THE UNIVERSITY OF WARWICK

Original citation:

Lazic, Ranko, Newcomb, T. and Roscoe, A. W. (2004) Polymorphic systems with arrays : decidability and undecidability. University of Warwick. Department of Computer Science. (Department of Computer Science Research Report). CS-RR-399

Permanent WRAP url:

http://wrap.warwick.ac.uk/61314

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-forprofit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

A note on versions:

The version presented in WRAP is the published version or, version of record, and may be cited as it appears here.For more information, please contact the WRAP Team at: publications@warwick.ac.uk

Polymorphic Systems with Arrays: Decidability and Undecidability ${ }^{\star}$

Ranko Lazic ${ }^{1 \star \star}$, Tom Newcomb ${ }^{2}$, and Bill Roscoe ${ }^{2}$
${ }^{1}$ Department of Computer Science, University of Warwick, UK
${ }^{2}$ Computing Laboratory, University of Oxford, UK

Abstract

Polymorphic systems with arrays (PSAs) is a general class of nondeterministic reactive systems. A PSA is polymorphic in the sense that it depends on a signature, which consists of a number of type variables, and a number of symbols whose types can be built from the type variables. Some of the state variables of a PSA can be arrays, which are functions from one type to another. We present several new decidability and undecidability results for parameterised control-state reachability problems on subclasses of PSAs.

1 Introduction

Context. There has been much interest in recent years in model checking infinitestate systems (e.g. [12]). One of the most common reasons why a system can have infinitely many states is that it has one or more parameters which can be unboundedly large. For example, a system might have an arbitrary number of identical parallel components, or it might work with data from an arbitrarily large data type. In such cases, the aim is usually to verify that the system is correct not for specific instantiations of the parameters, but for all possible instantiations.

When a system has an arbitrary number of identical parallel components, the counting abstraction [11] can be used to represent it as a Petri net. If the system uses more than rendez-vous communications between parallel components, extensions of Petri nets are used, such as transfer arcs to represent broadcast communications [9], or non-blocking arcs to represent partially non-blocking rendez-vous [21]. Other abstract models related to Petri nets have also been used for representing infinite-state systems, such as broadcast protocols [7] and multi-set rewriting specifications [6].

Finding decision procedures for model checking problems on Petri nets and related models is therefore useful for verification of a range of infinite-state systems. Undecidability of such problems is also significant, for guiding further

[^0]theoretical and practical work. Many results of both kinds can be found in the literature (e.g. [8, 9, 21, 15, 6]).

In practice, infinite-state systems are often given by UNITY-style syntax, i.e. using state variables, guards and assignments. This kind of syntax is common for defining finite-state systems (e.g. [3]), where the types of state variables are finite enumerated types. It is easily extended for expressing infinite-state systems, by using type variables which can be instantiated by arbitrary sets. For example, if X, Y and Z are type variables representing processor indices, memory addresses and storable data, then a cache-coherence protocol (e.g. [20]) might have a state variable cache $:(X \times Y) \rightarrow\left(Z \times E n u m_{3}\right)$. Here, cache is an array (i.e. a function) indexed by ordered pairs of processor indices and memory addresses, and storing ordered pairs of storable data and tags from the 3-element type Enum 3 . Note that this system is parametric in three dimensions.

It is therefore important to investigate decidability of model checking problems on systems given by UNITY-style syntax with type variables and array state variables. Moreover, it is desirable to find algorithmic translations of such problems to decidable problems on Petri nets and related models. This avoids duplication of work, and enables use of the various techniques implemented for the latter models (e.g. [6]). However, UNITY-like syntax can succintly express systems which are parametric in several dimensions, compared with Petri nets and related models which are either restricted to one or two dimensions $[9,21$, 6] or relatively complex [15]. In particular, relating the two kinds of systems is non-trivial in general.

Contributions. In this paper, we fix a UNITY-like syntax with type variables and array state variables, and call such systems polymorphic systems with arrays (PSAs). For generality and succinctness, we use a typed λ-calculus to express guards and right-hand sides of assignments. Basic types are formed from type variables, products and sums (i.e. disjoint unions). We also use first-order function types, as types of array state variables, or types of operation symbols (such as $\left.\leq_{X}: X \times X \rightarrow B o o l\right)$. Assignments to array state variables can express a range of operations, including writing to several array components, or resetting all components to a same value.

A PSA is polymorphic in the sense that it has a signature, which consists of a number of type variables and a number of symbols whose types can be built from the type variables. A signature is instantiated by assigning non-empty sets to its type variables, and concrete elements or operations to its symbols. Given a PSA and an instantiation of its signature, the semantics is a transition system.

We study parameterised verification of PSAs, so a PSA also has a set of all instantiations of its signature which are of interest. The semantics is a transition system consisting of all transition systems for the given instantiations. If infinitely many instantiations are given, this is infinite-state.

We present several new decidability and undecidability results for parameterised control-state reachability problems on subclasses of PSAs. Control-state reachability (CSR) can express a range of safety properties. We distinguish be-
tween initialised CSR, where all arrays are initialised at the start, and uninitialised CSR.

We show that initialised CSR is undecidable for PSAs with each of the following restrictions. In each case, the only allowed array operations are reads and writes, and the type variables are instantiated by arbitrary sets of the form $\{1, \ldots, k\}$.

- There is only one array, of type $X \times X \rightarrow$ Bool. The only operation on X is equality.
- There is only one array, of type $X \times Y \rightarrow$ Bool. The only operations on X and Y are equalities.
- There are only two arrays, of types $X \rightarrow Y$ and $X \rightarrow Z$. The only operations on X, Y and Z are equalities.
- There is only one array, of type $X \rightarrow Y$. The only operation on X is linear order $\left(\leq_{X}\right),{ }^{3}$ and on Y equality.

For PSAs with arbitrary array operations, but which have arrays only of types $X \rightarrow$ Enum $_{m}$, where the only operation on X is linear order, and where X is instantiated by arbitrary sets of the form $\{1, \ldots, k\}$, we show that initialised CSR is decidable. The proof is by reducing to a reachability problem for multi-set rewriting specifications with NC constraints, which has an implemented decision procedure [6].

For uninitialised CSR, we obtain similar results.

Comparisons. PSAs generalise data-independent systems with arrays $[14,13$, 22,19] by allowing operations on type variables other than equality, and by allowing any array operation expressible using array instruction parameters and assignments of λ-terms to array state variables.

It was shown in [22] that initialised CSR is undecidable for systems with only two arrays, of type $X \rightarrow Y$, where the only operations on X and Y are equalities. Our undecidability result strengthens this to two arrays with different value types. ${ }^{4}$

Our decidability result extends the decidability result in [22] by allowing linear order on X instead of only equality, and by allowing a wider range of array operations.

PSAs also generalise the parameterised systems in [16], where parameterisation in only one dimension is considered. On the other hand, [16] treats quantification in guards, which we do not consider in this paper.

Using a type variable X to represent the set of all process indices, and an array $s: X \rightarrow$ Enum $_{n}$ to store the state of each process, any broadcast protocol [7] can be expressed by a PSA. The only operation needed on X is equality.

[^1]Organisation. In the next section, we introduce the syntax and semantics of PSAs. We define initialised and uninitialised CSR problems in Section 3. The undecidability and decidability results are in Sections 4 and 5. In Section 6, we briefly point to future work.

We use a model of the Bully Algorithm [10] as a running example.

2 Polymorphic systems with arrays

To define PSAs, we start with the syntax of types. We have basic types built from type variables, products and non-empty sums, and function types from one basic type to another. Function types will be used as types of array variables, and also as types of signature symbols such as equality predicates.

$$
\begin{aligned}
& B::=X\left|B_{1} \times \cdots \times B_{n}\right| B_{1}+\cdots+B_{n \geq 1} \\
& T::=B \mid B \rightarrow B^{\prime}
\end{aligned}
$$

Next we need a syntax of terms, which will be used to form one-step computations of PSAs. The terms are built from term variables, tuple formation, tuple projection, sum injection, sum case, λ-abstraction, and function application.

We consider only well-typed terms. A signature consists of a finite set Ω of type variables, and a type context Γ which is a sequence $\left\langle x_{1}: T_{1}, \ldots, x_{n}: T_{n}\right\rangle$ of typed and mutually distinct term variables, where the types T_{i} can contain only type variables from Ω. A well-typed term-in-context is written $\Omega, \Gamma \vdash t: T$, where these valid type judgements are deduced by standard typing rules [18].

$$
\begin{gathered}
\overline{\Omega, \Gamma\langle x: T\rangle \Gamma^{\prime} \vdash x: T} \\
\frac{\Omega, \Gamma \vdash t_{1}: B_{1} \cdots \Omega, \Gamma \vdash t_{n}: B_{n}}{\Omega, \Gamma \vdash\left(t_{1}, \ldots, t_{n}\right): B_{1} \times \cdots \times B_{n}} \\
\frac{\Omega, \Gamma \vdash t: B_{1} \times \cdots \times B_{n}}{\Omega, \Gamma \vdash \pi_{i}(t): B_{i}} \\
\frac{\Omega, \Gamma \vdash t: B_{i}}{\Omega, \Gamma \vdash \iota_{i}^{B_{1}+\cdots+B_{n}}(t): B_{1}+\cdots+B_{n}} \forall j \neq i \cdot \operatorname{Vars}\left(B_{j}\right) \subseteq \Omega \\
\frac{\Omega, t: B_{1}+\cdots+B_{n} \quad \Omega, \Gamma\left\langle x_{1}: B_{1}\right\rangle \vdash t_{1}^{\prime}: T \cdots \operatorname{loget} \text { of } x_{1} \cdot t_{1}^{\prime} \text { or } \cdots x_{n} \cdot t_{n}^{\prime}: T}{\left.\Omega, \Gamma \vdash x_{n}: B_{n}\right\rangle \vdash t_{n}^{\prime}: T} \\
\frac{\Omega, \Gamma\langle x: B\rangle \vdash t: B^{\prime}}{\Omega, \Gamma \vdash \lambda x: B \cdot t: B \rightarrow B^{\prime}} \\
\frac{\Omega, \Gamma \vdash t_{1}: B \rightarrow B^{\prime} \quad \Omega, \Gamma \vdash t_{2}: B}{\Omega, \Gamma \vdash t_{1}\left[t_{2}\right]: B^{\prime}}
\end{gathered}
$$

Using the types and terms above, we can for example express:

- the singleton type Unit as the empty product, and its unique element as the empty tuple;
- the boolean type Bool as the sum of two Unit types, and terms false, true, and if t then t_{1}^{\prime} else t_{2}^{\prime};
- for any positive n, the n-element enumerated type Enum n_{n} as the sum of n Unit types, its elements e_{1}, \ldots, e_{n}, and a case term.

