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Polymorphi Systems with Arrays:Deidability and Undeidability?Ranko Lazi�1??, Tom Newomb2, and Bill Rosoe21 Department of Computer Siene, University of Warwik, UK2 Computing Laboratory, University of Oxford, UKAbstrat. Polymorphi systems with arrays (PSAs) is a general lassof nondeterministi reative systems. A PSA is polymorphi in the sensethat it depends on a signature, whih onsists of a number of type vari-ables, and a number of symbols whose types an be built from the typevariables. Some of the state variables of a PSA an be arrays, whih arefuntions from one type to another. We present several new deidabilityand undeidability results for parameterised ontrol-state reahabilityproblems on sublasses of PSAs.1 IntrodutionContext. There has been muh interest in reent years in model heking in�nite-state systems (e.g. [12℄). One of the most ommon reasons why a system anhave in�nitely many states is that it has one or more parameters whih an beunboundedly large. For example, a system might have an arbitrary number ofidential parallel omponents, or it might work with data from an arbitrarilylarge data type. In suh ases, the aim is usually to verify that the systemis orret not for spei� instantiations of the parameters, but for all possibleinstantiations.When a system has an arbitrary number of idential parallel omponents, theounting abstration [11℄ an be used to represent it as a Petri net. If the sys-tem uses more than rendez-vous ommuniations between parallel omponents,extensions of Petri nets are used, suh as transfer ars to represent broadastommuniations [9℄, or non-bloking ars to represent partially non-blokingrendez-vous [21℄. Other abstrat models related to Petri nets have also beenused for representing in�nite-state systems, suh as broadast protools [7℄ andmulti-set rewriting spei�ations [6℄.Finding deision proedures for model heking problems on Petri nets andrelated models is therefore useful for veri�ation of a range of in�nite-state sys-tems. Undeidability of suh problems is also signi�ant, for guiding further? We aknowledge support from the EPSRC grant GR/M32900. The �rst au-thor was also supported by grants from the Intel Corporation and the EPSRC(GR/S52759/01), the seond author by QinetiQ Malvern, and the third author bythe US ONR.?? Also aÆliated to the Mathematial Institute, Serbian Aademy of Sienes and Arts,Belgrade.



theoretial and pratial work. Many results of both kinds an be found in theliterature (e.g. [8, 9, 21, 15, 6℄).In pratie, in�nite-state systems are often given by UNITY-style syntax, i.e.using state variables, guards and assignments. This kind of syntax is ommon forde�ning �nite-state systems (e.g. [3℄), where the types of state variables are �niteenumerated types. It is easily extended for expressing in�nite-state systems, byusing type variables whih an be instantiated by arbitrary sets. For example, ifX , Y and Z are type variables representing proessor indies, memory addressesand storable data, then a ahe-oherene protool (e.g. [20℄) might have a statevariable ahe : (X�Y )! (Z�Enum3). Here, ahe is an array (i.e. a funtion)indexed by ordered pairs of proessor indies and memory addresses, and storingordered pairs of storable data and tags from the 3-element type Enum3. Notethat this system is parametri in three dimensions.It is therefore important to investigate deidability of model heking prob-lems on systems given by UNITY-style syntax with type variables and arraystate variables. Moreover, it is desirable to �nd algorithmi translations of suhproblems to deidable problems on Petri nets and related models. This avoidsdupliation of work, and enables use of the various tehniques implemented forthe latter models (e.g. [6℄). However, UNITY-like syntax an suintly expresssystems whih are parametri in several dimensions, ompared with Petri netsand related models whih are either restrited to one or two dimensions [9, 21,6℄ or relatively omplex [15℄. In partiular, relating the two kinds of systems isnon-trivial in general.Contributions. In this paper, we �x a UNITY-like syntax with type variablesand array state variables, and all suh systems polymorphi systems with arrays(PSAs). For generality and suintness, we use a typed �-alulus to expressguards and right-hand sides of assignments. Basi types are formed from typevariables, produts and sums (i.e. disjoint unions). We also use �rst-order fun-tion types, as types of array state variables, or types of operation symbols (suhas �X : X � X ! Bool ). Assignments to array state variables an express arange of operations, inluding writing to several array omponents, or resettingall omponents to a same value.A PSA is polymorphi in the sense that it has a signature, whih onsists ofa number of type variables and a number of symbols whose types an be builtfrom the type variables. A signature is instantiated by assigning non-empty setsto its type variables, and onrete elements or operations to its symbols. Givena PSA and an instantiation of its signature, the semantis is a transition system.We study parameterised veri�ation of PSAs, so a PSA also has a set of allinstantiations of its signature whih are of interest. The semantis is a transi-tion system onsisting of all transition systems for the given instantiations. Ifin�nitely many instantiations are given, this is in�nite-state.We present several new deidability and undeidability results for parame-terised ontrol-state reahability problems on sublasses of PSAs. Control-statereahability (CSR) an express a range of safety properties. We distinguish be-



