
http://wrap.warwick.ac.uk/

Original citation:
Dimovski, A. and Lazic, Ranko (2004) Software model checking based on game
semantics and CSP. University of Warwick. Department of Computer Science.
(Department of Computer Science Research Report). CS-RR-403

Permanent WRAP url:
http://wrap.warwick.ac.uk/61318

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/29189625?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/61318
mailto:publications@warwick.ac.uk

AVoCS 2004 Preliminary Version
Software Model Cheking Based onGame Semantis and CSP 1

Aleksandar Dimovski and Ranko Lazi�Department of Computer SieneUniversity of WarwikCoventry CV4 7AL, UKAbstratWe present an approah for software model heking based on game semantisand CSP. Open program fragments are ompositionally modelled as CSP proesseswhih represent their game semantis. This translation is performed by a prototypeompiler. Observational equivalene and veri�ation of properties are heked bytraes re�nement using the FDR tool. The e�etiveness of our approah is evaluatedon several examples.Key words: Software model heking, Game semantis, CSPproess algebra, FDR re�nement heker1 IntrodutionModel heking [6℄ is a system veri�ation tehnique based on semantis: theveri�er heks whether the semantis of a given system satis�es some property.It has gained industrial aeptane beause, in ontrast to the approahes ofsimulation, testing and theorem proving, model heking o�ers automati andexhaustive veri�ation, and it also reports ounter-examples.The suess of model heking has been mainly for hardware and ommu-niation protools. Reently, model heking of software has beome an ativeand important area of researh and appliation (e.g. [5℄). Unfortunately, ap-plying model heking to software is ompliated by several fators, rangingfrom the diÆulty to model programs, due to the omplexity of programminglanguages as ompared to hardware desription languages, to diÆulties inspeifying meaningful properties of software using the usual temporal logialformalisms. Another reason is the state explosion problem: industrial pro-grams are large and model heking is omputationally demanding.1 We aknowledge support by the EPSRC (GR/S52759/01). The seond author was alsosupported by the Intel Corporation.This is a preliminary version. The �nal version will be published inEletroni Notes in Theoretial Computer SieneURL: www.elsevier.nl/loate/ents

Dimovski and Lazi�Many of the problems above are due to diÆulties in obtaining sound andomplete semanti models of software and expressing suh models in an algo-rithmi fashion suitable for automati analysis. Game semantis has potentialto overome these problems, sine it has produed the �rst aurate, i.e. fullyabstrat and fully omplete, models for a variety of programming languagesand logial systems (e.g. [1℄). Reently, it was shown that the fully abstratgame-based model of seond-order �nitary Idealised Algol (i.e. with �nite datatypes and without reursion) with iteration an be represented using only reg-ular expressions [10℄, and that this an be used for eÆient program analysisand veri�ation [3℄.Game semantis has several very suitable features for software model hek-ing. It produes observationally fully abstrat models with a maximum levelof abstration, sine internal state hanges during omputation are abstratedaway. It an ompositionally model terms-in-ontext, i.e. open program frag-ments. This ability is essential in analysing properties of software omponentswhih ontain unde�ned (free) variables and proedures.We present an approah for ompositional software modelling and veri-�ation, based on game semantis and the CSP proess algebra (e.g. [15℄).We fous on seond-order �nitary Idealised Algol with iteration. The gamesemantis of any term-in-ontext is represented as a CSP proess. Observa-tional equivalene between terms, and veri�ation of regular properties, aredeidable by heking traes re�nement between CSP proesses.Compared with the regular expressions approah [10℄, this CSP based ap-proah o�ers several bene�ts. Using the wide range of operators available inCSP, program terms are represented as proesses in a lear and ompositionalway. The proess whih models a term is de�ned as a parallel omposition ofproesses whih model its subterms, with synhronisation events being hid-den. Traes re�nement between CSP proesses an be automatially hekedby the FDR tool [9℄, whih is highly optimised for veri�ation of parallelnetworks of proesses. FDR also o�ers a range of ompositional state-spaeredution algorithms [14℄, enabling smaller models to be generated before orduring re�nement heking.We have implemented a prototype ompiler whih, given any term-in-ontext, outputs a CSP proess representing its game semantis. The outputan be loaded into the ProBe tool for interative exploration, or the FDR toolfor automati analysis. FDR also ontains an interative debugger, when theanswer to a re�nement query is negative.E�etiveness of our approah is evaluated on several variants of two exam-ples: a sorting algorithm, and an abstrat data type implementation. Someof the experimental results show that, for minimal model generation, we out-perform the approah based on regular expressions [3℄.The paper is organised as follows. Setions 2 and 3 briey reall the pro-gramming language, the CSP representation of its game semantis, and ver-i�ation of observational equivalene. Further details an be found in the2

