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Polymorphic Systems with Arrays:
Decidability and Undecidability™*

Ranko Lazié'**, Tom Newcomb?, and Bill Roscoe?

! Department of Computer Science, University of Warwick, UK
2 Computing Laboratory, University of Oxford, UK

Abstract. Polymorphic systems with arrays (PSAs) is a general class
of nondeterministic reactive systems. A PSA is polymorphic in the sense
that it depends on a signature, which consists of a number of type vari-
ables, and a number of symbols whose types can be built from the type
variables. Some of the state variables of a PSA can be arrays, which are
functions from one type to another. We present several new decidability
and undecidability results for parameterised control-state reachability
problems on subclasses of PSAs.

1 Introduction

Context. There has been much interest in recent years in model checking infinite-
state systems (e.g. [12]). One of the most common reasons why a system can
have infinitely many states is that it has one or more parameters which can be
unboundedly large. For example, a system might have an arbitrary number of
identical parallel components, or it might work with data from an arbitrarily
large data type. In such cases, the aim is usually to verify that the system
is correct not for specific instantiations of the parameters, but for all possible
instantiations.

When a system has an arbitrary number of identical parallel components, the
counting abstraction [11] can be used to represent it as a Petri net. If the sys-
tem uses more than rendez-vous communications between parallel components,
extensions of Petri nets are used, such as transfer arcs to represent broadcast
communications [9], or non-blocking arcs to represent partially non-blocking
rendez-vous [21]. Other abstract models related to Petri nets have also been
used for representing infinite-state systems, such as broadcast protocols [7] and
multi-set rewriting specifications [6].

Finding decision procedures for model checking problems on Petri nets and
related models is therefore useful for verification of a range of infinite-state sys-
tems. Undecidability of such problems is also significant, for guiding further
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theoretical and practical work. Many results of both kinds can be found in the
literature (e.g. [8,9,21,15,6]).

In practice, infinite-state systems are often given by UNITY-style syntax, i.e.
using state variables, guards and assignments. This kind of syntax is common for
defining finite-state systems (e.g. [3]), where the types of state variables are finite
enumerated types. It is easily extended for expressing infinite-state systems, by
using type variables which can be instantiated by arbitrary sets. For example, if
X, Y and Z are type variables representing processor indices, memory addresses
and storable data, then a cache-coherence protocol (e.g. [20]) might have a state
variable cache : (X XY') — (Z x Enums). Here, cache is an array (i.e. a function)
indexed by ordered pairs of processor indices and memory addresses, and storing
ordered pairs of storable data and tags from the 3-element type Enums. Note
that this system is parametric in three dimensions.

It is therefore important to investigate decidability of model checking prob-
lems on systems given by UNITY-style syntax with type variables and array
state variables. Moreover, it is desirable to find algorithmic translations of such
problems to decidable problems on Petri nets and related models. This avoids
duplication of work, and enables use of the various techniques implemented for
the latter models (e.g. [6]). However, UNITY-like syntax can succintly express
systems which are parametric in several dimensions, compared with Petri nets
and related models which are either restricted to one or two dimensions [9, 21,
6] or relatively complex [15]. In particular, relating the two kinds of systems is
non-trivial in general.

Contributions. In this paper, we fix a UNITY-like syntax with type variables
and array state variables, and call such systems polymorphic systems with arrays
(PSAs). For generality and succinctness, we use a typed A-calculus to express
guards and right-hand sides of assignments. Basic types are formed from type
variables, products and sums (i.e. disjoint unions). We also use first-order func-
tion types, as types of array state variables, or types of operation symbols (such
as <x: X x X — Bool). Assignments to array state variables can express a
range of operations, including writing to several array components, or resetting
all components to a same value.

A PSA is polymorphic in the sense that it has a signature, which consists of
a number of type variables and a number of symbols whose types can be built
from the type variables. A signature is instantiated by assigning non-empty sets
to its type variables, and concrete elements or operations to its symbols. Given
a PSA and an instantiation of its signature, the semantics is a transition system.

We study parameterised verification of PSAs, so a PSA also has a set of all
instantiations of its signature which are of interest. The semantics is a transi-
tion system consisting of all transition systems for the given instantiations. If
infinitely many instantiations are given, this is infinite-state.

We present several new decidability and undecidability results for parame-
terised control-state reachability problems on subclasses of PSAs. Control-state
reachability (CSR) can express a range of safety properties. We distinguish be-



tween initialised CSR, where all arrays are initialised at the start, and unini-
tialised CSR.

We show that initialised CSR is undecidable for PSAs with each of the fol-
lowing restrictions. In each case, the only allowed array operations are reads
and writes, and the type variables are instantiated by arbitrary sets of the form

a,..., k.

— There is only one array, of type X x X — Bool. The only operation on X is
equality.

— There is only one array, of type X X Y — Bool. The only operations on X
and Y are equalities.

— There are only two arrays, of types X — Y and X — Z. The only operations
on X, Y and Z are equalities.

— There is only one array, of type X — Y. The only operation on X is linear
order (<x),* and on Y equality.

For PSAs with arbitrary array operations, but which have arrays only of
types X — Enum,,, where the only operation on X is linear order, and where
X is instantiated by arbitrary sets of the form {1,..., k}, we show that initialised
CSR is decidable. The proof is by reducing to a reachability problem for multi-set
rewriting specifications with NC constraints, which has an implemented decision
procedure [6].

For uninitialised CSR, we obtain similar results.

