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Software Model Checking Based on
Game Semantics and CSP'!

Aleksandar Dimovski and Ranko Lazié

Department of Computer Science
University of Warwick
Coventry CV} TAL, UK

Abstract

We present an approach for software model checking based on game semantics
and CSP. Open program fragments are compositionally modelled as CSP processes
which represent their game semantics. This translation is performed by a prototype
compiler. Observational equivalence and verification of properties are checked by
traces refinement using the FDR tool. The effectiveness of our approach is evaluated
on several examples.

Key words: Software model checking, Game semantics, CSP
process algebra, FDR refinement checker

1 Introduction

Model checking [6] is a system verification technique based on semantics: the
verifier checks whether the semantics of a given system satisfies some property.
It has gained industrial acceptance because, in contrast to the approaches of
simulation, testing and theorem proving, model checking offers automatic and
exhaustive verification, and it also reports counter-examples.

The success of model checking has been mainly for hardware and commu-
nication protocols. Recently, model checking of software has become an active
and important area of research and application (e.g. [5]). Unfortunately, ap-
plying model checking to software is complicated by several factors, ranging
from the difficulty to model programs, due to the complexity of programming
languages as compared to hardware description languages, to difficulties in
specifying meaningful properties of software using the usual temporal logical
formalisms. Another reason is the state explosion problem: industrial pro-
grams are large and model checking is computationally demanding.

1 'We acknowledge support by the EPSRC (GR/S52759/01). The second author was also
supported by the Intel Corporation.
This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: wuw.elsevier.nl/locate/entcs
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Many of the problems above are due to difficulties in obtaining sound and
complete semantic models of software and expressing such models in an algo-
rithmic fashion suitable for automatic analysis. Game semantics has potential
to overcome these problems, since it has produced the first accurate, i.e. fully
abstract and fully complete, models for a variety of programming languages
and logical systems (e.g. [1]). Recently, it was shown that the fully abstract
game-based model of second-order finitary Idealised Algol (i.e. with finite data
types and without recursion) with iteration can be represented using only reg-
ular expressions [10], and that this can be used for efficient program analysis
and verification [3].

Game semantics has several very suitable features for software model check-
ing. It produces observationally fully abstract models with a maximum level
of abstraction, since internal state changes during computation are abstracted
away. [t can compositionally model terms-in-context, i.e. open program frag-
ments. This ability is essential in analysing properties of software components
which contain undefined (free) variables and procedures.

We present an approach for compositional software modelling and veri-
fication, based on game semantics and the CSP process algebra (e.g. [15]).
We focus on second-order finitary Idealised Algol with iteration. The game
semantics of any term-in-context is represented as a CSP process. Observa-
tional equivalence between terms, and verification of regular properties, are
decidable by checking traces refinement between CSP processes.

Compared with the regular expressions approach [10], this CSP based ap-
proach offers several benefits. Using the wide range of operators available in
CSP, program terms are represented as processes in a clear and compositional
way. The process which models a term is defined as a parallel composition of
processes which model its subterms, with synchronisation events being hid-
den. Traces refinement between CSP processes can be automatically checked
by the FDR tool [9], which is highly optimised for verification of parallel
networks of processes. FDR also offers a range of compositional state-space
reduction algorithms [14], enabling smaller models to be generated before or
during refinement checking.

We have implemented a prototype compiler which, given any term-in-
context, outputs a CSP process representing its game semantics. The output
can be loaded into the ProBe tool for interactive exploration, or the FDR tool
for automatic analysis. FDR also contains an interactive debugger, when the
answer to a refinement query is negative.

Effectiveness of our approach is evaluated on several variants of two exam-
ples: a sorting algorithm, and an abstract data type implementation. Some
of the experimental results show that, for minimal model generation, we out-
perform the approach based on regular expressions [3].