Dimovski and Lazi�ompanion paper [7℄ whih onentrates on theory, whereas this paper is de-voted to appliations and property veri�ation. Setion 4 shows how proper-ties given in a linear temporal logi on �nite traes, or as �nite automata, anbe veri�ed. In Setions 5 and 6, we present the ompiler and two ase studies.2 The programming languageThe input to our ompiler is a term-in-ontext of seond-order �nitary Ide-alised Algol with iteration. Idealised Algol [12℄ is a ompat programminglanguage, similar to Core ML, whih ombines the fundamental features ofimperative languages with a full higher-order proedure mehanism.The language has basi data types � , whih are the booleans and a �nitesubset of the integers. The phrase types of the language are expressions,ommands and variables, plus �rst-order funtion types.� ::= int j bool� ::= exp[� ℄ j omm j var [� ℄� ::= � j � � � � � � �� ! �Terms are introdued using type judgements of the form � ` M : �, where� = f�1 : �1; � � � ; �k : �kg.Expression-type terms are built from onstants and arithmeti/logi oper-ators (E1 � E2). Command-type terms are built by the standard imperativeoperators: assignment (V := E), onditional (if B then M1 else M2), whileloop (whileB doC), sequening (C o9M , note that ommands an be sequenednot only with ommands but also with expressions or variables), no-op (skip),and a non-terminating ommand (diverge). There are also term formers fordereferening variables (!V), appliation of �rst-order free identi�ers to ar-guments (�M1 � � �Mk), loal variable delaration (new [� ℄ � in C), and funtionde�nition onstrutor (let � (�1 : �1; : : : ; �k : �k) = N in M). Full typingrules an be found in [7℄.3 The CSP modelHere we reall the main properties of the CSP representation of game seman-tis of program terms. The details of this representation and some examplesan be found in [7℄. An introdution to game semantis is available in [2℄. Aomprehensive text on CSP is [15℄.3.1 Interpretations of types and termsWith eah type �, we assoiate a set of possible events, the alphabet A�.The alphabet of a type ontains events q 2 Q � alled questions, whih are3

Dimovski and Lazi�appended to hannel with name Q , and for eah question q, there is a set ofevents a 2 A q� alled answers, whih are appended to hannel with name A.Aint = f0; � � � ;Nmax � 1g; Abool = ftrue; falsegQ exp[� ℄ = fqg; A qexp[� ℄ = A�Q omm = frung; A runomm = fdonegQ var [� ℄ = fread ;write:x j x 2 A�g; A readvar [� ℄ = A� ; A write:xvar [� ℄ = fokgQ�1������k!�0 = fj :q j q 2 Q�j ; 0 � j � kg;A j :q�1������k!�0 = fj : a j a 2 A q�j g; for 0 � j � kA� = Q :Q � [A:Sq2Q� A q�We interpret any typed term-in-ontext � ` M : � by a CSP proess[[� ` M : �℄℄CSP whose set of terminated traesLCSP(� ` M : �) = ft j tbhXi 2 traes([[� ` M : �℄℄CSP)gis the set of all omplete plays of the game strategy for the term. Events ofthis proess are from the alphabet A�`�, de�ned as:A�:� = �:A� = f�:� j � 2 A�gA� = S�:�2�A�:�A�`� = A� [A�The ompositional de�nition of the proesses [[� ` M : �℄℄CSP is given inAppendix A.3.2 Observational equivaleneTwo terms M and N are observationally equivalent, written M �� N , if andonly if for any ontext C [�℄ suh that both C [M ℄ and C [N ℄ are losed termsof type omm, C [M ℄ onverges if and only if C [N ℄ onverges. It was provedin [1℄ that this oinides to equality of sets of omplete plays of strategies forM and N , i.e. that the games model is fully abstrat.For the programming language fragment treated in this paper, it was shownin [7℄ that observational equivalene is aptured by two traes re�nements:Theorem 3.1 (Observational equivalene) We have:� ` M �� N , [[� ` M : �℄℄CSP 2 RUNA�`� vT [[� ` N : �℄℄CSP ^[[� ` N : �℄℄CSP 2 RUNA�`� vT [[� ` M : �℄℄CSP(1)where RUNA =?x : A! RUNA. 2It is also proved in [7℄ that the proess representing any term is �nite state,and so observational equivalene is deidable using FDR.4 Property veri�ationIn addition to heking observational equivalene of two program terms, it isdesirable to be able to hek properties of terms. Reall that for any term4

