
http://wrap.warwick.ac.uk/

Original citation:
Beynon, Meurig and Harfield, A. (2005) Empirical modelling in support of
constructionism : a case study. University of Warwick. Department of Computer Science.
(Department of Computer Science Research report). CS-RR-412

Permanent WRAP url:
http://wrap.warwick.ac.uk/61395

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/29189666?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/61395
mailto:publications@warwick.ac.uk

Empirical Modelling in support of constructionism:

a case study

Meurig Beynon, Antony Harfield

Department of Computer Science, University of Warwick, Coventry CV4 7AL

{wmb,ant}@dcs.warwick.ac.uk

Abstract

Conventional programming paradigms have

limitations where support for constructionist learning

is concerned. This paper illustrates the merits of an

alternative approach to giving support for

constructionist learning, based on the principles of

Empirical Modelling (EM), with reference to an

algorithm for determining whether a decomposition of

a particular relational schema is lossless. Model-

building that is to be effective for constructionist

learning has to support activities relating to three

distinct roles: that of a student, a teacher and a

developer. Our aim is to demonstrate that EM brings

far greater conceptual unity to the interactions of the

student, the teacher and the developer than is typically

found in using a conventional approach to educational

software development.

1. Introduction

The ideal of constructionist computer-assisted

learning [3] can be seen as unifying three roles: that of

the student, the teacher and the developer. The learner

first explores in ignorance and confusion in the role of

a student, then identifies concepts and objectives for

model-building to support and direct their exploration,

then constructs appropriate models with which to

repeat a similar cycle of interaction (see Figure 1a).

Without a suitable end-user programming environment

to meet these ideal demands, many educational studies

have sought to realise some of the benefits of the

constructionist vision by bringing together a developer

and a teacher (or 'teacher-developer') working with

students to implement this development cycle. This

approach encounters several problematic issues:

• collaboration cannot realise the benefits of one

individual being at one and the same time student,

teacher and developer;

• the activities being carried out by student, teacher

and developer typically have a widely divergent

nature – corresponding to the use, specification and

implementation of a program respectively;

• in a conventional programming framework, the

development cycle is notoriously difficult to

manage effectively, and the well-recognised

problems of adapting programs to new requirements

are particularly challenging in the educational

setting, where subtle changes to the requirement are

both commonplace and of the essence.

The merits of using Empirical Modelling (EM)

principles in the development of educational

technology have been discussed at length in several

previous papers [1,2]. A key idea is that EM establishes

a much closer connection between the model-building

and the learning, so that the same kinds of insight that

assist the student and teacher also aid the developer in

model-building. It would be misleading to suggest that

this convergence of roles is yet meeting the full

objectives of the constructionist agenda, but it can be

seen as a significant step in this direction. In many

contexts, there is a clear sense in which the interactions

of student, teacher and developer take essentially the

same abstract computational form and differ only in

how they are to be interpreted (cf. Figure 1b). The

primary purpose of this paper is to demonstrate how

this principle operates explicitly in a specific learning

context, namely, understanding an algorithm that is

used in relational database design.

1.1. The Testing Lossless Join Algorithm

In designing a relational database, an important

consideration is whether a particular decomposition of

a relation R into subschemes R1, R2, ... , Rk has lossless

join. This property holds if, for any given extension r of

R satisfying all the functional dependencies (FDs) that

hold in R, the natural join of the projections of r onto

each of the k sub-schemes is r itself. As a simple

illustration, consider the relation R with attributes

Supplier, City and Agent, subject to the FDs S→C and

C→A. The decomposition SC, CA of R is lossless,

since if (s1,c1) and (c1,a1) are derived from R by

projection onto SC and CA, then (s1,c1) must be

derived from a tuple (s1,c1,a2), and (c1, a1) from a tuple

(s2,c1,a1). Because the tuples (s1,c1,a2) and (s2,c1,a1)

agree on the attribute C, the FD C→A ensures that

a2=a1, so that the natural join of SC and CA is

necessarily R. In contrast, the decomposition SA, CA

of SCA is lossy ('non-lossless'): to prove this it is only

necessary to exhibit an agent a who is associated with

the city c at which supplier s is based, and who also

serves as the agent for a second city c' at which the

supplier s' is based. The three tuples (s,a), (c,a) and

(c',a) then feature in the projections of R onto SA and

CA, so that the 'rogue' tuple (s,c',a), inconsistent with

the FDs on R, appears in the natural join of SA and

CA.

