
http://wrap.warwick.ac.uk/

Original citation:
Dimovski, A. and Lazic, Ranko (2004) Software model checking based on game
semantics and CSP. University of Warwick. Department of Computer Science.
(Department of Computer Science Research Report). CS-RR-403

Permanent WRAP url:
http://wrap.warwick.ac.uk/61318

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/29189625?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/61318
mailto:publications@warwick.ac.uk

AVoCS 2004 Preliminary Version
Software Model Che
king Based onGame Semanti
s and CSP 1

Aleksandar Dimovski and Ranko Lazi�
Department of Computer S
ien
eUniversity of Warwi
kCoventry CV4 7AL, UKAbstra
tWe present an approa
h for software model
he
king based on game semanti
sand CSP. Open program fragments are
ompositionally modelled as CSP pro
esseswhi
h represent their game semanti
s. This translation is performed by a prototype
ompiler. Observational equivalen
e and veri�
ation of properties are
he
ked bytra
es re�nement using the FDR tool. The e�e
tiveness of our approa
h is evaluatedon several examples.Key words: Software model
he
king, Game semanti
s, CSPpro
ess algebra, FDR re�nement
he
ker1 Introdu
tionModel
he
king [6℄ is a system veri�
ation te
hnique based on semanti
s: theveri�er
he
ks whether the semanti
s of a given system satis�es some property.It has gained industrial a

eptan
e be
ause, in
ontrast to the approa
hes ofsimulation, testing and theorem proving, model
he
king o�ers automati
 andexhaustive veri�
ation, and it also reports
ounter-examples.The su

ess of model
he
king has been mainly for hardware and
ommu-ni
ation proto
ols. Re
ently, model
he
king of software has be
ome an a
tiveand important area of resear
h and appli
ation (e.g. [5℄). Unfortunately, ap-plying model
he
king to software is
ompli
ated by several fa
tors, rangingfrom the diÆ
ulty to model programs, due to the
omplexity of programminglanguages as
ompared to hardware des
ription languages, to diÆ
ulties inspe
ifying meaningful properties of software using the usual temporal logi
alformalisms. Another reason is the state explosion problem: industrial pro-grams are large and model
he
king is
omputationally demanding.1 We a
knowledge support by the EPSRC (GR/S52759/01). The se
ond author was alsosupported by the Intel Corporation.This is a preliminary version. The �nal version will be published inEle
troni
 Notes in Theoreti
al Computer S
ien
eURL: www.elsevier.nl/lo
ate/ent
s

Dimovski and Lazi�
Many of the problems above are due to diÆ
ulties in obtaining sound and
omplete semanti
 models of software and expressing su
h models in an algo-rithmi
 fashion suitable for automati
 analysis. Game semanti
s has potentialto over
ome these problems, sin
e it has produ
ed the �rst a

urate, i.e. fullyabstra
t and fully
omplete, models for a variety of programming languagesand logi
al systems (e.g. [1℄). Re
ently, it was shown that the fully abstra
tgame-based model of se
ond-order �nitary Idealised Algol (i.e. with �nite datatypes and without re
ursion) with iteration
an be represented using only reg-ular expressions [10℄, and that this
an be used for eÆ
ient program analysisand veri�
ation [3℄.Game semanti
s has several very suitable features for software model
he
k-ing. It produ
es observationally fully abstra
t models with a maximum levelof abstra
tion, sin
e internal state
hanges during
omputation are abstra
tedaway. It
an
ompositionally model terms-in-
ontext, i.e. open program frag-ments. This ability is essential in analysing properties of software
omponentswhi
h
ontain unde�ned (free) variables and pro
edures.We present an approa
h for
ompositional software modelling and veri-�
ation, based on game semanti
s and the CSP pro
ess algebra (e.g. [15℄).We fo
us on se
ond-order �nitary Idealised Algol with iteration. The gamesemanti
s of any term-in-
ontext is represented as a CSP pro
ess. Observa-tional equivalen
e between terms, and veri�
ation of regular properties, arede
idable by
he
king tra
es re�nement between CSP pro
esses.Compared with the regular expressions approa
h [10℄, this CSP based ap-proa
h o�ers several bene�ts. Using the wide range of operators available inCSP, program terms are represented as pro
esses in a
lear and
ompositionalway. The pro
ess whi
h models a term is de�ned as a parallel
omposition ofpro
esses whi
h model its subterms, with syn
hronisation events being hid-den. Tra
es re�nement between CSP pro
esses
an be automati
ally
he
kedby the FDR tool [9℄, whi
h is highly optimised for veri�
ation of parallelnetworks of pro
esses. FDR also o�ers a range of
ompositional state-spa
eredu
tion algorithms [14℄, enabling smaller models to be generated before orduring re�nement
he
king.We have implemented a prototype
ompiler whi
h, given any term-in-
ontext, outputs a CSP pro
ess representing its game semanti
s. The output
an be loaded into the ProBe tool for intera
tive exploration, or the FDR toolfor automati
 analysis. FDR also
ontains an intera
tive debugger, when theanswer to a re�nement query is negative.E�e
tiveness of our approa
h is evaluated on several variants of two exam-ples: a sorting algorithm, and an abstra
t data type implementation. Someof the experimental results show that, for minimal model generation, we out-perform the approa
h based on regular expressions [3℄.The paper is organised as follows. Se
tions 2 and 3 brie
y re
all the pro-gramming language, the CSP representation of its game semanti
s, and ver-i�
ation of observational equivalen
e. Further details
an be found in the2

