),

reaction_28(Rate_28),

reaction_29(Rate_29),

reaction_30(Rate_30),

reaction_31(Rate_31),

reaction_32(Rate_32),

reaction_33(Rate_33),

reaction_34(Rate_34)

).

System(N1,N2,N3,N4,N5,N6,N7,N8,N9,N10,N11)::= <<

CREATE_M1(N1) |

CREATE_M2(N2) |

CREATE_M3(N3) |

CREATE_M4(N4) |

CREATE_M5(N5) |

CREATE_M6(N6) |

CREATE_M7(N7) |

CREATE_M8(N8) |

CREATE_M9(N9) |

CREATE_M10(N10) |

CREATE_M11(N11) |

Timer(reaction_1) | Timer(reaction_2) |
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Timer(reaction_4) | Timer(reaction_5) |

Timer(reaction_8) | Timer(reaction_9) |

Timer(reaction_12) | Timer(reaction_13) |

Timer(reaction_14) | Timer(reaction_15) |

Timer(reaction_17) | Timer(reaction_18) |

Timer(reaction_20) | Timer(reaction_21) |

Timer(reaction_24) | Timer(reaction_25) |

Timer(reaction_26) | Timer(reaction_27) |

Timer(reaction_29) | Timer(reaction_30) |

Timer(reaction_33) | Timer(reaction_34) .

CREATE_M1(C)::= {C =< 0} , true ;

{C > 0} , {C--} | M1 | self .

CREATE_M2(C)::= {C =< 0} , true ;

{C > 0} , {C--} | M2 | self .

CREATE_M3(C)::= {C =< 0} , true ;

{C > 0} , {C--} | M3 | self .

CREATE_M4(C)::= {C =< 0} , true ;

{C > 0} , {C--} | M4 | self .

CREATE_M5(C)::= {C =< 0} , true ;

{C > 0} , {C--} | M5 | self .

CREATE_M6(C)::= {C =< 0} , true ;

{C > 0} , {C--} | M6 | self .

CREATE_M7(C)::= {C =< 0} , true ;

{C > 0} , {C--} | M7 | self .

CREATE_M8(C)::= {C =< 0} , true ;

{C > 0} , {C--} | M8 | self .

CREATE_M9(C)::= {C =< 0} , true ;

{C > 0} , {C--} | M9 | self .

CREATE_M10(C)::= {C =< 0} , true ;

{C > 0} , {C--} | M10 | self .

CREATE_M11(C)::= {C =< 0} , true ;

{C > 0} , {C--} | M11 | self

>> .

Timer(channel)::= channel ! [] , Timer .

M3 ::= reaction_1 ? [] , M3 | M1 ;

reaction_4 ? [] , M3 | M2 ;

reaction_9 ? [], true ;

reaction_10 ? [], true ;

reaction_11 ? [], M3 ;

reaction_28 ? [], M3 .

M4 ::= reaction_2 ? [], M4 | M1 ;

reaction_8 ? [], M4 | M3 ;

reaction_12 ? [], true ;

reaction_13 ? [], true ;

reaction_14 ? [], M4 | M5 ;
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reaction_17 ? [], M4 | M6 ;

reaction_27 ? [], M4 | M9 .

M1 ::= reaction_3 ? [] , true ;

reaction_6 ? [], M1 ;

reaction_7 ? [], M1 .

M2 ::= reaction_3 ! [] , M2 ;

reaction_6 ! [], true ;

reaction_7 ! [], M2 | M3 .

M11 ::= reaction_5 ? [], M11 | M2 ;

reaction_18 ? [], M11 | M6 ;

reaction_29 ? [], M11 | M10 ;

reaction_30 ? [], M11 | M10 ;

reaction_33 ? [], true ;

reaction_34 ? [], true .

M9 ::= reaction_10 ! [], M9 ;

reaction_11 ! [], M9 | M4 ;

reaction_28 ! [], true .

M8 ::= reaction_15 ? [], M8 | M5 ;

reaction_20 ? [], M7 | M8 ;

reaction_21 ? [], M7 | M8 ;

reaction_24 ? [], true ;

reaction_25 ? [], true ;

reaction_26 ? [], M8 | M9 .