Comparisons. PSAs generalise data-independent systems with arrays [14, 13,
22,19] by allowing operations on type variables other than equality, and by
allowing any array operation expressible using array instruction parameters and
assignments of A\-terms to array state variables.

It was shown in [22] that initialised CSR is undecidable for systems with
only two arrays, of type X — Y, where the only operations on X and Y are
equalities. Our undecidability result strengthens this to two arrays with different
value types.*

Our decidability result extends the decidability result in [22] by allowing
linear order on X instead of only equality, and by allowing a wider range of
array operations.

PSAs also generalise the parameterised systems in [16], where parameterisa-
tion in only one dimension is considered. On the other hand, [16] treats quan-
tification in guards, which we do not consider in this paper.

Using a type variable X to represent the set of all process indices, and an
array s : X — Enum, to store the state of each process, any broadcast protocol
[7] can be expressed by a PSA. The only operation needed on X is equality.

3 An order predicate can express the equality predicate by t =¢' < t <t At <4t
* The latter systems are less expressive because different types prevent values con-
tained in the two arrays to be mixed.



Organisation. In the next section, we introduce the syntax and semantics of
PSAs. We define initialised and uninitialised CSR. problems in Section 3. The
undecidability and decidability results are in Sections 4 and 5. In Section 6, we
briefly point to future work.

We use a model of the Bully Algorithm [10] as a running example.

2 Polymorphic systems with arrays

To define PSAs, we start with the syntax of types. We have basic types built
from type variables, products and non-empty sums, and function types from one
basic type to another. Function types will be used as types of array variables,
and also as types of signature symbols such as equality predicates.

B:=X|By x---xXB, | Bi+---+ Bp>1
T:=B|B— B

Next we need a syntax of terms, which will be used to form one-step compu-
tations of PSAs. The terms are built from term variables, tuple formation, tuple
projection, sum injection, sum case, A-abstraction, and function application.

We consider only well-typed terms. A signature consists of a finite set {2 of
type variables, and a type context I which is a sequence (zy : T1,..., 2, : Ty)
of typed and mutually distinct term variables, where the types T; can contain
only type variables from 2. A well-typed term-in-context is written 2, "+ ¢ : T,
where these valid type judgements are deduced by standard typing rules [18].

.Q,F"tBZ
Q0P By By + -+ B,
2, 'tt:Bi+---+B, Q' (x1:B)Ft,:T -~ QT (x,:B,) 1, :T
2, caset of z1.tyor ... orzptl, : T
N, z:B)+t:B
NDTF\t: Bt BB

.Q,Fl_tliB—)Bl Q,F"tg:B
Q,Fl_tl[tQ]:Bl

Vj #1i- Vars(B;) C 2

Using the types and terms above, we can for example express:

— the singleton type Unit as the empty product, and its unique element as the
empty tuple;



— the boolean type Bool as the sum of two Unit types, and terms false, true,
and if ¢ then t] else th;

— for any positive n, the n-element enumerated type Enum, as the sum of n
Unit types, its elements ey, ..., e,, and a case term.

We can also express any given operation on the Bool and Enum, types, of any
arity.

Semantics of types is defined as follows. A finite set (2 of type variables
is instantiated by a mapping w to non-empty sets. For any type T such that
Vars(T) C 2, its semantics with respect to w is a non-empty set [T']., which is
defined in the usual way.

[X]o = w[X]
[B1 X -+ X Bpllo = [Bi]w X - -+ X [Bn]w
[Bi+ -+ BpJo ={1} x [Bi]w U---U{n} x [By]w
1B B = ([B].)1"-

For semantics of terms, a signature ({2, ") is instantiated by an w as above,
and a mapping v € [I']., i.e. Dom(y) = Dom(I") and v[z] € [T], for all z : T
in I'. For any well-typed term-in-context 2, " F ¢ : T', its semantics with respect
to (w,7y) is an element [t]. 4 of [T]w, and is defined in the standard way.

[z]w,y = 7]
[trs s tn)]wny = ([adoys - -5 [Enlwn)
[mi(®)]w,y = mi([t]w.y)
[[L?(t)]]w,v = (i, [t]w,y)
lcase t of 1.t} or ... or zy.t) ]y = [[t;]]wﬂ{xiHv}, where (i,v) = [tw,4
A2 : B-tluy ={v = [Hlo{osoy | v € [Blu}
[t [t2]]]w77 = [[tl]]w,v([[h]]ww)

Definition 1. A PSA is a 5-tuple (2,1,0,R,I) such that:

— (2,I') is a signature, consisting of type variables and typed term variables
(i.e. typed constant or operation symbols) which the PSA is parameterised
by.

— O is a type context disjoint from I', and such that (2,1'O) is a signature.
O specifies the state variables of the PSA and their types. According to its
type, a state variable is either basic or an array.

— R is a finite set of instructions. Fach p € R is of the form

Pic-{xy:=t1,...,x =t}

where:
e & is a type context disjoint from I'O and such that (2, [OP) is a sig-
nature,



e 2,I'Ob - c: Bool, and
e 11, ...,z are mutually distinct variables in O, and 2, TOP - t; : O(x;)
for each i.
The semantics of p will be that & consists of parameters whose values are
chosen nondeterministically subject to satisfying c, and then the assignments
x; := t; are performed simultaneously.
In each state of the system, any instruction in R can be performed.
— I is a set of instantiations of (£2,I).