Dimovski and Lazi�� ` M : �, the CSP proess [[� ` M : �℄℄CSP has the property that its set ofterminated traesLCSP(� ` M : �) = ft j tbhXi 2 traes([[� ` M : �℄℄CSP)gis the set of all omplete plays of the strategy for � ` M : �. We thereforefous on properties of �nite traes, and take the view that � ` M : � satis�essuh a property if and only if all traes in LCSP(� ` M : �) satisfy it.4.1 Linear temporal logiA standard way of writing properties of linear behaviours is by linear temporallogi. Given a �nite set �, we onsider the following formulas. In addition topropositional onnetives, linear logi ontains the temporal operators `next-time' and `until'.� ::= true j a 2 � j :� j �1 _ �2 j � j �1U�2We all this logi LTL�f , beause we give it semantis over �nite traes (i.e.sequenes) of elements of �. In partiular, formulas a,� and �1U�2 requirethe trae to be non-empty. For any trae t of length k , we write its elementsas t1, . . . , tk , and we write t i for its i th suÆx hti ; : : : ; tk i.t j= truet j= a i� t 6= hi and t1 = at j= :� i� t 6j= �t j= �1 _ �2 i� t j= �1 or t j= �2t j=� i� t 6= hi and t2 j= �t j= �1U�2 i� there exists i 2 f1; : : : ; j t j +1g suh that t i j= �2and for all j 2 f1; : : : ; i � 1g; t j j= �1The boolean onstant false, and boolean operators suh as ^ and ! anbe de�ned as abbreviations. The same is true of the temporal operators `even-tually' and `always': 3� = trueU� 2� = :3:�Duals of the `next-time' and `until' operators are also useful:� � = ::� �1V �2 = :(:�1U:�2)Their semantis is as follows:t j=� � i� t = hi or t2 j= �t j= �1V �2 i� either for all i 2 f1; : : : ; j t j +1g; t i j= �2;or there exists i 2 f1; : : : ; j t j +1g suh that t i j= �1and for all j 2 f1; : : : ; ig; t j j= �25

Dimovski and Lazi�
Q.run b.Q.q

A.done ü

C.Q.run

b.A.true

b.A.false

C.A.done

Fig. 1. Model of while b do CA term � ` M : � satis�es a formula � of LTLA�`�f if and only if for everytrae t 2 LCSP(� ` M : �), t j= �.Example 4.1 Consider the following term:b : bool ; C : omm ` while b do C : ommThe transition system of the CSP proess for this term is shown in Figure 1.Sine both b and C are free identi�ers, the suessfully terminated traes ofthis proess are all those orresponding to exeuting C zero or more timeswhile the value of b is true, and �nishing when the value of b is false.Therefore, this term satis�es 3b:A:false, but does not satisfy 3C :Q :run.It also satis�es 2(b:A:true ! 3C :Q :run), but does not satisfy 2(b:Q :q !3C :Q :run).There is an algorithm whih, given any formula � of LTL�f , onstruts:� a CSP proess P�� suh that t j= � if and only if tbhXi 2 traes(P��);� a �nite transition system whih has the same �nite traes as P�� .This is similar to onstruting a �nite automaton whih aepts a �nite traet if and only if t j= �. The details an be found in Appendix B.We therefore have a deision proedure whih, given a program term� ` M : � and a formula � of LTLA�`�f , heks satisfation. It works byonstruting the CSP proesses [[� ` M : �℄℄CSP and PA�`�� , and heking thetraes re�nement 2 PA�`�� 2 RUNA�`� vT [[� ` M : �℄℄CSP(2)4.2 Finite automataMore generally, any property suh that the set of all �nite traes whih satisfyit is regular, an be represented in CSP. Suppose A is an automaton with�nite alphabet �, �nite set of states Q , transition relation T � Q � � � Q ,initial states Q0 � Q , and aepting states F � Q . For any q 2 Q n F , we2 If � ontains the U operator, the standard FDR proedure for onstruting a transitionsystem for PA�`�� may not terminate. In this ase, the traes re�nement above an beheked by FDR either by representing as a CSP proess the �nite transition system forPA�`�� whih the algorithm in Appendix B produes, or by the approah in Setion 4.2.6

