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Abstract 
 

Conventional programming paradigms have 

limitations where support for constructionist learning 

is concerned. This paper illustrates the merits of an 

alternative approach to giving support for 

constructionist learning, based on the principles of 

Empirical Modelling (EM), with reference to an 

algorithm for determining whether a decomposition of 

a particular relational schema is lossless. Model-

building that is to be effective for constructionist 

learning has to support activities relating to three 

distinct roles: that of a student, a teacher and a 

developer. Our aim is to demonstrate that EM brings 

far greater conceptual unity to the interactions of the 

student, the teacher and the developer than is typically 

found in using a conventional approach to educational 

software development. 

 

1. Introduction 
 

The ideal of constructionist computer-assisted 

learning [3] can be seen as unifying three roles: that of 

the student, the teacher and the developer. The learner 

first explores in ignorance and confusion in the role of 

a student, then identifies concepts and objectives for 

model-building to support and direct their exploration, 

then constructs appropriate models with which to 

repeat a similar cycle of interaction (see Figure 1a). 

Without a suitable end-user programming environment 

to meet these ideal demands, many educational studies 

have sought to realise some of the benefits of the 

constructionist vision by bringing together a developer 

and a teacher (or 'teacher-developer') working with 

students to implement this development cycle. This 

approach encounters several problematic issues: 

• collaboration cannot realise the benefits of one 

individual being at one and the same time student, 

teacher and developer; 

• the activities being carried out by student, teacher 

and developer typically have a widely divergent 

nature – corresponding to the use, specification and 

implementation of a program respectively; 

• in a conventional programming framework, the 

development cycle is notoriously difficult to 

manage effectively, and the well-recognised 

problems of adapting programs to new requirements 

are particularly challenging in the educational 

setting, where subtle changes to the requirement are 

both commonplace and of the essence.  

The merits of using Empirical Modelling (EM) 

principles in the development of educational 

technology have been discussed at length in several 

previous papers [1,2]. A key idea is that EM establishes 

a much closer connection between the model-building 

and the learning, so that the same kinds of insight that 

assist the student and teacher also aid the developer in 

model-building. It would be misleading to suggest that 

this convergence of roles is yet meeting the full 

objectives of the constructionist agenda, but it can be 

seen as a significant step in this direction. In many 

contexts, there is a clear sense in which the interactions 

of student, teacher and developer take essentially the 

same abstract computational form and differ only in 

how they are to be interpreted (cf. Figure 1b). The 

primary purpose of this paper is to demonstrate how 

this principle operates explicitly in a specific learning 

context, namely, understanding an algorithm that is 

used in relational database design.  

 

1.1. The Testing Lossless Join Algorithm 
 

In designing a relational database, an important 

consideration is whether a particular decomposition of 

a relation R into subschemes R1, R2, ... , Rk has lossless 

join. This property holds if, for any given extension r of 

R satisfying all the functional dependencies (FDs) that 

hold in R, the natural join of the projections of r onto 

each of the k sub-schemes is r itself. As a simple 



illustration, consider the relation R with attributes 

Supplier, City and Agent, subject to the FDs S→C and 

C→A. The decomposition SC, CA of R is lossless, 

since if (s1,c1) and (c1,a1) are derived from R by 

projection onto SC and CA, then (s1,c1) must be 

derived from a tuple (s1,c1,a2), and (c1, a1) from a tuple 

(s2,c1,a1). Because the tuples (s1,c1,a2) and (s2,c1,a1) 

agree on the attribute C, the FD C→A ensures that 

a2=a1, so that the natural join of SC and CA is 

necessarily R. In contrast, the decomposition SA, CA 

of SCA is lossy ('non-lossless'): to prove this it is only 

necessary to exhibit an agent a who is associated with 

the city c at which supplier s is based, and who also 

serves as the agent for a second city c' at which the 

supplier s' is based. The three tuples (s,a), (c,a) and 

(c',a) then feature in the projections of R onto SA and 

CA, so that the 'rogue' tuple (s,c',a), inconsistent with 

the FDs on R, appears in the natural join of SA and 

CA. 