The following are some array operations which can be expressed as assign-
ments to array variables:

Reset. Assigning a value t : B’ to each component of a:
a:=Xx:B-t

where z is a fresh variable name.
Copy. Assigning an array a’ to a:

a:=a
Map. Applying an operation t : (B} x ---x B;,) = B" componentwise to several
arrays:
a:=Ar:B-t[(aj[7],...,a,[z])]

»'n

where z is fresh.

Multiple partial assign. Assigning ¢, ..., t, to components = of a which
satisfy conditions di, ..., d, respectively, where x may occur free in the ¢;
and dl

a:= Az : B-if d then ty elseif --- d,, thent, else a[z]

We may abbreviate this as a[z : dy;---;dy] := t1;---;t,. Note that if d; and
d; with i < j overlap, assigning ¢; takes precedence.
Write. Assigning t], ..., t!, to a[t1], ..., a[t,]:

alz:x =ty T =ty] =ty 5t
where z is fresh. We may abbreviate this as
afty; - stp] ==t 5t
Cross-section. For example, assigning to arow ¢ of an array a : (B; xBs) — B':
afr : (m(z) =) =+
Using instruction parameters, we can for example also express:
Choose. Nondeterministically choosing a whole array:

(a': B — B'):true-{a:=a'}



Definition 2. The semantics of a PSA (2,I',0, R, 1) is the transition system
(S, —) defined as follows:

— The set of states S consists of all (w,~,8) such that (w,vy) € I and 8 € [O].,.
- (w,7,0) = (W',9,0") iff W' =w, ¥ =, and there exists p € R which can
produce 8" from 6.
More precisely, as p is of the form & : c-{xy :=t1, ...,z 1= t}, there exists
¢ € [P]o such that [c]uw~roe = tt, and:
o 0'[z;] = [tilw,r00 for each i;
o 0'[z'] =0[z'] for all &' & {z1,..., 21}

Example 1. We express as a PSA a model of the Bully Algorithm for leadership
election in a distributed system in which process identifiers are linearly ordered
[10].

The signature is ({X},(<x: X x X — Bool)), where X represents the set of
all process identifiers. We consider all instantiations which assign to X a set of
the form {1,...,k}, and to <x the standard ordering.

We model passing of time and detection of failure as follows. A process which
has not failed can broadcast to relevant processes with lower identifiers, to signal
its presence. At that point, its clock is set to 1. Whenever the system performs
a tock transition, all clocks are increased by 1. If this would make the clock of
a process greater than a constant T, that process fails. Processes can also fail
at other times. In any case, it is not possible for an alive process to let Ts tock
transitions happen without signalling its presence.

Since processes periodically inform others of their presence, there is no need
to have explicit election broadcasts: a process in Elect mode can simply wait
for T time units, and if it does not receive a signal from a higher process during
that time, it goes into Coord mode.

In order for the system to be within the X ,<-to-Enum class, processes do
not store identifiers of their coordinators, although a process in Coord mode
periodically informs all lower processes that it is their coordinator. For specifi-
cation purposes, we can maintain coordinator identifiers for a bounded number
of processes.

The state of a process consists of its mode and two clocks. The primary clock
is used to measure the time since the process last signalled its presence. The
secondary clock measures waiting time of the process: either during an election,
or while awaiting a coordinator, or since it last heard from a coordinator while
running. We use one array variable to hold all this information:

a: X — ({Elect, Coord, Await, Run, Fld} x
{1, P ,TS} X {1, - ,maX{TE,TA,TR}})

It remains to present the system’s instructions. We write a[t].m, a[t].c and
a[t].c instead of m (a[t]), m2(a[t]) and 73(a[t]).

tock This instruction increases by 1 the primary clocks of all processes which
are not in the Fld mode. If that would make the primary clock of a process



greater than T's, that process becomes Fld and its clocks are reset to 1. The
instruction also increases by 1 the secondary clocks of all processes in the
Elect, Await, or Run modes. If that would make the secondary clock of a
processes greater than the corresponding constant Tg, T4, or Tg, the mode
of that process is changed and its secondary clock is reset to 1. For example,
if a process is Run, but has not heard from a Coord for Tg time units, it
goes into Elect mode.

() : true-

a:= Az : X- if a[z].m # Fld A alx].c = Ts then (Fld,1,1)
elseif a[x].m = Elect A a[z].c' = Tg then (Coord,alz].c + 1,1)
elseif a[x].m = Await A a[x].c' = T then (Elect,alz].c +1,1)
elseif a[z].m = Run A a[z].c' = Tg then (Elect,alx].c + 1,1)
elseif a[z].m # Fld A a[x].m # Coord

then (a[z].m, a[z].c + 1,a[z].c + 1)

elseif a[x].m = Coord then (a[z].m,alz].c + 1,a[z].c")
else ax]

signal This instruction signals the presence of a process to all relevant processes
with lower identifiers, and it resets the primary clock of the process to 1. If
a process in the FElect, Await, or Run mode signals to a process which is
in the Flect or Coord mode, the latter becomes Await. If a Coord signals
to a process which is not in the Fld mode, it “bullies” the latter to go into
the Run mode. Equality between two terms of type X is an abbreviation for
t<x t' At <xt.

(z: X) : a[z].m # Fld-
a:= X' : X-if ' = x then (a[z].m, 1, a[z].c")
elseif ' < x A alx].m # CoordA
a[z'].m € {Elect, Coord} then (Await,a[z].c,1)
elseif ' <z A alz].m = Coord A a[z'].m # Fld
then (Run,alz'].c, 1)
else alz')

fail At any point, a process can fail.
(z : X) : a[z].m # Fld - a]z] := (Fld, 1,1)
revive At any point, a Fld process can revive, and it goes into the Elect mode.