M5 ::= reaction_16 ? [], true ;

reaction_22 ? [], M5 ;

reaction_23 ! [], M5 .

M7 ::= reaction_16 ! [], M7 ;

reaction_22 ! [], true ;

reaction_23 ? [], M7 | M8 .

M6 ::= reaction_19 ? [], true ;

reaction_31 ? [], M6 ;

reaction_32 ! [], M6 .

M10 ::= reaction_19 ! [], M10 ;

reaction_31 ! [], true ;

reaction_32 ? [], M10 | M11 .

A.2 BioSPI implementation of Case-study II

File : rates dicto.cp

Rate_1 => 1.4 .

Rate_2 => 0.9 .

Rate_3 => 2.5 .
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Rate_4 => 1.5 .

Rate_5 => 0.6 .

Rate_6 => 0.0132 .

Rate_7 => 120.46 .

Rate_8 => 0.0215 .

Rate_9 => 0.3 .

Rate_10 => 0.0132 .

Rate_11 => 0.7.

Rate_12 => 4.9 .

Rate_13 => 18.0 .

Rate_14 => 0.0249 .

File : dict spi.cp

-language(spifcp).

-include(rates_dicto).

global(

reaction_1(Rate_1),

reaction_2(Rate_2),

reaction_3(Rate_3),

reaction_4(Rate_4),

reaction_5(Rate_5),

reaction_6(Rate_6),

reaction_7(Rate_7),

reaction_8(Rate_8),

reaction_9(Rate_9),

reaction_10(Rate_10),

reaction_11(Rate_11),

reaction_12(Rate_12),

reaction_13(Rate_13),

reaction_14(Rate_14)

).

System(N1,N2,N3,N4,N5,N6,N7,N8)::= <<

CREATE_ACA(N1) |

CREATE_PKA(N2) |

CREATE_ERK2(N3) |

CREATE_REGA(N4) |

CREATE_CAMPI(N5) |

CREATE_CAMPE(N6) |

CREATE_CAR1(N7) | CREATE_Dummy(N8) |

Timer(reaction_1)| Timer(reaction_2)|

Timer(reaction_3)| Timer(reaction_4)|

Timer(reaction_5)| Timer(reaction_7)|

Timer(reaction_9)| Timer(reaction_11) |

Timer(reaction_12) | Timer(reaction_13) .

CREATE_ACA(C)::= {C =< 0} , true ;

{C > 0} , {C--} | ACA | self .

CREATE_PKA(C)::= {C =< 0} , true ;

{C > 0} , {C--} | PKA | self .

CREATE_ERK2(C)::= {C =< 0} , true ;

{C > 0} , {C--} | ERK2 | self .
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CREATE_REGA(C)::= {C =< 0} , true ;

{C > 0} , {C--} | REGA | self .

CREATE_CAMPI(C)::= {C =< 0} , true ;

{C > 0} , {C--} | CAMPI | self .

CREATE_CAMPE(C)::= {C =< 0} , true ;

{C > 0} , {C--} | CAMPE | self .

CREATE_CAR1(C)::= {C =< 0} , true ;

{C > 0} , {C--} | CAR1 | self .

CREATE_Dummy(C)::= {C =< 0} , true ;

{C > 0} , {C--} | Dummy | self

>> .

Timer(channel)::= channel ! [] , Timer .

ACA ::= reaction_2 ? [] , true;

reaction_9 ? [] , ACA | CAMPI;

reaction_11 ? [], ACA | CAMPE .

ERK2 ::= reaction_1 ? [] , ERK2 | ACA ;

reaction_6 ? [] , true;

reaction_8 ! [] , ERK2.

CAMPI ::= reaction_3 ? [] , CAMPI | PKA ;

reaction_10 ! [] , true.

PKA ::= reaction_4 ? [] , true ;

reaction_6 ! [] , PKA ;

reaction_14 ! [] , PKA .

CAR1 ::= reaction_5 ? [] , CAR1 | ERK2 ;

reaction_14 ? [] , true.