Dimovski and Lazi�
b

a,c a,b,c

Fig. 2. A �nite automatonde�ne Pq =2(q ;a;q 0)2T a ! Pq 0For any q 2 F , we de�nePq = (2(q ;a;q 0)2T a ! Pq 0)2 SKIPThis is a valid system of reursive CSP proess de�nitions, so we an letPA =2q2Q0 PqWe then have that PA has �nitely many states andt is aepted by A i� tbhXi 2 traes(PA)Example 4.2 Consider the automaton A in Figure 2, whose alphabet isfa; b; g. It aepts a �nite trae t if and only if t j= 3b.The CSP proess PA is de�ned as:PA=P1P1=(a ! P1)2 (b ! P2)2 (! P1)P2=(a ! P2)2 (b ! P2)2 (! P2)2 SKIPTherefore, given a program term � ` M : � and a �nite automaton A withalphabet A�`�, we an deide whether A aepts eah omplete play of thestrategy for � ` M : � by heking (e.g. using FDR) the traes re�nementPA 2 RUNA�`� vT [[� ` M : �℄℄CSP(3) This also provides another way of deiding satisfation of a formula � ofLTLA�`�f : onstrut a �nite automaton A whih aepts a �nite trae t if andonly if t j= �, and then hek the traes re�nement above.5 CompilerWe have implemented a ompiler in Java [4℄, whih automatially onvertsa term-in-ontext (i.e. an open program fragment) into a CSP proess whihrepresents its game semantis. The input is ode, with simple type annotationsto indiate sizes of �nite integer data types. The resulting CSP proess isde�ned by a sript in mahine-readable CSP [15℄ whih the ompiler outputs.The sripts output by the ompiler an be loaded into the tools ProBE forinterative exploration of transition systems, and FDR for automati analysisand interative debugging [9℄. One of the funtions of FDR is to hek traesre�nement between two �nite-state proesses. As we saw above, this an be7

Dimovski and Lazi�used to deide observational equivalene between two terms (1), satisfationof a linear temporal logi formula (2), and ontainment in a regular language(3).FDR o�ers a number of hierarhial ompression algorithms, whih an beapplied during either model generation or re�nement heking. The sriptswhih our ompiler produes normally ontain instrutions to apply diamondelimination and strong bisimulation quotienting to subproesses whih modelloal variable delaration subterms. This exploits the fat that game semantishides interations between a loal variable and the subterm whih is its sope.These interations beome silent (i.e. �) transitions, enabling the model to beredued.Instead of the in�nite data type of all integers, the programming languagefragment onsidered in this paper has �nite data types. We work with sets ofintegers modulo k . Eah integer variable is delared to be of type int%k forsome k , and di�erent values of k an be used for di�erent variables. Operationsbetween variables with distint integer types int%k1 and int%k2 are interpretedas modulo the minimum of k1 and k2.6 AppliationsWe now onsider appliation of the approah proposed above and disussexperimental results for two kinds of examples: a sorting algorithm, and anabstrat data type implementation.6.1 A sorting algorithmIn this setion we analyse the bubble-sort algorithm, whose implementationis given in Figure 3. The ode inludes a meta variable n, representing arraysize, whih will be replaed by several di�erent values. The integers stored inthe array are of type int%3, whih onsists of values 0, 1 and 2. The type ofindex i is int%n+1, i.e. one more than the size of the array.The implementation of bubble-sort is standard. The program �rst opiesthe input array x [℄ into a loal array a[℄, whih is then sorted and opied bakinto x [℄. The array being e�etively sorted, a[℄, is not visible from the outsideof the program beause it is loally de�ned, and only reads and writes of thenon-loal array x [℄ are seen in the model. A transition system of the modelCSP proess for n = 2 is shown in Figure 4. The left-hand half representsreads of all possible ombinations of values from x [℄, while the right-hand halfrepresents writes of the same values in sorted order.Table 1 ontains the experimental results for minimal model generation.The experiment onsisted of running the ompiler on the bubble-sort imple-mentation, and then letting FDR generate a transition system for the resultingproess. The latter stage involved a number of hierarhial ompressions, asoutlined in Setion 5. We list the exeution time in minutes, the size of the8

Dimovski and Lazi�x [n℄ : var int%3 `new int%3 a[n℄ innew int%n+1 i inwhile (i < n) fa[i ℄ := x [i ℄; i := i + 1; gnew bool ag := true inwhile(ag)fi := 0;ag := false;while (i < n � 1) fif (a[i ℄ > a[i + 1℄) fag := true;new int%3 temp intemp := a[i ℄;a[i ℄ := a[i + 1℄;a[i + 1℄ := temp; gi := i + 1; g gi := 0;while (i < n) fx [i ℄ := a[i ℄; i := i + 1; g: omm Fig. 3. Implementation of bubble sort
Q.run x.0.Q.q A.done üx.0.A.1

x.1.Q.q

x.1.A.0

x.1.A.1

x.1.A.2

x.1.A.2

x.1.A.1

x.1.A.0

x.1.A.1

x.1.A.0

x.1.A.2

x.0.Q.write.2

x.0.Q.write.1

x.0.Q.write.0

x.0.Q.write.1

x.
0.

Q
.w

rit
e.

0

x.
0.