(z : X) : a[z].m = Fld - a[z] := (FElect,1,1)

3 Model-checking problems

For a range of safety properties of PSAs, where it is assumed that initially all
arrays are reset to some specified values, their checking can be reduced to the
following decision problem.



Definition 3. Suppose we have a PSA (2,0, R, I) with:

— a state variable b : Enum,,,’

- i,5 €{1,...,n}, and
— for each array state varible a : B — B’, a term 2,'Oyas F t, @ B', where
Ohpas s O restricted to basic state variables.

The initialised control-state reachability problem is to decide whether there
ezists a sequence of transitions from a state satisfying

b=-¢e; A /\ Vo : B-alx] =t,
a:B—B'€®@

to a state satisfying b =e;.

For safety properties where it is not assumed that arrays are initialised, we
have the following decision problem.

Definition 4. Suppose we have a PSA (2,I',0,R,I) with a state variable b :
Enum,,, andi,j € {1,...,n}.

The uninitialised control-state reachability problem is to decide whether there
ezists a sequence of transitions from a state satisfying b = e; to a state satisfying
b= €.

Example 2. The following safety properties of the Bully Algorithm model can
be expressed as initialised CSR in an extended system.

— There are never two distinct processes in Coord mode. We add a state vari-
able b: {0,1}, and an instruction

(x:X,z': X) : 2 # 2’ Aalz].m = Coord A a[z'].m = Coord - b:=1

The check is whether, from a state in which b = 0 and Vz : X - afz] =
(Elect,1,1), the system can reach a state in which b = 1.

— A process cannot continuously be Run since receiving a signal from a Coord
until receiving a signal from a Coord whose identifier is smaller than that of
the previous one. We add state variables b : {0,1,2} and y,y' : X. We can
modify the instructions tock, signal and fail, so that:

e if b =0 and a Coord x signals to process y, b is set to 1 and ¥’ is set to
T;

e if b =1 and process y leaves the Run mode, b is set to 0;

e if b =1 and a Coord x >y’ signals to process y, y' is set to z;

e if b =1 and a Coord x < y' signals to process y, b is set to 2.
The check is whether, from a state in which b = 0 and Vz : X - afz] =

(Elect,1,1), the system can reach a state in which b = 2.
— There is never a Coord process and a Run process with a greater identifier.
We add a state variable b : {0,1}, and an instruction
(x: X,z : X): 2z <2’ Aalz].m = Coord A alz'].m = Run -b:=1
The check is as in the first example.

% Any tuple of variables whose types do not contain type variables is isomorphic to a
variable of type Enum.,.



4 Undecidability results

We consider the following classes of PSAs:

X X X-to-Bool. This class consists of all PSAs (£2,I',0, R, I) such that:

— 2 ={X}and I' = (=x: X x X — Bool);

— there is only one array variable in ©, and it is of type X x X — Bool;

— instructions in R do not contain array parameters, and each array as-

signment is a write;

— T consists of all (w,~) such that w assigns to X a set of the form k =

{1,...,k}, and v assigns to =x the equality predicate on k.
X xY-to-Bool. Here X and Y are distinct type variables, and the restrictions
are:

- N={X,Y}and I'=(=x: X x X = Bool,=y:Y xY — Bool);

— there is only one array variable in ©, and it is of type X x Y — Bool;

— instructions in R do not contain array parameters, and each array as-
signment is a write; . .

T consists of all (w, ) such that w assigns to X and Y some & and [, and
~ assigns to =x and =y the equality predicates.
X-to-Y,Z. Here X, Y, Z are distinct type variables, and the restrictions are:

-2 ={X)Y,Z}and I' = (=x: X x X = Bool,=y: Y xY — Bool,=y:

7Z X Z — Bool);

— there are only two array variables in @, and they are of types X — Y

and X — Z;
— instructions in R do not contain array parameters, and each array as-
signment is a write; .
— I consists of all (w,v) such that w assigns to X, Y, Z some k, [, 1, and
v assigns to =x, =y, =z the equality predicates.
X,<-to-Y. Here X and Y are distinct type variables, and the restrictions are:

- N={X,Y}and I' =(<x: X x X = Bool,=y:Y xY — Bool);

— there is only one array variable in @, and it is of type X — Y/;
instructions in R do not contain array parameters, and each array as-
signment is a write; . .
T consists of all (w,~) such that w assigns to X and Y some k and [,
~[<x] is the ordering on k, and y[=y] is the equality predicate on i.

Theorem 1. Initialised CSR is undecidable for each of the classes X x X-to-
Bool, X x Y -to-Bool, X-to-Y,Z, and X ,<-to-Y.

Proof. We first recall some undecidability results for two-counter machines (2CMs).

A 2CM consists of a finite non-empty set {Li,...,L,} of locations, two
counters ¢; and ¢, and for every location L;, an instruction of one of the following
forms:

—L;: Cj = Cj + l;goto Ly

- Ll G I=Cj — ].;gOtO Li/
— L; : if ¢; = 0 then goto Ly else goto L;»



A configuration of the 2CM is of the form (L;,v1, v2), where vy, v2 € N are the
values of ¢; and cz. The instruction at L; produces a unique next configuration,
except that L; : ¢j := ¢; — 1 cannot execute when v; = 0.