We can also express any given operation on the Bool and Enum n_{n} types, of any arity.

Semantics of types is defined as follows. A finite set Ω of type variables is instantiated by a mapping ω to non-empty sets. For any type T such that $\operatorname{Vars}(T) \subseteq \Omega$, its semantics with respect to ω is a non-empty set $\llbracket T \rrbracket_{\omega}$, which is defined in the usual way.

$$
\begin{aligned}
\llbracket X \rrbracket_{\omega} & =\omega \llbracket X \rrbracket \\
\llbracket B_{1} \times \cdots \times B_{n} \rrbracket_{\omega} & =\llbracket B_{1} \rrbracket_{\omega} \times \cdots \times \llbracket B_{n} \rrbracket_{\omega} \\
\llbracket B_{1}+\cdots+B_{n} \rrbracket_{\omega} & =\{1\} \times \llbracket B_{1} \rrbracket_{\omega} \cup \cdots \cup\{n\} \times \llbracket B_{n} \rrbracket_{\omega} \\
\llbracket B \rightarrow B^{\prime} \rrbracket_{\omega} & =\left(\llbracket B^{\prime} \rrbracket_{\omega}\right)^{\llbracket B \rrbracket_{\omega}}
\end{aligned}
$$

For semantics of terms, a signature (Ω, Γ) is instantiated by an ω as above, and a mapping $\gamma \in \llbracket \Gamma \rrbracket_{\omega}$, i.e. $\operatorname{Dom}(\gamma)=\operatorname{Dom}(\Gamma)$ and $\gamma \llbracket x \rrbracket \in \llbracket T \rrbracket \rrbracket_{\omega}$ for all $x: T$ in Γ. For any well-typed term-in-context $\Omega, \Gamma \vdash t: T$, its semantics with respect to (ω, γ) is an element $\llbracket t \rrbracket_{\omega, \gamma}$ of $\llbracket T \rrbracket_{\omega}$, and is defined in the standard way.

$$
\begin{aligned}
\llbracket x \rrbracket_{\omega, \gamma} & =\gamma \llbracket x \rrbracket \\
\llbracket\left(t_{1}, \ldots, t_{n}\right) \rrbracket_{\omega, \gamma} & =\left(\llbracket t_{1} \rrbracket_{\omega, \gamma}, \ldots, \llbracket t_{n} \rrbracket_{\omega, \gamma}\right) \\
\llbracket \pi_{i}(t) \rrbracket_{\omega, \gamma} & =\pi_{i}\left(\llbracket t \rrbracket_{\omega, \gamma}\right) \\
\llbracket \iota_{i}^{B}(t) \rrbracket_{\omega, \gamma} & =\left(i, \llbracket t \rrbracket_{\omega, \gamma}\right) \\
\llbracket \text { case } t \text { of } x_{1} \cdot t_{1}^{\prime} \text { or } \ldots \text { or } x_{n} \cdot t_{n}^{\prime} \rrbracket_{\omega, \gamma} & =\llbracket t_{i}^{\prime} \rrbracket_{\omega, \gamma\left\{x_{i} \mapsto v\right\}}, \text { where }(i, v)=\llbracket t \rrbracket_{\omega, \gamma} \\
\llbracket \lambda x: B \cdot t \rrbracket_{\omega, \gamma} & =\left\{v \mapsto \llbracket t \rrbracket_{\omega, \gamma\{x \mapsto v\}} \mid v \in \llbracket B \rrbracket_{\omega}\right\} \\
\llbracket t_{1}\left[t_{2} \rrbracket \rrbracket_{\omega, \gamma}\right. & =\llbracket t_{1} \rrbracket_{\omega, \gamma}\left(\llbracket t_{2} \rrbracket_{\omega, \gamma}\right)
\end{aligned}
$$

Definition 1. A PSA is a 5-tuple $(\Omega, \Gamma, \Theta, R, I)$ such that:

- (Ω, Γ) is a signature, consisting of type variables and typed term variables (i.e. typed constant or operation symbols) which the PSA is parameterised by.
$-\Theta$ is a type context disjoint from Γ, and such that $(\Omega, \Gamma \Theta)$ is a signature. Θ specifies the state variables of the PSA and their types. According to its type, a state variable is either basic or an array.
$-R$ is a finite set of instructions. Each $\rho \in R$ is of the form

$$
\Phi: c \cdot\left\{x_{1}:=t_{1}, \ldots, x_{k}:=t_{k}\right\}
$$

where:

- Φ is a type context disjoint from $\Gamma \Theta$ and such that $(\Omega, \Gamma \Theta \Phi)$ is a signature,
- $\Omega, \Gamma \Theta \Phi \vdash c: B o o l$, and
- x_{1}, \ldots, x_{k} are mutually distinct variables in Θ, and $\Omega, \Gamma \Theta \Phi \vdash t_{i}: \Theta\left(x_{i}\right)$ for each i.
The semantics of ρ will be that Φ consists of parameters whose values are chosen nondeterministically subject to satisfying c, and then the assignments $x_{i}:=t_{i}$ are performed simultaneously.
In each state of the system, any instruction in R can be performed.
- I is a set of instantiations of (Ω, Γ).

The following are some array operations which can be expressed as assignments to array variables:

Reset. Assigning a value $t: B^{\prime}$ to each component of a :

$$
a:=\lambda x: B \cdot t
$$

where x is a fresh variable name.
Copy. Assigning an array a^{\prime} to a :

$$
a:=a^{\prime}
$$

Map. Applying an operation $t:\left(B_{1}^{\prime} \times \cdots \times B_{n}^{\prime}\right) \rightarrow B^{\prime \prime}$ componentwise to several arrays:

$$
a:=\lambda x: B \cdot t\left[\left(a_{1}^{\prime}[x], \ldots, a_{n}^{\prime}[x]\right)\right]
$$

where x is fresh.
Multiple partial assign. Assigning t_{1}, \ldots, t_{n} to components x of a which satisfy conditions d_{1}, \ldots, d_{n} respectively, where x may occur free in the t_{i} and d_{i} :

$$
a:=\lambda x: B \cdot \text { if } d_{1} \text { then } t_{1} \text { elseif } \cdots d_{n} \text { then } t_{n} \text { else } a[x]
$$

We may abbreviate this as $a\left[x: d_{1} ; \cdots ; d_{n}\right]:=t_{1} ; \cdots ; t_{n}$. Note that if d_{i} and d_{j} with $i<j$ overlap, assigning t_{i} takes precedence.
Write. Assigning $t_{1}^{\prime}, \ldots, t_{n}^{\prime}$ to $a\left[t_{1}\right], \ldots, a\left[t_{n}\right]$:

$$
a\left[x: x=t_{1} ; \cdots ; x=t_{n}\right]:=t_{1}^{\prime} ; \cdots ; t_{n}^{\prime}
$$

where x is fresh. We may abbreviate this as

$$
a\left[t_{1} ; \cdots ; t_{n}\right]:=t_{1}^{\prime} ; \cdots ; t_{n}^{\prime}
$$

Cross-section. For example, assigning to a row t of an array $a:\left(B_{1} \times B_{2}\right) \rightarrow B^{\prime}$:

$$
a\left[x:\left(\pi_{1}(x)=t\right)\right]:=t^{\prime}
$$

Using instruction parameters, we can for example also express:
Choose. Nondeterministically choosing a whole array:

$$
\left\langle a^{\prime}: B \rightarrow B^{\prime}\right\rangle: \text { true } \cdot\left\{a:=a^{\prime}\right\}
$$

Definition 2. The semantics of a $\operatorname{PSA}(\Omega, \Gamma, \Theta, R, I)$ is the transition system (S, \rightarrow) defined as follows:

- The set of states S consists of all (ω, γ, θ) such that $(\omega, \gamma) \in I$ and $\theta \in \llbracket \Theta \rrbracket_{\omega}$.
$-(\omega, \gamma, \theta) \rightarrow\left(\omega^{\prime}, \gamma^{\prime}, \theta^{\prime}\right)$ iff $\omega^{\prime}=\omega, \gamma^{\prime}=\gamma$, and there exists $\rho \in R$ which can produce θ^{\prime} from θ.
More precisely, as ρ is of the form $\Phi: c \cdot\left\{x_{1}:=t_{1}, \ldots, x_{k}:=t_{k}\right\}$, there exists $\phi \in \llbracket \Phi \rrbracket_{\omega}$ such that $\llbracket c \rrbracket_{\omega, \gamma \theta \phi}=t t$, and:
- $\theta^{\prime} \llbracket x_{i} \rrbracket=\llbracket t_{i} \rrbracket_{\omega, \gamma \theta \phi}$ for each i;
- $\theta^{\prime} \llbracket x^{\prime} \rrbracket=\theta \llbracket x^{\prime} \rrbracket$ for all $x^{\prime} \notin\left\{x_{1}, \ldots, x_{k}\right\}$.