Q.w
rit

e.0

x.0.A.ok

x.0.A.ok

x.0.A.okx.1.Q.q

x.1.Q.q

x.0.A.2

x.0.A.0

x.1.Q.write.2

x.1.Q.write.0

x.1.Q.write.1 x.1.A.ok

Fig. 4. Transition system of the model for n = 2largest generated transition system, and the size of the �nal transition system.We ran FDR on a Researh Mahines 2.5 GHz Xeon with 2GB RAM. Theresults from the tool based on regular expressions were obtained on a Sun-Blade 100 with 2GB RAM [3℄. The results on�rm that the two approahesgive isomorphi models, where the CSP models have an extra state due torepresenting termination by a X event.Further information about minimal model generation for n = 20 is shownin Figure 5. FDR �rst produes a transition system for the subprogram whihis the sope of the delaration of the loal array a[℄. Eah omponent of a[℄ hasan index from 0 to 19 and is represented by a proess whih keeps its value, andperforms reads and writes to that omponent. FDR obtains the �nal model by9

Dimovski and Lazi�Table 1Experimental results for bubble-sort minimal model generationn CSP Regular expressionsTime (m) Max. st. Model st. Time (m) Max. st. Model st.5 6 1 775 164 5 3 376 16310 20 18 752 949 10 64 776 94815 50 115 125 2 859 120 352 448 2 85820 110 378 099 6 394 240 1 153 240 6 39330 750 5 204 232 20 339 failed

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

a.1 a.3 a.5 a.7 a.9 a.11 a.13 a.15 a.17 a.19

Before compression After compression

Fig. 5. E�ets of ompressions for bubble sort with n = 20taking the transition system for the sope of a[℄ and omposing it (by parallelomposition and hiding) with transition systems for the omponents of a[℄in turn. At eah step, ompression algorithms are applied. In the �gure, weshow numbers of states before and after ompression, after every two steps.We expet FDR to perform even better in property veri�ation. For hek-ing re�nement by a omposite proess, FDR does not need to generate anexpliit model of it, but only models of its omponent proesses. A model ofthe omposite proess is then generated on-the-y, and its size is not limitedby available RAM, but by disk size.6.2 An abstrat data type implementationFigure 6 ontains an implementation of a queue of maximum size n as a iru-lar array. There are four free identi�ers: ommands empty() and overow(),expression p of integers type modulo m, and ommand ANALYSE whih10

Dimovski and Lazi�empty() : omm;overow() : omm;p : exp int%m;ANALYSE (omm; exp int%m) : omm `new int%m bu�er [n℄ innew int%n front innew int%n tail innew int%n+1 queue size inlet exp bool isempty() f return queue size == 0; g inlet exp bool isfull() f return queue size == n; g inlet omm add(exp int%m x) fif (isfull()) overow();else fbu�er [tail ℄ := x ;tail := tail + 1;queue size := queue size + 1; gg inlet exp int%m next() fif (isempty()) fempty();return 0; gelse ffront := front + 1;queue size := queue size � 1;return bu�er [front � 1℄; gg inANALYSE (add(p);next()): omm Fig. 6. A queue implementationtakes two arguments. After implementing the queue by a sequene of loaldelarations, we export the funtions add and next by alling ANALYSE witharguments add(p) and next(). Game semantis will therefore give us a modelwhih ontains all interleavings of alls to add(p) and next(), orrespondingto all possible behaviours of the non-loal funtion ANALYSE . Sine the ex-pression p is also non-loal, the value of p an be di�erent eah time add isalled. The queue implementation uses the non-loal ommands empty() andoverow() for handling alls to next on the empty queue, respetively add ona full queue.A transition system of the model CSP proess for a data set of size m = 1and maximum queue size n = 2 is shown in Figure 7. For larity, labels ADDand NEXT are used instead of ANALYSE :1 and ANALYSE :2.Table 2 ontains results for minimal model generation for a data set ofsize m = 3 and several maximum queue sizes. For maximum size n = 10,further information is displayed in Figure 8. Similar to the orresponding�gure for the bubble-sort example, we show numbers of states before and11

Dimovski and Lazi�
ü

Q.run ANALYSE.0.Q.q

ANALYSE.0.A.done

A.done

NEXT.Q.q

empty.0.Q.run
empty.0.A.done

NEXT.A.0

ADD.Q.run
p.Q.read p.A.0 ADD.A.done

NEXT.Q.q

ANALYSE.0.A.done

ADD.Q.run p.Q.read p.A.0 ADD.A.done

ADD.Q
.ru

n

overflow.0.Q.run

overflow.0.A.done

NEXT.Q.q
NEXT.A.0

ANALYSE.0.A.done

Fig. 7. Transition system of the model for n = 2 and m = 1Table 2Experimental results for queue minimal model generation with m = 3n Time Model states Max. states2 5 se 70 2375 18 se 1 825 12 35110 80 min 442 870 5 225 757

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

buf.0 buf.1 buf.2 buf.3 buf.4 buf.5 buf.6 buf.7 buf.8 buf.9

Before compression After compression

Fig. 8. E�ets of ompressions for queue implementation with n = 10after ompression, when transition systems for omponents of the loal arraybu�er [℄ are omposed in turn with the transition system for the rest of theprogram.Using the tehniques in Setion 4, we an hek a range of propertiesof the queue implementation. For example, linear temporal logi formu-las :3overow and :3empty assert that the non-loal ommands handling12