From [17], configuration reachability is undecidable, i.e. whether a given 2CM
can reach a given configuration (Lj,v1, v2) from (L4,0, 0). It is straightforward to
reduce this problem to location reachability, i.e. whether a given 2CM can reach
a configuration with a given location L; from (L4,0,0), so the latter problem is
also undecidable.

Suppose we have a 2CM as above, and a location L;. We prove the theorem
by showing how to reduce the question whether the 2CM can reach a configu-
ration with location L; from (L,0,0) to an initialised CSR question for a PSA
(2,1,0,R,I) in each of the classes above in turn. In each case, 2, I and I
are specified in the definition of the class, so it remains to construct the state
variables @, the instructions R, and the CSR question.

X x X-to-Bool. Let @ equal
(b: Enumsy i1, 71,27, 22, 75, 2", 2" : X,a: X x X — Bool)

where we shall denote the elements of EFnums, by e; for i € {0,...,u}, and
eg':i for i € {1,...,u} and j,j" € {1,2}. The e; for i > 0 will represent the
locations of the 2CM, whereas ey and the e?ji will be used as auxiliary control
states of the PSA.

The CSR question is whether the PSA can reach a state with b = e; from a
state with b = eg and

V(z,z'): X x X - a[(z,z")] = false

We represent a value v; of a counter ¢; by a sequence of mutually distinct
indices X!, ..., U 41 such that a[(xk,xk+1)] is true for all k. The sets indices
for ¢; and c» will be disjoint. The remalmng entries of a will be false.

The state variables z; will contain x{, and z; will contain x;__,.

At control state eg, we ensure that z; # z5. We then initialise the represen-

tations of ¢; and ¢ to zero, and move to control state e;.
(Y:b=egAx1 #x2-{b:=e1, 2| 1= 31,75 := 13}

For any instruction L; : ¢; := ¢; + 1; goto Ly of the 2CM, the PSA has
the following four instructions. The first one chooses a value z” from X for
extending the representation of ¢; by an entry true at (z7,z"). It also starts
the computation for checking that =" is a fresh value An invariant during
this computation is that if the control state is e’ 7> then 2" does not occur
among the indices in the representation of ¢; up "to 2.

(' X):b=e;Aat #a1-{b: —e“, " =z " =2}

If 2" has been compared against the whole representation of ¢1, we move to
comparing it against the representation of ¢s:

(y:b=ejy Aa" =z Na" #ay-{b:=¢] ;2" =z}



When the computation is complete, we extend the representation of ¢; cor-
responding to the increment by 1, and move to e;:

(y:b=¢jy A" =ab - {b:=ep, o} := 2", a[(z],2")] := true}
The fourth instruction performs a step in comparing z” with the indices in

the representation of ¢ :
(" X):b=el, Aat £ 2" Aa[@”,2h)] - {2 = 2T}

For any instruction L; : ¢; := ¢j — 1; goto Ly of the 2CM, the PSA has the
following instruction, which reduces the representation of ¢; by moving z;
to the next index in the sequence:

(zt: Xy :b=e; Aa(z;, 1))
{b:=ey,x; =t al(z;,z")] := false}

A zero-test instruction of the 2CM is straightforward to represent, since c;
has value 0 if and only if z; = 2/:
():b=e; {b:=if xj =} then ey else e }

It is clear that this PSA is in the class X x X-to-Bool.

For any configuration (L;, vy, vs) of the 2CM, let F(L;,v1,v2) be the set of

all states (w,,8) of the PSA such that [b] = [e;] and @ assigns to z1, i,

x2, x4 and a a representation of v; and ve as above. It is straightforward to

check that:

(i) if the 2CM can reach (Ly,v},v5) from (L;,v1,v2), then the PSA can
reach a state in F(L;,v},v}) from a state in F'(L;, vy, v2);

(ii) any state (w,~,#) which the PSA can reach from a state in F(L;,v1, v2)
and which satisfies b € {e1,...,e,},isin F(L;y, v, v5) for some (L, v}, vh)
which the 2CM can reach from (L;, vy, vs).

It follows that the 2CM can reach a configuration with location L; from

(L1,0,0) if and only if the PSA satisfies the initialised CSR question above.

Alternatively, undecidability of initialised CSR for this class follows from

undecidability for the class X x Y-to-Bool. Given a PSA S in X x Y-to-

Bool, let S’ be the PSA in X x X-to-Bool obtained from S by substituting

X for Y. Then S satisfies an initialised control-state rechability question if

and only if S’ satisfies the same question with X substituted for Y.

X x Y-to-Bool. The construction of a PSA in this class which represents the
2CM follows the same pattern as the construction above for the class X x X-
to-Bool. It is more complex because the array is now indexed by two different
types. To represent a value v; of a counter c;, we use 2v; + 1 entries true
instead of v;.

Let © equal

. ] P, ' P,
<b'E177”11’771'5'1L-i-173717561735251'273j , T -X7y17y17y25y27y ) -Y7
a:X xY — Bool)



where we shall denote the elements of EFnums, by e; for i € {0,...,u}, and
e;.’i for i € {1,...,u} and j,j" € {1,2}. The e; for i > 0 will represent the

locations of the 2CM, whereas ey and the e?ji will be used as auxiliary control
states of the PSA.