The paper is organised as follows. Sections 2 and 3 briefly recall the pro-
gramming language, the CSP representation of its game semantics, and ver-
ification of observational equivalence. Further details can be found in the
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companion paper [7] which concentrates on theory, whereas this paper is de-
voted to applications and property verification. Section 4 shows how proper-
ties given in a linear temporal logic on finite traces, or as finite automata, can
be verified. In Sections 5 and 6, we present the compiler and two case studies.

2 The programming language

The input to our compiler is a term-in-context of second-order finitary Ide-
alised Algol with iteration. Idealised Algol [12] is a compact programming
language, similar to Core ML, which combines the fundamental features of
imperative languages with a full higher-order procedure mechanism.

The language has basic data types 7, which are the booleans and a finite
subset of the integers. The phrase types of the language are expressions,
commands and variables, plus first-order function types.

T == int | bool
o == exp[r] | comm | wvar|T]
f =0 | oXoxX 020

Terms are introduced using type judgements of the form I' = M : 6, where
I'= {L1 : 91,-",Lk : Gk}

Expression-type terms are built from constants and arithmetic/logic oper-
ators (E; * E»). Command-type terms are built by the standard imperative
operators: assignment (V := F), conditional (if B then M else M,), while
loop (while B do C'), sequencing (C' s M, note that commands can be sequenced
not only with commands but also with expressions or variables), no-op (skip),
and a non-terminating command (diverge). There are also term formers for
dereferencing variables (1V'), application of first-order free identifiers to ar-
guments (¢Mj - - - My), local variable declaration (new[r]|¢in C), and function
definition constructor (let ¢ (11 : o1,...,t; : 0g) = N in M). Full typing
rules can be found in [7].

3 The CSP model

Here we recall the main properties of the CSP representation of game seman-
tics of program terms. The details of this representation and some examples
can be found in [7]. An introduction to game semantics is available in [2]. A
comprehensive text on CSP is [15].

3.1 Interpretations of types and terms

With each type 0, we associate a set of possible events, the alphabet Aj.
The alphabet of a type contains events q € Qy called questions, which are
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appended to channel with name ), and for each question q, there is a set of

events a € Ay called answers, which are appended to channel with name A.
Aint =40, Nppaw — 1}, Apoor = {true, false}
Qexp[*r] = {Q}v Apr[r] = AT
Qeomm = {run}, AGL, = {done}
Quarfr] = {read, write.s | © € Ay}, Aped, = A, Apiies = {ok}
qu XX op—00 — {ja] qe Qa']'ao <j <k},
AL immy = (joa | a€AZ},  for0<j<k

Ay = Q.Qy U A. UqEQg A;.l

We interpret any typed term-in-context I' = M : o by a CSP process
[T+ M : 0] “*" whose set of terminated traces

Losp(TEM:0)={t | () € traces([l' - M : 6] ")}

is the set of all complete plays of the game strategy for the term. Events of
this process are from the alphabet Ar.,, defined as:

Ao =1Ag={ra | a€ Ay}
Ar = Ub:oer Ao
Ares = ArU A,
The compositional definition of the processes [I' - M : 6]“*" is given in
Appendix A.

3.2 Observational equivalence

Two terms M and N are observationally equivalent, written M =, N, if and
only if for any context C[—] such that both C[M] and C[N] are closed terms
of type comm, C[M] converges if and only if C'[N] converges. It was proved
in [1] that this coincides to equality of sets of complete plays of strategies for
M and N, i.e. that the games model is fully abstract.

For the programming language fragment treated in this paper, it was shown
in [7] that observational equivalence is captured by two traces refinements:

Theorem 3.1 (Observational equivalence) We have:
ITFM=,N < [[+M:0]% O0RUNy,. Cr [TFN:o]®" A
[CHN:o]®" O0RUNy, . Cp [TFM:o]?F
where RUNy =7z : A — RUN,4. O

(1)

It is also proved in [7] that the process representing any term is finite state,
and so observational equivalence is decidable using FDR.