Dimovski and Lazi�

ompanion paper [7℄ whi
h
on
entrates on theory, whereas this paper is de-voted to appli
ations and property veri�
ation. Se
tion 4 shows how proper-ties given in a linear temporal logi
 on �nite tra
es, or as �nite automata,
anbe veri�ed. In Se
tions 5 and 6, we present the
ompiler and two
ase studies.2 The programming languageThe input to our
ompiler is a term-in-
ontext of se
ond-order �nitary Ide-alised Algol with iteration. Idealised Algol [12℄ is a
ompa
t programminglanguage, similar to Core ML, whi
h
ombines the fundamental features ofimperative languages with a full higher-order pro
edure me
hanism.The language has basi
 data types � , whi
h are the booleans and a �nitesubset of the integers. The phrase types of the language are expressions,
ommands and variables, plus �rst-order fun
tion types.� ::= int j bool� ::= exp[� ℄ j
omm j var [� ℄� ::= � j � � � � � � �� ! �Terms are introdu
ed using type judgements of the form � ` M : �, where� = f�1 : �1; � � � ; �k : �kg.Expression-type terms are built from
onstants and arithmeti
/logi
 oper-ators (E1 � E2). Command-type terms are built by the standard imperativeoperators: assignment (V := E),
onditional (if B then M1 else M2), whileloop (whileB doC), sequen
ing (C o9M , note that
ommands
an be sequen
ednot only with
ommands but also with expressions or variables), no-op (skip),and a non-terminating
ommand (diverge). There are also term formers fordereferen
ing variables (!V), appli
ation of �rst-order free identi�ers to ar-guments (�M1 � � �Mk), lo
al variable de
laration (new [� ℄ � in C), and fun
tionde�nition
onstru
tor (let � (�1 : �1; : : : ; �k : �k) = N in M). Full typingrules
an be found in [7℄.3 The CSP modelHere we re
all the main properties of the CSP representation of game seman-ti
s of program terms. The details of this representation and some examples
an be found in [7℄. An introdu
tion to game semanti
s is available in [2℄. A
omprehensive text on CSP is [15℄.3.1 Interpretations of types and termsWith ea
h type �, we asso
iate a set of possible events, the alphabet A�.The alphabet of a type
ontains events q 2 Q �
alled questions, whi
h are3

Dimovski and Lazi�
appended to
hannel with name Q , and for ea
h question q, there is a set ofevents a 2 A q�
alled answers, whi
h are appended to
hannel with name A.Aint = f0; � � � ;Nmax � 1g; Abool = ftrue; falsegQ exp[� ℄ = fqg; A qexp[� ℄ = A�Q
omm = frung; A run
omm = fdonegQ var [� ℄ = fread ;write:x j x 2 A�g; A readvar [� ℄ = A� ; A write:xvar [� ℄ = fokgQ�1������k!�0 = fj :q j q 2 Q�j ; 0 � j � kg;A j :q�1������k!�0 = fj : a j a 2 A q�j g; for 0 � j � kA� = Q :Q � [A:Sq2Q� A q�We interpret any typed term-in-
ontext � ` M : � by a CSP pro
ess[[� ` M : �℄℄CSP whose set of terminated tra
esLCSP(� ` M : �) = ft j tbhXi 2 tra
es([[� ` M : �℄℄CSP)gis the set of all
omplete plays of the game strategy for the term. Events ofthis pro
ess are from the alphabet A�`�, de�ned as:A�:� = �:A� = f�:� j � 2 A�gA� = S�:�2�A�:�A�`� = A� [A�The
ompositional de�nition of the pro
esses [[� ` M : �℄℄CSP is given inAppendix A.3.2 Observational equivalen
eTwo terms M and N are observationally equivalent, written M �� N , if andonly if for any
ontext C [�℄ su
h that both C [M ℄ and C [N ℄ are
losed termsof type
omm, C [M ℄
onverges if and only if C [N ℄
onverges. It was provedin [1℄ that this
oin
ides to equality of sets of
omplete plays of strategies forM and N , i.e. that the games model is fully abstra
t.For the programming language fragment treated in this paper, it was shownin [7℄ that observational equivalen
e is
aptured by two tra
es re�nements:Theorem 3.1 (Observational equivalen
e) We have:� ` M �� N , [[� ` M : �℄℄CSP 2 RUNA�`� vT [[� ` N : �℄℄CSP ^[[� ` N : �℄℄CSP 2 RUNA�`� vT [[� ` M : �℄℄CSP(1)where RUNA =?x : A! RUNA. 2It is also proved in [7℄ that the pro
ess representing any term is �nite state,and so observational equivalen
e is de
idable using FDR.4 Property veri�
ationIn addition to
he
king observational equivalen
e of two program terms, it isdesirable to be able to
he
k properties of terms. Re
all that for any term4