The Testing_Lossless_Joins (TLJ) algorithm, as 

specified in Ullman [5] (see Algorithm 7.2 on p227), is 

a standard component of the relational database theory. 

The essential principles of the algorithm can be 

inferred from the following brief informal description. 

The first stage of the algorithm is to set up an array in 

which each entry is a symbolic element of the form ai 

or bij, where i (respectively j) is the index of the row 

(respectively column) in which the element is located, 

and an aj appears in location (i,j) if and only if the 

attribute associated with the j-th column appears in the 

i-th subscheme. The algorithm then proceeds step-by-

step by taking account of the FDs in turn in cyclic 

order. At each step, when a particular FD of the form 

X→Y is under consideration, the array is processed in 

such a way that if any two rows have identical entries 

in the columns associated with all the attributes in X, 

they are modified so that they also agree on all 

attributes in Y. In this process of modification, bij 

entries are replaced by aj entries wherever possible, and 

agreement is otherwise established by assigning the 

same indices to all the relevant bij entries. The 

algorithm terminates when no further modification of 

the array results from the application of any of the 

given FDs, at which point the join is declared lossless 

if and only if there is a row comprised of aj entries. 

For the purposes of this exposition, without loss of 

generality, all FDs will be assumed to be of the form 

X→S, where S is a single attribute. The representation 

of the entries in the table can also be simplified so that 

they have numeric values. Specifically, a’s and b’s can 

be represented by integers: each a by 1 and the initial b 

entries by integers greater than 1.  When several values 

are to be equated, it is then appropriate to equate all 

values to the least. This representation, which is suited 

to computer implementation, is valid since the indices 

of a’s and b’s are redundant, and all comparisons are 

made between elements in the same column.  

 

2. Computer support for TLJ  
 

The TLJ algorithm is in some respects a natural 

target for computer support. For instance, a student 

who is exercising the algorithm (or a teacher who is 

demonstrating the algorithm) typically indicates the 

successive modifications that are made to the array by 

crossing out entries and inserting their new values until 

such time as the array entries become difficult to read, 

then making a new copy of the array and repeating the 

annotation process. This is an error-prone process that 

does not always give a clear indication of the precise 

steps carried out.  It is easy to see that, when we 

consider the possible motivations and issues that arise 

in learning, presenting or assessing the TLJ algorithm, 

Figure 1: Roles in constructionist learning: (a) traditionally; (b) in model construction using EM 

(a) (b) 



the list of requirements becomes very large. The 

teacher alone will typically want: a dynamic way of 

presenting the algorithm that draws attention to the 

specific observations and actions that are being carried 

out at each step; to be able to simulate the operation of 

the algorithm in full; to be able to experiment with 

different sets of FDs, perhaps even whilst the algorithm 

is being executed; to emulate errors that a student 

might make in exercising the algorithm; to use the 

model as the basis for exercises that test a student's 

understanding as comprehensively as possible. In 

devising exercises or an examination question, the 

teacher will not wish to restart the algorithm from 

scratch at each new iteration required in the design. 

And unless they enjoy the dedicated support of a 

developer, they will ideally want to be able to adapt the 

model relatively painlessly themselves to take account 

of different perceptions of what the student requires, 

and of any special, possibly idiosyncratic, 

misunderstandings they have.  

As a requirement for a conventional program, this 

presents a formidable challenge. What is more, it is 

quite apparent that the requirement is not in any sense 

complete. In constructing a conventional program to 

meet these needs, there will invariably be optimization 

for specific purposes that will prove obstructive to 

future extensions.  The key to addressing this problem 

is to recognize that what is required of a model to 

support the learning of the TLJ algorithm is a form of 

automation that can integrate fully with the activities 

that the teacher can perform manually as the need 

arises. In effect, this allows human discretion and 

intelligence to be exercised in situations where there is 

no satisfactory preconceived fully automated solution 

that can be applied. This is the function of the EM 

construal for the TLJ algorithm to be described below. 