REGA ::= reaction_8 ? [], true;

reaction_10 ? [], REGA.

CAMPE ::= reaction_12 ? [] , true;

reaction_13 ? [] , CAMPE | CAR1 .

Dummy ::= reaction_7 ? [] , Dummy | REGA .

A.3 Implementation of RKIP-ERK pathway using the

Gillepie algorithm

File : rkip reaction.mat
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% This file contains the description of Chemical reactions

that occur in RKIP pathway

% m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11

-1 -1 +1 0 0 0 0 0 0 0 0

+1 +1 -1 0 0 0 0 0 0 0 0

0 0 -1 +1 0 0 0 0 -1 0 0

0 0 +1 -1 0 0 0 0 +1 0 0

+1 0 0 -1 +1 +1 0 0 0 0 0

0 0 0 0 +1 0 +1 -1 0 0 0

0 0 0 0 -1 0 -1 +1 0 0 0

0 0 0 0 0 0 +1 -1 +1 0 0

0 0 0 0 +1 0 0 0 0 +1 -1

0 0 0 0 0 -1 0 0 0 -1 +1

0 +1 0 0 0 0 0 0 0 +1 -1

File : rkip initialsetup.m

% Settings for the stochastic analysis of RKIP-pathway

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Simulation Parameter Setting space

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all,clc,close all

% volume of the compartment

V = 1.0e-22;

% Deterministic constants

k = [0.53 0.0072 0.625 0.00245 0.0315 0.8 0.0075 0.071 0.92 0.00122 0.87];

% Starting population in Moles/Liter

start_population = [2.5 2.5 0 0 0 0 2.5 0 2.5 3 0];

% Simulation ends in these many seconds

tf = 100;

R = load(’rkip_reaction’,’-ascii’);

[m,n] = size(R);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Processing starts here................

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% reset random number generator

rand(’state’,sum(100*clock))

%NAV = Avogadro’s number times volume;

NAV = V * 6.02214199e23;

% Conversion of population into molecules

n0 = round(start_population * NAV);

% Empty vector for ’m’ reactions

c = zeros(1,m);

% Compute the stochastic rate constants

for i=1:m
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% pick up a reaction

reaction = R(i,:);

% Extract the number of entities on LHS of reaction, -ve entries are on

% LHS side

no_of_reactants = 0;

for j = 1:n

if R(1,j) < 0

no_of_reactants = no_of_reactants + 1;

end

end

if no_of_reactants == 0

print(’Error in Reaction Matrix specification’);

end

c(1,i) = (k(1,i) * (no_of_reactants - 1)) / (NAV^(no_of_reactants - 1));

end

t = 0;

tt = 0;

n = n0;

nn = n0;

aa = rkip_propensity(n0,R,c);

while t < tf

a = rkip_propensity(n,R,c);

astr = sum(a);

if ~astr

t = tf;

else

% Compute the next reaction time

tau = exprnd(inv(astr));

% Find the next reaction to occur

mu = min( find(cumsum(a) > astr * rand) );

% update time

t = t + tau;

% change the species population

n = n + R(mu,:);

end

tt = [tt ; t];

nn = [nn ; n];

aa = [aa ; a];

end

tt(end) = tf;

nn(end) = nn(end -1);

aa(end) = aa(end -1);
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File : rkip propensity.m

% Propensity function for handling the population of species

% and also calculating the ’a’ term of the Gillespie algorithm

% population_matrix -> Population of Species

% reaction_matrix -> m x n matrix of ’m’ reactions and ’n’ species

% c_matrix -> Stochastic rate constants for ’m’ rections

% returns ’a’ vector for ’m’ recations

function a = rkip_propensity(population_matrix,reaction_matrix,c_matrix)

% m = number of reactions

% n = number of species

[m,n] = size(reaction_matrix);

h = zeros(1,m);

for i=1:m

% Pick up a reaction

reaction = reaction_matrix(i,:);

% We want to keep only those terms which take part in reaction

% So, if we multiply the population matrix with the reaction

% matrix, only the participating indices will be non-zero.

temp_population = population_matrix .* reaction;

% Pick up those terms which are -ve as those are the species

% which are consumed and contribute towards calculation of ’h’.