4 Property verification

In addition to checking observational equivalence of two program terms, it is
desirable to be able to check properties of terms. Recall that for any term
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'+ M : o, the CSP process [I' = M : o] “5P has the property that its set of
terminated traces

Lesp(TEM:o)={t | t (V) € traces([I' - M : a]]CSP)}

is the set of all complete plays of the strategy for I' = M : 0. We therefore
focus on properties of finite traces, and take the view that I' = M : o satisfies
such a property if and only if all traces in Losp(I' = M : o) satisfy it.

4.1  Linear temporal logic

A standard way of writing properties of linear behaviours is by linear temporal
logic. Given a finite set X, we consider the following formulas. In addition to
propositional connectives, linear logic contains the temporal operators ‘next-
time’ and ‘until’.

¢ u= true | a€X | p | p1 Voo | Od | dr1Ugo

We call this logic LTL?, because we give it semantics over finite traces (i.e.
sequences) of elements of ¥. In particular, formulas a, Q¢ and ¢; U p, require
the trace to be non-empty. For any trace t of length k, we write its elements

as ti, ..., t;, and we write ¢* for its i'" suffix (t;,..., ).
t = true
tEa iff t#()andt;=a

t o iff tFo

tE ¢V oy iff tE@ ortE oo

(EO0 i 4 (and o

t = ¢ Ugpy iff there exists i € {1,...,] ¢ | +1} such that ¢' = ¢
and for all j € {1,...,i — 1}, t/ E ¢

The boolean constant false, and boolean operators such as A and — can
be defined as abbreviations. The same is true of the temporal operators ‘even-
tually’ and ‘always’:

Op = truelU ¢ O¢p = =500
Duals of the ‘next-time’ and ‘until’ operators are also useful:
Q=09 1 Vs = (g1 U—go)
Their semantics is as follows:
tEQo  iff t=(ork e
t E ¢ Ve iff either forall i € {1,...,|¢|+1}, t' | ¢o,
or there exists i € {1,...,| | +1} such that t = ¢,
and for all j € {1,...,1}, t/ &= ¢
5
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Fig. 1. Model of while b do C

A term I' = M : o satisfies a formula ¢ of LTL}“”" if and only if for every
trace t € Losp(THM 2 0), t = ¢.

Example 4.1 Consider the following term:
b : bool, C :comm + while b do C : comm

The transition system of the CSP process for this term is shown in Figure 1.
Since both b and C are free identifiers, the successfully terminated traces of
this process are all those corresponding to executing C' zero or more times
while the value of b is true, and finishing when the value of b is false.

Therefore, this term satisfies $b.A.false, but does not satisty & C.Q.run.
It also satisfies O(b.A.true — O C.Q.run), but does not satisfy O(b.Q.q —
&C.Q.run).

There is an algorithm which, given any formula ¢ of LTL?, constructs:
* a CSP process Py such that ¢ |= ¢ if and only if t™(v') € traces(P});

e a finite transition system which has the same finite traces as Pf.
This is similar to constructing a finite automaton which accepts a finite trace
t if and only if ¢ = ¢. The details can be found in Appendix B.

We therefore have a decision procedure which, given a program term
' = M : o and a formula ¢ of LTL}“”", checks satisfaction. It works by

constructing the CSP processes [T+ M : 6] “*" and P(f”", and checking the
traces refinement ?

(2) Py O RUNy,, Cr [TFM:o]™"

4.2 Finite automata

More generally, any property such that the set of all finite traces which satisfy
it is regular, can be represented in CSP. Suppose A is an automaton with
finite alphabet X, finite set of states (), transition relation 77 C @ x X X @,
initial states Q° C @, and accepting states F C Q. For any ¢ € Q \ F, we

2 If ¢ contains the U operator, the standard FDR procedure for constructing a transition
system for Pf”" may not terminate. In this case, the traces refinement above can be
checked by FDR either by representing as a CSP process the finite transition system for
P(f”" which the algorithm in Appendix B produces, or by the approach in Section 4.2.
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a,c a,b,c