tween initialised CSR, where all arrays are initialised at the start, and unini-tialised CSR.We show that initialised CSR is undeidable for PSAs with eah of the fol-lowing restritions. In eah ase, the only allowed array operations are readsand writes, and the type variables are instantiated by arbitrary sets of the formf1; : : : ; kg.{ There is only one array, of type X �X ! Bool . The only operation on X isequality.{ There is only one array, of type X � Y ! Bool . The only operations on Xand Y are equalities.{ There are only two arrays, of types X ! Y and X ! Z. The only operationson X , Y and Z are equalities.{ There is only one array, of type X ! Y . The only operation on X is linearorder (�X),3 and on Y equality.For PSAs with arbitrary array operations, but whih have arrays only oftypes X ! Enumm, where the only operation on X is linear order, and whereX is instantiated by arbitrary sets of the form f1; : : : ; kg, we show that initialisedCSR is deidable. The proof is by reduing to a reahability problem for multi-setrewriting spei�ations with NC onstraints, whih has an implemented deisionproedure [6℄.For uninitialised CSR, we obtain similar results.Comparisons. PSAs generalise data-independent systems with arrays [14, 13,22, 19℄ by allowing operations on type variables other than equality, and byallowing any array operation expressible using array instrution parameters andassignments of �-terms to array state variables.It was shown in [22℄ that initialised CSR is undeidable for systems withonly two arrays, of type X ! Y , where the only operations on X and Y areequalities. Our undeidability result strengthens this to two arrays with di�erentvalue types.4Our deidability result extends the deidability result in [22℄ by allowinglinear order on X instead of only equality, and by allowing a wider range ofarray operations.PSAs also generalise the parameterised systems in [16℄, where parameterisa-tion in only one dimension is onsidered. On the other hand, [16℄ treats quan-ti�ation in guards, whih we do not onsider in this paper.Using a type variable X to represent the set of all proess indies, and anarray s : X ! Enumn to store the state of eah proess, any broadast protool[7℄ an be expressed by a PSA. The only operation needed on X is equality.3 An order prediate an express the equality prediate by t = t0 , t � t0 ^ t0 � t.4 The latter systems are less expressive beause di�erent types prevent values on-tained in the two arrays to be mixed.



Organisation. In the next setion, we introdue the syntax and semantis ofPSAs. We de�ne initialised and uninitialised CSR problems in Setion 3. Theundeidability and deidability results are in Setions 4 and 5. In Setion 6, webriey point to future work.We use a model of the Bully Algorithm [10℄ as a running example.2 Polymorphi systems with arraysTo de�ne PSAs, we start with the syntax of types. We have basi types builtfrom type variables, produts and non-empty sums, and funtion types from onebasi type to another. Funtion types will be used as types of array variables,and also as types of signature symbols suh as equality prediates.B ::= X j B1 � � � � �Bn j B1 + � � �+ Bn�1T ::= B j B ! B0Next we need a syntax of terms, whih will be used to form one-step ompu-tations of PSAs. The terms are built from term variables, tuple formation, tupleprojetion, sum injetion, sum ase, �-abstration, and funtion appliation.We onsider only well-typed terms. A signature onsists of a �nite set 
 oftype variables, and a type ontext � whih is a sequene hx1 : T1; : : : ; xn : Tniof typed and mutually distint term variables, where the types Ti an ontainonly type variables from 
. A well-typed term-in-ontext is written 
;� ` t : T ,where these valid type judgements are dedued by standard typing rules [18℄.
;� hx : T i� 0 ` x : T
; � ` t1 : B1 � � � 
;� ` tn : Bn
;� ` (t1; : : : ; tn) : B1 � � � � �Bn
;� ` t : B1 � � � � �Bn
;� ` �i(t) : Bi
;� ` t : Bi
;� ` �B1+���+Bni (t) : B1 + � � �+Bn 8j 6= i � Vars(Bj) � 

;� ` t : B1 + � � �+Bn 
;� hx1 : B1i ` t01 : T � � � 
;� hxn : Bni ` t0n : T
; � ` ase t of x1:t01 or : : : or xn:t0n : T
; � hx : Bi ` t : B0
;� ` �x : B � t : B ! B0
;� ` t1 : B ! B0 
;� ` t2 : B
;� ` t1[t2℄ : B0Using the types and terms above, we an for example express:{ the singleton type Unit as the empty produt, and its unique element as theempty tuple;



{ the boolean type Bool as the sum of two Unit types, and terms false , true,and if t then t01 else t02;{ for any positive n, the n-element enumerated type Enumn as the sum of nUnit types, its elements e1, . . . , en, and a ase term.We an also express any given operation on the Bool and Enumn types, of anyarity.Semantis of types is de�ned as follows. A �nite set 
 of type variablesis instantiated by a mapping ! to non-empty sets. For any type T suh thatVars(T ) � 
, its semantis with respet to ! is a non-empty set JT K!, whih isde�ned in the usual way. JXK! = !JXKJB1 � � � � �BnK! = JB1K! � � � � � JBnK!JB1 + � � �+BnK! = f1g � JB1K! [ � � � [ fng � JBnK!JB ! B0K! = (JB0K!)JBK!For semantis of terms, a signature (
;� ) is instantiated by an ! as above,and a mapping  2 J� K! , i.e. Dom() = Dom(� ) and JxK 2 JT K! for all x : Tin � . For any well-typed term-in-ontext 
;� ` t : T , its semantis with respetto (!; ) is an element JtK!; of JT K!, and is de�ned in the standard way.JxK!; = JxKJ(t1; : : : ; tn)K!; = (Jt1K!; ; : : : ; JtnK!;)J�i(t)K!; = �i(JtK!;)J�Bi (t)K!; = (i; JtK!;)Jase t of x1:t01 or : : : or xn:t0nK!; = Jt0iK!;fxi 7!vg; where (i; v) = JtK!;J�x : B � tK!; = fv 7! JtK!;fx 7!vg j v 2 JBK!gJt1[t2℄K!; = Jt1K!;(Jt2K!;)De�nition 1. A PSA is a 5-tuple (
;�;�;R; I) suh that:{ (
;� ) is a signature, onsisting of type variables and typed term variables(i.e. typed onstant or operation symbols) whih the PSA is parameterisedby.{ � is a type ontext disjoint from � , and suh that (
;��) is a signature.� spei�es the state variables of the PSA and their types. Aording to itstype, a state variable is either basi or an array.{ R is a �nite set of instrutions. Eah � 2 R is of the form� :  � fx1 := t1; : : : ; xk := tkgwhere:� � is a type ontext disjoint from �� and suh that (
;���) is a sig-nature,



