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Abstract

Modeling of the operational rate-distortion characteristics of a signal can
significantly reduce the computational complexity of an optimal bit allocation
algorithm. In this report, such models are studied.

1 Introduction

In recent years, the problem of bit allocation has been a subject of investigation
by many researchers working in the areas of audio, image and video coding. The
problem is conventionally defined as follows: given a signal x of size N divided into n
non-overlapping subsignals xi of size Ni, where

∑n
i=1 Ni = N , find the most efficient

distribution of a given bit budget R among a number of available quantizers for the
subsignals. The bit allocation algorithm of Shoham & Gersho [1] was to be the first
one in a series of algorithms which provide an optimal solution to the problem for an
arbitrary set of quantizers. However, this algorithm and its other derivations such
as [2] have high computational complexity due to a need to compute the operational
rate-distortion (R-D) characteristics for all available quantizers in order to find an
optimal solution. The complexity of such algorithms can be greatly reduced if the
operational R-D characteristics could be approximated efficiently and with as less
error as possible. Two types of bit allocation algorithms that approximate the R-D
behaviour of a source can be found in the literature: algorithms which use polynomial
functions (such as splines [3]) to fit the operational R-D curve, and algorithms which
use analytical models (such as the average distortion-rate function for high bit rates
[4, 5]) to approximate the empirical R-D curve. The scope of former class of algorithms
is somewhat limited by their requirement to specify the control points on the empirical
R-D curve. Moreover, their ability to extrapolate the R-D characteristics beyond the
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range of control points remains questionable. The latter class of algorithms overcome
both of these problems by estimating the parameters of an anlytical model and using it
for generate an arbitrary point on the operational rate-distortion curve. An attractive
feature of such algorithms is that some of the models used may lend themselves to a
convenient mathematical analysis of the problem.

In this report, we investigate further the problem of optimal bit allocation using
analytical models for operational R-D characteristics. The average distortion-rate
function D(R) = σ22−2R has been used in [4] and [5] for optimal bit allocation in
video and image coding applications respectively. However, as pointed in [6], there are
two problems with using this function: first, it satisfies the so-called high resolution
hypothesis and so is useful only for bit rates of over 1 bits/pixel in the context of
image coding; second, it assumes that the signal is a realization of a Gaussian source,
an assumption which often does not hold for natural images or their transformations.
This should be motivation enough to look for other models for the empirical R-D
behaviour.

Two major contributions of this work are: (1) a comparative study of different
models that can be used to approximate the operational R-D characteristics of a
source, and (2) proposal of two new models which appear to provide better fit for
the empirical R-D curve in most cases, and a study of some of their properties. The
remainder of this report is organised as follows. In the next section, two new models
are proposed, and comparative results for empirical R-D curve fitting are provided
for these models, the aforementioned average distortion-rate function, and the low
bit rate model of Mallat & Falzon [6]. Section 3 describes how these models can be
used for optimal bit allocation. Experimental results are presented in Section 4 and
the report ends with concluding remarks and some directions for future work.

2 The R-D Model

The average distortion-rate function D(1)(R) = σ22−2R can also be written as

D(1)(R) = eaR+b (1)

where a, b∈< and a < 0, b > 0. The above equation also shows there to be a linear
relationship between R and logD(1). Motivated by the limitations of model in (1),
Mallat & Falzon analyzed the coefficients of wavelet and block DCT transforms of
images and developed the relationship D(2)(R) = R1−2γ, where γ is of the order of 1
for most images. In general, their model can be written as follows,

logD(2)(R) = a logR + b (2)

One apparent problem with this model is that the distortion does not approach vari-
ance (ie, maximum distortion) as R approaches zero. Noting that the distortion varies
much more rapidly at low bit rates than at high bit rates, we propose the following
two models,

D(3)(R) = ee
αR+β

(3)
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where α < 0, β > 0, and
D(4)(R) = eaR

2+bR+c (4)

where a, b, c∈<.

Property 1 (Convexity) The distortion-rate functions given by (3) and (4) are
convex

⋃
functions for D≥1, α≥0 and D≥0, a > 0 respectively.