.9

Fig. 2. A finite automaton

define
Pq = D(q,a,q’)eT a — qu
For any ¢ € F', we define
P, = (D(q’a’q,)eT a — P,) 0O SKIP
This is a valid system of recursive CSP process definitions, so we can let
Py = quQo P,

We then have that P4 has finitely many states and
t is accepted by A iff t7(V') € traces(Py)

Example 4.2 Consider the automaton A in Figure 2, whose alphabet is
{a, b, c}. It accepts a finite trace ¢ if and only if t &= Ob.
The CSP process P4 is defined as:

PA:P1
Pi=(a— P)0(b— Py)O(c — Py)
P2:(a—>P2)D(b—>P2)D(C—>P2)DSK[P

Therefore, given a program term I' = M : ¢ and a finite automaton A with
alphabet Ar.,, we can decide whether A accepts each complete play of the
strategy for I' = M : o by checking (e.g. using FDR) the traces refinement

(3) PAORUN,, Crp [CFM:0]%"

This also provides another way of deciding satisfaction of a formula ¢ of
LTL}“””: construct a finite automaton A which accepts a finite trace ¢ if and
only if ¢ = ¢, and then check the traces refinement above.

5 Compiler

We have implemented a compiler in Java [4], which automatically converts
a term-in-context (i.e. an open program fragment) into a CSP process which
represents its game semantics. The input is code, with simple type annotations
to indicate sizes of finite integer data types. The resulting CSP process is
defined by a script in machine-readable CSP [15] which the compiler outputs.

The scripts output by the compiler can be loaded into the tools ProBE for
interactive exploration of transition systems, and FDR for automatic analysis
and interactive debugging [9]. One of the functions of FDR is to check traces
refinement between two finite-state processes. As we saw above, this can be

7
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used to decide observational equivalence between two terms (1), satisfaction
of a linear temporal logic formula (2), and containment in a regular language
(3)-

FDR offers a number of hierarchical compression algorithms, which can be
applied during either model generation or refinement checking. The scripts
which our compiler produces normally contain instructions to apply diamond
elimination and strong bisimulation quotienting to subprocesses which model
local variable declaration subterms. This exploits the fact that game semantics
hides interactions between a local variable and the subterm which is its scope.
These interactions become silent (i.e. 7) transitions, enabling the model to be
reduced.

Instead of the infinite data type of all integers, the programming language
fragment considered in this paper has finite data types. We work with sets of
integers modulo k. Each integer variable is declared to be of type int%k for
some k, and different values of £ can be used for different variables. Operations
between variables with distinct integer types int%k and int%k, are interpreted
as modulo the minimum of %; and ks.

6 Applications

We now consider application of the approach proposed above and discuss
experimental results for two kinds of examples: a sorting algorithm, and an
abstract data type implementation.

6.1 A sorting algorithm

In this section we analyse the bubble-sort algorithm, whose implementation
is given in Figure 3. The code includes a meta variable n, representing array
size, which will be replaced by several different values. The integers stored in
the array are of type int%3, which consists of values 0, 1 and 2. The type of
index ¢ is int%n+1, i.e. one more than the size of the array.

The implementation of bubble-sort is standard. The program first copies
the input array z[] into a local array a[], which is then sorted and copied back
into z[]|. The array being effectively sorted, a[], is not visible from the outside
of the program because it is locally defined, and only reads and writes of the
non-local array z[] are seen in the model. A transition system of the model
CSP process for n = 2 is shown in Figure 4. The left-hand half represents
reads of all possible combinations of values from z[], while the right-hand half
represents writes of the same values in sorted order.