� 
;��� `  : Bool , and� x1, . . . , xk are mutually distint variables in �, and 
;��� ` ti : �(xi)for eah i.The semantis of � will be that � onsists of parameters whose values arehosen nondeterministially subjet to satisfying , and then the assignmentsxi := ti are performed simultaneously.In eah state of the system, any instrution in R an be performed.{ I is a set of instantiations of (
;� ).The following are some array operations whih an be expressed as assign-ments to array variables:Reset. Assigning a value t : B0 to eah omponent of a:a := �x : B � twhere x is a fresh variable name.Copy. Assigning an array a0 to a: a := a0Map. Applying an operation t : (B01�� � ��B0n)! B00 omponentwise to severalarrays: a := �x : B � t[(a01[x℄; : : : ; a0n[x℄)℄where x is fresh.Multiple partial assign. Assigning t1, . . . , tn to omponents x of a whihsatisfy onditions d1, . . . , dn respetively, where x may our free in the tiand di: a := �x : B � if d1 then t1 elseif � � � dn then tn else a[x℄We may abbreviate this as a[x : d1; � � � ; dn℄ := t1; � � � ; tn. Note that if di anddj with i < j overlap, assigning ti takes preedene.Write. Assigning t01, . . . , t0n to a[t1℄, . . . , a[tn℄:a[x : x = t1; � � � ;x = tn℄ := t01; � � � ; t0nwhere x is fresh. We may abbreviate this asa[t1; � � � ; tn℄ := t01; � � � ; t0nCross-setion. For example, assigning to a row t of an array a : (B1�B2)! B0:a[x : (�1(x) = t)℄ := t0Using instrution parameters, we an for example also express:Choose. Nondeterministially hoosing a whole array:ha0 : B ! B0i : true � fa := a0g



De�nition 2. The semantis of a PSA (
;�;�;R; I) is the transition system(S;!) de�ned as follows:{ The set of states S onsists of all (!; ; �) suh that (!; ) 2 I and � 2 J�K!.{ (!; ; �) ! (!0; 0; �0) i� !0 = !, 0 = , and there exists � 2 R whih anprodue �0 from �.More preisely, as � is of the form � :  �fx1 := t1; : : : ; xk := tkg, there exists� 2 J�K! suh that JK!;�� = tt, and:� �0JxiK = JtiK!;�� for eah i;� �0Jx0K = �Jx0K for all x0 62 fx1; : : : ; xkg.Example 1. We express as a PSA a model of the Bully Algorithm for leadershipeletion in a distributed system in whih proess identi�ers are linearly ordered[10℄.The signature is (fXg; h�X : X �X ! Bool i), where X represents the set ofall proess identi�ers. We onsider all instantiations whih assign to X a set ofthe form f1; : : : ; kg, and to �X the standard ordering.We model passing of time and detetion of failure as follows. A proess whihhas not failed an broadast to relevant proesses with lower identi�ers, to signalits presene. At that point, its lok is set to 1. Whenever the system performsa tok transition, all loks are inreased by 1. If this would make the lok ofa proess greater than a onstant TS, that proess fails. Proesses an also failat other times. In any ase, it is not possible for an alive proess to let TS toktransitions happen without signalling its presene.Sine proesses periodially inform others of their presene, there is no needto have expliit eletion broadasts: a proess in Elet mode an simply waitfor TE time units, and if it does not reeive a signal from a higher proess duringthat time, it goes into Coord mode.In order for the system to be within the X ,�-to-Enum lass, proesses donot store identi�ers of their oordinators, although a proess in Coord modeperiodially informs all lower proesses that it is their oordinator. For spei�-ation purposes, we an maintain oordinator identi�ers for a bounded numberof proesses.The state of a proess onsists of its mode and two loks. The primary lokis used to measure the time sine the proess last signalled its presene. Theseondary lok measures waiting time of the proess: either during an eletion,or while awaiting a oordinator, or sine it last heard from a oordinator whilerunning. We use one array variable to hold all this information:a : X ! (fElet ;Coord ;Await ;Run;Fldg�f1; : : : ; TSg � f1; : : : ;maxfTE; TA; TRgg)It remains to present the system's instrutions. We write a[t℄:m, a[t℄: anda[t℄:0 instead of �1(a[t℄), �2(a[t℄) and �3(a[t℄).tok This instrution inreases by 1 the primary loks of all proesses whihare not in the Fld mode. If that would make the primary lok of a proess



greater than TS , that proess beomes Fld and its loks are reset to 1. Theinstrution also inreases by 1 the seondary loks of all proesses in theElet , Await , or Run modes. If that would make the seondary lok of aproesses greater than the orresponding onstant TE, TA, or TR, the modeof that proess is hanged and its seondary lok is reset to 1. For example,if a proess is Run, but has not heard from a Coord for TR time units, itgoes into Elet mode.hi : true�a := �x : X � if a[x℄:m 6= Fld ^ a[x℄: = TS then (Fld ; 1; 1)elseif a[x℄:m = Elet ^ a[x℄:0 = TE then (Coord ; a[x℄:+ 1; 1)elseif a[x℄:m = Await ^ a[x℄:0 = TA then (Elet ; a[x℄:+ 1; 1)elseif a[x℄:m = Run ^ a[x℄:0 = TR then (Elet ; a[x℄:+ 1; 1)elseif a[x℄:m 6= Fld ^ a[x℄:m 6= Coordthen (a[x℄:m; a[x℄: + 1; a[x℄:0 + 1)elseif a[x℄:m = Coord then (a[x℄:m; a[x℄: + 1; a[x℄:0)else a[x℄signal This instrution signals the presene of a proess to all relevant proesseswith lower identi�ers, and it resets the primary lok of the proess to 1. Ifa proess in the Elet , Await , or Run mode signals to a proess whih isin the Elet or Coord mode, the latter beomes Await . If a Coord signalsto a proess whih is not in the Fld mode, it \bullies" the latter to go intothe Run mode. Equality between two terms of type X is an abbreviation fort �X t0 ^ t0 �X t.hx : Xi : a[x℄:m 6= Fld �a := �x0 : X � if x0 = x then (a[x℄:m; 1; a[x℄:0)elseif x0 < x ^ a[x℄:m 6= Coord^a[x0℄:m 2 fElet ;Coordg then (Await ; a[x0℄:; 1)elseif x0 < x ^ a[x℄:m = Coord ^ a[x0℄:m 6= Fldthen (Run; a[x0℄:; 1)else a[x0℄fail At any point, a proess an fail.hx : Xi : a[x℄:m 6= Fld � a[x℄ := (Fld ; 1; 1)revive At any point, a Fld proess an revive, and it goes into the Elet mode.hx : Xi : a[x℄:m = Fld � a[x℄ := (Elet ; 1; 1)3 Model-heking problemsFor a range of safety properties of PSAs, where it is assumed that initially allarrays are reset to some spei�ed values, their heking an be redued to thefollowing deision problem.