The CSR question is whether the PSA can reach a state with b = e; from a
state with b = ¢g and

V(z,y): X XY -a[(z,y)] = false

We represent a value v; of a counter ¢; by 2v; 4+ 1 entries true in the array
a. If their indices are (x},y}) for k € {1,...,2v; + 1}, then each xj, will

equal xék 41, and each ygkfl will equal yé o All the xg w1, and also all the

y3,_; will be mutually distinct. Moreover, the sets of all x; and all x} will

be disjoint, as well as the sets of all y} and y;. The remaining entries of a
will be false. '
j

The state variables z; and y; will contain x) and y!, and =’

;.
' % and y; will
contain x3, . and y3, ..

At control state eg, we ensure that x; # z2 and y; # y2. We then initialise

the representations of ¢; and ¢ to zero, and move to control state ej.

(Y:b==eg Ax1 # 22 ANY1 # Yo-
{b:=e1,] == 1,y) = Y1, Th 1= Ta, Y5 = Yo,
al(z1,y1); (w2, y2)] := true; true}

For any instruction L; : ¢; := ¢; + 1; goto Ly of the 2CM, the PSA has the
following four instructions. The first one chooses a value z'" from X and a
value y" from Y for extending the representation of ¢; by entries true at
indices (z",y}) and (z",y"). It also starts the computation for checking that
z' and y" are fresh values. An invariant during this computation is that if

the control state is e;::i,, then z" and y” do not occur among the indices in
the representation of ¢;; up to (z',y"").

(t Xyt Yy b=e;Aat #ay Ayl £y
{b:=ej,,a" =aly" =yl 2" =2,y =y}
If 2" and y" have been compared against the whole representation of ¢;, we
move to comparing them against the representation of c¢s:
(y:b=¢el

G N =AY =y Al Fws Ay g

— p2 mno.__ "o, _
{bi=ej 2" = x2,y" 1= ya}

When the computation is complete, we extend the representation of ¢; cor-
responding to the increment by 1, and move to e;:

() 'b:e2.. /\x'”—x’Q/\y”’—yé-
: 7, - -
{b:=ep, ) :==2",y; :==y",al(2",y}); (2",y")] := true; true}



The fourth instruction performs a step in comparing z” and y" with the
indices in the representation of c;::

(xt: Xyt V)
b=ej A ot g {a" 2"y Ayt & (" y"} Aa](2t, y")] Aa(zt, yT)]-
{1‘”' = l‘T,y”I = y’f}

For any instruction L; : ¢; := ¢;j — 1; goto Ly of the 2CM, the PSA has the
following instruction, which reduces the representation of ¢c; by moving z;
and y; from the first entry ¢rue to the third:

(X, gyt Y):b=e; At # zj A yt # yi A a[(mT,yj)] A al(zt, yh)]-
{b:=ei,x; =2t y; =yt al(z,y;); (27, ;)] := false; false}

A zero-test instruction of the 2CM is straightforward to represent, since ¢;
has value 0 if and only if z; = z/; and y; = y;:

(V:b=e;-{b:=if xj = 2 ANy; =y then ey else ey}

It is clear that this PSA is in the class X x Y-to-Bool.
For any configuration (L;, vy, vs) of the 2CM, let F(L;,v1,v2) be the set of
all states (w,,8) of the PSA such that [b] = [e;] and @ assigns to z1, ],
T2, Th, Y1, Y1, Y2, ¥4 and a a representation of vy and vy as above. The rest
is as in the case X x X-to-Bool.

X-to-Y,Z. The proof for this case differs from the case X x Y-to-Bool by how
the counters are represented.
We represent a value v; of a counter ¢; by 2v; entries in each of the arrays
a:X =Y and b: X — Z. If their indices are x, and x/, then [a](x}, ,) =
[al (<), [0] 0 _) = [B1(x5,), and xJ, = x5, _,. The values [a](x},_,) are
mutually distinct, and distinct from a value y which fills the rest of the array
a. In the same way, the values [b](x3, ,) are mutually distinct, and distinct
from a value z which fills the rest of the array b. '
The state variables z; will contain x{, and 2} will contain X'ZJUJ, . We shall have
z; =z} if and only if v; = 0.

O = (b: Enumsys1,21,27, T2, 09, 2" : X,y,y' 1V, 2,2"+ Z,
a:X-Yb:X—2)

The CSR question is whether the PSA can reach a state with b = e; from a
state with b = ¢g and

Ve: X -alz] =yAblz]==2

At control state eg, the representations of the counters are initialised to zero,
and we move to e;:

(Y:b=egAx1 #x2-{b:=ey, 2] 1= 31,75 := 13}



For an increment L; : ¢;j := c¢; + 1;goto Ly, we have the following four

instructions:
t:v,zt: 2y cb=e; Ayt £y Azt # 2
{b:= e}’i,,y' =yt 2 =2t 2 =)
(y:b=ejsna" =2 -{b:=¢ ;2" =5}
(zt: X,zt: X):
b=ej, Na' =xh A alzf ] =y Ab[zt] = 2 Ab[zt] = 2 Aa[2t] = y-
{b:=ei, 2} := a:i,a[a:;'; o] =o'y’ bzt 2] =2 2"}

(zt: X, zt: X):
b= e?ji, Azt # 2" Azt # 2t Aa[z"] = alzt] & {y,y'} A blat] = b[zt] £ 2
{2" =2t}

For a decrement L; : ¢; := ¢; — 1; goto L;, we have:

(zt: X, zt: X):
b=ei A2t #x; Azt #£ 2t Nafr)] = a[zT] # y Ab[2T] = bzt
{b:=ep,z; =zt afzj; 2] = y;y, bzt 2% = 252}

A zero-test L; : if c; = 0 then goto Ly else goto L;» is represented by
():b=re;i-{b:=if x; =z} then ey else e}

X,<-to-Y. Again, the differences from the case X x Y-to-Bool are in how the
counters are represented.
Here, we represent values v, and v of the counters ¢; and ¢s by 2vq + 2vs + 2
entries in an array a : X — Y. If their indices are

1 1 2 2
Xp < < Xy <X < < Xy g

we have:
— [al() = [l (<)),
— [a] () = [al (X}, 5) for all k € {1,...,v; — 1}, and
— [a](x), [a](x}), and all the values [a](x},) are mutually distinct, and
distinct from a value y which fills the rest of the array a.