The Testing_Lossless_Joins (TLJ) algorithm, as

specified in Ullman [5] (see Algorithm 7.2 on p227), is

a standard component of the relational database theory.

The essential principles of the algorithm can be

inferred from the following brief informal description.

The first stage of the algorithm is to set up an array in

which each entry is a symbolic element of the form ai

or bij, where i (respectively j) is the index of the row

(respectively column) in which the element is located,

and an aj appears in location (i,j) if and only if the

attribute associated with the j-th column appears in the

i-th subscheme. The algorithm then proceeds step-by-

step by taking account of the FDs in turn in cyclic

order. At each step, when a particular FD of the form

X→Y is under consideration, the array is processed in

such a way that if any two rows have identical entries

in the columns associated with all the attributes in X,

they are modified so that they also agree on all

attributes in Y. In this process of modification, bij

entries are replaced by aj entries wherever possible, and

agreement is otherwise established by assigning the

same indices to all the relevant bij entries. The

algorithm terminates when no further modification of

the array results from the application of any of the

given FDs, at which point the join is declared lossless

if and only if there is a row comprised of aj entries.

For the purposes of this exposition, without loss of

generality, all FDs will be assumed to be of the form

X→S, where S is a single attribute. The representation

of the entries in the table can also be simplified so that

they have numeric values. Specifically, a’s and b’s can

be represented by integers: each a by 1 and the initial b

entries by integers greater than 1. When several values

are to be equated, it is then appropriate to equate all

values to the least. This representation, which is suited

to computer implementation, is valid since the indices

of a’s and b’s are redundant, and all comparisons are

made between elements in the same column.

2. Computer support for TLJ

The TLJ algorithm is in some respects a natural

target for computer support. For instance, a student

who is exercising the algorithm (or a teacher who is

demonstrating the algorithm) typically indicates the

successive modifications that are made to the array by

crossing out entries and inserting their new values until

such time as the array entries become difficult to read,

then making a new copy of the array and repeating the

annotation process. This is an error-prone process that

does not always give a clear indication of the precise

steps carried out. It is easy to see that, when we

consider the possible motivations and issues that arise

in learning, presenting or assessing the TLJ algorithm,

Figure 1: Roles in constructionist learning: (a) traditionally; (b) in model construction using EM

(a) (b)

the list of requirements becomes very large. The

teacher alone will typically want: a dynamic way of

presenting the algorithm that draws attention to the

specific observations and actions that are being carried

out at each step; to be able to simulate the operation of

the algorithm in full; to be able to experiment with

different sets of FDs, perhaps even whilst the algorithm

is being executed; to emulate errors that a student

might make in exercising the algorithm; to use the

model as the basis for exercises that test a student's

understanding as comprehensively as possible. In

devising exercises or an examination question, the

teacher will not wish to restart the algorithm from

scratch at each new iteration required in the design.

And unless they enjoy the dedicated support of a

developer, they will ideally want to be able to adapt the

model relatively painlessly themselves to take account

of different perceptions of what the student requires,

and of any special, possibly idiosyncratic,

misunderstandings they have.

As a requirement for a conventional program, this

presents a formidable challenge. What is more, it is

quite apparent that the requirement is not in any sense

complete. In constructing a conventional program to

meet these needs, there will invariably be optimization

for specific purposes that will prove obstructive to

future extensions. The key to addressing this problem

is to recognize that what is required of a model to

support the learning of the TLJ algorithm is a form of

automation that can integrate fully with the activities

that the teacher can perform manually as the need

arises. In effect, this allows human discretion and

intelligence to be exercised in situations where there is

no satisfactory preconceived fully automated solution

that can be applied. This is the function of the EM

construal for the TLJ algorithm to be described below.