Example 1. We express as a PSA a model of the Bully Algorithm for leadership election in a distributed system in which process identifiers are linearly ordered [10].

The signature is $\left(\{X\},\left\langle\leq_{X}: X \times X \rightarrow B o o l\right\rangle\right)$, where X represents the set of all process identifiers. We consider all instantiations which assign to X a set of the form $\{1, \ldots, k\}$, and to \leq_{X} the standard ordering.

We model passing of time and detection of failure as follows. A process which has not failed can broadcast to relevant processes with lower identifiers, to signal its presence. At that point, its clock is set to 1 . Whenever the system performs a tock transition, all clocks are increased by 1 . If this would make the clock of a process greater than a constant T_{S}, that process fails. Processes can also fail at other times. In any case, it is not possible for an alive process to let T_{S} tock transitions happen without signalling its presence.

Since processes periodically inform others of their presence, there is no need to have explicit election broadcasts: a process in Elect mode can simply wait for T_{E} time units, and if it does not receive a signal from a higher process during that time, it goes into Coord mode.

In order for the system to be within the X, \leq-to-Enum class, processes do not store identifiers of their coordinators, although a process in Coord mode periodically informs all lower processes that it is their coordinator. For specification purposes, we can maintain coordinator identifiers for a bounded number of processes.

The state of a process consists of its mode and two clocks. The primary clock is used to measure the time since the process last signalled its presence. The secondary clock measures waiting time of the process: either during an election, or while awaiting a coordinator, or since it last heard from a coordinator while running. We use one array variable to hold all this information:

$$
\begin{aligned}
a: X \rightarrow & (\{\text { Elect, Coord, Await, Run, Fld }\} \times \\
& \left.\left\{1, \ldots, T_{S}\right\} \times\left\{1, \ldots, \max \left\{T_{E}, T_{A}, T_{R}\right\}\right\}\right)
\end{aligned}
$$

It remains to present the system's instructions. We write $a[t] . m, a[t] . c$ and $a[t] \cdot c^{\prime}$ instead of $\pi_{1}(a[t]), \pi_{2}(a[t])$ and $\pi_{3}(a[t])$.
tock This instruction increases by 1 the primary clocks of all processes which are not in the Fld mode. If that would make the primary clock of a process
greater than T_{S}, that process becomes Fld and its clocks are reset to 1 . The instruction also increases by 1 the secondary clocks of all processes in the Elect, Await, or Run modes. If that would make the secondary clock of a processes greater than the corresponding constant T_{E}, T_{A}, or T_{R}, the mode of that process is changed and its secondary clock is reset to 1 . For example, if a process is Run, but has not heard from a Coord for T_{R} time units, it goes into Elect mode.

```
〈〉 : true.
\(a:=\lambda x: X\). if \(a[x] . m \neq F l d \wedge a[x] . c=T_{S}\) then \((\) Fld \(, 1,1)\)
    elseif \(a[x] \cdot m=\) Elect \(\wedge a[x] \cdot c^{\prime}=T_{E}\) then (Coord, \(\left.a[x] \cdot c+1,1\right)\)
    elseif \(a[x] \cdot m=\) Await \(\wedge a[x] \cdot c^{\prime}=T_{A}\) then (Elect, \(\left.a[x] \cdot c+1,1\right)\)
    elseif \(a[x] \cdot m=\) Run \(\wedge a[x] . c^{\prime}=T_{R}\) then \((\) Elect \(, a[x] . c+1,1)\)
    elseif \(a[x] . m \neq F l d \wedge a[x] . m \neq\) Coord
            then \(\left(a[x] \cdot m, a[x] \cdot c+1, a[x] \cdot c^{\prime}+1\right)\)
    elseif \(a[x] \cdot m=\) Coord then \(\left(a[x] \cdot m, a[x] \cdot c+1, a[x] \cdot c^{\prime}\right)\)
    else \(a[x]\)
```

signal This instruction signals the presence of a process to all relevant processes with lower identifiers, and it resets the primary clock of the process to 1. If a process in the Elect, Await, or Run mode signals to a process which is in the Elect or Coord mode, the latter becomes Await. If a Coord signals to a process which is not in the Fld mode, it "bullies" the latter to go into the Run mode. Equality between two terms of type X is an abbreviation for $t \leq_{X} t^{\prime} \wedge t^{\prime} \leq_{X} t$.
$\langle x: X\rangle: a[x] \cdot m \neq F l d$.
$a:=\lambda x^{\prime}: X \cdot$ if $x^{\prime}=x$ then $\left(a[x] \cdot m, 1, a[x] . c^{\prime}\right)$
elseif $x^{\prime}<x \wedge a[x] . m \neq$ Coord \wedge
$a\left[x^{\prime}\right] . m \in\{$ Elect, Coord $\}$ then (Await, $a\left[x^{\prime}\right] . c, 1$)
elseif $x^{\prime}<x \wedge a[x] \cdot m=$ Coord $\wedge a\left[x^{\prime}\right] . m \neq$ Fld
then (Run, $a\left[x^{\prime}\right] . c, 1$)
else $a\left[x^{\prime}\right]$
fail At any point, a process can fail.
$\langle x: X\rangle: a[x] \cdot m \neq F l d \cdot a[x]:=(F l d, 1,1)$
revive At any point, a Fld process can revive, and it goes into the Elect mode.

$$
\langle x: X\rangle: a[x] \cdot m=\text { Fld } \cdot a[x]:=(\text { Elect }, 1,1)
$$

3 Model-checking problems

For a range of safety properties of PSAs, where it is assumed that initially all arrays are reset to some specified values, their checking can be reduced to the following decision problem.

Definition 3. Suppose we have a $\operatorname{PSA}(\Omega, \Gamma, \Theta, R, I)$ with:

- a state variable b:Enum ${ }_{n}{ }^{5}$
$-i, j \in\{1, \ldots, n\}$, and
- for each array state varible $a: B \rightarrow B^{\prime}$, a term $\Omega, \Gamma \Theta_{\mathrm{bas}} \vdash t_{a}: B^{\prime}$, where Θ_{bas} is Θ restricted to basic state variables.

The initialised control-state reachability problem is to decide whether there exists a sequence of transitions from a state satisfying

$$
b=e_{i} \wedge \bigwedge_{a: B \rightarrow B^{\prime} \in \Theta} \forall x: B \cdot a[x]=t_{a}
$$

to a state satisfying $b=e_{j}$.
For safety properties where it is not assumed that arrays are initialised, we have the following decision problem.

Definition 4. Suppose we have a PSA $(\Omega, \Gamma, \Theta, R, I)$ with a state variable b : Enum $_{n}$, and $i, j \in\{1, \ldots, n\}$.

The uninitialised control-state reachability problem is to decide whether there exists a sequence of transitions from a state satisfying $b=e_{i}$ to a state satisfying $b=e_{j}$.

Example 2. The following safety properties of the Bully Algorithm model can be expressed as initialised CSR in an extended system.

- There are never two distinct processes in Coord mode. We add a state variable $b:\{0,1\}$, and an instruction

$$
\left\langle x: X, x^{\prime}: X\right\rangle: x \neq x^{\prime} \wedge a[x] \cdot m=\operatorname{Coord} \wedge a\left[x^{\prime}\right] \cdot m=\text { Coord } \cdot b:=1
$$

The check is whether, from a state in which $b=0$ and $\forall x: X \cdot a[x]=$ (Elect, 1,1), the system can reach a state in which $b=1$.

- A process cannot continuously be Run since receiving a signal from a Coord until receiving a signal from a Coord whose identifier is smaller than that of the previous one. We add state variables $b:\{0,1,2\}$ and $y, y^{\prime}: X$. We can modify the instructions tock, signal and fail, so that:
- if $b=0$ and a Coord x signals to process y, b is set to 1 and y^{\prime} is set to x;
- if $b=1$ and process y leaves the Run mode, b is set to 0 ;
- if $b=1$ and a Coord $x \geq y^{\prime}$ signals to process y, y^{\prime} is set to x;
- if $b=1$ and a Coord $x<y^{\prime}$ signals to process y, b is set to 2 .

The check is whether, from a state in which $b=0$ and $\forall x: X \cdot a[x]=$ (Elect, 1,1), the system can reach a state in which $b=2$.

- There is never a Coord process and a Run process with a greater identifier. We add a state variable $b:\{0,1\}$, and an instruction

$$
\left\langle x: X, x^{\prime}: X\right\rangle: x<x^{\prime} \wedge a[x] \cdot m=\text { Coord } \wedge a\left[x^{\prime}\right] \cdot m=\text { Run } \cdot b:=1
$$

The check is as in the first example.