Table 1 contains the experimental results for minimal model generation.
The experiment consisted of running the compiler on the bubble-sort imple-
mentation, and then letting FDR generate a transition system for the resulting
process. The latter stage involved a number of hierarchical compressions, as
outlined in Section 5. We list the execution time in minutes, the size of the

8
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z[n] : var int%3 +
new int%3 aln] in
new int%n+1 1 in
while (1 < n) {ali] :==2[i]; i:=i+1; }
new bool flag := true in
while(flag){

1:=0;

flag := false;

while (i <n —1) {

if (ali] > afi +1)) {

flag := true;
new int%3 temp in
temp := alil;

ali] := a[i + 1];
a[i + 1] := temp; }

ir=14+1; }}
1 :=0;
while (i < n) {z[i]:=ali]; i:=i4+1; }
: comm

Fig. 3. Implementation of bubble sort

x.0.A.0k ﬂ.l Q.write,
U/

x.1.Q.write.

x,I.A.okm A.done /\ v
/ / @

Qmun /7 x0Qq x.0.A.1 /\ x.1.Qq —
G / /

x.0.A.0k

Fig. 4. Transition system of the model for n = 2

largest generated transition system, and the size of the final transition system.
We ran FDR on a Research Machines 2.5 GHz Xeon with 2GB RAM. The
results from the tool based on regular expressions were obtained on a Sun-
Blade 100 with 2GB RAM [3]. The results confirm that the two approaches
give isomorphic models, where the CSP models have an extra state due to
representing termination by a v' event.

Further information about minimal model generation for n = 20 is shown
in Figure 5. FDR first produces a transition system for the subprogram which
is the scope of the declaration of the local array a[]. Each component of a| ] has
an index from 0 to 19 and is represented by a process which keeps its value, and
performs reads and writes to that component. FDR obtains the final model by

9
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Experimental results for bubble-sort minimal model generation

n CSP Regular expressions
Time (m) | Max. st. | Model st. | Time (m) | Max. st. | Model st.
5) 6 1775 164 5) 3 376 163
10 20 18 752 949 10 64 776 948
15 o0 115 125 2 859 120 352 448 2 858
20 110 378 099 6 394 240 1153 240 6 393
30 750 5 204 232 20 339 failed
- - & - - Before compression —e— After compression
400,000
v‘ M
350,000 " .
»° \
300,000 - B
250,000 ""' : .
e >
200,000 —~ -
150,000 ;" /‘\\ ",
100,000 - /
"' / \ \‘
50,000 - ut PY
0 + -\ - T T T T T T T \,—\

a9 a11 a13 a15 a7 a.19

Fig. 5. Effects of compressions for bubble sort with n = 20

taking the transition system for the scope of a[]| and composing it (by parallel
composition and hiding) with transition systems for the components of al]
in turn. At each step, compression algorithms are applied. In the figure, we
show numbers of states before and after compression, after every two steps.

We expect FDR to perform even better in property verification. For check-
ing refinement by a composite process, FDR does not need to generate an
explicit model of it, but only models of its component processes. A model of
the composite process is then generated on-the-fly, and its size is not limited
by available RAM, but by disk size.

6.2 An abstract data type implementation

Figure 6 contains an implementation of a queue of maximum size n as a circu-
lar array. There are four free identifiers: commands empty() and overflow(),
expression p of integers type modulo m, and command ANALYSE which

10
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empty() : comm,
overflow() : comm,
p:exp int%m,
ANALYSE (comm, exp int%m) : comm +
new int%m buffer[n] in
new int%n front in
new nt%n tail in
new int%n+1 queue_size in
let exp bool isempty() { return queue_size == 0; } in
let exp bool isfull() { return queue_size == n; } in
let comm add(exp int%m z) {
if (isfull()) overflow();
else {
buffer(tail] := x;
tail := tail + 1;
queue_size := queue_size + 1; }
}in
let exp int%m next() {
if (isempty() {
empty();
return 0; }

else {
front := front + 1;
queue_size 1= queue_size — 1;
return buffer(front —1]; }
}in
ANALYSE (add(p), next())
: comm

Fig. 6. A queue implementation

takes two arguments. After implementing the queue by a sequence of local
declarations, we export the functions add and nezt by calling ANALYSE with
arguments add(p) and next(). Game semantics will therefore give us a model
which contains all interleavings of calls to add(p) and next(), corresponding
to all possible behaviours of the non-local function ANALYSFE. Since the ex-
pression p is also non-local, the value of p can be different each time add is
called. The queue implementation uses the non-local commands empty() and
overflow() for handling calls to next on the empty queue, respectively add on
a full queue.