2.1. An EM construal for the TLJ algorithm

An EM construal is a computer-based model that

embodies the patterns of observation, dependency and

agency that are observed in its referent [1]. A detailed

account of the principles and tools used in developing

construals in EM is beyond the scope of this paper (see

[6] for more details), but the essential ideas can be

illustrated with reference to our chosen case-study.

For the TLJ algorithm, the primary observables are

the contents and attributes of the table that is generated

in executing the algorithm and the FDs that are

associated with these attributes. Both teacher and

student come to understand the algorithm in terms of

just these observables; building a construal to embody

these observables, and the patterns of dependency and

agency to which they are subject, is also a most

appropriate way for the developer to provide support

for the manual, semi-automated or fully automated

interaction that must accompany the learning of the

algorithm.

Figure 2: The TLJ pattern of observation

Learning the TLJ algorithm is linked to a pattern of

observation that applies at each iteration. The learner

consults the current state of the table with a specific FD

X→S in mind, observes the pattern of tuples that arises

in the columns associated with the left-hand side X of

the FD to detect where there are duplicates, then

observes how this pattern applies to the column

associated with the right-hand side S of the FD. The

core step of the algorithm is the substitution of the

resulting transformation of the column associated with

S for the original column.

For a particular table and FD, the above ingredients

of the core pattern of observation can be displayed

pictorially as in Figure 2. The arrows in this figure

represent dependencies between observables,

expressing the way that a given state of the TLJ table,

and a given FD determines the set of columns LHS and

a column RHS, and how the duplicate rows in the set of

columns LHS then determine the updated entries in the

column RHS. In the modelling environment used to

develop the construal, these dependencies can be

directly specified and are automatically maintained (cf.

the spreadsheet principle). This makes it possible to

explore, in an experimental fashion, the way in which

the current instance of this pattern of observation is

affected by changing the current state of the TLJ table,

or the current FD.

3. Developing and deploying the construal

The exploratory activity that surrounds the

identification of observables and dependencies is a

core activity that is central to the interests of the

student, the teacher and the developer. As Figure 2

illustrates, the contexts for observation with which the

student must become familiar in learning the TLJ

algorithm are rich and subtle: they involve moving

from global observation of the entire table to localised

observation of the entries in specific rows and columns.

It is also significant that the activities denoted by the

arrows in Figure 2 are best conceived as mental

operations on the part of the student, preparatory to the

action of updating the table. From a teacher's

perspective, each of the arrows can be interpreted as a

link in a chain of observation involved in executing a

step of the TLJ algorithm. As such, it can be the subject

of an exercise: for instance, identifying the columns

LHS and RHS, given a table and a FD. Decomposing

the pattern of observation into a chain of simpler

observations also has potential value as a diagnostic

tool: for instance, helping the teacher to detect where a

student understands the updating mechanism correctly,

but is mistaken in their interpretation of a FD relation.

From the perspective of this paper, the relevance of

Figure 2 for the developer has particular interest. There

is a very direct correspondence between Figure 2 and

the EM construal for the TLJ that was first constructed

as an open interactive environment by the first author,

and subsequently extended by the second to provide

specific interfaces to the construal such as that depicted

in Figure 3. This correspondence is best appreciated by

interacting with the dynamic script development

environment that is supported by the EM tool used in

this development: the tkeden interpreter [6], but it is

to some extent apparent from the relationship between

Figure 2 and Listing 1. Just as the pattern of

observation depicted in Figure 2 is the core of the TLJ

algorithm, so the script of five definitions linking

observables and dependencies in Listing 1 is the core

of the TLJ construal. The names of the observables in

Listing 1 have been made more expressive, and the

code for operators (such as index_duplicated,

and makelistcol) has been omitted, but the

definitions are essentially as they appear in the

tkeden source. Since our aim is to illustrate the

convergence of viewpoints of student, teacher and

developer suggested by Figure 1b, a brief explanation

of how this script was developed, and relates to the

pattern of observation in Figure 2, is appropriate.