Dimovski and Lazi�
� ` M : �, the CSP pro
ess [[� ` M : �℄℄CSP has the property that its set ofterminated tra
esLCSP(� ` M : �) = ft j tbhXi 2 tra
es([[� ` M : �℄℄CSP)gis the set of all
omplete plays of the strategy for � ` M : �. We thereforefo
us on properties of �nite tra
es, and take the view that � ` M : � satis�essu
h a property if and only if all tra
es in LCSP(� ` M : �) satisfy it.4.1 Linear temporal logi
A standard way of writing properties of linear behaviours is by linear temporallogi
. Given a �nite set �, we
onsider the following formulas. In addition topropositional
onne
tives, linear logi

ontains the temporal operators `next-time' and `until'.� ::= true j a 2 � j :� j �1 _ �2 j
� j �1U�2We
all this logi
 LTL�f , be
ause we give it semanti
s over �nite tra
es (i.e.sequen
es) of elements of �. In parti
ular, formulas a,
� and �1U�2 requirethe tra
e to be non-empty. For any tra
e t of length k , we write its elementsas t1, . . . , tk , and we write t i for its i th suÆx hti ; : : : ; tk i.t j= truet j= a i� t 6= hi and t1 = at j= :� i� t 6j= �t j= �1 _ �2 i� t j= �1 or t j= �2t j=
� i� t 6= hi and t2 j= �t j= �1U�2 i� there exists i 2 f1; : : : ; j t j +1g su
h that t i j= �2and for all j 2 f1; : : : ; i � 1g; t j j= �1The boolean
onstant false, and boolean operators su
h as ^ and !
anbe de�ned as abbreviations. The same is true of the temporal operators `even-tually' and `always': 3� = trueU� 2� = :3:�Duals of the `next-time' and `until' operators are also useful:
� � = :
:� �1V �2 = :(:�1U:�2)Their semanti
s is as follows:t j=
� � i� t = hi or t2 j= �t j= �1V �2 i� either for all i 2 f1; : : : ; j t j +1g; t i j= �2;or there exists i 2 f1; : : : ; j t j +1g su
h that t i j= �1and for all j 2 f1; : : : ; ig; t j j= �25

Dimovski and Lazi�

Q.run b.Q.q

A.done ü

C.Q.run

b.A.true

b.A.false

C.A.done

Fig. 1. Model of while b do CA term � ` M : � satis�es a formula � of LTLA�`�f if and only if for everytra
e t 2 LCSP(� ` M : �), t j= �.Example 4.1 Consider the following term:b : bool ; C :
omm ` while b do C :
ommThe transition system of the CSP pro
ess for this term is shown in Figure 1.Sin
e both b and C are free identi�ers, the su

essfully terminated tra
es ofthis pro
ess are all those
orresponding to exe
uting C zero or more timeswhile the value of b is true, and �nishing when the value of b is false.Therefore, this term satis�es 3b:A:false, but does not satisfy 3C :Q :run.It also satis�es 2(b:A:true ! 3C :Q :run), but does not satisfy 2(b:Q :q !3C :Q :run).There is an algorithm whi
h, given any formula � of LTL�f ,
onstru
ts:� a CSP pro
ess P�� su
h that t j= � if and only if tbhXi 2 tra
es(P��);� a �nite transition system whi
h has the same �nite tra
es as P�� .This is similar to
onstru
ting a �nite automaton whi
h a

epts a �nite tra
et if and only if t j= �. The details
an be found in Appendix B.We therefore have a de
ision pro
edure whi
h, given a program term� ` M : � and a formula � of LTLA�`�f ,
he
ks satisfa
tion. It works by
onstru
ting the CSP pro
esses [[� ` M : �℄℄CSP and PA�`�� , and
he
king thetra
es re�nement 2 PA�`�� 2 RUNA�`� vT [[� ` M : �℄℄CSP(2)4.2 Finite automataMore generally, any property su
h that the set of all �nite tra
es whi
h satisfyit is regular,
an be represented in CSP. Suppose A is an automaton with�nite alphabet �, �nite set of states Q , transition relation T � Q � � � Q ,initial states Q0 � Q , and a

epting states F � Q . For any q 2 Q n F , we2 If �
ontains the U operator, the standard FDR pro
edure for
onstru
ting a transitionsystem for PA�`�� may not terminate. In this
ase, the tra
es re�nement above
an be
he
ked by FDR either by representing as a CSP pro
ess the �nite transition system forPA�`�� whi
h the algorithm in Appendix B produ
es, or by the approa
h in Se
tion 4.2.6