A transition system of the model CSP process for a data set of size m =1
and maximum queue size n = 2 is shown in Figure 7. For clarity, labels ADD
and NEXT are used instead of ANALYSE.1 and ANALYSE 2.

Table 2 contains results for minimal model generation for a data set of
size m = 3 and several maximum queue sizes. For maximum size n = 10,
further information is displayed in Figure 8. Similar to the corresponding
figure for the bubble-sort example, we show numbers of states before and

11
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NEXTAD . NEXT.Q
Qq
ANALYSE.O.A.done

rort a0 maent )
O

A.done v

ANALYSE.0.A.dong,

overflow.0.Q.run

Fig. 7. Transition system of the model for n =2 and m =1

Table 2
Experimental results for queue minimal model generation with m = 3

n Time Model states Max. states
2 5 sec 70 237
5) 18 sec 1 825 12 351
10 80 min 442 870 5 225 757
- - ¢ - -Before compression —@— After compression
TS
5,000,000 n
4,000,000 .
3,000,000
N
2,000,000
1,000,000 *A/./?'A\
0 : : : T @ T T - ‘\- T T T 1

buf.0 buf.1 buf.2 buf.3 buf.4 buf.5 buf.6 buf7 buf.8 buf.9

Fig. 8. Effects of compressions for queue implementation with n = 10

after compression, when transition systems for components of the local array
buffer|] are composed in turn with the transition system for the rest of the
program.

Using the techniques in Section 4, we can check a range of properties
of the queue implementation. For example, linear temporal logic formu-
las =Coverflow and =Oempty assert that the non-local commands handling

12
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Table 3

Experimental results for verification of properties (s=sec, m=min)

n = empty = overflow

not min. model | min. model | not min. model | min. model
10 67s+46s+0s 67s+80m+0s | 50s+46s+97s | 50s+80m+0s
12 | 103s4+61s+0s failed 77s+61s+18m failed

13| 127s4+70s+0s failed 93s+70s+58m failed

writes to full queues and reads from empty queues are never called. As ex-
pected, checking them returns that they are not satisfied. Counter-example
traces which the FDR debugger gives correspond to n + 1 consecutive calls
of ADD after which overflow is called, and a single NEXT call after which
empty is called.

Specifically, the CSP process PEOempty, where ¥ is the alphabet of events

for the queue implementation term, is equivalent to
wp - (7w X\{| empty |} — p) O SKIP

Checking the traces refinement (2) on FDR produces the following counter-
example trace:

1 Q.run 6 NEXT.A.0

2 ANALYSE.0.Q.run 7 ANALYSFE.0.A.done
3 NEXT.Q.q 8 A.done

4 empty.0.run 9 Vv

5 empty.0.done

Table 3 shows some experimental results for checking the two formulas.
We compared refinement checking without first generating a minimal model
against refinement checking preceded by minimal model generation. In the
former case, compressions are not applied when components of the array buffer
are composed with the rest of the program. Instead, a composite model is
generated on-the-fly during refinement checking. This enabled us to check the
two properties up to maximum queue size n = 13, whereas minimal model
generation did not succeed for n > 10. The times shown are sums of times
which FDR took to process the specification, to process the implementation,
and to perform the refinement check.

In addition to checking properties of external behaviours of given terms, we
can check assertions which refer to internal data. Assertions can be added to a
term using a local function assert whose argument is a boolean expression. If
the argument is true, the assert function does nothing, but otherwise it calls
a non-local function error. In the game semantics of the augmented term,
any occurrence of events error.0.run and error.0.done represents an assertion
violation.