[^2]
4 Undecidability results

We consider the following classes of PSAs:
$X \times X$-to-Bool. This class consists of all PSAs $(\Omega, \Gamma, \Theta, R, I)$ such that:
$-\Omega=\{X\}$ and $\Gamma=\left\langle={ }_{X}: X \times X \rightarrow\right.$ Bool \rangle;

- there is only one array variable in Θ, and it is of type $X \times X \rightarrow$ Bool;
- instructions in R do not contain array parameters, and each array assignment is a write;
- I consists of all (ω, γ) such that ω assigns to X a set of the form $\hat{k}=$ $\{1, \ldots, k\}$, and γ assigns to $=_{X}$ the equality predicate on \hat{k}.
$X \times Y$-to-Bool. Here X and Y are distinct type variables, and the restrictions are:
- $\Omega=\{X, Y\}$ and $\Gamma=\left\langle=_{X}: X \times X \rightarrow\right.$ Bool $,=_{Y}: Y \times Y \rightarrow$ Bool $\rangle ;$
- there is only one array variable in Θ, and it is of type $X \times Y \rightarrow$ Bool;
- instructions in R do not contain array parameters, and each array assignment is a write;
- I consists of all (ω, γ) such that ω assigns to X and Y some \hat{k} and \hat{l}, and γ assigns to $=_{X}$ and $=_{Y}$ the equality predicates.
X-to- Y, Z. Here X, Y, Z are distinct type variables, and the restrictions are:
$-\Omega=\{X, Y, Z\}$ and $\Gamma=\left\langle={ }_{X}: X \times X \rightarrow\right.$ Bool $,=_{Y}: Y \times Y \rightarrow$ Bool $,=_{Z}:$ $Z \times Z \rightarrow$ Bool \rangle;
- there are only two array variables in Θ, and they are of types $X \rightarrow Y$ and $X \rightarrow Z$;
- instructions in R do not contain array parameters, and each array assignment is a write;
$-I$ consists of all (ω, γ) such that ω assigns to X, Y, Z some $\hat{k}, \hat{l}, \hat{m}$, and γ assigns to $=_{X},=_{Y},={ }_{Z}$ the equality predicates.
$X, \leq-$ to $-Y$. Here X and Y are distinct type variables, and the restrictions are:
$-\Omega=\{X, Y\}$ and $\Gamma=\left\langle\leq_{X}: X \times X \rightarrow\right.$ Bool $,=_{Y}: Y \times Y \rightarrow$ Bool $\rangle ;$
- there is only one array variable in Θ, and it is of type $X \rightarrow Y$;
- instructions in R do not contain array parameters, and each array assignment is a write;
- I consists of all (ω, γ) such that ω assigns to X and Y some \hat{k} and \hat{l}, $\gamma \llbracket \leq_{X} \rrbracket$ is the ordering on \hat{k}, and $\gamma \llbracket=_{Y} \rrbracket$ is the equality predicate on \hat{l}.

Theorem 1. Initialised CSR is undecidable for each of the classes $X \times X$-toBool, $X \times Y$-to-Bool, X-to- Y, Z, and $X, \leq-t o-Y$.

Proof. We first recall some undecidability results for two-counter machines (2CMs).
A 2 CM consists of a finite non-empty set $\left\{L_{1}, \ldots, L_{u}\right\}$ of locations, two counters c_{1} and c_{2}, and for every location L_{i}, an instruction of one of the following forms:

- $L_{i}: c_{j}:=c_{j}+1 ;$ goto $L_{i^{\prime}}$
- $L_{i}: c_{j}:=c_{j}-1 ;$ goto $L_{i^{\prime}}$
$-L_{i}:$ if $c_{j}=0$ then goto $L_{i^{\prime}}$ else goto $L_{i^{\prime \prime}}$

A configuration of the 2 CM is of the form $\left(L_{i}, v_{1}, v_{2}\right)$, where $v_{1}, v_{2} \in \mathcal{N}$ are the values of c_{1} and c_{2}. The instruction at L_{i} produces a unique next configuration, except that $L_{i}: c_{j}:=c_{j}-1$ cannot execute when $v_{j}=0$.

From [17], configuration reachability is undecidable, i.e. whether a given 2CM can reach a given configuration $\left(L_{j}, v_{1}, v_{2}\right)$ from $\left(L_{1}, 0,0\right)$. It is straightforward to reduce this problem to location reachability, i.e. whether a given 2 CM can reach a configuration with a given location L_{j} from $\left(L_{1}, 0,0\right)$, so the latter problem is also undecidable.

Suppose we have a 2 CM as above, and a location L_{j}. We prove the theorem by showing how to reduce the question whether the 2 CM can reach a configuration with location L_{j} from $\left(L_{1}, 0,0\right)$ to an initialised CSR question for a PSA $(\Omega, \Gamma, \Theta, R, I)$ in each of the classes above in turn. In each case, Ω, Γ and I are specified in the definition of the class, so it remains to construct the state variables Θ, the instructions R, and the CSR question.
$X \times X$-to-Bool. Let Θ equal

$$
\left\langle b: \text { Enum }_{5 u+1}, x_{1}, x_{1}^{\prime}, x_{2}, x_{2}^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}: X, a: X \times X \rightarrow \text { Bool }\right\rangle
$$

where we shall denote the elements of $E n u m_{5 u}$ by e_{i} for $i \in\{0, \ldots, u\}$, and $e_{j, i}^{j^{\prime}}$ for $i \in\{1, \ldots, u\}$ and $j, j^{\prime} \in\{1,2\}$. The e_{i} for $i>0$ will represent the locations of the 2 CM , whereas e_{0} and the $e_{j, i}^{j^{\prime}}$ will be used as auxiliary control states of the PSA.
The CSR question is whether the PSA can reach a state with $b=e_{j}$ from a state with $b=e_{0}$ and

$$
\forall\left(x, x^{\prime}\right): X \times X \cdot a\left[\left(x, x^{\prime}\right)\right]=\text { false }
$$

We represent a value v_{j} of a counter c_{j} by a sequence of mutually distinct indices $\mathrm{x}_{1}^{j}, \ldots, \mathrm{x}_{v_{j}+1}^{j}$ such that $a\left[\left(\mathrm{x}_{k}^{j}, \mathrm{x}_{k+1}^{j}\right)\right]$ is true for all k. The sets indices for c_{1} and c_{2} will be disjoint. The remaining entries of a will be false.
The state variables x_{j} will contain x_{1}^{j}, and x_{j}^{\prime} will contain $\mathrm{x}_{v_{j}+1}^{j}$.
At control state e_{0}, we ensure that $x_{1} \neq x_{2}$. We then initialise the representations of c_{1} and c_{2} to zero, and move to control state e_{1}.

$$
\left\rangle: b=e_{0} \wedge x_{1} \neq x_{2} \cdot\left\{b:=e_{1}, x_{1}^{\prime}:=x_{1}, x_{2}^{\prime}:=x_{2}\right\}\right.
$$

For any instruction $L_{i}: c_{j}:=c_{j}+1 ;$ goto $L_{i^{\prime}}$ of the 2CM, the PSA has the following four instructions. The first one chooses a value $x^{\prime \prime}$ from X for extending the representation of c_{j} by an entry true at ($x_{1}^{\prime}, x^{\prime \prime}$). It also starts the computation for checking that $x^{\prime \prime}$ is a fresh value. An invariant during this computation is that if the control state is $e_{j, i^{\prime}}^{j^{\prime}}$, then $x^{\prime \prime}$ does not occur among the indices in the representation of $c_{j^{\prime}}$ up to $x^{\prime \prime \prime}$.

$$
\left\langle x^{\dagger}: X\right\rangle: b=e_{i} \wedge x^{\dagger} \neq x_{1} \cdot\left\{b:=e_{j, i^{\prime}}^{1}, x^{\prime \prime}:=x^{\dagger}, x^{\prime \prime \prime}:=x_{1}\right\}
$$

If $x^{\prime \prime}$ has been compared against the whole representation of c_{1}, we move to comparing it against the representation of c_{2} :

$$
\left\rangle: b=e_{j, i^{\prime}}^{1} \wedge x^{\prime \prime \prime}=x_{1}^{\prime} \wedge x^{\prime \prime} \neq x_{2} \cdot\left\{b:=e_{j, i^{\prime}}^{2}, x^{\prime \prime \prime}:=x_{2}\right\}\right.
$$

When the computation is complete, we extend the representation of c_{j} corresponding to the increment by 1 , and move to $e_{i^{\prime}}$:

$$
\left\rangle: b=e_{j, i^{\prime}}^{2} \wedge x^{\prime \prime \prime}=x_{2}^{\prime} \cdot\left\{b:=e_{i^{\prime}}, x_{j}^{\prime}:=x^{\prime \prime}, a\left[\left(x_{j}^{\prime}, x^{\prime \prime}\right)\right]:=\operatorname{true}\right\}\right.
$$

The fourth instruction performs a step in comparing $x^{\prime \prime}$ with the indices in the representation of $c_{j^{\prime}}$:

$$
\left\langle x^{\dagger}: X\right\rangle: b=e_{j, i^{\prime}}^{j^{\prime}} \wedge x^{\dagger} \neq x^{\prime \prime} \wedge a\left[\left(x^{\prime \prime \prime}, x^{\dagger}\right)\right] \cdot\left\{x^{\prime \prime \prime}:=x^{\dagger}\right\}
$$