De�nition 3. Suppose we have a PSA (
;�;�;R; I) with:{ a state variable b : Enumn,5{ i; j 2 f1; : : : ; ng, and{ for eah array state varible a : B ! B0, a term 
;��bas ` ta : B0, where�bas is � restrited to basi state variables.The initialised ontrol-state reahability problem is to deide whether thereexists a sequene of transitions from a state satisfyingb = ei ^ ^a:B!B02� 8x : B � a[x℄ = tato a state satisfying b = ej.For safety properties where it is not assumed that arrays are initialised, wehave the following deision problem.De�nition 4. Suppose we have a PSA (
;�;�;R; I) with a state variable b :Enumn, and i; j 2 f1; : : : ; ng.The uninitialised ontrol-state reahability problem is to deide whether thereexists a sequene of transitions from a state satisfying b = ei to a state satisfyingb = ej .Example 2. The following safety properties of the Bully Algorithm model anbe expressed as initialised CSR in an extended system.{ There are never two distint proesses in Coord mode. We add a state vari-able b : f0; 1g, and an instrutionhx : X; x0 : Xi : x 6= x0 ^ a[x℄:m = Coord ^ a[x0℄:m = Coord � b := 1The hek is whether, from a state in whih b = 0 and 8x : X � a[x℄ =(Elet ; 1; 1), the system an reah a state in whih b = 1.{ A proess annot ontinuously be Run sine reeiving a signal from a Coorduntil reeiving a signal from a Coord whose identi�er is smaller than that ofthe previous one. We add state variables b : f0; 1; 2g and y; y0 : X . We anmodify the instrutions tok, signal and fail, so that:� if b = 0 and a Coord x signals to proess y, b is set to 1 and y0 is set tox;� if b = 1 and proess y leaves the Run mode, b is set to 0;� if b = 1 and a Coord x � y0 signals to proess y, y0 is set to x;� if b = 1 and a Coord x < y0 signals to proess y, b is set to 2.The hek is whether, from a state in whih b = 0 and 8x : X � a[x℄ =(Elet ; 1; 1), the system an reah a state in whih b = 2.{ There is never a Coord proess and a Run proess with a greater identi�er.We add a state variable b : f0; 1g, and an instrutionhx : X; x0 : Xi : x < x0 ^ a[x℄:m = Coord ^ a[x0℄:m = Run � b := 1The hek is as in the �rst example.5 Any tuple of variables whose types do not ontain type variables is isomorphi to avariable of type Enumn.



4 Undeidability resultsWe onsider the following lasses of PSAs:X �X-to-Bool. This lass onsists of all PSAs (
;�;�;R; I) suh that:{ 
 = fXg and � = h=X : X �X ! Bool i;{ there is only one array variable in �, and it is of type X �X ! Bool ;{ instrutions in R do not ontain array parameters, and eah array as-signment is a write;{ I onsists of all (!; ) suh that ! assigns to X a set of the form k̂ =f1; : : : ; kg, and  assigns to =X the equality prediate on k̂.X � Y -to-Bool. Here X and Y are distint type variables, and the restritionsare:{ 
 = fX;Y g and � = h=X : X �X ! Bool ;=Y : Y � Y ! Bool i;{ there is only one array variable in �, and it is of type X � Y ! Bool ;{ instrutions in R do not ontain array parameters, and eah array as-signment is a write;{ I onsists of all (!; ) suh that ! assigns to X and Y some k̂ and l̂, and assigns to =X and =Y the equality prediates.X-to-Y ,Z. Here X , Y , Z are distint type variables, and the restritions are:{ 
 = fX;Y; Zg and � = h=X : X �X ! Bool ;=Y : Y � Y ! Bool ;=Z :Z � Z ! Bool i;{ there are only two array variables in �, and they are of types X ! Yand X ! Z;{ instrutions in R do not ontain array parameters, and eah array as-signment is a write;{ I onsists of all (!; ) suh that ! assigns to X , Y , Z some k̂, l̂, m̂, and assigns to =X , =Y , =Z the equality prediates.X,�-to-Y . Here X and Y are distint type variables, and the restritions are:{ 
 = fX;Y g and � = h�X : X �X ! Bool ;=Y : Y � Y ! Bool i;{ there is only one array variable in �, and it is of type X ! Y ;{ instrutions in R do not ontain array parameters, and eah array as-signment is a write;{ I onsists of all (!; ) suh that ! assigns to X and Y some k̂ and l̂,J�XK is the ordering on k̂, and J=Y K is the equality prediate on l̂.Theorem 1. Initialised CSR is undeidable for eah of the lasses X �X-to-Bool, X � Y -to-Bool, X-to-Y ,Z, and X,�-to-Y .Proof. We �rst reall some undeidability results for two-ounter mahines (2CMs).A 2CM onsists of a �nite non-empty set fL1; : : : ; Lug of loations, twoounters 1 and 2, and for every loation Li, an instrution of one of the followingforms:{ Li : j := j + 1; goto Li0{ Li : j := j � 1; goto Li0{ Li : if j = 0 then goto Li0 else goto Li00