The proof of this property follows directly from the fact that ∂2D(3)/∂R2 = α2(D(3)logD(3))+
αlogD(3) is non-negative only when D≥1 and α≥0, and ∂2D(4)/∂R2 = D(4)[(2aR +
b)2 + 2a] is non-negative when D≥0, a > 0. For the mean square error distortion
measure, we can safely say that D≥1 at low bit rates. Also, slope of the straight
line obtained by plotting log(log(D(3))) against R is always going to be non-negative,
assuming the distortion will always go up when the allocated bit rate is reduced.

Property 2 (Lower Bound on the Average Distortion) For the distortion-rate
function given by (3), the average distortion is bounded from below by the distortion
at average bit rate.

The above property is proved by considering the fact that due to its being convex
⋃

,
the distortion-rate function of (3) satisfies the Jensen’s inequality

E{D(R)} ≥ D(E{R}) (5)

Figure 1 shows empirical R-D curves for three images and their wavelet transforms,
with the results of fitting the curves with all four of the above models. From these
results, we observe that the empirical R-D model D(4)(R) represented by (4) outper-
forms all the other models in almost all the cases. It is also to be noted that the model
D(1)(R) given in (1) produces the worst fit for both images in the transform domain
(whose operating points in our examples belong to the low bit rate regime). On the
other hand, Mallat & Falzon’s model performs badly in the high bit rate regime (as
can be seen from the R-D curves of the original images). The two proposed models
seem to be able to adapt to both low and high bit rate regimes.

2.1 Solving the Optimization Problem

The optimal bit allocation problem can be formulated as an optimization problem
which aims to minimize the overall distortion while remaining within an upper limit
on the bit budget. It was proved by Everett [7] that an optimal solution to this
problem can be found by solving an equivalent Lagrangian optimization problem.
For the sake of completeness, the proof is provided below.

Lemma 1 (Unconstrained Problem) The optimal solution r∗ to the constrained
problem

min
∑
i

di(ri)

subject to ∑
i

ri ≤ R
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Figure 1: Empirical R-D behaviour and results of fitting
(a) 512×512 Lena image, and (b) 5-level DWT of Lena;

(c) 512×512 Barbara image, and (d) 5-level DWT of Barbara;
(e) 512×512 Goldhill image, and (f) 5-level DWT of Goldhill;
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is also optimal solution of the unconstrained problem

min
∑
i

(di(ri) + λri)

for the partcilar case where R = R(λ∗) =
n∑
i=1

r∗i .

Proof:
Consider the Lagrangian function given by

I(λ) =
n∑
i=1

di(ri) + λ
n∑
i=1

ri.

or

I(λ) = D(r) + λ
n∑
i=1

ri,

where D(r) =
n∑
i=1

di(ri) denotes the overall distortion. Let λ∗ denotes the value of λ

corresponding to the optimal solution r∗. Then clearly,

I(λ∗) ≤ I(λ), ∀λ

or

D(r∗) + λ∗
n∑
i=1

r∗i ≤ D(r) + λ
n∑
i=1

ri

or

D(r∗)−D(r) ≤ λ(
n∑
i=1

ri −
n∑
i=1

r∗i )

or

D(r∗)−D(r) ≤ λ(
n∑
i=1

ri −R)

We also know that
n∑
i=1

ri≤R. This implies directly that for all values of λ≥0,

D(r∗) ≤ D(r).

Hence the lemma.

3 Bit Allocation

Lemma 2 (Optimality Condition) Given that the distortion-rate function di(ri)
is a convex function for each segment xi of the signal, the optimal solution to the
problem

min
∑
i

di(ri)

subject to ∑
i

ri ≤ R
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is given by r∗=(r∗1, r
∗
2, . . . , r

∗
n) which satisfies the following condition

∂di
∂ri

=
∂dj
∂rj

∀ i, j i 6=j.

Proof:
We follow a simplex approach to solve the given optimization problem. Let us denote
the sum of distortions di(ri), for all the segments xi of the signal, byD(r) =D(r1, r2, . . . , rn).
The constraint

∑
i
ri ≤ R corresponds to an area on and under the surface S which is

given by ∑
i

ri = R ∀ ri ≥ 0.