For any instruction $L_{i}: c_{j}:=c_{j}-1 ;$ goto $L_{i^{\prime}}$ of the 2CM, the PSA has the following instruction, which reduces the representation of c_{j} by moving x_{1} to the next index in the sequence:

$$
\begin{gathered}
\left\langle x^{\dagger}: X\right\rangle: b=e_{i} \wedge a\left[\left(x_{j}, x^{\dagger}\right)\right] \\
\left\{b:=e_{i^{\prime}}, x_{j}:=x^{\dagger}, a\left[\left(x_{j}, x^{\dagger}\right)\right]:=\text { false }\right\}
\end{gathered}
$$

A zero-test instruction of the 2 CM is straightforward to represent, since c_{j} has value 0 if and only if $x_{j}=x_{j}^{\prime}$:

$$
\left\rangle: b=e_{i} \cdot\left\{b:=\text { if } x_{j}=x_{j}^{\prime} \text { then } e_{i^{\prime}} \text { else } e_{i^{\prime \prime}}\right\}\right.
$$

It is clear that this PSA is in the class $X \times X$-to-Bool.
For any configuration $\left(L_{i}, v_{1}, v_{2}\right)$ of the 2 CM , let $F\left(L_{i}, v_{1}, v_{2}\right)$ be the set of all states (ω, γ, θ) of the PSA such that $\theta \llbracket b \rrbracket=\llbracket e_{i} \rrbracket$ and θ assigns to x_{1}, x_{1}^{\prime}, x_{2}, x_{2}^{\prime} and a a representation of v_{1} and v_{2} as above. It is straightforward to check that:
(i) if the 2CM can reach $\left(L_{i^{\prime}}, v_{1}^{\prime}, v_{2}^{\prime}\right)$ from $\left(L_{i}, v_{1}, v_{2}\right)$, then the PSA can reach a state in $F\left(L_{i^{\prime}}, v_{1}^{\prime}, v_{2}^{\prime}\right)$ from a state in $F\left(L_{i}, v_{1}, v_{2}\right)$;
(ii) any state (ω, γ, θ) which the PSA can reach from a state in $F\left(L_{i}, v_{1}, v_{2}\right)$ and which satisfies $b \in\left\{e_{1}, \ldots, e_{u}\right\}$, is in $F\left(L_{i^{\prime}}, v_{1}^{\prime}, v_{2}^{\prime}\right)$ for some $\left(L_{i^{\prime}}, v_{1}^{\prime}, v_{2}^{\prime}\right)$ which the 2 CM can reach from $\left(L_{i}, v_{1}, v_{2}\right)$.
It follows that the 2CM can reach a configuration with location L_{j} from $\left(L_{1}, 0,0\right)$ if and only if the PSA satisfies the initialised CSR question above. Alternatively, undecidability of initialised CSR for this class follows from undecidability for the class $X \times Y$-to-Bool. Given a PSA \mathcal{S} in $X \times Y$-toBool, let \mathcal{S}^{\prime} be the PSA in $X \times X$-to-Bool obtained from \mathcal{S} by substituting X for Y. Then \mathcal{S} satisfies an initialised control-state rechability question if and only if \mathcal{S}^{\prime} satisfies the same question with X substituted for Y.
$X \times Y$-to-Bool. The construction of a PSA in this class which represents the 2CM follows the same pattern as the construction above for the class $X \times X$ -to-Bool. It is more complex because the array is now indexed by two different types. To represent a value v_{j} of a counter c_{j}, we use $2 v_{j}+1$ entries true instead of v_{j}.
Let Θ equal

$$
\begin{gathered}
\left\langle b: \text { Enum }_{5 u+1}, x_{1}, x_{1}^{\prime}, x_{2}, x_{2}^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}: X, y_{1}, y_{1}^{\prime}, y_{2}, y_{2}^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}: Y,\right. \\
a: X \times Y \rightarrow \text { Bool }\rangle
\end{gathered}
$$

where we shall denote the elements of $E n u m_{5 u}$ by e_{i} for $i \in\{0, \ldots, u\}$, and $e_{j, i}^{j^{\prime}}$ for $i \in\{1, \ldots, u\}$ and $j, j^{\prime} \in\{1,2\}$. The e_{i} for $i>0$ will represent the locations of the 2 CM , whereas e_{0} and the $e_{j, i}^{j^{\prime}}$ will be used as auxiliary control states of the PSA.
The CSR question is whether the PSA can reach a state with $b=e_{j}$ from a state with $b=e_{0}$ and

$$
\forall(x, y): X \times Y \cdot a[(x, y)]=\text { false }
$$

We represent a value v_{j} of a counter c_{j} by $2 v_{j}+1$ entries true in the array a. If their indices are $\left(\mathrm{x}_{k}^{j}, \mathrm{y}_{k}^{j}\right)$ for $k \in\left\{1, \ldots, 2 v_{j}+1\right\}$, then each $\mathrm{x}_{2 k}^{j}$ will equal $\mathrm{x}_{2 k+1}^{j}$, and each $\mathrm{y}_{2 k-1}^{j}$ will equal $\mathrm{y}_{2 k}^{j}$. All the $\mathrm{x}_{2 k-1}^{j}$, and also all the $\mathrm{y}_{2 k-1}^{j}$ will be mutually distinct. Moreover, the sets of all x_{k}^{1} and all x_{k}^{2} will be disjoint, as well as the sets of all y_{k}^{1} and y_{k}^{2}. The remaining entries of a will be false.
The state variables x_{j} and y_{j} will contain x_{1}^{j} and y_{1}^{j}, and x_{j}^{\prime} and y_{j}^{\prime} will contain $x_{2 v_{j}+1}^{j}$ and $\mathrm{y}_{2 v_{j}+1}^{j}$.
At control state e_{0}, we ensure that $x_{1} \neq x_{2}$ and $y_{1} \neq y_{2}$. We then initialise the representations of c_{1} and c_{2} to zero, and move to control state e_{1}.

$$
\begin{gathered}
\left\rangle: b=e_{0} \wedge x_{1} \neq x_{2} \wedge y_{1} \neq y_{2}\right. \\
\left\{b:=e_{1}, x_{1}^{\prime}:=x_{1}, y_{1}^{\prime}:=y_{1}, x_{2}^{\prime}:=x_{2}, y_{2}^{\prime}:=y_{2},\right. \\
\left.a\left[\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right)\right]:=\text { true } ; \text { true }\right\}
\end{gathered}
$$

For any instruction $L_{i}: c_{j}:=c_{j}+1 ;$ goto $L_{i^{\prime}}$ of the 2CM, the PSA has the following four instructions. The first one chooses a value $x^{\prime \prime}$ from X and a value $y^{\prime \prime}$ from Y for extending the representation of c_{j} by entries true at indices $\left(x^{\prime \prime}, y_{j}^{\prime}\right)$ and $\left(x^{\prime \prime}, y^{\prime \prime}\right)$. It also starts the computation for checking that $x^{\prime \prime}$ and $y^{\prime \prime}$ are fresh values. An invariant during this computation is that if the control state is $e_{j, i^{\prime}}^{j^{\prime}}$, then $x^{\prime \prime}$ and $y^{\prime \prime}$ do not occur among the indices in the representation of $c_{j^{\prime}}$ up to ($x^{\prime \prime \prime}, y^{\prime \prime \prime}$).

$$
\begin{gathered}
\left\langle x^{\dagger}: X, y^{\dagger}: Y\right\rangle: b=e_{i} \wedge x^{\dagger} \neq x_{1} \wedge y^{\dagger} \neq y_{1} \\
\left\{b:=e_{j, i^{\prime}}^{1}, x^{\prime \prime}:=x^{\dagger}, y^{\prime \prime}:=y^{\dagger}, x^{\prime \prime \prime}:=x_{1}, y^{\prime \prime \prime}:=y_{1}\right\}
\end{gathered}
$$

If $x^{\prime \prime}$ and $y^{\prime \prime}$ have been compared against the whole representation of c_{1}, we move to comparing them against the representation of c_{2} :

$$
\begin{gathered}
\left\rangle: b=e_{j, i^{\prime}}^{1} \wedge x^{\prime \prime \prime}=x_{1}^{\prime} \wedge y^{\prime \prime \prime}=y_{1}^{\prime} \wedge x^{\prime \prime} \neq x_{2} \wedge y^{\prime \prime} \neq y_{2} .\right. \\
\left\{b:=e_{j, i^{\prime}}^{2}, x^{\prime \prime \prime}:=x_{2}, y^{\prime \prime \prime}:=y_{2}\right\}
\end{gathered}
$$

When the computation is complete, we extend the representation of c_{j} corresponding to the increment by 1 , and move to $e_{i^{\prime}}$:

$$
\begin{gathered}
\left\rangle: b=e_{j, i^{\prime}}^{2} \wedge x^{\prime \prime \prime}=x_{2}^{\prime} \wedge y^{\prime \prime \prime}=y_{2}^{\prime} .\right. \\
\left\{b:=e_{i^{\prime}}, x_{j}^{\prime}:=x^{\prime \prime}, y_{j}^{\prime}:=y^{\prime \prime}, a\left[\left(x^{\prime \prime}, y_{j}^{\prime}\right) ;\left(x^{\prime \prime}, y^{\prime \prime}\right)\right]:=\text { true } ; \text { true }\right\}
\end{gathered}
$$