Dimovski and Lazi�

b

a,c a,b,c

Fig. 2. A �nite automatonde�ne Pq =2(q ;a;q 0)2T a ! Pq 0For any q 2 F , we de�nePq = (2(q ;a;q 0)2T a ! Pq 0)2 SKIPThis is a valid system of re
ursive CSP pro
ess de�nitions, so we
an letPA =2q2Q0 PqWe then have that PA has �nitely many states andt is a

epted by A i� tbhXi 2 tra
es(PA)Example 4.2 Consider the automaton A in Figure 2, whose alphabet isfa; b;
g. It a

epts a �nite tra
e t if and only if t j= 3b.The CSP pro
ess PA is de�ned as:PA=P1P1=(a ! P1)2 (b ! P2)2 (
 ! P1)P2=(a ! P2)2 (b ! P2)2 (
 ! P2)2 SKIPTherefore, given a program term � ` M : � and a �nite automaton A withalphabet A�`�, we
an de
ide whether A a

epts ea
h
omplete play of thestrategy for � ` M : � by
he
king (e.g. using FDR) the tra
es re�nementPA 2 RUNA�`� vT [[� ` M : �℄℄CSP(3) This also provides another way of de
iding satisfa
tion of a formula � ofLTLA�`�f :
onstru
t a �nite automaton A whi
h a

epts a �nite tra
e t if andonly if t j= �, and then
he
k the tra
es re�nement above.5 CompilerWe have implemented a
ompiler in Java [4℄, whi
h automati
ally
onvertsa term-in-
ontext (i.e. an open program fragment) into a CSP pro
ess whi
hrepresents its game semanti
s. The input is
ode, with simple type annotationsto indi
ate sizes of �nite integer data types. The resulting CSP pro
ess isde�ned by a s
ript in ma
hine-readable CSP [15℄ whi
h the
ompiler outputs.The s
ripts output by the
ompiler
an be loaded into the tools ProBE forintera
tive exploration of transition systems, and FDR for automati
 analysisand intera
tive debugging [9℄. One of the fun
tions of FDR is to
he
k tra
esre�nement between two �nite-state pro
esses. As we saw above, this
an be7

Dimovski and Lazi�
used to de
ide observational equivalen
e between two terms (1), satisfa
tionof a linear temporal logi
 formula (2), and
ontainment in a regular language(3).FDR o�ers a number of hierar
hi
al
ompression algorithms, whi
h
an beapplied during either model generation or re�nement
he
king. The s
riptswhi
h our
ompiler produ
es normally
ontain instru
tions to apply diamondelimination and strong bisimulation quotienting to subpro
esses whi
h modello
al variable de
laration subterms. This exploits the fa
t that game semanti
shides intera
tions between a lo
al variable and the subterm whi
h is its s
ope.These intera
tions be
ome silent (i.e. �) transitions, enabling the model to beredu
ed.Instead of the in�nite data type of all integers, the programming languagefragment
onsidered in this paper has �nite data types. We work with sets ofintegers modulo k . Ea
h integer variable is de
lared to be of type int%k forsome k , and di�erent values of k
an be used for di�erent variables. Operationsbetween variables with distin
t integer types int%k1 and int%k2 are interpretedas modulo the minimum of k1 and k2.6 Appli
ationsWe now
onsider appli
ation of the approa
h proposed above and dis
ussexperimental results for two kinds of examples: a sorting algorithm, and anabstra
t data type implementation.6.1 A sorting algorithmIn this se
tion we analyse the bubble-sort algorithm, whose implementationis given in Figure 3. The
ode in
ludes a meta variable n, representing arraysize, whi
h will be repla
ed by several di�erent values. The integers stored inthe array are of type int%3, whi
h
onsists of values 0, 1 and 2. The type ofindex i is int%n+1, i.e. one more than the size of the array.The implementation of bubble-sort is standard. The program �rst
opiesthe input array x [℄ into a lo
al array a[℄, whi
h is then sorted and
opied ba
kinto x [℄. The array being e�e
tively sorted, a[℄, is not visible from the outsideof the program be
ause it is lo
ally de�ned, and only reads and writes of thenon-lo
al array x [℄ are seen in the model. A transition system of the modelCSP pro
ess for n = 2 is shown in Figure 4. The left-hand half representsreads of all possible
ombinations of values from x [℄, while the right-hand halfrepresents writes of the same values in sorted order.Table 1
ontains the experimental results for minimal model generation.The experiment
onsisted of running the
ompiler on the bubble-sort imple-mentation, and then letting FDR generate a transition system for the resultingpro
ess. The latter stage involved a number of hierar
hi
al
ompressions, asoutlined in Se
tion 5. We list the exe
ution time in minutes, the size of the8

Dimovski and Lazi�
x [n℄ : var int%3 `new int%3 a[n℄ innew int%n+1 i inwhile (i < n) fa[i ℄ := x [i ℄; i := i + 1; gnew bool
ag := true inwhile(
ag)fi := 0;
ag := false;while (i < n � 1) fif (a[i ℄ > a[i + 1℄) f
ag := true;new int%3 temp intemp := a[i ℄;a[i ℄ := a[i + 1℄;a[i + 1℄ := temp; gi := i + 1; g gi := 0;while (i < n) fx [i ℄ := a[i ℄; i := i + 1; g:
omm Fig. 3. Implementation of bubble sort
Q.run x.0.Q.q A.done üx.0.A.1

x.1.Q.q

x.1.A.0

x.1.A.1

x.1.A.2

x.1.A.2

x.1.A.1

x.1.A.0

x.1.A.1

x.1.A.0

x.1.A.2

x.0.Q.write.2

x.0.Q.write.1

x.0.Q.write.0

x.0.Q.write.1

x.
0.

Q
.w

rit
e.

0

x.
0.