A on�guration of the 2CM is of the form (Li; v1; v2), where v1; v2 2 N are thevalues of 1 and 2. The instrution at Li produes a unique next on�guration,exept that Li : j := j � 1 annot exeute when vj = 0.From [17℄, on�guration reahability is undeidable, i.e. whether a given 2CMan reah a given on�guration (Lj ; v1; v2) from (L1; 0; 0). It is straightforward toredue this problem to loation reahability, i.e. whether a given 2CM an reaha on�guration with a given loation Lj from (L1; 0; 0), so the latter problem isalso undeidable.Suppose we have a 2CM as above, and a loation Lj . We prove the theoremby showing how to redue the question whether the 2CM an reah a on�gu-ration with loation Lj from (L1; 0; 0) to an initialised CSR question for a PSA(
;�;�;R; I) in eah of the lasses above in turn. In eah ase, 
, � and Iare spei�ed in the de�nition of the lass, so it remains to onstrut the statevariables �, the instrutions R, and the CSR question.X �X-to-Bool. Let � equalhb : Enum5u+1; x1; x01; x2; x02; x00; x000 : X; a : X �X ! Bool iwhere we shall denote the elements of Enum5u by ei for i 2 f0; : : : ; ug, andej0j;i for i 2 f1; : : : ; ug and j; j0 2 f1; 2g. The ei for i > 0 will represent theloations of the 2CM, whereas e0 and the ej0j;i will be used as auxiliary ontrolstates of the PSA.The CSR question is whether the PSA an reah a state with b = ej from astate with b = e0 and8(x; x0) : X �X � a[(x; x0)℄ = falseWe represent a value vj of a ounter j by a sequene of mutually distintindies xj1, . . . , xjvj+1 suh that a[(xjk ; xjk+1)℄ is true for all k. The sets indiesfor 1 and 2 will be disjoint. The remaining entries of a will be false .The state variables xj will ontain xj1, and x0j will ontain xjvj+1.At ontrol state e0, we ensure that x1 6= x2. We then initialise the represen-tations of 1 and 2 to zero, and move to ontrol state e1.hi : b = e0 ^ x1 6= x2 � fb := e1; x01 := x1; x02 := x2gFor any instrution Li : j := j + 1; goto Li0 of the 2CM, the PSA hasthe following four instrutions. The �rst one hooses a value x00 from X forextending the representation of j by an entry true at (x01; x00). It also startsthe omputation for heking that x00 is a fresh value. An invariant duringthis omputation is that if the ontrol state is ej0j;i0 , then x00 does not ouramong the indies in the representation of j0 up to x000.hxy : Xi : b = ei ^ xy 6= x1 � fb := e1j;i0 ; x00 := xy; x000 := x1gIf x00 has been ompared against the whole representation of 1, we move toomparing it against the representation of 2:hi : b = e1j;i0 ^ x000 = x01 ^ x00 6= x2 � fb := e2j;i0 ; x000 := x2g



When the omputation is omplete, we extend the representation of j or-responding to the inrement by 1, and move to ei0 :hi : b = e2j;i0 ^ x000 = x02 � fb := ei0 ; x0j := x00; a[(x0j ; x00)℄ := truegThe fourth instrution performs a step in omparing x00 with the indies inthe representation of j0 :hxy : Xi : b = ej0j;i0 ^ xy 6= x00 ^ a[(x000; xy)℄ � fx000 := xygFor any instrution Li : j := j � 1; goto Li0 of the 2CM, the PSA has thefollowing instrution, whih redues the representation of j by moving x1to the next index in the sequene:hxy : Xi : b = ei ^ a[(xj ; xy)℄�fb := ei0 ; xj := xy; a[(xj ; xy)℄ := falsegA zero-test instrution of the 2CM is straightforward to represent, sine jhas value 0 if and only if xj = x0j :hi : b = ei � fb := if xj = x0j then ei0 else ei00gIt is lear that this PSA is in the lass X �X-to-Bool.For any on�guration (Li; v1; v2) of the 2CM, let F (Li; v1; v2) be the set ofall states (!; ; �) of the PSA suh that �JbK = JeiK and � assigns to x1, x01,x2, x02 and a a representation of v1 and v2 as above. It is straightforward tohek that:(i) if the 2CM an reah (Li0 ; v01; v02) from (Li; v1; v2), then the PSA anreah a state in F (Li0 ; v01; v02) from a state in F (Li; v1; v2);(ii) any state (!; ; �) whih the PSA an reah from a state in F (Li; v1; v2)and whih satis�es b 2 fe1; : : : ; eug, is in F (Li0 ; v01; v02) for some (Li0 ; v01; v02)whih the 2CM an reah from (Li; v1; v2).It follows that the 2CM an reah a on�guration with loation Lj from(L1; 0; 0) if and only if the PSA satis�es the initialised CSR question above.Alternatively, undeidability of initialised CSR for this lass follows fromundeidability for the lass X � Y -to-Bool. Given a PSA S in X � Y -to-Bool, let S 0 be the PSA in X �X-to-Bool obtained from S by substitutingX for Y . Then S satis�es an initialised ontrol-state rehability question ifand only if S 0 satis�es the same question with X substituted for Y .X � Y -to-Bool. The onstrution of a PSA in this lass whih represents the2CM follows the same pattern as the onstrution above for the lass X�X-to-Bool. It is more omplex beause the array is now indexed by two di�erenttypes. To represent a value vj of a ounter j , we use 2vj + 1 entries trueinstead of vj .Let � equalhb : Enum5u+1; x1; x01; x2; x02; x00; x000 : X; y1; y01; y2; y02; y00; y000 : Y;a : X � Y ! Bool i