Dimovski and Lazi�Table 3Experimental results for veri�ation of properties (s=se, m=min)n :3empty :3overownot min. model min. model not min. model min. model10 67s+46s+0s 67s+80m+0s 50s+46s+97s 50s+80m+0s12 103s+61s+0s failed 77s+61s+18m failed13 127s+70s+0s failed 93s+70s+58m failedwrites to full queues and reads from empty queues are never alled. As ex-peted, heking them returns that they are not satis�ed. Counter-exampletraes whih the FDR debugger gives orrespond to n + 1 onseutive allsof ADD after whih overow is alled, and a single NEXT all after whihempty is alled.Spei�ally, the CSP proess P�:3empty , where � is the alphabet of eventsfor the queue implementation term, is equivalent to� p � (?w : �nfj empty jg ! p) 2 SKIPCheking the traes re�nement (2) on FDR produes the following ounter-example trae:1 Q :run 6 NEXT :A:02 ANALYSE :0:Q :run 7 ANALYSE :0:A:done3 NEXT :Q :q 8 A:done4 empty :0:run 9 X5 empty :0:doneTable 3 shows some experimental results for heking the two formulas.We ompared re�nement heking without �rst generating a minimal modelagainst re�nement heking preeded by minimal model generation. In theformer ase, ompressions are not applied when omponents of the array bu�erare omposed with the rest of the program. Instead, a omposite model isgenerated on-the-y during re�nement heking. This enabled us to hek thetwo properties up to maximum queue size n = 13, whereas minimal modelgeneration did not sueed for n > 10. The times shown are sums of timeswhih FDR took to proess the spei�ation, to proess the implementation,and to perform the re�nement hek.In addition to heking properties of external behaviours of given terms, wean hek assertions whih refer to internal data. Assertions an be added to aterm using a loal funtion assert whose argument is a boolean expression. Ifthe argument is true, the assert funtion does nothing, but otherwise it allsa non-loal funtion error . In the game semantis of the augmented term,any ourrene of events error :0:run and error :0:done represents an assertionviolation.For example, we an hek that whenever a value y is added to the queue,and then all items exept one are removed from the queue, the remaining itemhas value y . We do this by replaing the all of the ANALYSE funtion in13

Dimovski and Lazi�Figure 6 by the following ode:let omm assert(exp bool b) fif b then skip;else error();g inlet exp bool validate() fnew int%n y iny = p;add(y);while (queue size > 1)next();return (next() == y);g inANALYSE (add(p);next(); assert(validate())): ommwhere error() and ANALYSE (omm; int%n; omm) are non-loal ommands.We then hek whether this modi�ed queue implementation satis�es theproperty :3error . We performed this on FDR for a data set of size m = 2and for maximum queue size n = 2. As expeted, a ounter-example traewas produed, showing that this partiular assertion is violated after n allsof ADD , i.e. when the queue is full. When the assertion is orreted so thatit applies only to non-full queues, the hek sueeds.7 ConlusionIn this paper, we extended the approah to software model heking proposedin [7℄ to heking properties given as formulas of linear temporal logi or as�nite automata, and we evaluated it on two kinds of examples: a sortingalgorithm, and an abstrat data type implementation.The experimental results show that open program fragments with largeinternal state spaes an be veri�ed, partly due to eÆieny of the FDR toolfor on-the-y heking of parallel networks of proesses. They also show thatthis approah an outperform the approah based on regular expressions [3℄.As future work, we intend to extend the ompiler so that parameterisedprogram terms (suh as parametrially polymorphi programs) are translatedto single parameterised CSP proesses. Suh proesses ould then be analysedby tehniques whih ombine CSP and data spei�ation formalisms (e.g.[8,13℄) or by algorithms based on data independene [11℄.Referenes[1℄ S.Abramsky and G.MCusker, Linearity, sharing and state: a fully abstratgame semantis for Idealized Algol with ative expressions. In P.W.O'Hearnand R.D.Tennent, editors, \Algol-like languages". Birkh�auser, 1997.14