Q.w
rit

e.0

x.0.A.ok

x.0.A.ok

x.0.A.okx.1.Q.q

x.1.Q.q

x.0.A.2

x.0.A.0

x.1.Q.write.2

x.1.Q.write.0

x.1.Q.write.1 x.1.A.ok

Fig. 4. Transition system of the model for n = 2largest generated transition system, and the size of the �nal transition system.We ran FDR on a Resear
h Ma
hines 2.5 GHz Xeon with 2GB RAM. Theresults from the tool based on regular expressions were obtained on a Sun-Blade 100 with 2GB RAM [3℄. The results
on�rm that the two approa
hesgive isomorphi
 models, where the CSP models have an extra state due torepresenting termination by a X event.Further information about minimal model generation for n = 20 is shownin Figure 5. FDR �rst produ
es a transition system for the subprogram whi
his the s
ope of the de
laration of the lo
al array a[℄. Ea
h
omponent of a[℄ hasan index from 0 to 19 and is represented by a pro
ess whi
h keeps its value, andperforms reads and writes to that
omponent. FDR obtains the �nal model by9

Dimovski and Lazi�
Table 1Experimental results for bubble-sort minimal model generationn CSP Regular expressionsTime (m) Max. st. Model st. Time (m) Max. st. Model st.5 6 1 775 164 5 3 376 16310 20 18 752 949 10 64 776 94815 50 115 125 2 859 120 352 448 2 85820 110 378 099 6 394 240 1 153 240 6 39330 750 5 204 232 20 339 failed

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

a.1 a.3 a.5 a.7 a.9 a.11 a.13 a.15 a.17 a.19

Before compression After compression

Fig. 5. E�e
ts of
ompressions for bubble sort with n = 20taking the transition system for the s
ope of a[℄ and
omposing it (by parallel
omposition and hiding) with transition systems for the
omponents of a[℄in turn. At ea
h step,
ompression algorithms are applied. In the �gure, weshow numbers of states before and after
ompression, after every two steps.We expe
t FDR to perform even better in property veri�
ation. For
he
k-ing re�nement by a
omposite pro
ess, FDR does not need to generate anexpli
it model of it, but only models of its
omponent pro
esses. A model ofthe
omposite pro
ess is then generated on-the-
y, and its size is not limitedby available RAM, but by disk size.6.2 An abstra
t data type implementationFigure 6
ontains an implementation of a queue of maximum size n as a
ir
u-lar array. There are four free identi�ers:
ommands empty() and over
ow(),expression p of integers type modulo m, and
ommand ANALYSE whi
h10

Dimovski and Lazi�
empty() :
omm;over
ow() :
omm;p : exp int%m;ANALYSE (
omm; exp int%m) :
omm `new int%m bu�er [n℄ innew int%n front innew int%n tail innew int%n+1 queue size inlet exp bool isempty() f return queue size == 0; g inlet exp bool isfull() f return queue size == n; g inlet
omm add(exp int%m x) fif (isfull()) over
ow();else fbu�er [tail ℄ := x ;tail := tail + 1;queue size := queue size + 1; gg inlet exp int%m next() fif (isempty()) fempty();return 0; gelse ffront := front + 1;queue size := queue size � 1;return bu�er [front � 1℄; gg inANALYSE (add(p);next()):
omm Fig. 6. A queue implementationtakes two arguments. After implementing the queue by a sequen
e of lo
alde
larations, we export the fun
tions add and next by
alling ANALYSE witharguments add(p) and next(). Game semanti
s will therefore give us a modelwhi
h
ontains all interleavings of
alls to add(p) and next(),
orrespondingto all possible behaviours of the non-lo
al fun
tion ANALYSE . Sin
e the ex-pression p is also non-lo
al, the value of p
an be di�erent ea
h time add is
alled. The queue implementation uses the non-lo
al
ommands empty() andover
ow() for handling
alls to next on the empty queue, respe
tively add ona full queue.A transition system of the model CSP pro
ess for a data set of size m = 1and maximum queue size n = 2 is shown in Figure 7. For
larity, labels ADDand NEXT are used instead of ANALYSE :1 and ANALYSE :2.Table 2
ontains results for minimal model generation for a data set ofsize m = 3 and several maximum queue sizes. For maximum size n = 10,further information is displayed in Figure 8. Similar to the
orresponding�gure for the bubble-sort example, we show numbers of states before and11

Dimovski and Lazi�

ü

Q.run ANALYSE.0.Q.q

ANALYSE.0.A.done

A.done

NEXT.Q.q

empty.0.Q.run
empty.0.A.done

NEXT.A.0

ADD.Q.run
p.Q.read p.A.0 ADD.A.done

NEXT.Q.q

ANALYSE.0.A.done

ADD.Q.run p.Q.read p.A.0 ADD.A.done

ADD.Q
.ru

n

overflow.0.Q.run

overflow.0.A.done

NEXT.Q.q
NEXT.A.0

ANALYSE.0.A.done

Fig. 7. Transition system of the model for n = 2 and m = 1Table 2Experimental results for queue minimal model generation with m = 3n Time Model states Max. states2 5 se
 70 2375 18 se
 1 825 12 35110 80 min 442 870 5 225 757