As is evident by inspection, the values of all the

observables in the script in Listing 1 are determined

from the index of the FD that is currently of interest

(current_FD) and the current contents of the TLJ

table (current_table). The first two definitions

determine the contents of the columns that correspond

to the LHS and RHS of the current FD respectively.

The third definition identifies the pattern of duplicate

rows in the columns in the LHS of the FD; the fourth

project_table_LHS_FD is project(current_table, makestrlist(FDs[current_FD][1]));

project_table_RHS_FD is project(current_table, [FDs[current_FD][2]]);

pattern_duplicate_rows is index_duplicated(tail(project_table_LHS_FD));

newcol is transformcol(makelistcol(project_table_RHS_FD), pattern_duplicate_rows);

newtable is apply_current_FD_current_table(current_table, newcol);

Listing 1: Observables and dependencies in the TLJ construal

expresses the way in which the new contents of the

RHS column is to be updated by consulting the pattern

of duplicate rows. The final definition expresses the

relationship between the original value of the table and

the value that it takes after the FD has been processed.

These definitions correspond closely to the links in the

pattern of observation in Figure 2: in establishing the

definitions using the tkeden interpreter, the operators

introduced to specify the relationship associated with

each link are tested in isolation by supplying different

test values for the parameters in much the same way

that the student might confirm that they have

understood each observational link in mastering the

algorithm. Though the development otherwise has

more of the characteristic flavour of conventional

programming, it remains anchored in this way to the

learning domain. The missing elements of the tkeden

source are the specifications of the operators

themselves, which take the form of rather

straightforward procedural code to compute an output

from an input without side-effect. The script illustrates

other features that are of interest from a computational

perspective. These include:

• the re-use and adaptation of standard operators

(such as the relational operator project,

borrowed from the relational database extension

of tkeden).

• the use of definitions to maintain dependencies

between different modes of observation that are a

common concern for traditional programmers,

namely those that are associated with two or more

data structures for a particular application (such

as the conversion function makelistcol).

For the experienced developer using tkeden, the

model-building task is greatly simplified by a

combination of these three techniques: programming of

relatively simple functions without side-effects; re-use

of existing functions and scripts; and the use of

definitions to maintain many different consistent

concurrent representations of a given family of

observables.

4. Conclusion

The difficulty of unifying the roles of student,

teacher and developer is one of the obstacles to

constructionist computer-assisted learning. The

technical problems of supporting the degree of

openness in interaction that constructionism ideally

presumes are so acute that Ehrmann [4] has been led to

question whether the vision of learners constructing

their own learning environments is a mirage. It is clear

that in activities such as developing micro-worlds for

children – at any rate with current software tools –

there is little prospect that the learners can themselves

carry out the model construction. Our case study is of

interest because it proves that in principle there can be

a high degree of synergy between interactions that are

demanded of the learner in the roles of student, teacher

and developer. For the target group of learners (viz.

undergraduates with high levels of programming skill

following an advanced module in database theory),

there is no great conceptual or practically significant

distinction between the kind of activity involved in

learning about the lossless join algorithm and that

involved in constructing the associated EM construal. It

remains to be seen to what extent, subject to

appropriate tool refinement and suitable training in the

application of EM principles and tools, the same

synergy between learning and model-building can be

demonstrated in other learning contexts.

5. References

[1] W.M.Beynon, C.Roe, Computer Support for

Constructionism in Context, In Proceedings of the 4
th

IEEE International Conference on Advanced Learning

Technologies (ICALT), 2004, 216-220.

[2] W.M.Beynon, Empirical Modelling for Educational

Technology, In Proceedings of Cognitive Technology,

University of Aizu, Japan, IEEE, 1997, 54-68.

[3] B.Dalgarno, Constructionist Computer Assisted

Learning: Theory and Techniques, In Proceedings of

the Australian Society for Computers in Learning In

Tertiary Education, 1996.

[4] S.Ehrmann, Technology & Revolution in

Education: Ending the Cycle of Failure. Liberal

Education, Fall, 40-49.

[5] J.D.Ullman, Principles of Database Systems,

Computer Science Press, 1982.

[6] www.dcs.warwick.ac.uk/modelling

Figure 3: Screenshot of the TLJ model