where we shall denote the elements of Enum5u by ei for i 2 f0; : : : ; ug, andej0j;i for i 2 f1; : : : ; ug and j; j0 2 f1; 2g. The ei for i > 0 will represent theloations of the 2CM, whereas e0 and the ej0j;i will be used as auxiliary ontrolstates of the PSA.The CSR question is whether the PSA an reah a state with b = ej from astate with b = e0 and8(x; y) : X � Y � a[(x; y)℄ = falseWe represent a value vj of a ounter j by 2vj + 1 entries true in the arraya. If their indies are (xjk ; yjk) for k 2 f1; : : : ; 2vj + 1g, then eah xj2k willequal xj2k+1, and eah yj2k�1 will equal yj2k. All the xj2k�1, and also all theyj2k�1 will be mutually distint. Moreover, the sets of all x1k and all x2k willbe disjoint, as well as the sets of all y1k and y2k . The remaining entries of awill be false .The state variables xj and yj will ontain xj1 and yj1, and x0j and y0j willontain xj2vj+1 and yj2vj+1.At ontrol state e0, we ensure that x1 6= x2 and y1 6= y2. We then initialisethe representations of 1 and 2 to zero, and move to ontrol state e1.hi : b = e0 ^ x1 6= x2 ^ y1 6= y2�fb := e1; x01 := x1; y01 := y1; x02 := x2; y02 := y2;a[(x1; y1); (x2; y2)℄ := true; truegFor any instrution Li : j := j + 1; goto Li0 of the 2CM, the PSA has thefollowing four instrutions. The �rst one hooses a value x00 from X and avalue y00 from Y for extending the representation of j by entries true atindies (x00; y0j) and (x00; y00). It also starts the omputation for heking thatx00 and y00 are fresh values. An invariant during this omputation is that ifthe ontrol state is ej0j;i0 , then x00 and y00 do not our among the indies inthe representation of j0 up to (x000; y000).hxy : X; yy : Y i : b = ei ^ xy 6= x1 ^ yy 6= y1�fb := e1j;i0 ; x00 := xy; y00 := yy; x000 := x1; y000 := y1gIf x00 and y00 have been ompared against the whole representation of 1, wemove to omparing them against the representation of 2:hi : b = e1j;i0 ^ x000 = x01 ^ y000 = y01 ^ x00 6= x2 ^ y00 6= y2�fb := e2j;i0 ; x000 := x2; y000 := y2gWhen the omputation is omplete, we extend the representation of j or-responding to the inrement by 1, and move to ei0 :hi : b = e2j;i0 ^ x000 = x02 ^ y000 = y02�fb := ei0 ; x0j := x00; y0j := y00; a[(x00; y0j); (x00; y00)℄ := true; trueg



The fourth instrution performs a step in omparing x00 and y00 with theindies in the representation of j0 :hxy : X; yy : Y i :b = ej0j;i0 ^ xy 62 fx00; x000g ^ yy 62 fy00; y000g ^ a[(xy; y000)℄ ^ a[(xy; yy)℄�fx000 := xy; y000 := yygFor any instrution Li : j := j � 1; goto Li0 of the 2CM, the PSA has thefollowing instrution, whih redues the representation of j by moving xjand yj from the �rst entry true to the third:hxy : X; yy : Y i : b = ei ^ xy 6= xj ^ yy 6= yj ^ a[(xy; yj)℄ ^ a[(xy; yy)℄�fb := ei0 ; xj := xy; yj := yy; a[(xj ; yj); (xy; yj)℄ := false ; falsegA zero-test instrution of the 2CM is straightforward to represent, sine jhas value 0 if and only if xj = x0j and yj = y0j :hi : b = ei � fb := if xj = x0j ^ yj = y0j then ei0 else ei00gIt is lear that this PSA is in the lass X � Y -to-Bool.For any on�guration (Li; v1; v2) of the 2CM, let F (Li; v1; v2) be the set ofall states (!; ; �) of the PSA suh that �JbK = JeiK and � assigns to x1, x01,x2, x02, y1, y01, y2, y02 and a a representation of v1 and v2 as above. The restis as in the ase X �X-to-Bool.X-to-Y ,Z. The proof for this ase di�ers from the ase X � Y -to-Bool by howthe ounters are represented.We represent a value vj of a ounter j by 2vj entries in eah of the arraysa : X ! Y and b : X ! Z. If their indies are xjk and x0jk , then JaK(xj2k�1) =JaK(xj2k), JbK(x0j2k�1) = JbK(x0j2k), and xj2k = x0j2k�1. The values JaK(xj2k�1) aremutually distint, and distint from a value y whih �lls the rest of the arraya. In the same way, the values JbK(x0j2k�1) are mutually distint, and distintfrom a value z whih �lls the rest of the array b.The state variables xj will ontain xj1, and x0j will ontain x0j2vj . We shall havexj = x0j if and only if vj = 0.� = hb : Enum5u+1; x1; x01; x2; x02; x00 : X; y; y0 : Y; z; z0 : Z;a : X ! Y; b : X ! ZiThe CSR question is whether the PSA an reah a state with b = ej from astate with b = e0 and 8x : X � a[x℄ = y ^ b[x℄ = zAt ontrol state e0, the representations of the ounters are initialised to zero,and we move to e1:hi : b = e0 ^ x1 6= x2 � fb := e1; x01 := x1; x02 := x2g



For an inrement Li : j := j + 1; goto Li0 , we have the following fourinstrutions: hyy : Y; zy : Zi : b = ei ^ yy 6= y ^ zy 6= z�fb := e1j;i0 ; y0 := yy; z0 := zy; x00 := x1ghi : b = e1j;i0 ^ x00 = x01 � fb := e2j;i0 ; x00 := x2ghxy : X; xz : Xi :b = e2j;i0 ^ x00 = x02 ^ a[xy℄ = y ^ b[xy℄ = z ^ b[xz℄ = z ^ a[xz℄ = y�fb := ei0 ; x0j := xz; a[x0j ;xy℄ := y0; y0; b[xy; xz℄ := z0; z0ghxy : X; xz : Xi :b = ej0j;i0 ^ xy 6= x00 ^ xz 6= xy ^ a[x00℄ = a[xy℄ 62 fy; y0g ^ b[xy℄ = b[xz℄ 6= z0�fx00 := xzgFor a derement Li : j := j � 1; goto Li0 , we have:hxy : X; xz : Xi :b = ei ^ xy 6= xj ^ xz 6= xy ^ a[xj ℄ = a[xy℄ 6= y ^ b[xy℄ = b[xz℄�fb := ei0 ; xj := xz; a[xj ;xy℄ := y; y; b[xy; xz℄ := z; zgA zero-test Li : if j = 0 then goto Li0 else goto Li00 is represented byhi : b = ei � fb := if xj = x0j then ei0 else ei00gX,�-to-Y . Again, the di�erenes from the ase X � Y -to-Bool are in how theounters are represented.Here, we represent values v1 and v2 of the ounters 1 and 2 by 2v1+2v2+2entries in an array a : X ! Y . If their indies arex11 < � � � < x12v1+1 < x21 < � � � < x22v2+1we have:{ JaK(xj1) = JaK(xj3),{ JaK(xj2k) = JaK(xj2k+3) for all k 2 f1; : : : ; vj � 1g, and{ JaK(x11), JaK(x21), and all the values JaK(xj2k) are mutually distint, anddistint from a value y whih �lls the rest of the array a.The state variables xj will ontain xj1, and x0j and x00j will ontain xj2vj andxj2vj+1. We shall have xj = x0j if and only if vj = 0.� = hb : Enum5u+1; x1; x01; x001 ; x2; x02; x002 ; x[; x℄ : X;y; y0 : Y; a : X ! Y iThe CSR question is whether the PSA an reah a state with b = ej from astate with b = e0 and 8x : X � a[x℄ = y