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

buf.0 buf.1 buf.2 buf.3 buf.4 buf.5 buf.6 buf.7 buf.8 buf.9

Before compression After compression

Fig. 8. E�e
ts of
ompressions for queue implementation with n = 10after
ompression, when transition systems for
omponents of the lo
al arraybu�er [℄ are
omposed in turn with the transition system for the rest of theprogram.Using the te
hniques in Se
tion 4, we
an
he
k a range of propertiesof the queue implementation. For example, linear temporal logi
 formu-las :3over
ow and :3empty assert that the non-lo
al
ommands handling12

Dimovski and Lazi�
Table 3Experimental results for veri�
ation of properties (s=se
, m=min)n :3empty :3over
ownot min. model min. model not min. model min. model10 67s+46s+0s 67s+80m+0s 50s+46s+97s 50s+80m+0s12 103s+61s+0s failed 77s+61s+18m failed13 127s+70s+0s failed 93s+70s+58m failedwrites to full queues and reads from empty queues are never
alled. As ex-pe
ted,
he
king them returns that they are not satis�ed. Counter-exampletra
es whi
h the FDR debugger gives
orrespond to n + 1
onse
utive
allsof ADD after whi
h over
ow is
alled, and a single NEXT
all after whi
hempty is
alled.Spe
i�
ally, the CSP pro
ess P�:3empty , where � is the alphabet of eventsfor the queue implementation term, is equivalent to� p � (?w : �nfj empty jg ! p) 2 SKIPChe
king the tra
es re�nement (2) on FDR produ
es the following
ounter-example tra
e:1 Q :run 6 NEXT :A:02 ANALYSE :0:Q :run 7 ANALYSE :0:A:done3 NEXT :Q :q 8 A:done4 empty :0:run 9 X5 empty :0:doneTable 3 shows some experimental results for
he
king the two formulas.We
ompared re�nement
he
king without �rst generating a minimal modelagainst re�nement
he
king pre
eded by minimal model generation. In theformer
ase,
ompressions are not applied when
omponents of the array bu�erare
omposed with the rest of the program. Instead, a
omposite model isgenerated on-the-
y during re�nement
he
king. This enabled us to
he
k thetwo properties up to maximum queue size n = 13, whereas minimal modelgeneration did not su

eed for n > 10. The times shown are sums of timeswhi
h FDR took to pro
ess the spe
i�
ation, to pro
ess the implementation,and to perform the re�nement
he
k.In addition to
he
king properties of external behaviours of given terms, we
an
he
k assertions whi
h refer to internal data. Assertions
an be added to aterm using a lo
al fun
tion assert whose argument is a boolean expression. Ifthe argument is true, the assert fun
tion does nothing, but otherwise it
allsa non-lo
al fun
tion error . In the game semanti
s of the augmented term,any o

urren
e of events error :0:run and error :0:done represents an assertionviolation.For example, we
an
he
k that whenever a value y is added to the queue,and then all items ex
ept one are removed from the queue, the remaining itemhas value y . We do this by repla
ing the
all of the ANALYSE fun
tion in13

Dimovski and Lazi�
Figure 6 by the following
ode:let
omm assert(exp bool b) fif b then skip;else error();g inlet exp bool validate() fnew int%n y iny = p;add(y);while (queue size > 1)next();return (next() == y);g inANALYSE (add(p);next(); assert(validate())):
ommwhere error() and ANALYSE (
omm; int%n;
omm) are non-lo
al
ommands.We then
he
k whether this modi�ed queue implementation satis�es theproperty :3error . We performed this on FDR for a data set of size m = 2and for maximum queue size n = 2. As expe
ted, a
ounter-example tra
ewas produ
ed, showing that this parti
ular assertion is violated after n
allsof ADD , i.e. when the queue is full. When the assertion is
orre
ted so thatit applies only to non-full queues, the
he
k su

eeds.7 Con
lusionIn this paper, we extended the approa
h to software model
he
king proposedin [7℄ to
he
king properties given as formulas of linear temporal logi
 or as�nite automata, and we evaluated it on two kinds of examples: a sortingalgorithm, and an abstra
t data type implementation.The experimental results show that open program fragments with largeinternal state spa
es
an be veri�ed, partly due to eÆ
ien
y of the FDR toolfor on-the-
y
he
king of parallel networks of pro
esses. They also show thatthis approa
h
an outperform the approa
h based on regular expressions [3℄.As future work, we intend to extend the
ompiler so that parameterisedprogram terms (su
h as parametri
ally polymorphi
 programs) are translatedto single parameterised CSP pro
esses. Su
h pro
esses
ould then be analysedby te
hniques whi
h
ombine CSP and data spe
i�
ation formalisms (e.g.[8,13℄) or by algorithms based on data independen
e [11℄.Referen
es[1℄ S.Abramsky and G.M
Cusker, Linearity, sharing and state: a fully abstra
tgame semanti
s for Idealized Algol with a
tive expressions. In P.W.O'Hearnand R.D.Tennent, editors, \Algol-like languages". Birkh�auser, 1997.14