Dimovski and Lazi�[2℄ S.Abramsky, Algorithmi game semantis: A tutorial introdution, Leturenotes, Marktoberdorf International Summer Shool, 2001.[3℄ S.Abramsky, D.Ghia, A.Murawski and C.-H.L.Ong, Applying Game Semantisto Compositional Software Modeling and Veri�ations. In Proeedings ofTACAS, LNCS 2988, 421{435, 2004.[4℄ A.W.Appel and J.Palsberg, Modern Compiler Implementation in Java, 2ndedition. Cambridge University Press, 2002.[5℄ T.Ball and S.K.Rajamani, The SLAM Projet: Debugging System Softwarevia Stati Analysis. In Proeedings of POPL, ACM SIGPLAN Noties 37(1),January 2002.[6℄ E.M.Clarke, O.Grumberg and D.Peled, Model Cheking. MIT Press, 2000.[7℄ A.Dimovski and R.Lazi�, CSP Representation of Game Semantis for Seond-order Idealized Algol. In Proeedings of ICFEM, LNCS, November 2004.[8℄ A.Farias, A.Mota and A.Sampaio, EÆient CSP-Z Data Abstration. InProeedings of IFM, LNCS 2999, 108{127, April 2004.[9℄ Formal Systems (Europe) Ltd, Failures-Divergene Re�nement: FDR2 Manual,2000.[10℄ D.Ghia and G.MCusker, The Regular-Language Semantis of Seond-orderIdealized Algol. Theoretial Computer Siene 309 (1{3), 469{502, 2003.[11℄ R.Lazi�, A Semanti Study of Data Independene with Appliations to ModelCheking. DPhil thesis, Computing Laboratory, Oxford University, 1999.[12℄ J.C.Reynolds, The essene of Algol. In Proeedings of ISAL, 345{372,Amsterdam, Holland, 1981.[13℄ M.Roggenbah, CSP-CASL | A new Integration of Proess Algebra andAlgebrai Spei�ation. In Proeedings of AMiLP, TWLT 21, 2003.[14℄ A.W.Rosoe, P.H.B. Gardiner, M.H.Goldsmith, J.R.Hulane, D.M.Jakson andJ.B.Sattergod, Hierarhial ompression for model-heking CSP or how tohek 1020 dining philosophers for deadlok. In Proeedings of TACAS, LNCS1019, 133{152, 1995.[15℄ A.W.Rosoe, The Theory and Pratie of Conurreny. Prentie Hall, 1998.
15

Dimovski and Lazi�A Proesses for termsExpression onstruts[[� ` v : exp[� ℄℄℄CSP = Q :q ! A:v ! SKIP , v 2 A� is a onstant[[� ` not B : exp[bool ℄℄℄CSP =[[� ` B : exp[bool ℄℄℄CSP [Q1=Q ;A1=A℄ kfjQ1;A1jg(Q :q ! Q1:q ! A1?v : Abool ! A:(not v)! SKIP) n fj Q1;A1 jg[[� ` E1 � E2 : exp[� ℄℄℄CSP =[[� ` E1 : exp[� ℄℄℄CSP [Q1=Q ;A1=A℄ kfjQ1;A1jg([[� ` E2 : exp[� ℄℄℄CSP [Q2=Q ;A2=A℄ kfjQ2;A2jg(Q :q ! Q1:q ! A1?v1 : A� ! Q2:q ! A2?v2 : A� !A:(v1 � v2)! SKIP) n fj Q2;A2 jg) n fj Q1;A1 jg[[� ` � : exp[� ℄℄℄CSP = Q :q ! �:Q :q ! �:A?v : A� ! A:v ! SKIP
Command onstruts[[� ` skip : omm℄℄CSP = Q :run ! A:done ! SKIP[[� ` diverge : omm℄℄CSP = STOP[[� ` C o9 M : �℄℄CSP =[[� ` C : omm℄℄CSP [Q1=Q ;A1=A℄ kfjQ1;A1jg([[� ` M : �℄℄CSP [Q2=Q ;A2=A℄ kfjQ2;A2jg(Q?q : Q� ! Q1:run ! A1:done ! Q2:q! A2?a : A q� ! A:a! SKIP)n fj Q2;A2 jg) n fj Q1;A1 jg16