There are only two possibilites as to where the optimal solution r∗ can lie: either
under the surface S, or on its boundary. In the former case (ie, when

∑
i
r∗i < R), the

optimality condition would be
∂di
∂ri

= 0, ∀ i.

But given that the function di(ri) is convex (for all values of i), it can easily be
deduced that the optimal distortion D(r∗) corresponds to a solution r∗ which lies
on boundary of the surface S. This implies that the gradient of overall distortion
function D(r) should be normal to boundary of the surface S. In other words,

∇D(r) = (
∂d1

∂r1

,
∂d2

∂r2

, . . . ,
∂dn
∂rn

) ⊥ ∂S

or

∇D(r) = (
∂d1

∂r1

,
∂d2

∂r2

, . . . ,
∂dn
∂rn

) = µ(1, 1, . . . , 1)

for some constant µ. This proves the lemma.

Corollary 1 (Fixed λ) : From the above lemmas, it is clear that the optimal solu-
tion r∗ satisfies the condition ∂di/∂ri = −λ, ∀ i. Therefore, the optimal solution can
be found by restricting the value of λ to be the same for each segment xi of the signal.

From the above result, an algorithm for finding an optimal value of λ can be devised
using a gradient descent method, as explained in [1]. The expressions ∂Di

∂Ri
using all

the four models are given by

∂D
(1)
i

∂Ri

= aD
(1)
i ,

∂D
(2)
i

∂Ri

= D
(2)
i (b+a/Ri),

∂D
(3)
i

∂Ri

= αD
(3)
i logD

(3)
i ,

∂D
(4)
i

∂Ri

= D
(4)
i (2aRi+b).

(6)

It may be noted here that expression only for
∂D

(1)
i

∂Ri
and

∂D
(3)
i

∂Ri
lead to plausible ana-

lytical and efficient numerical solutions, as they involve only distortion.
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Proposition 1 (Equivalence) Let r∗ = (r1, r2, . . . , rn) be the optimal budget dis-
tribution for a given bit budget R bits per pixel, where each ri, ∀ i = 1, 2, . . . , n
corresponds to the ith subsignal having αi and βi as its R-D model parameters. Let
xi = αiri+βi, ∀ i = 1, 2, . . . , n. Then xi = AiR+Bi (where Ai, Bi ∈ < are constants,
∀ i) holds if and only if x1 = x2 = . . . = xn.

Proof:
We know from Theorem 2 that the optimality condition to distribute the given budget
R into the n subsignals is

∂di
∂ri

=
∂dj
∂rj

∀ i, j i6=j

or
α1(d1logd1) = α2(d2logd2) = . . . = αn(dnlogdn).

The above set of equations can be re-written as the following n − 1 independent
equations.

x1 + ex1 = x2 + ex2 +K1

x2 + ex2 = x3 + ex3 +K2
...

xn−1 + exn−1 = xn + exn +Kn−1

(7)

where
Ki = log (

αi+1

αi
),

and
xi = αiri + βi (8)

for all i = 1, 2, . . . , n− 1. We also know that

r1 + r2 + . . .+ rn = nR

Putting the values of ri from equation (8) into the above equation, we get

n∑
i=1

aixi = nR +
n∑
i=1

βi

αi
(9)

where ai = 1/αi, ∀ i = 1, 2, . . . , n. The set of equations 7 can also be written as,

φ(xi) = φ(xi+1) +Ki, ∀ i = 1, 2, . . . , n− 1 (10)

where
φ(x) = x+ ex.

Equation (10) implies that given the value of xi, xi+1 can be found by solving this
equation. Although it does not have an obvious analytical solution, let us assume
that xi+1 is directly related to xi by the following function,

xi+1 = fi(xi) (11)
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Re-arranging the terms of equation (9), we get the following relation between xi+1

and xi,

xi+1 =
n∑
j=1

j 6=i+1

bjxj +
n

ai
R +

1

ai

n∑
j=1

(
βj
αj

) (12)

where bj = −aj/ai. Now let us suppose that xi = AiR + Bi, ∀ i = 1, 2, . . . , n such
that

∂xi
∂R

= Ai 6= 0. (13)