The state variables z; will contain x{, and

xévﬁl. We shall have z; = ', if and only if v; = 0.

and zf will contain x}, and

. P ! "no.b .
O = (b: Enums, 1, x1, 2, 2" xo, 2, 2, 2°, 2% - X,
v,y :Y,a: X =Y)

The CSR question is whether the PSA can reach a state with b = e; from a
state with b = eg and
Ve: X -az] =y



At control state eg, the representations of the counters are initialised to zero,
and we move to er:

Yyt Y)ib=eg Aot <z Ayt £Fyayt & {y,y'}
{b:=e1,2} =z, 2] = 21,2 := 2o, 2 := x0,a]x1;22] := yf;yi}

For an increment L; : ¢j := c;+1; goto L; , we have the following five instruc-
tions. The third and fourth instructions extend the representations of ¢; and
o respectively, corresponding to the increment. They differ only because the
constraint x3, ., < xi needs to be maintained when incrementing ¢; .

Wh:Y):b=einy' ¢ {yaln]} - {bi=e) ¢ =y,2" =2, 0" =2}

():b=ej, A =2\ ANy #alz] {b:= eii,,xb =29, 2% 1= 1y}

(zt: X, 2t :X):bzeii,/\a:b =zhAxy <2t <2t <2y
{b:=ep,x) =2t 2] .= 2t afzt; 2] .= ¢/; a2 ]}

(' : X2t : X):b=e}, Ao’ =ah Al <zt <zt
{b:=ey,xh =t 2 := 2t a[zt; 2t] = ¢/; a[2h]}

(xt: Xzt : X): b= e;::i, Aa[z’] = alzf] A2t < 2t <2t Ay # alzl]
{2" =2t 2t .= 2t}

For a decrement L; : ¢; := ¢; — 1; goto Ly, we have:

(zt: X,zt X) b =ei Aafzj] = alzt] Az <zt <2t Aa[2f] £y

{b:=ep,z; = x'f,x;.’ =if 2 = xt then zt else 7Y, alz;; ) = y;y}

A zero-test is represented by:
():b=re;-{b:=if x; =z} then ey else e}
O

Corollary 1. For classes of PSAs obtained by extending the classes above to
allow resets of arrays, uninitialised CSR is undecidable. O

In [22], it was shown that uninitialised CSR is decidable for systems with
arrays from X with equality to enumerated types. In [19, Chapter 8], decidability
of the same problem was shown for systems with an array from X with equality to
Y with equality. Theorem 1 tells us that decidability fails when the former arrays
are generalised to two-dimensional, and when the latter arrays are generalised
to X with a linear ordering.

By regarding X as the type of processor indices, Y as the type of memory
addresses, and Bool as the type of storable data, the class X xY-to-Bool contains
classes of cache-coherence protocols (e.g. [4,20]). By Theorem 1, any decidability
result for initialised CSR for such a class of protocols must depend on some
properties of the protocols which are not common to the whole class X x Y-to-
Bool.



5 Decidability result

Let X,<-to-Enum be the class of all PSAs (2,10, R,I) such that:

- N ={X}and I' = (<x: X x X = Bool);

— the type of any array variable in @, and of any array parameter in R, is of
the form X — Enum,,; .

— T consists of all (w, ) such that w assigns to X some k, and v assigns to <x
the linear ordering on k.

Theorem 2. Initialised and uninitialised CSR problems are decidable for the
class X ,<-to-Enum.

Proof. Suppose we have an instance of the initialised or uninitialised CSR, prob-
lem, which is for a PSA (2,1,0, R, ) in the class X,<-to-Enum. We show how
to reduce this to whether a monadic MSR(NC) specification (P,NC,Z,R) can
reach the upward closure of a finite set of constrained configurations U. The
latter problem was proved decidable in [6].

We can use the following properties of the typed A-calculus to simplify the
state variables ©:

— any variable of product type By X --- x B, is representable by variables of

types Bi, ..., Bp;
— any variable of sum type By + - -- + B,, is representable by a variable of the
enumerated type Enum, and variables of types By, ..., By;

— a finite number of variables of enumerated types is representable by one
variable of enumerated type;

— a finite number of arrays of types X — Enump,, ..., X — Enumy,, is
representable by one array of type X — Enumm, x...xm,, -

We can therefore assume © is of the form
(b: Enump,z,: X,...,z;: X,a: X = Enum,,)

The parameters of any instruction in R can be simplified in the same way.
Furthermore, an instruction with a parameter of type Enum, is equivalent to
n' instructions without that parameter. We can thus assume the parameters of
any p € R are of the form

(mpp1: X, .. oy X,a' : X — Enump,)

and that this type context is the same for all pinR.