For example, we can check that whenever a value y is added to the queue,
and then all items except one are removed from the queue, the remaining item
has value y. We do this by replacing the call of the ANALYSFE function in

13



DmMovsKT AND LaAzié

Figure 6 by the following code:

let comm assert(exp bool b) {
if b then skip;
else error();

}in

let exp bool validate() {
new int%n y in

y=Dnr;

add(y);

while (queue_size > 1)

next();

return (next() == y);
}in
ANALYSE (add(p), next(), assert(validate()))
: comm,

where error() and ANALYSE (comm, int%n, comm) are non-local commands.

We then check whether this modified queue implementation satisfies the
property =<error. We performed this on FDR for a data set of size m = 2
and for maximum queue size n = 2. As expected, a counter-example trace
was produced, showing that this particular assertion is violated after n calls
of ADD, i.e. when the queue is full. When the assertion is corrected so that
it applies only to non-full queues, the check succeeds.

7 Conclusion

In this paper, we extended the approach to software model checking proposed
in [7] to checking properties given as formulas of linear temporal logic or as
finite automata, and we evaluated it on two kinds of examples: a sorting
algorithm, and an abstract data type implementation.

The experimental results show that open program fragments with large
internal state spaces can be verified, partly due to efficiency of the FDR tool
for on-the-fly checking of parallel networks of processes. They also show that
this approach can outperform the approach based on regular expressions [3].

As future work, we intend to extend the compiler so that parameterised
program terms (such as parametrically polymorphic programs) are translated
to single parameterised CSP processes. Such processes could then be analysed
by techniques which combine CSP and data specification formalisms (e.g.
[8,13]) or by algorithms based on data independence [11].
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A Processes for terms
Ezxpression constructs

[T Fv:exp[r]]“F = Q.g — A.v — SKIP, v € A, is a constant

[T+ not B : exp[bool]] " =

[CHB: exp[bool]]]CSP[Ql/Q, A /Al |
{1Q1,A1[}

(Q.q = Qi1.q = A17v : Apooy — A.(not v) — SKIP) \ {| 1, A1 |}
[T+ E, e E,: explr]] ™ =

[T+ B explr]] 7@/ Q, A /4] ||
{l@1,A1}

([T + By : eap[r]] 7 [@:/Q, A2/ A] |l
(1Qortsl}

(Q.q = Q1.q > A17vl: A, — (g — A702: A, —
A (vl @ v2) = SKIP) \ {| @2, A2 [}) \ {| @1, A1 [}
[CFo:ep[r]]F = Q.¢ — 1.Q.q — 1.A?v : A, — A.v — SKIP

Command constructs

[T - skip : comm]“*" = Q.run — A.done — SKIP
[T & diverge : comm]“*" = STOP
[CFCgM:o]?F =

[T F C:comm]F[Qi/Q, A /A] |
{lQ1, A1}

(T M o] (@)@, A2/A] |
(1922421}

(Q7q: Qy = Qr.run — Aj.done — (o.q — Ay?a: A — A.a — SKIP)

\ Al @2 Az [\ A{] @, Au [}
16
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[T F if B then My else M, : o] " =

[CHB: exp[bool]]]CSP[Qg/Q, Ao/A]l |
{1Qo,A0l}

(e w1 @/ @ A/ B SKIP) -

([T = My : o] CSP[Q2/Q; Ay/A] O SKIP) o ||A |

(Q7q: Qy = Qo-q¢ = Ao?v : Apoy — (Q1.q — A17a: AT — A.a — SKIP
v} Qrq— Ay?a: AY — A.a — SKIP))
V{1 @, 4> I\ @1, Ar [\ Qo 4o 1}
[T & while B do C : comm] " =

(pp'([B: comm]°F[Qi/Q, A1 /Al 3p") O (A.done — SKIP)) ||
{1Q1,A1,A[}

((np".(0C s commD“"[Qa/ Q. A2/ A3 p") O (A-done — SKIP)) ||

(Q.run — pup.Qi.q = A170 : Apoy — (Qa.run — Ag.done — p € v F
A.done — SKIP)) \ {| @2, Az |}> \ {] @, 41|}