Comparing equations (11) and (12), we obtain

fi(xi) =
n∑
j=1

j 6=i+1

bjxj +
n

ai
R +

1

ai

n∑
j=1

(
βj
αj

)

Differentiating above equation with respect to R, we have

∂fi
∂xi
·∂xi
∂R

=
n∑
j=1

j 6=i+1

bj·
∂xj
∂R

+
n

ai

or
fi
′(xi) = Mi (14)

where Mi = 1
Ai

∑n
j=1

j 6=i+1
bjAj + n

aiAi
is a constant. It is also clear from (14) that

fi
′′(xi) = 0. From (10) and the implicit function theorem, we obtain

f ′i(xi) =
φ′(xi)

φ′(fi(xi))
=

1 + exi

1 + exi+1
(15)

Differentiating (15) and equating f ′′i (xi) to zero, we obtain

e−xi+1 + exi+1 = e−xi + exi .

The function (e−x+ex) = 2cosh(x) is an even function and thus the above equation has
one of the two possible solutions: either xi+1 = xi or xi+1 = −xi, ∀ i = 1, 2, . . . , n−1.
The latter of these solutions can clearly be ruled out. Thus we have

x1 = x2 = . . . = xn

Conversely, if xi+1 = xi, ∀ i = 1, 2, . . . , n − 1, then xi = AiR + Bi holds for some
constants Ai and Bi by the definition of xi (ie, xi = αiri + βi, ∀ i = 1, . . . , n).

Corollary 2 (Linear Variation) From the above proposition, it is obvious that the
optimal bit budget distributions ri, ∀ i = 1, 2, . . . , n vary linearly with the target bit
budget R according to the following relation

ri =
α

αi
R + (

β − βi
αi

)
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Bit Budget Uniform Allocation var-based Allocation Optimal Allocation
(bpp.) bpp. PSNR (dB) bpp. PSNR (dB) bpp. PSNR (dB)

0.5 37.24 0.68 39.24 0.36 35.25
0.5 41.50 0.51 41.61 0.26 38.11
0.5 34.89 0.35 32.73 0.33 32.45
0.5 31.41 0.37 29.75 0.40 30.10
0.5 33.13 0.43 32.34 0.32 30.98
0.5 37.66 0.38 36.05 0.21 32.50
0.5 28.61 0.47 28.18 0.67 30.32
0.5 29.22 0.53 29.52 0.70 31.59

0.5 0.5 28.64 0.71 30.48 0.60 29.60
0.5 33.31 0.53 33.81 0.33 30.88
0.5 26.04 0.69 27.68 0.81 28.58
0.5 24.59 0.71 27.00 0.97 27.01
0.5 38.02 0.22 35.05 0.22 35.05
0.5 36.96 0.31 35.42 0.23 34.50
0.5 25.98 0.32 24.35 0.66 27.53
0.5 26.00 0.79 28.71 0.93 29.89

Table 1: Results of bit allocation for coding sixteen 128× 128 blocks of Barbara

where
α =

n
n∑
i=1

1
αi

and

β =
α

n

n∑
i=1

βi
αi
.

4 Experimental Results

The optimal bit allocation algorithm outlined in the previous section was tested on
block partitions of an image in order to efficiently distribute a given bit budget be-
tween the image blocks. The model parameters were determined by quantizing with
five different step sizes the wavelet transform coefficients of each image block. For
the purposes of experimentation, third model for the empirical R-D curve was used.
Results of budget distribution between 16 equal sized partitions of the Barbara image
are given in Table 1. For comparison, results are also provided for a relatively naive
activity based bit allocation algorithm which works by analyzing the variance of each
of the blocks, and for a uniform distribution of the bit budget. The bit allocation
algorithm assigns more bits to an image block which contains regions of high activity.
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5 Conclusions

This report addressed the issue of model based optimal bit allocation. Two new
models were proposed for representing the empirical R-D curves. It was demonstrated
that while D(4) provides the best fit for operational R-D characteristics, D(3) lends
itself to tractable analysis of the bit allocation problem. Future work may include
a generalization of the bit allocation algorithm to all models, and an investigation
into the relationship of these models with the distribution of transform coefficients
for subband image coding.
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