Dimovski and Lazi�
[2℄ S.Abramsky, Algorithmi
 game semanti
s: A tutorial introdu
tion, Le
turenotes, Marktoberdorf International Summer S
hool, 2001.[3℄ S.Abramsky, D.Ghi
a, A.Murawski and C.-H.L.Ong, Applying Game Semanti
sto Compositional Software Modeling and Veri�
ations. In Pro
eedings ofTACAS, LNCS 2988, 421{435, 2004.[4℄ A.W.Appel and J.Palsberg, Modern Compiler Implementation in Java, 2ndedition. Cambridge University Press, 2002.[5℄ T.Ball and S.K.Rajamani, The SLAM Proje
t: Debugging System Softwarevia Stati
 Analysis. In Pro
eedings of POPL, ACM SIGPLAN Noti
es 37(1),January 2002.[6℄ E.M.Clarke, O.Grumberg and D.Peled, Model Che
king. MIT Press, 2000.[7℄ A.Dimovski and R.Lazi�
, CSP Representation of Game Semanti
s for Se
ond-order Idealized Algol. In Pro
eedings of ICFEM, LNCS, November 2004.[8℄ A.Farias, A.Mota and A.Sampaio, EÆ
ient CSP-Z Data Abstra
tion. InPro
eedings of IFM, LNCS 2999, 108{127, April 2004.[9℄ Formal Systems (Europe) Ltd, Failures-Divergen
e Re�nement: FDR2 Manual,2000.[10℄ D.Ghi
a and G.M
Cusker, The Regular-Language Semanti
s of Se
ond-orderIdealized Algol. Theoreti
al Computer S
ien
e 309 (1{3), 469{502, 2003.[11℄ R.Lazi�
, A Semanti
 Study of Data Independen
e with Appli
ations to ModelChe
king. DPhil thesis, Computing Laboratory, Oxford University, 1999.[12℄ J.C.Reynolds, The essen
e of Algol. In Pro
eedings of ISAL, 345{372,Amsterdam, Holland, 1981.[13℄ M.Roggenba
h, CSP-CASL | A new Integration of Pro
ess Algebra andAlgebrai
 Spe
i�
ation. In Pro
eedings of AMiLP, TWLT 21, 2003.[14℄ A.W.Ros
oe, P.H.B. Gardiner, M.H.Goldsmith, J.R.Hulan
e, D.M.Ja
kson andJ.B.S
attergod, Hierar
hi
al
ompression for model-
he
king CSP or how to
he
k 1020 dining philosophers for deadlo
k. In Pro
eedings of TACAS, LNCS1019, 133{152, 1995.[15℄ A.W.Ros
oe, The Theory and Pra
ti
e of Con
urren
y. Prenti
e Hall, 1998.
15

Dimovski and Lazi�
A Pro
esses for termsExpression
onstru
ts[[� ` v : exp[� ℄℄℄CSP = Q :q ! A:v ! SKIP , v 2 A� is a
onstant[[� ` not B : exp[bool ℄℄℄CSP =[[� ` B : exp[bool ℄℄℄CSP [Q1=Q ;A1=A℄ kfjQ1;A1jg(Q :q ! Q1:q ! A1?v : Abool ! A:(not v)! SKIP) n fj Q1;A1 jg[[� ` E1 � E2 : exp[� ℄℄℄CSP =[[� ` E1 : exp[� ℄℄℄CSP [Q1=Q ;A1=A℄ kfjQ1;A1jg([[� ` E2 : exp[� ℄℄℄CSP [Q2=Q ;A2=A℄ kfjQ2;A2jg(Q :q ! Q1:q ! A1?v1 : A� ! Q2:q ! A2?v2 : A� !A:(v1 � v2)! SKIP) n fj Q2;A2 jg) n fj Q1;A1 jg[[� ` � : exp[� ℄℄℄CSP = Q :q ! �:Q :q ! �:A?v : A� ! A:v ! SKIP
Command
onstru
ts[[� ` skip :
omm℄℄CSP = Q :run ! A:done ! SKIP[[� ` diverge :
omm℄℄CSP = STOP[[� ` C o9 M : �℄℄CSP =[[� ` C :
omm℄℄CSP [Q1=Q ;A1=A℄ kfjQ1;A1jg([[� ` M : �℄℄CSP [Q2=Q ;A2=A℄ kfjQ2;A2jg(Q?q : Q� ! Q1:run ! A1:done ! Q2:q! A2?a : A q� ! A:a! SKIP)n fj Q2;A2 jg) n fj Q1;A1 jg16