 

2.1. An EM construal for the TLJ algorithm 
 

An EM construal is a computer-based model that 

embodies the patterns of observation, dependency and 

agency that are observed in its referent [1]. A detailed 

account of the principles and tools used in developing 

construals in EM is beyond the scope of this paper (see 

[6] for more details), but the essential ideas can be 

illustrated with reference to our chosen case-study.  

For the TLJ algorithm, the primary observables are 

the contents and attributes of the table that is generated 

in executing the algorithm and the FDs that are 

associated with these attributes. Both teacher and 

student come to understand the algorithm in terms of 

just these observables; building a construal to embody 

these observables, and the patterns of dependency and 

agency to which they are subject, is also a most 

appropriate way for the developer to provide support 

for the manual, semi-automated or fully automated 

interaction that must accompany the learning of the 

algorithm. 

Figure 2: The TLJ pattern of observation 



Learning the TLJ algorithm is linked to a pattern of 

observation that applies at each iteration. The learner 

consults the current state of the table with a specific FD 

X→S in mind, observes the pattern of tuples that arises 

in the columns associated with the left-hand side X of 

the FD to detect where there are duplicates, then 

observes how this pattern applies to the column 

associated with the right-hand side S of the FD. The 

core step of the algorithm is the substitution of the 

resulting transformation of the column associated with 

S for the original column. 

For a particular table and FD, the above ingredients 

of the core pattern of observation can be displayed 

pictorially as in Figure 2. The arrows in this figure 

represent dependencies between observables, 

expressing the way that a given state of the TLJ table, 

and a given FD determines the set of columns LHS and 

a column RHS, and how the duplicate rows in the set of 

columns LHS then determine the updated entries in the 

column RHS. In the modelling environment used to 

develop the construal, these dependencies can be 

directly specified and are automatically maintained (cf. 

the spreadsheet principle). This makes it possible to 

explore, in an experimental fashion, the way in which 

the current instance of this pattern of observation is 

affected by changing the current state of the TLJ table, 

or the current FD. 

 

3. Developing and deploying the construal 
 

The exploratory activity that surrounds the 

identification of observables and dependencies is a 

core activity that is central to the interests of the 

student, the teacher and the developer. As Figure 2 

illustrates, the contexts for observation with which the 

student must become familiar in learning the TLJ 

algorithm are rich and subtle: they involve moving 

from global observation of the entire table to localised 

observation of the entries in specific rows and columns. 

It is also significant that the activities denoted by the 

arrows in Figure 2 are best conceived as mental 

operations on the part of the student, preparatory to the 

action of updating the table. From a teacher's 

perspective, each of the arrows can be interpreted as a 

link in a chain of observation involved in executing a 

step of the TLJ algorithm. As such, it can be the subject 

of an exercise: for instance, identifying the columns 

LHS and RHS, given a table and a FD. Decomposing 

the pattern of observation into a chain of simpler 

observations also has potential value as a diagnostic 

tool: for instance, helping the teacher to detect where a 

student understands the updating mechanism correctly, 

but is mistaken in their interpretation of a FD relation. 

From the perspective of this paper, the relevance of 

Figure 2 for the developer has particular interest. There 

is a very direct correspondence between Figure 2 and 

the EM construal for the TLJ that was first constructed 

as an open interactive environment by the first author, 

and subsequently extended by the second to provide 

specific interfaces to the construal such as that depicted 

in Figure 3. This correspondence is best appreciated by 

interacting with the dynamic script development 

environment that is supported by the EM tool used in 

this development: the tkeden interpreter [6], but it is 

to some extent apparent from the relationship between 

Figure 2 and Listing 1. Just as the pattern of 

observation depicted in Figure 2 is the core of the TLJ 

algorithm, so the script of five definitions linking 

observables and dependencies in Listing 1 is the core 

of the TLJ construal. The names of the observables in 

Listing 1 have been made more expressive, and the 

code for operators (such as index_duplicated, 

and makelistcol) has been omitted, but the 

definitions are essentially as they appear in the 

tkeden source. Since our aim is to illustrate the 

convergence of viewpoints of student, teacher and 

developer suggested by Figure 1b, a brief explanation 

of how this script was developed, and relates to the 

pattern of observation in Figure 2, is appropriate. 