At ontrol state e0, the representations of the ounters are initialised to zero,and we move to e1:hyy : Y; yz : Y i : b = e0 ^ x1 < x2 ^ yy 6= y ^ yz 62 fy; yyg�fb := e1; x01 := x1; x001 := x1; x02 := x2; x002 := x2; a[x1;x2℄ := yy; yzgFor an inrement Li : j := j+1; gotoLi0 , we have the following �ve instru-tions. The third and fourth instrutions extend the representations of 1 and2 respetively, orresponding to the inrement. They di�er only beause theonstraint x12v1+1 < x21 needs to be maintained when inrementing 1.hyy : Y i : b = ei ^ yy 62 fy; a[x1℄g � fb := e1j;i0 ; y0 := y; x[ := x1; x℄ := x1ghi : b = e1j;i0 ^ x[ = x01 ^ y0 6= a[x2℄ � fb := e2j;i0 ; x[ := x2; x℄ := x2ghxy : X; xz : Xi : b = e21;i0 ^ x[ = x02 ^ x001 < xy < xz < x2�fb := ei0 ; x01 := xy; x001 := xz; a[xy;xz℄ := y0; a[x01℄ghxy : X; xz : Xi : b = e22;i0 ^ x[ = x02 ^ x002 < xy < xz�fb := ei0 ; x02 := xy; x002 := xz; a[xy;xz℄ := y0; a[x02℄ghxy : X; xz : Xi : b = ej0j;i0 ^ a[x[℄ = a[xz℄ ^ x℄ < xy < xz ^ y0 6= a[xy℄�fx[ := xy; x℄ := xzgFor a derement Li : j := j � 1; goto Li0 , we have:hxy : X; xz : Xi : b = ei ^ a[xj ℄ = a[xz℄ ^ xj < xy < xz ^ a[xy℄ 6= y�fb := ei0 ; xj := xy; x00j := if x00j = xz then xy else x00j ; a[xj ;xz℄ := y; ygA zero-test is represented by:hi : b = ei � fb := if xj = x0j then ei0 else ei00g2Corollary 1. For lasses of PSAs obtained by extending the lasses above toallow resets of arrays, uninitialised CSR is undeidable. 2In [22℄, it was shown that uninitialised CSR is deidable for systems witharrays fromX with equality to enumerated types. In [19, Chapter 8℄, deidabilityof the same problem was shown for systems with an array fromX with equality toY with equality. Theorem 1 tells us that deidability fails when the former arraysare generalised to two-dimensional, and when the latter arrays are generalisedto X with a linear ordering.By regarding X as the type of proessor indies, Y as the type of memoryaddresses, and Bool as the type of storable data, the lassX�Y -to-Bool ontainslasses of ahe-oherene protools (e.g. [4, 20℄). By Theorem 1, any deidabilityresult for initialised CSR for suh a lass of protools must depend on someproperties of the protools whih are not ommon to the whole lass X � Y -to-Bool.



5 Deidability resultLet X ,�-to-Enum be the lass of all PSAs (
;�;�;R; I) suh that:{ 
 = fXg and � = h�X : X �X ! Bool i;{ the type of any array variable in �, and of any array parameter in R, is ofthe form X ! Enumm;{ I onsists of all (!; ) suh that ! assigns to X some k̂, and  assigns to �Xthe linear ordering on k̂.Theorem 2. Initialised and uninitialised CSR problems are deidable for thelass X,�-to-Enum.Proof. Suppose we have an instane of the initialised or uninitialised CSR prob-lem, whih is for a PSA (
;�;�;R; I) in the lass X ,�-to-Enum. We show howto redue this to whether a monadi MSR(NC) spei�ation (P ;NC; I;R) anreah the upward losure of a �nite set of onstrained on�gurations U. Thelatter problem was proved deidable in [6℄.We an use the following properties of the typed �-alulus to simplify thestate variables �:{ any variable of produt type B1 � � � � � Bn is representable by variables oftypes B1, . . . , Bn;{ any variable of sum type B1 + � � �+Bn is representable by a variable of theenumerated type Enumn and variables of types B1, . . . , Bn;{ a �nite number of variables of enumerated types is representable by onevariable of enumerated type;{ a �nite number of arrays of types X ! Enumm1 , . . . , X ! Enummk isrepresentable by one array of type X ! Enumm1�����mk .We an therefore assume � is of the formhb : Enumn; x1 : X; : : : ; xl : X; a : X ! EnummiThe parameters of any instrution in R an be simpli�ed in the same way.Furthermore, an instrution with a parameter of type Enumn0 is equivalent ton0 instrutions without that parameter. We an thus assume the parameters ofany � 2 R are of the formhxl+1 : X; : : : ; xl+l0 : X; a0 : X ! Enumm0iand that this type ontext is the same for all �inR.An instrution whose guard is a disjuntion  _ 0 is equivalent to two in-strutions with guards  and 0. Therefore, using redution of terms of the typed�-alulus to normal form, we an assume that the guard of any � 2 R is of theform b = f ^ l+l0̂i=1 a[xi℄ = gi ^ l+l0̂i=1 a0[xi℄ = g0i ^ d