The fourth instruction performs a step in comparing $x^{\prime \prime}$ and $y^{\prime \prime}$ with the indices in the representation of $c_{j^{\prime}}$:

$$
\begin{gathered}
\left\langle x^{\dagger}: X, y^{\dagger}: Y\right\rangle: \\
b=e_{j, i^{\prime}}^{j^{\prime}} \wedge x^{\dagger} \notin\left\{x^{\prime \prime}, x^{\prime \prime \prime}\right\} \wedge y^{\dagger} \notin\left\{y^{\prime \prime}, y^{\prime \prime \prime}\right\} \wedge a\left[\left(x^{\dagger}, y^{\prime \prime \prime}\right)\right] \wedge a\left[\left(x^{\dagger}, y^{\dagger}\right)\right] \\
\left\{x^{\prime \prime \prime}:=x^{\dagger}, y^{\prime \prime \prime}:=y^{\dagger}\right\}
\end{gathered}
$$

For any instruction $L_{i}: c_{j}:=c_{j}-1 ;$ goto $L_{i^{\prime}}$ of the 2CM, the PSA has the following instruction, which reduces the representation of c_{j} by moving x_{j} and y_{j} from the first entry true to the third:

$$
\begin{aligned}
& \left\langle x^{\dagger}: X, y^{\dagger}: Y\right\rangle: b=e_{i} \wedge x^{\dagger} \neq x_{j} \wedge y^{\dagger} \neq y_{j} \wedge a\left[\left(x^{\dagger}, y_{j}\right)\right] \wedge a\left[\left(x^{\dagger}, y^{\dagger}\right)\right] \\
& \quad\left\{b:=e_{i^{\prime}}, x_{j}:=x^{\dagger}, y_{j}:=y^{\dagger}, a\left[\left(x_{j}, y_{j}\right) ;\left(x^{\dagger}, y_{j}\right)\right]:=\text { false } ; \text { false }\right\}
\end{aligned}
$$

A zero-test instruction of the 2 CM is straightforward to represent, since c_{j} has value 0 if and only if $x_{j}=x_{j}^{\prime}$ and $y_{j}=y_{j}^{\prime}$:

$$
\left\rangle: b=e_{i} \cdot\left\{b:=\text { if } x_{j}=x_{j}^{\prime} \wedge y_{j}=y_{j}^{\prime} \text { then } e_{i^{\prime}} \text { else } e_{i^{\prime \prime}}\right\}\right.
$$

It is clear that this PSA is in the class $X \times Y$-to-Bool.
For any configuration $\left(L_{i}, v_{1}, v_{2}\right)$ of the 2 CM , let $F\left(L_{i}, v_{1}, v_{2}\right)$ be the set of all states (ω, γ, θ) of the PSA such that $\theta \llbracket b \rrbracket=\llbracket e_{i} \rrbracket$ and θ assigns to x_{1}, x_{1}^{\prime}, $x_{2}, x_{2}^{\prime}, y_{1}, y_{1}^{\prime}, y_{2}, y_{2}^{\prime}$ and a a representation of v_{1} and v_{2} as above. The rest is as in the case $X \times X$-to-Bool.
X-to- Y, Z. The proof for this case differs from the case $X \times Y$-to-Bool by how the counters are represented.
We represent a value v_{j} of a counter c_{j} by $2 v_{j}$ entries in each of the arrays $a: X \rightarrow Y$ and $b: X \rightarrow Z$. If their indices are x_{k}^{j} and $\mathrm{x}_{k}^{\prime j}$, then $\llbracket a \rrbracket\left(\mathrm{x}_{2 k-1}^{j}\right)=$ $\llbracket a \rrbracket\left(x_{2 k}^{j}\right), \llbracket b \rrbracket\left(\mathrm{x}_{2 k-1}^{\prime j}\right)=\llbracket b \rrbracket\left(\mathrm{x}_{2 k}^{\prime j}\right)$, and $\mathrm{x}_{2 k}^{j}=\mathrm{x}_{2 k-1}^{\prime j}$. The values $\llbracket a \rrbracket\left(\mathrm{x}_{2 k-1}^{j}\right)$ are mutually distinct, and distinct from a value y which fills the rest of the array a. In the same way, the values $\llbracket b \rrbracket\left(x_{2 k-1}^{\prime j}\right)$ are mutually distinct, and distinct from a value z which fills the rest of the array b.
The state variables x_{j} will contain x_{1}^{j}, and x_{j}^{\prime} will contain $\mathrm{x}_{2 v_{j}}^{\prime j}$. We shall have $x_{j}=x_{j}^{\prime}$ if and only if $v_{j}=0$.

$$
\begin{aligned}
\Theta= & \left\langle b: \text { Enum }_{5 u+1}, x_{1}, x_{1}^{\prime}, x_{2}, x_{2}^{\prime}, x^{\prime \prime}: X, y, y^{\prime}: Y, z, z^{\prime}: Z\right. \\
& a: X \rightarrow Y, b: X \rightarrow Z\rangle
\end{aligned}
$$

The CSR question is whether the PSA can reach a state with $b=e_{j}$ from a state with $b=e_{0}$ and

$$
\forall x: X \cdot a[x]=y \wedge b[x]=z
$$

At control state e_{0}, the representations of the counters are initialised to zero, and we move to e_{1} :

$$
\left\rangle: b=e_{0} \wedge x_{1} \neq x_{2} \cdot\left\{b:=e_{1}, x_{1}^{\prime}:=x_{1}, x_{2}^{\prime}:=x_{2}\right\}\right.
$$

For an increment $L_{i}: c_{j}:=c_{j}+1$; goto $L_{i^{\prime}}$, we have the following four instructions:

$$
\begin{gathered}
\left\langle y^{\dagger}: Y, z^{\dagger}: Z\right\rangle: b=e_{i} \wedge y^{\dagger} \neq y \wedge z^{\dagger} \neq z \\
\left\{b:=e_{j, i^{\prime}}^{1}, y^{\prime}:=y^{\dagger}, z^{\prime}:=z^{\dagger}, x^{\prime \prime}:=x_{1}\right\} \\
\left\rangle: b=e_{j, i^{\prime}}^{1} \wedge x^{\prime \prime}=x_{1}^{\prime} \cdot\left\{b:=e_{j, i^{\prime}}^{2}, x^{\prime \prime}:=x_{2}\right\}\right. \\
\left\langle x^{\dagger}: X, x^{\ddagger}: X\right\rangle: \\
b=e_{j, i^{\prime}}^{2} \wedge x^{\prime \prime}=x_{2}^{\prime} \wedge a\left[x^{\dagger}\right]=y \wedge b\left[x^{\dagger}\right]=z \wedge b\left[x^{\ddagger}\right]=z \wedge a\left[x^{\ddagger}\right]=y . \\
\left\{b:=e_{i^{\prime}}, x_{j}^{\prime}:=x^{\ddagger}, a\left[x_{j}^{\prime} ; x^{\dagger}\right]:=y^{\prime} ; y^{\prime}, b\left[x^{\dagger}, x^{\ddagger}\right]:=z^{\prime}, z^{\prime}\right\} \\
\left\langle x^{\dagger}: X, x^{\ddagger}: X\right\rangle: \\
b=e_{j, i^{\prime}}^{j^{\prime}} \wedge x^{\dagger} \neq x^{\prime \prime} \wedge x^{\ddagger} \neq x^{\dagger} \wedge a\left[x^{\prime \prime}\right]=a\left[x^{\dagger}\right] \notin\left\{y, y^{\prime}\right\} \wedge b\left[x^{\dagger}\right]=b\left[x^{\ddagger}\right] \neq z^{\prime} . \\
\left\{x^{\prime \prime}:=x^{\ddagger}\right\}
\end{gathered}
$$

For a decrement $L_{i}: c_{j}:=c_{j}-1 ;$ goto $L_{i^{\prime}}$, we have:

$$
\begin{gathered}
\left\langle x^{\dagger}: X, x^{\ddagger}: X\right\rangle: \\
b=e_{i} \wedge x^{\dagger} \neq x_{j} \wedge x^{\ddagger} \neq x^{\dagger} \wedge a\left[x_{j}\right]=a\left[x^{\dagger}\right] \neq y \wedge b\left[x^{\dagger}\right]=b\left[x^{\ddagger}\right] . \\
\left\{b:=e_{i^{\prime}}, x_{j}:=x^{\ddagger}, a\left[x_{j} ; x^{\dagger}\right]:=y ; y, b\left[x^{\dagger}, x^{\ddagger}\right]:=z ; z\right\}
\end{gathered}
$$

A zero-test $L_{i}:$ if $c_{j}=0$ then goto $L_{i^{\prime}}$ else goto $L_{i^{\prime \prime}}$ is represented by

$$
\left\rangle: b=e_{i} \cdot\left\{b:=\text { if } x_{j}=x_{j}^{\prime} \text { then } e_{i^{\prime}} \text { else } e_{i^{\prime \prime}}\right\}\right.
$$