Dimovski and Lazi�
[[� ` if B then M1 else M2 : �℄℄CSP =[[� ` B : exp[bool ℄℄℄CSP [Q0=Q ;A0=A℄ kfjQ0;A0jg�([[� ` M1 : �℄℄CSP [Q1=Q ;A1=A℄2 SKIP) kfjQ1;A1jg(([[� ` M2 : �℄℄CSP [Q2=Q ;A2=A℄ 2 SKIP) kfjQ2;A2jg(Q?q : Q� ! Q0:q ! A0?v : Abool ! (Q1:q! A1?a : A q� ! A:a! SKIP<j v >j Q2:q! A2?a : A q� ! A:a! SKIP))nfj Q2;A2 jg)nfj Q1;A1 jg�nfj Q0;A0 jg[[� ` while B do C :
omm℄℄CSP =(� p 0:([[B :
omm℄℄CSP [Q1=Q ;A1=A℄ o9 p 0)2 (A:done ! SKIP)) kfjQ1;A1;Ajg�(� p 00:([[C :
omm℄℄CSP [Q2=Q ;A2=A℄ o9 p 00) 2 (A:done ! SKIP)) kfjQ2;A2;Ajg(Q :run ! � p:Q1:q ! A1?v : Abool ! (Q2:run ! A2:done ! p <j v >jA:done ! SKIP)) n fj Q2;A2 jg� n fj Q1;A1 jg[[� ` � :
omm℄℄CSP = Q :run ! �:Q :run ! �:A:done ! A:done ! SKIPVariable
onstru
ts[[� ` � : var [� ℄℄℄CSP =(Q :read ! �:Q :read ! �:A?v : A� ! A:v ! SKIP) 2(Q :write?v : A� ! �:Q :write:v ! �:A:ok ! A:ok ! SKIP)[[� ` V := M :
omm℄℄CSP =[[� ` M : exp[� ℄℄℄CSP [Q1=Q ;A1=A℄ kfjQ1;A1jg([[� ` V : var [� ℄℄℄CSP [Q2=Q ;A2=A℄ kfjQ2;A2jg(Q :run ! Q1:q ! A1?v : A� ! Q2:write:v ! A2:ok! A:done ! SKIP) n fj Q2;A2 jg) n fj Q1;A1 jg[[� `!V : exp[� ℄℄℄CSP =[[� ` V : var [� ℄℄℄CSP [Q1=Q ;A1=A℄ kfjQ1;A1jg(Q :q ! Q1:read ! A1?v : A� ! A:v ! SKIP) n fj Q1;A1 jg17

Dimovski and Lazi�
[[� ` new [� ℄ � in M :
omm℄℄CSP =([[� ` M :
omm℄℄CSP kfj�;Ajg U�:var [� ℄;a�) n fj � jgwhere aint = 0, abool = false, and:U�:var [� ℄;v = (�:Q :read ! �:A!v ! U�:var [� ℄;v) 2(�:Q :write?v 0 : A� ! �:A:ok ! U�:var [� ℄;v 0) 2(A:done ! SKIP)Appli
ation and fun
tions[[� ` �(M1 : : :Mk) : �℄℄CSP = Q?q : Q� ! �:0:Q :q!� �L:(2kj=1([[� ` Mj : �j ℄℄CSP kfjQ;Ajg �:j :Q?q : Q�j ! Q :q! A?a : A q�j! �:j :A:a ! SKIP) n fj Q ;A jg o9 L)2 SKIP� o9 �:0:A?a : A q� ! A:a! SKIP[[� ` let �(�1 : �1; : : : ; �k : �k) = N in M : �℄℄CSP =�[[� ` M : �℄℄CSP kfj�jg(� p:([[� ` N : �0℄℄CSP [�:0:Q=Q ; �:1=�1; : : : ; �:k=�k ; �:0:A=A℄ o9 p)2SKIP)�n fj � jgB Pro
esses for formulasWe show how, given any formula � of LTL�f , to
onstru
t:� a CSP pro
ess P�� su
h that t j= � if and only if tbhXi 2 tra
es(P��);� a �nite transition system whi
h has the same �nite tra
es as P�� .Consider the following variant of LTL�f , where only atoms
an be negated,and operators ^,
� and V are basi
 rather than derived. We
all it LTL+�f .� ::= true j false j a j :a j �1 _ �2 j �1 ^ �2 j
� j
� � j �1U�2 j �1V �2Any formula � of LTL�f
an be transformed into an equivalent formula �0of LTL+�f , sin
e ^,
� and V are duals of _,
 and U . The size of �0 is linearin the size of �.For formulas � of LTL+�f , we de�ne CSP pro
esses P�� as follows, bystru
tural re
ursion on �:P�true =RUNX�P�false =STOPP�a = a ! RUNX�P�:a =(?w : �nfag ! RUNX�)2 SKIP18

Dimovski and Lazi�
P��1_�2 =P��1 2P��2P��1^�2 =P��1 k� P��2P�
� =?w : �! P��P�
� � =(?w : �! P��)2 SKIPP��1U�2 =� p � P��2 2 (P��1 k� (?w : �! p))P��1V�2 =� p � (P��2 k� P��1)2 (P��2 k� ((?w : �! p)2 SKIP))where RUNX� = (?w : �! RUNX�)2 SKIP .Now, for any formula � of LTL�f , we de�ne P�� = P��0 , where �0 is theequivalent formula of LTL+�f .Proposition B.1 For any formula � of LTL�f , we have that t j= � if andonly if t b hXi 2 tra
es(P��). A �nite transition system whi
h has the same�nite tra
es as P��
an be
onstru
ted.Proof. It suÆ
es to prove the proposition for formulas � of LTL+�f . Theproof is by stru
tural indu
tion on �. 2

19

	Introduction
	The programming language
	The CSP model
	Interpretations of types and terms
	Observational equivalence

	Property verification
	Linear temporal logic
	Finite automata

	Compiler
	Applications
	A sorting algorithm
	An abstract data type implementation

	Conclusion
	References
	Processes for terms
	Processes for formulas