where f 2 fe1; : : : ; eng, gi 2 fe1; : : : ; emg, g0i 2 fe1; : : : ; em0g, and d is an NConstraint over x1, . . . , xl+l0 , i.e.6d ::= false j true j xi = xj j xi < xj j d ^ d0Finally, using redution of terms to normal form again, we an assume thatthe assignments of any � 2 R are of the formfb := f 0; x1 := y1; : : : ; xl := yl;a := �x : X � if x = x1 then g001 elseif � � � x = xl+l0 then g00l+l0 elseh[(a[x℄; a0[x℄)℄gwhere f 0 2 fe1; : : : ; eng, yi 2 fx1; : : : ; xl+l0g, g00i 2 fe1; : : : ; emg, and h representsa funtion from Enumm � Enumm0 into Enumm.We now onstrut a monadi MSR(NC) spei�ation (P ;NC; I;R). Let Ponsist of:{ nullary prediate symbols z, nz, b1, . . . , bn;{ unary prediate symbols x1, . . . , xl;{ unary prediate symbols aa0i;j for i 2 f1; : : : ;mg, j 2 f0; 1; : : : ;m0g.NC is the system of name onstraints [6℄:' ::= false j true j x = x0 j x < x0 j ' ^ '0NC onstraints are interpreted over the integers Z . The usual entailment relationfor linear integer onstraints is used and denoted v.The simpli�ations of the state variables� above mean that the CSR problemnow refers to a projetion of the state variable b. Thus we need to deide whethera state in whih b has one of a set of values is reahable from a state in whihb has one of another set of values (and the array state variable a is initialisedappropriately). This is equivalent to a �nite number of questions for pairs ofvalues of b, so we an work with the original form of the CSR problem.If the CSR problem is uninitialised, i.e. to deide whether a state with b = ejis reahable from a state with b = ei, let I onsist of all on�gurations of theform z j bi j x1(v1) j � � � j xl(vl) j aa0i1;0(1) j � � � j aa0ik ;0(k)suh that k is a positive integer and v1; : : : ; vl 2 k̂.If the CSR problem is initialised, i.e. to deide whether a state with b = ejis reahable from a state with b = ei and 8x : X � a[x℄ = ta, let I onsist of allon�gurations as above, suh that in addition all ii0 equalJtaKfX 7!k̂g;f�X 7!�k̂;b 7!i;x1 7!v1;:::;xl 7!vlgFor any instrution � 2 R, whose form is as above, R ontains a rulenz j bf j x1(x1) j � � � j xl(xl) j aa0g1;g01(x1) j � � � j aa0gl+l0 ;g0l+l0 (xl+l0 ) �!z j bf 0 j x1(y1) j � � � j xl(yl) j aa0g001 ;0(x1) j � � � j aa0g00l+l0 ;0(xl+l0 )[aa0i;j(x0i;j) ,! aa0JhK(i;j);0(x0i;j) : i 2 f1; : : : ;mg ^ j 2 f1; : : : ;m0g℄ : d6 Here t = t0 and t < t0 are abbreviations for t � t0 ^ t0 � t and t � t0 ^ :t0 � trespetively.



For simpliity of presentation, we used here multiple ourenes of the variablesx1, . . . , xl+l0 and x0i;j instead of extending by equalities the onstraint of therule.The purpose of the prediate symbols z and nz, and the indies 0 in the rea-tions aa0i;j(x0i;j) ,! aa0JhK(i;j);0(x0i;j), is to ensure that always aa0i;j 6= aa0JhK(i0;j0);0,as required in [6, De�nition 27℄. The following rule hanges all suh indies to 1.Using the prediate symbols z and nz, this rule is �red in alternation with therules above. z �! nz[aa0i;0(x0i) ,! aa0i;1(x0i) : i 2 f1; : : : ;mg℄ : trueWhen j 6= 0, an atomi formula aa0i;j(x) represents a[x℄ = ei and a0[x℄ = ej .The remaining rules, one for eah i 2 f1; : : : ;mg and j 2 f2; : : : ;m0g, an be�red an arbitrary number of times after the previous rule. They ensure that thevalues a0[x℄ an be arbitrary, orresponding to the array a0 being a parameter inthe instrutions in R. nz j aa0i;1(x) �! nz j aa0i;j(x) : trueFor any state (!; ; �) of the PSA (
;�;�;R; I), where ! = fX 7! k̂g and = f�X 7!�k̂, letF (!; ; �) = z j b�JbK j x1(�Jx1K) j � � � j xl(�JxlK) j aa0�JaK(1);0(1) j � � � j aa0�JaK(k);0(k)It is straightforward to show that the MSR(NC) spei�ation (P ;NC; I;R) anreah a on�guration M with (z) 2 M from F (!; ; �) if and only if M =F (!; ; �0) for some state (!; ; �0) reahable from (!; ; �).Let U = fz j bj : trueg. Then the PSA an reah a state with b = ej if andonly if the MSR(NC) spei�ation an reah a on�guration in JUK, i.e. a on�g-uration ontaining z and bj . By [6, Theorem 2℄, there is an algorithm to deidethe latter. (The algorithm in [6℄ involves elimination of existential quanti�ersfrom NC onstraints, whih is not possible in general. However, it is straightfor-ward to overome this problem, by using an auxiliary unary prediate symbol"(x). Instead of eliminating 9x, we keep "(x) in the onstrained on�guration.These prediates do not hange the denotations of the onstrained on�gurationsM, but they add empty multisets into the strings Str(M).) 2Example 3. Our model of the Bully Algorithm is in the lass X ,�-to-Enum.Theorem 2 gives us a deision proedure for initialised and uninitialised CSRproblems, suh as those in the example in Setion 3.6 Future workOn-going work inludes generalising the deidability results in [22℄ and [19, Chap-ter 8℄, and Theorem 2 to lasses of PSAs with more than one array type.
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