$X, \leq-$ to- Y. Again, the differences from the case $X \times Y$-to-Bool are in how the counters are represented.
Here, we represent values v_{1} and v_{2} of the counters c_{1} and c_{2} by $2 v_{1}+2 v_{2}+2$ entries in an array $a: X \rightarrow Y$. If their indices are

$$
\mathrm{x}_{1}^{1}<\cdots<\mathrm{x}_{2 v_{1}+1}^{1}<\mathrm{x}_{1}^{2}<\cdots<\mathrm{x}_{2 v_{2}+1}^{2}
$$

we have:
$-\llbracket a \rrbracket\left(x_{1}^{j}\right)=\llbracket a \rrbracket\left(x_{3}^{j}\right)$,
$-\llbracket a \rrbracket\left(\mathrm{x}_{2 k}^{j}\right)=\llbracket a \rrbracket\left(\mathrm{x}_{2 k+3}^{j}\right)$ for all $k \in\left\{1, \ldots, v_{j}-1\right\}$, and
$-\llbracket a \rrbracket\left(\mathrm{x}_{1}^{1}\right), \llbracket a \rrbracket\left(\mathrm{x}_{1}^{2}\right)$, and all the values $\llbracket a \rrbracket\left(\mathrm{x}_{2 k}^{j}\right)$ are mutually distinct, and distinct from a value y which fills the rest of the array a.
The state variables x_{j} will contain x_{1}^{j}, and x_{j}^{\prime} and $x_{j}^{\prime \prime}$ will contain $\mathrm{x}_{2 v_{j}}^{j}$ and $\mathrm{x}_{2 v_{j}+1}^{j}$. We shall have $x_{j}=x_{j}^{\prime}$ if and only if $v_{j}=0$.

$$
\begin{aligned}
\Theta= & \left\langle b: \text { Enum }_{5 u+1}, x_{1}, x_{1}^{\prime}, x_{1}^{\prime \prime}, x_{2}, x_{2}^{\prime}, x_{2}^{\prime \prime}, x^{b}, x^{\sharp}: X,\right. \\
& \left.y, y^{\prime}: Y, a: X \rightarrow Y\right\rangle
\end{aligned}
$$

The CSR question is whether the PSA can reach a state with $b=e_{j}$ from a state with $b=e_{0}$ and

$$
\forall x: X \cdot a[x]=y
$$

At control state e_{0}, the representations of the counters are initialised to zero, and we move to e_{1} :

$$
\begin{gathered}
\left\langle y^{\dagger}: Y, y^{\ddagger}: Y\right\rangle: b=e_{0} \wedge x_{1}<x_{2} \wedge y^{\dagger} \neq y \wedge y^{\ddagger} \notin\left\{y, y^{\dagger}\right\} . \\
\left\{b:=e_{1}, x_{1}^{\prime}:=x_{1}, x_{1}^{\prime \prime}:=x_{1}, x_{2}^{\prime}:=x_{2}, x_{2}^{\prime \prime}:=x_{2}, a\left[x_{1} ; x_{2}\right]:=y^{\dagger} ; y^{\ddagger}\right\}
\end{gathered}
$$

For an increment $L_{i}: c_{j}:=c_{j}+1 ;$ goto $L_{i^{\prime}}$, we have the following five instructions. The third and fourth instructions extend the representations of c_{1} and c_{2} respectively, corresponding to the increment. They differ only because the constraint $\mathrm{x}_{2 v_{1}+1}^{1}<\mathrm{x}_{1}^{2}$ needs to be maintained when incrementing c_{1}.

$$
\begin{gathered}
\left\langle y^{\dagger}: Y\right\rangle: b=e_{i} \wedge y^{\dagger} \notin\left\{y, a\left[x_{1}\right]\right\} \cdot\left\{b:=e_{j, i^{\prime}}^{1}, y^{\prime}:=y, x^{b}:=x_{1}, x^{\sharp}:=x_{1}\right\} \\
\left\rangle: b=e_{j, i^{\prime}}^{1} \wedge x^{b}=x_{1}^{\prime} \wedge y^{\prime} \neq a\left[x_{2}\right] \cdot\left\{b:=e_{j, i^{\prime}}^{2}, x^{b}:=x_{2}, x^{\sharp}:=x_{2}\right\}\right. \\
\left\langle x^{\dagger}: X, x^{\ddagger}: X\right\rangle: b=e_{1, i^{\prime}} \wedge x^{b}=x_{2}^{\prime} \wedge x_{1}^{\prime \prime}<x^{\dagger}<x^{\ddagger}<x_{2} . \\
\left\{b:=e_{i^{\prime}}, x_{1}^{\prime}:=x^{\dagger}, x_{1}^{\prime \prime}:=x^{\ddagger}, a\left[x^{\dagger} ; x^{\ddagger}\right]:=y^{\prime} ; a\left[x_{1}^{\prime}\right]\right\} \\
\left\langle x^{\dagger}: X, x^{\ddagger}: X\right\rangle: b=e_{2, i^{\prime}}^{2} \wedge x^{b}=x_{2}^{\prime} \wedge x_{2}^{\prime \prime}<x^{\dagger}<x^{\ddagger} . \\
\left\{b:=e_{i^{\prime}}, x_{2}^{\prime}:=x^{\dagger}, x_{2}^{\prime \prime}:=x^{\ddagger}, a\left[x^{\dagger} ; x^{\ddagger}\right]:=y^{\prime} ; a\left[x_{2}^{\prime}\right]\right\} \\
\left\langle x^{\dagger}: X, x^{\ddagger}: X\right\rangle: b=e_{j, i^{\prime}}^{j^{\prime}} \wedge a\left[x^{b}\right]=a\left[x^{\ddagger}\right] \wedge x^{\sharp}<x^{\dagger}<x^{\ddagger} \wedge y^{\prime} \neq a\left[x^{\dagger}\right] . \\
\left\{x^{b}:=x^{\dagger}, x^{\sharp}:=x^{\ddagger}\right\}
\end{gathered}
$$

For a decrement $L_{i}: c_{j}:=c_{j}-1 ;$ goto $L_{i^{\prime}}$, we have:

$$
\begin{gathered}
\left\langle x^{\dagger}: X, x^{\ddagger}: X\right\rangle: b=e_{i} \wedge a\left[x_{j}\right]=a\left[x^{\ddagger}\right] \wedge x_{j}<x^{\dagger}<x^{\ddagger} \wedge a\left[x^{\dagger}\right] \neq y . \\
\left\{b:=e_{i^{\prime}}, x_{j}:=x^{\dagger}, x_{j}^{\prime \prime}:=\text { if } x_{j}^{\prime \prime}=x^{\ddagger} \text { then } x^{\dagger} \text { else } x_{j}^{\prime \prime}, a\left[x_{j} ; x^{\ddagger}\right]:=y ; y\right\}
\end{gathered}
$$

A zero-test is represented by:

$$
\left\rangle: b=e_{i} \cdot\left\{b:=\text { if } x_{j}=x_{j}^{\prime} \text { then } e_{i^{\prime}} \text { else } e_{i^{\prime \prime}}\right\}\right.
$$

Corollary 1. For classes of PSAs obtained by extending the classes above to allow resets of arrays, uninitialised CSR is undecidable.

In [22], it was shown that uninitialised CSR is decidable for systems with arrays from X with equality to enumerated types. In [19, Chapter 8], decidability of the same problem was shown for systems with an array from X with equality to Y with equality. Theorem 1 tells us that decidability fails when the former arrays are generalised to two-dimensional, and when the latter arrays are generalised to X with a linear ordering.

By regarding X as the type of processor indices, Y as the type of memory addresses, and Bool as the type of storable data, the class $X \times Y$-to-Bool contains classes of cache-coherence protocols (e.g. [4, 20]). By Theorem 1, any decidability result for initialised CSR for such a class of protocols must depend on some properties of the protocols which are not common to the whole class $X \times Y$-toBool.

5 Decidability result

Let X, \leq-to-Enum be the class of all $\operatorname{PSAs}(\Omega, \Gamma, \Theta, R, I)$ such that:
$-\Omega=\{X\}$ and $\Gamma=\left\langle\leq_{X}: X \times X \rightarrow\right.$ Bool $\rangle ;$

- the type of any array variable in Θ, and of any array parameter in R, is of the form $X \rightarrow$ Enum $_{m}$;
- I consists of all (ω, γ) such that ω assigns to X some \hat{k}, and γ assigns to \leq_{X} the linear ordering on \hat{k}.

Theorem 2. Initialised and uninitialised CSR problems are decidable for the class $X, \leq-$ to-Enum.

Proof. Suppose we have an instance of the initialised or uninitialised CSR problem, which is for a PSA $(\Omega, \Gamma, \Theta, R, I)$ in the class X, \leq-to-Enum. We show how to reduce this to whether a monadic MSR(NC) specification ($\mathcal{P}, \mathrm{NC}, \mathcal{I}, \mathcal{R}$) can reach the upward closure of a finite set of constrained configurations \mathbf{U}. The latter problem was proved decidable in [6].

We can use the following properties of the typed λ-calculus to simplify the state variables Θ :

- any variable of product type $B_{1} \times \cdots \times B_{n}$ is representable by variables of types B_{1}, \ldots, B_{n};
- any variable of sum type $B_{1}+\cdots+B_{n}$ is representable by a variable of the enumerated type $E n u m_{n}$ and variables of types B_{1}, \ldots, B_{n};
- a finite number of variables of enumerated types is representable by one variable of enumerated type;
- a finite number of arrays of types $X \rightarrow$ Enum $_{m_{1}}, \ldots, X \rightarrow$ Enum $_{m_{k}}$ is representable by one array of type $X \rightarrow$ Enum $_{m_{1} \times \cdots \times m_{k}}$.