Dimovski and Lazi�[[� ` if B then M1 else M2 : �℄℄CSP =[[� ` B : exp[bool ℄℄℄CSP [Q0=Q ;A0=A℄ kfjQ0;A0jg�([[� ` M1 : �℄℄CSP [Q1=Q ;A1=A℄2 SKIP) kfjQ1;A1jg(([[� ` M2 : �℄℄CSP [Q2=Q ;A2=A℄ 2 SKIP) kfjQ2;A2jg(Q?q : Q� ! Q0:q ! A0?v : Abool ! (Q1:q! A1?a : A q� ! A:a! SKIP<j v >j Q2:q! A2?a : A q� ! A:a! SKIP))nfj Q2;A2 jg)nfj Q1;A1 jg�nfj Q0;A0 jg[[� ` while B do C : omm℄℄CSP =(� p 0:([[B : omm℄℄CSP [Q1=Q ;A1=A℄ o9 p 0)2 (A:done ! SKIP)) kfjQ1;A1;Ajg�(� p 00:([[C : omm℄℄CSP [Q2=Q ;A2=A℄ o9 p 00) 2 (A:done ! SKIP)) kfjQ2;A2;Ajg(Q :run ! � p:Q1:q ! A1?v : Abool ! (Q2:run ! A2:done ! p <j v >jA:done ! SKIP)) n fj Q2;A2 jg� n fj Q1;A1 jg[[� ` � : omm℄℄CSP = Q :run ! �:Q :run ! �:A:done ! A:done ! SKIPVariable onstruts[[� ` � : var [� ℄℄℄CSP =(Q :read ! �:Q :read ! �:A?v : A� ! A:v ! SKIP) 2(Q :write?v : A� ! �:Q :write:v ! �:A:ok ! A:ok ! SKIP)[[� ` V := M : omm℄℄CSP =[[� ` M : exp[� ℄℄℄CSP [Q1=Q ;A1=A℄ kfjQ1;A1jg([[� ` V : var [� ℄℄℄CSP [Q2=Q ;A2=A℄ kfjQ2;A2jg(Q :run ! Q1:q ! A1?v : A� ! Q2:write:v ! A2:ok! A:done ! SKIP) n fj Q2;A2 jg) n fj Q1;A1 jg[[� `!V : exp[� ℄℄℄CSP =[[� ` V : var [� ℄℄℄CSP [Q1=Q ;A1=A℄ kfjQ1;A1jg(Q :q ! Q1:read ! A1?v : A� ! A:v ! SKIP) n fj Q1;A1 jg17

Dimovski and Lazi�[[� ` new [� ℄ � in M : omm℄℄CSP =([[� ` M : omm℄℄CSP kfj�;Ajg U�:var [� ℄;a�) n fj � jgwhere aint = 0, abool = false, and:U�:var [� ℄;v = (�:Q :read ! �:A!v ! U�:var [� ℄;v) 2(�:Q :write?v 0 : A� ! �:A:ok ! U�:var [� ℄;v 0) 2(A:done ! SKIP)Appliation and funtions[[� ` �(M1 : : :Mk) : �℄℄CSP = Q?q : Q� ! �:0:Q :q!� �L:(2kj=1([[� ` Mj : �j ℄℄CSP kfjQ;Ajg �:j :Q?q : Q�j ! Q :q! A?a : A q�j! �:j :A:a ! SKIP) n fj Q ;A jg o9 L)2 SKIP� o9 �:0:A?a : A q� ! A:a! SKIP[[� ` let �(�1 : �1; : : : ; �k : �k) = N in M : �℄℄CSP =�[[� ` M : �℄℄CSP kfj�jg(� p:([[� ` N : �0℄℄CSP [�:0:Q=Q ; �:1=�1; : : : ; �:k=�k ; �:0:A=A℄ o9 p)2SKIP)�n fj � jgB Proesses for formulasWe show how, given any formula � of LTL�f , to onstrut:� a CSP proess P�� suh that t j= � if and only if tbhXi 2 traes(P��);� a �nite transition system whih has the same �nite traes as P�� .Consider the following variant of LTL�f , where only atoms an be negated,and operators ^, � and V are basi rather than derived. We all it LTL+�f .� ::= true j false j a j :a j �1 _ �2 j �1 ^ �2 j � j � � j �1U�2 j �1V �2Any formula � of LTL�f an be transformed into an equivalent formula �0of LTL+�f , sine ^,� and V are duals of _, and U . The size of �0 is linearin the size of �.For formulas � of LTL+�f , we de�ne CSP proesses P�� as follows, bystrutural reursion on �:P�true =RUNX�P�false =STOPP�a = a ! RUNX�P�:a =(?w : �nfag ! RUNX�)2 SKIP18

Dimovski and Lazi�P��1_�2 =P��1 2P��2P��1^�2 =P��1 k� P��2P�� =?w : �! P��P�� � =(?w : �! P��)2 SKIPP��1U�2 =� p � P��2 2 (P��1 k� (?w : �! p))P��1V�2 =� p � (P��2 k� P��1)2 (P��2 k� ((?w : �! p)2 SKIP))where RUNX� = (?w : �! RUNX�)2 SKIP .Now, for any formula � of LTL�f , we de�ne P�� = P��0 , where �0 is theequivalent formula of LTL+�f .Proposition B.1 For any formula � of LTL�f , we have that t j= � if andonly if t b hXi 2 traes(P��). A �nite transition system whih has the same�nite traes as P�� an be onstruted.Proof. It suÆes to prove the proposition for formulas � of LTL+�f . Theproof is by strutural indution on �. 2

19

	Introduction
	The programming language
	The CSP model
	Interpretations of types and terms
	Observational equivalence

	Property verification
	Linear temporal logic
	Finite automata

	Compiler
	Applications
	A sorting algorithm
	An abstract data type implementation

	Conclusion
	References
	Processes for terms
	Processes for formulas