% Multiply them together , taking their magnitude only

prod = 1;

for j = 1:n

if temp_population(1,j) < 0

prod = prod * temp_population(1,j) * (-1);

end

end

if prod > 1

h(1,i) = prod;

else

h(1,i) = 0;

end

end

% Compute ’a’

a = c_matrix.* h;
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Appendix B

Figures from The Case study of
RKIP on ERK Pathway
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Figure B.1: Raf-1* (Deterministic sim-

ulation)

Figure B.2: Raf-1* (Stochastic simula-

tion)

Figure B.3: RKIP (Deterministic simu-

lation)

Figure B.4: RKIP (Stochastic simula-

tion)
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Figure B.5: Raf-1*/RKIP (Determinis-

tic simulation)

Figure B.6: Raf-1*/RKIP (Stochastic

simulation)

Figure B.7: Raf-1*/RKIP/ERK-PP

(Deterministic simulation)

Figure B.8: Raf-1*/RKIP/ERK-PP

(Stochastic simulation)
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Figure B.9: ERK (Deterministic simu-

lation)

Figure B.10: ERK (Stochastic simula-

tion)

Figure B.11: RKIP-P (Deterministic

simulation)

Figure B.12: RKIP-P (Stochastic simu-

lation)

106



Figure B.13: MEK-PP (Deterministic

simulation)

Figure B.14: MEK-PP (Stochastic sim-

ulation)

Figure B.15: MEK-PP/ERK (Deter-

ministic simulation)

Figure B.16: MEK-PP/ERK (Stochas-

tic simulation)
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Figure B.17: ERK-PP (Deterministic

simulation)

Figure B.18: ERK-PP (Stochastic sim-

ulation)

Figure B.19: RP (Deterministic simula-

tion)

Figure B.20: RP (Stochastic simula-

tion)
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Figure B.21: RKIP-P/RP (Determinis-

tic simulation)

Figure B.22: RKIP-P/RP (Stochastic

simulation)
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Figure B.23: Screenshot of simulation of RKIP-ERK system in STODE
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Figure B.24: Screenshot of simulation of RKIP-ERK in COPASI
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Appendix C

Figures from The Case-study of The
Dictyostelium Model
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Figure C.1: ACA (Deterministic simu-

lation)

Figure C.2: ACA (Stochastic simula-

tion)

Figure C.3: PKA (Deterministic simu-

lation)

Figure C.4: PKA (Stochastic simula-

tion)
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Figure C.5: ERK2 (Deterministic simu-

lation)

Figure C.6: ERK2 (Stochastic simula-

tion)

Figure C.7: REGA (Deterministic sim-

ulation)

Figure C.8: REGA (Stochastic simula-

tion)
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Figure C.9: CAR1 (Deterministic simu-

lation)

Figure C.10: CAR1 (Stochastic simula-

tion)

Figure C.11: cAMPe (Deterministic

simulation)

Figure C.12: cAMPe (Stochastic simu-

lation)
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Figure C.13: cAMPi (Deterministic

simulation)

Figure C.14: cAMPi (Stochastic simu-

lation)

Figure C.15: ACA vs. cAMPe (Deter-

ministic simulation)

Figure C.16: ACA vs. cAMPe (Stochas-

tic simulation)
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Figure C.17: ACA vs.

cAMPi(Deterministic simulation)

Figure C.18: ACA vs.

cAMPi(Stochastic simulation)

Figure C.19: ACA vs.

CAR1(Deterministic simulation)

Figure C.20: ACA vs. CAR1(Stochastic

simulation)
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Figure C.21: ACA vs.

ERK2(Deterministic simulation)

Figure C.22: ACA vs. ERK2(Stochastic

simulation)

Figure C.23: ACA vs.

PKA(Deterministic simulation)

Figure C.24: ACA vs. PKA(Stochastic

simulation)
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Figure C.25: ACA vs.

REGA(Deterministic simulation)

Figure C.26: ACA vs.

REGA(Stochastic simulation)
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