As is evident by inspection, the values of all the 

observables in the script in Listing 1 are determined 

from the index of the FD that is currently of interest 

(current_FD) and the current contents of the TLJ 

table (current_table). The first two definitions 

determine the contents of the columns that correspond 

to the LHS and RHS of the current FD respectively. 

The third definition identifies the pattern of duplicate 

rows in the columns in the LHS of the FD; the fourth 

project_table_LHS_FD is project(current_table, makestrlist(FDs[current_FD][1])); 

project_table_RHS_FD is project(current_table, [FDs[current_FD][2]]); 

pattern_duplicate_rows is index_duplicated(tail(project_table_LHS_FD)); 

newcol is transformcol(makelistcol(project_table_RHS_FD), pattern_duplicate_rows); 

newtable is apply_current_FD_current_table(current_table, newcol); 

Listing 1: Observables and dependencies in the TLJ construal 



expresses the way in which the new contents of the 

RHS column is to be updated by consulting the pattern 

of duplicate rows. The final definition expresses the 

relationship between the original value of the table and 

the value that it takes after the FD has been processed. 

These definitions correspond closely to the links in the 

pattern of observation in Figure 2: in establishing the 

definitions using the tkeden interpreter, the operators 

introduced to specify the relationship associated with 

each link are tested in isolation by supplying different 

test values for the parameters in much the same way 

that the student might confirm that they have 

understood each observational link in mastering the 

algorithm. Though the development otherwise has 

more of the characteristic flavour of conventional 

programming, it remains anchored in this way to the 

learning domain. The missing elements of the tkeden 

source are the specifications of the operators 

themselves, which take the form of rather 

straightforward procedural code to compute an output 

from an input without side-effect. The script illustrates 

other features that are of interest from a computational 

perspective. These include: 

• the re-use and adaptation of standard operators 

(such as the relational operator project, 

borrowed from the relational database extension 

of tkeden).   

• the use of definitions to maintain dependencies 

between different modes of observation that are a 

common concern for traditional programmers, 

namely those that are associated with two or more 

data structures for a particular application (such 

as the conversion function makelistcol). 

For the experienced developer using tkeden, the 

model-building task is greatly simplified by a 

combination of these three techniques: programming of 

relatively simple functions without side-effects; re-use 

of existing functions and scripts; and the use of 

definitions to maintain many different consistent 

concurrent representations of a given family of 

observables. 

4. Conclusion 
 

The difficulty of unifying the roles of student, 

teacher and developer is one of the obstacles to 

constructionist computer-assisted learning. The 

technical problems of supporting the degree of 

openness in interaction that constructionism ideally 

presumes are so acute that Ehrmann [4] has been led to 

question whether the vision of learners constructing 

their own learning environments is a mirage. It is clear 

that in activities such as developing micro-worlds for 

children – at any rate with current software tools – 

there is little prospect that the learners can themselves 

carry out the model construction. Our case study is of 

interest because it proves that in principle there can be 

a high degree of synergy between interactions that are 

demanded of the learner in the roles of student, teacher 

and developer. For the target group of learners (viz. 

undergraduates with high levels of programming skill 

following an advanced module in database theory), 

there is no great conceptual or practically significant 

distinction between the kind of activity involved in 

learning about the lossless join algorithm and that 

involved in constructing the associated EM construal. It 

remains to be seen to what extent, subject to 

appropriate tool refinement and suitable training in the 

application of EM principles and tools, the same 

synergy between learning and model-building can be 

demonstrated in other learning contexts. 
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Figure 3: Screenshot of the TLJ model 