[T F o comm] " = Q.run — 1.Q.run — 1.A.done — A.done — SKIP

Variable constructs

[T F o var[r]]F =
(Q.read — 1.Q.read — 1.A%v : A, — A.v — SKIP) O
(Q.write?v : A; — 1.Q.write.v — v.A.0ok — A.ok — SKIP)

[TV :=M:comm] =

[T+ M:eap[r]]“7[Q1/Q, A1/A] |
{l@1,A1]}

([T V:oar[r)] (@) Q, A2/ A] |l
(1Qortal}

(Q.run — Q1.q — A17v 1 A; — Qu.write.v — As.0k
— A.done — SKIP) \ {| @2, 42 |}) \ {| @1, A1 |}
[T HV : eaplr]] P =

[CEV:oar[r]]F[Q1/Q, A /A] |
{1Q1,A1}

(Q.g = Qy.read - A17v : A, — Av — SKIP) \ {| @1, A1 |}
17
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[T+ new[r] v in M : comm]“" =

(IT = M : comm] ™" . ||A|} Ussvarlrlya,) \ {| ¢ |}
where a;,; = 0, apoo; = false, and: ’

Usvarrl,o = ((1-Q.read — 1.A'0 = Usparr),n ) O
(t.Q.write?v' : Ay = 1.A.0k — U,parfr],er ) O

( A.done — SKIP )

Application and functions

ICF oM ... M) 0] = Q7q: Q, — 1.0.Q.q —

k ,
(ML-( D]-ZI([[F - M - O_j]]CSP {‘QHA‘} 0J-Q7q: Qyy — Q.q — ATa: Al

5 1j.Aa — SKIP)\{| QA |} 3 L) O SKIP) 3 1.0.A% : A9 — A.a — SKIP

[CFlet ooy :00,...,0 : 08) = Nin M:o]%F =

(Ir+a:o]™" |
I

(up([CF N :0]%P1.0.Q/Q,0.1/0r, ..., 1k ig, 0.0. A/ A] gp)DSKTP))
\{l e}

B Processes for formulas

We show how, given any formula ¢ of LTL?, to construct:
« a CSP process Pj such that ¢ |= ¢ if and only if t™(v) € traces(P});
* a finite transition system which has the same finite traces as Pf.

Consider the following variant of LTL?, where only atoms can be negated,
and operators A, () and V are basic rather than derived. We call it LTL—l—?.

¢ = true | false | a | =a | ¢V o[ o1 Ao | Od | O | d1Uds | 1 Vo

Any formula ¢ of LTL? can be transformed into an equivalent formula ¢’
of LTL+]§, since A, () and V are duals of vV, () and U. The size of ¢’ is linear
in the size of ¢.

For formulas ¢ of LTL+}, we define CSP processes P as follows, by
structural recursion on ¢:

PZ.,=RUNY
P =STOP
P =a — RUNY
P% = (2w : $\{a} — RUNY ) O SKIP
18
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PflV@:Pdi Dpﬂi
) b )
P¢1/\¢2 :Pdn |2|]P¢2
v i b
PO¢_?w Y — P¢
P5,=(?w: ¥ — P;)OSKIP
PEIU@:/Lp-PQiD(PflQ(?w:2—>p))

Pflvmzup-(Pqi ng)m(Pqi Q (?w: ¥ — p) O SKIP))

where RUNY = (?w: ¥ — RUNY )0 SKIP.
Now, for any formula ¢ of LTL}, we define P} = P}, where ¢' is the
equivalent formula of LTL—I—?.

Proposition B.1 For any formula ¢ of LTL?, we have that t = ¢ if and
only if t™(V') € traces(P}). A finite transition system which has the same
finite traces as Pf can be constructed.

Proof. It suffices to prove the proposition for formulas ¢ of LTL+J§. The
proof is by structural induction on ¢.
(I
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