An instruction whose guard is a disjunction ¢V ¢ is equivalent to two in-
structions with guards ¢ and ¢'. Therefore, using reduction of terms of the typed
A-calculus to normal form, we can assume that the guard of any p € R is of the

form
1+ 1+

b=fA /\a[xi]:gi/\/\al[xi]:g;/\d
i=1

i=1



where f € {e1,...,en}, g € {e1,...,em}, g; € {e1,...,em }, and d is an NC
constraint over zy, ..., Ty, i.e.%

d == false | true | z; =z | z; < zj | dAd

Finally, using reduction of terms to normal form again, we can assume that
the assignments of any p € R are of the form

{b = flawl =Yy, T =YL,
a:= Az : X -if x = x1 then g elseif --- x =z then g, elseh[(a[z], a'[z])]}

where f' € {e1,...,en}, ¥i € {x1,..., 2140}, g € {e1,...,en}, and h represents
a function from Enum,, X Enum,, into Enum,,.

We now construct a monadic MSR(NC) specification (P,NC,Z,R). Let P
consist of:

— nullary predicate symbols z, nz, by, ..., by;
— unary predicate symbols xq, ..., x;
— unary predicate symbols aa; ; for i € {1,...,m}, j € {0,1,...,m'}.

NC is the system of name constraints [6]:
@ u=false | true |z =2' |z <2 | oA

NC constraints are interpreted over the integers Z. The usual entailment relation
for linear integer constraints is used and denoted C°.

The simplifications of the state variables @ above mean that the CSR problem
now refers to a projection of the state variable b. Thus we need to decide whether
a state in which b has one of a set of values is reachable from a state in which
b has one of another set of values (and the array state variable a is initialised
appropriately). This is equivalent to a finite number of questions for pairs of
values of b, so we can work with the original form of the CSR, problem.

If the CSR problem is uninitialised, i.e. to decide whether a state with b = e;
is reachable from a state with b = e;, let Z consist of all configurations of the
form

2[bi | x1(0r) | -+ [ xi(v0) | aa, o(1) | -+~ | aal, (k)

such that k is a positive integer and vy,...,v; € k.

If the CSR problem is initialised, i.e. to decide whether a state with b = e;
is reachable from a state with b = e; and Vz : X - a[z] = ¢4, let Z consist of all
configurations as above, such that in addition all ¢;; equal

[[ta]]{X’—’i“}’{SXHS,;,b’—’i,lem,---’Iz'—wl}
For any instruction p € R, whose form is as above, R contains a rule

0z | by [ xa(o0) | [ilan) | ), (@) |- a0 () —

z|bpr [xaly) |-~ [xaly) [aagy o(ze) | -~ 2agn o)
[aa ; (zi ;) < @ap,p; ) .0(@i ) i €{1,...m}AjE{L,....m'}]:d

6 Here ¢t = ¢’ and ¢ < ¢ are abbreviations for t < ' At' < tandt <t A=t < ¢
respectively.



For simplicity of presentation, we used here multiple occurences of the variables
Z1, ..., T4y and a:; instead of extending by equalities the constraint of the
rule.

The purpose of the predicate symbols z and nz, and the indices 0 in the reac-
tions aa; ; (7} ;) < aaf[h]](mm(x;’j), is to ensure that always aa; ; # aaf[h]](i,d,m,

J

as required in [6, Definition 27]. The following rule changes all such indices to 1.
Using the predicate symbols z and nz, this rule is fired in alternation with the
rules above.

z — nz[aa; o (z;) < aaj (z;) 11 € {1,...,m}] : true

When j # 0, an atomic formula aa; ;(x) represents a[z] = e; and a'[z] = e;.
The remaining rules, one for each i € {1,...,m} and j € {2,...,m'}, can be
fired an arbitrary number of times after the previous rule. They ensure that the
values a'[z] can be arbitrary, corresponding to the array a' being a parameter in
the instructions in R.

nz | aaj (z) — nz | aa; ;(z) : true

For any state (w,7,6) of the PSA (2,I0,R,I), where w = {X — lAc} and
Y= {SX'_)Ska let

F(w,7,0) =z | bgpsy | xa (Of1]) | -~ [ x1(8[2:]) | ad’gpagcr),0(1) | -+ | ad opagcry,0 (k)

It is straightforward to show that the MSR(NC) specification (P,NC,Z, R) can
reach a configuration M with (z) € M from F(w,7,0) if and only if M =
F(w,~,8") for some state (w,,8') reachable from (w,~, ).

Let U = {z| bj : true}. Then the PSA can reach a state with b = ¢; if and
only if the MSR(NC) specification can reach a configuration in [U], i.e. a config-
uration containing z and b;. By [6, Theorem 2], there is an algorithm to decide
the latter. (The algorithm in [6] involves elimination of existential quantifiers
from NC constraints, which is not possible in general. However, it is straightfor-
ward to overcome this problem, by using an auxiliary unary predicate symbol
e(x). Instead of eliminating Jx, we keep e(z) in the constrained configuration.
These predicates do not change the denotations of the constrained configurations
M, but they add empty multisets into the strings Str(M).) O

Example 3. Our model of the Bully Algorithm is in the class X,<-to-Enum.

Theorem 2 gives us a decision procedure for initialised and uninitialised CSR
problems, such as those in the example in Section 3.

6 Future work

On-going work includes generalising the decidability results in [22] and [19, Chap-
ter 8], and Theorem 2 to classes of PSAs with more than one array type.
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