We can therefore assume Θ is of the form

$$
\left\langle b: \text { Enum }_{n}, x_{1}: X, \ldots, x_{l}: X, a: X \rightarrow \text { Enum }_{m}\right\rangle
$$

The parameters of any instruction in R can be simplified in the same way. Furthermore, an instruction with a parameter of type Enum $n_{n^{\prime}}$ is equivalent to n^{\prime} instructions without that parameter. We can thus assume the parameters of any $\rho \in R$ are of the form

$$
\left\langle x_{l+1}: X, \ldots, x_{l+l^{\prime}}: X, a^{\prime}: X \rightarrow \text { Enum }_{m^{\prime}}\right\rangle
$$

and that this type context is the same for all $\operatorname{\rho inR}$.
An instruction whose guard is a disjunction $c \vee c^{\prime}$ is equivalent to two instructions with guards c and c^{\prime}. Therefore, using reduction of terms of the typed λ-calculus to normal form, we can assume that the guard of any $\rho \in R$ is of the form

$$
b=f \wedge \bigwedge_{i=1}^{l+l^{\prime}} a\left[x_{i}\right]=g_{i} \wedge \bigwedge_{i=1}^{l+l^{\prime}} a^{\prime}\left[x_{i}\right]=g_{i}^{\prime} \wedge d
$$

where $f \in\left\{e_{1}, \ldots, e_{n}\right\}, g_{i} \in\left\{e_{1}, \ldots, e_{m}\right\}, g_{i}^{\prime} \in\left\{e_{1}, \ldots, e_{m^{\prime}}\right\}$, and d is an NC constraint over $x_{1}, \ldots, x_{l+l^{\prime}}$, i.e. ${ }^{6}$

$$
d::=\text { false } \mid \text { true }\left|x_{i}=x_{j}\right| x_{i}<x_{j} \mid d \wedge d^{\prime}
$$

Finally, using reduction of terms to normal form again, we can assume that the assignments of any $\rho \in R$ are of the form

$$
\left\{b:=f^{\prime}, x_{1}:=y_{1}, \ldots, x_{l}:=y_{l}\right.
$$

$a:=\lambda x: X \cdot$ if $x=x_{1}$ then $g_{1}^{\prime \prime}$ elseif $\cdots x=x_{l+l^{\prime}}$ then $g_{l+l^{\prime}}^{\prime \prime}$ elseh $\left.\left[\left(a[x], a^{\prime}[x]\right)\right]\right\}$
where $f^{\prime} \in\left\{e_{1}, \ldots, e_{n}\right\}, y_{i} \in\left\{x_{1}, \ldots, x_{l+l^{\prime}}\right\}, g_{i}^{\prime \prime} \in\left\{e_{1}, \ldots, e_{m}\right\}$, and h represents a function from Enum $_{m} \times$ Enum $_{m^{\prime}}$ into Enum ${ }_{m}$.

We now construct a monadic $\operatorname{MSR}(\mathrm{NC})$ specification $(\mathcal{P}, \mathrm{NC}, \mathcal{I}, \mathcal{R})$. Let \mathcal{P} consist of:

- nullary predicate symbols $\mathrm{z}, \mathrm{nz}, \mathrm{b}_{1}, \ldots, \mathrm{~b}_{n}$;
- unary predicate symbols $\mathrm{x}_{1}, \ldots, \mathrm{x}_{l}$;
- unary predicate symbols aa $_{i, j}^{\prime}$ for $i \in\{1, \ldots, m\}, j \in\left\{0,1, \ldots, m^{\prime}\right\}$.

NC is the system of name constraints [6]:

$$
\varphi::=\text { false } \mid \text { true }\left|x=x^{\prime}\right| x<x^{\prime} \mid \varphi \wedge \varphi^{\prime}
$$

NC constraints are interpreted over the integers \mathcal{Z}. The usual entailment relation for linear integer constraints is used and denoted \sqsubseteq^{c}.

The simplifications of the state variables Θ above mean that the CSR problem now refers to a projection of the state variable b. Thus we need to decide whether a state in which b has one of a set of values is reachable from a state in which b has one of another set of values (and the array state variable a is initialised appropriately). This is equivalent to a finite number of questions for pairs of values of b, so we can work with the original form of the CSR problem.

If the CSR problem is uninitialised, i.e. to decide whether a state with $b=e_{j}$ is reachable from a state with $b=e_{i}$, let \mathcal{I} consist of all configurations of the form

$$
\mathrm{z}\left|\mathrm{~b}_{i}\right| \mathrm{x}_{1}\left(v_{1}\right)|\cdots| \mathrm{x}_{l}\left(v_{l}\right)\left|\mathrm{aa}_{i_{1}, 0}^{\prime}(1)\right| \cdots \mid \mathrm{aa}_{i_{k}, 0}^{\prime}(k)
$$

such that k is a positive integer and $v_{1}, \ldots, v_{l} \in \hat{k}$.
If the CSR problem is initialised, i.e. to decide whether a state with $b=e_{j}$ is reachable from a state with $b=e_{i}$ and $\forall x: X \cdot a[x]=t_{a}$, let \mathcal{I} consist of all configurations as above, such that in addition all $i_{i^{\prime}}$ equal

$$
\llbracket t_{a} \rrbracket_{\{X \mapsto \hat{k}\},\left\{\leq x \mapsto \leq_{\hat{k}}, b \mapsto i, x_{1} \mapsto v_{1}, \ldots, x_{l} \mapsto v_{l}\right\}}
$$

For any instruction $\rho \in R$, whose form is as above, \mathcal{R} contains a rule

$$
\begin{gathered}
\mathrm{nz}\left|\mathrm{~b}_{f}\right| \mathrm{x}_{1}\left(x_{1}\right)|\cdots| \mathrm{x}_{l}\left(x_{l}\right)\left|\mathrm{aa}_{g_{1}, g_{1}^{\prime}}^{\prime}\left(x_{1}\right)\right| \cdots \mid \mathrm{aa}_{g_{l+l^{\prime}}^{\prime}, g_{l+l^{\prime}}^{\prime}}\left(x_{l+l^{\prime}}\right) \longrightarrow \\
\mathrm{z}\left|\mathrm{~b}_{f^{\prime}}\right| \mathrm{x}_{1}\left(y_{1}\right)|\cdots| \mathrm{x}_{l}\left(y_{l}\right)\left|\mathrm{aa}_{g_{1}^{\prime \prime}, 0}^{\prime}\left(x_{1}\right)\right| \cdots \mid \mathrm{aa}_{g_{++l^{\prime}}^{\prime \prime}}^{\prime}\left(x_{l+l^{\prime}}^{\prime}\right) \\
{\left[\mathrm{aa}_{i, j}^{\prime}\left(x_{i, j}^{\prime}\right) \hookrightarrow \mathrm{aa}_{\llbracket h \rrbracket(i, j), 0}^{\prime}\left(x_{i, j}^{\prime}\right): i \in\{1, \ldots, m\} \wedge j \in\left\{1, \ldots, m^{\prime}\right\}\right]: d}
\end{gathered}
$$

[^3]For simplicity of presentation, we used here multiple occurences of the variables $x_{1}, \ldots, x_{l+l^{\prime}}$ and $x_{i, j}^{\prime}$ instead of extending by equalities the constraint of the rule.

The purpose of the predicate symbols \mathbf{z} and nz , and the indices 0 in the reactions aa ${ }_{i, j}^{\prime}\left(x_{i, j}^{\prime}\right) \hookrightarrow$ aa $_{\llbracket h \rrbracket(i, j), 0}^{\prime}\left(x_{i, j}^{\prime}\right)$, is to ensure that always aa ${ }_{i, j}^{\prime} \neq$ aa $_{\llbracket h \rrbracket\left(i^{\prime}, j^{\prime}\right), 0}^{\prime}$, as required in [6, Definition 27]. The following rule changes all such indices to 1 . Using the predicate symbols z and $n z$, this rule is fired in alternation with the rules above.

$$
\mathrm{z} \longrightarrow \mathrm{nz}\left[\mathrm{aa}_{i, 0}^{\prime}\left(x_{i}^{\prime}\right) \hookrightarrow \mathrm{aa}_{i, 1}^{\prime}\left(x_{i}^{\prime}\right): i \in\{1, \ldots, m\}\right]: \text { true }
$$

When $j \neq 0$, an atomic formula aa ${ }_{i, j}^{\prime}(x)$ represents $a[x]=e_{i}$ and $a^{\prime}[x]=e_{j}$. The remaining rules, one for each $i \in\{1, \ldots, m\}$ and $j \in\left\{2, \ldots, m^{\prime}\right\}$, can be fired an arbitrary number of times after the previous rule. They ensure that the values $a^{\prime}[x]$ can be arbitrary, corresponding to the array a^{\prime} being a parameter in the instructions in R.

$$
\mathrm{nz}\left|\mathrm{aa}_{i, 1}^{\prime}(x) \longrightarrow \mathrm{nz}\right| \mathrm{aa}_{i, j}^{\prime}(x): \text { true }
$$

For any state (ω, γ, θ) of the PSA $(\Omega, \Gamma, \Theta, R, I)$, where $\omega=\{X \mapsto \hat{k}\}$ and $\gamma=\left\{\leq_{X} \mapsto \leq_{\hat{k}}\right.$, let
$F(\omega, \gamma, \theta)=\mathrm{z}\left|\mathrm{b}_{\theta \llbracket b \rrbracket}\right| \mathrm{x}_{1}\left(\theta \llbracket x_{1} \rrbracket\right)|\cdots| \mathrm{x}_{l}\left(\theta \llbracket x_{l} \rrbracket\right)\left|\mathrm{aa}^{\prime}{ }_{\theta \llbracket a \rrbracket(1), 0}(1)\right| \cdots \mid \mathrm{aa}^{\prime}{ }_{\theta \llbracket a \rrbracket(k), 0}(k)$
It is straightforward to show that the $\operatorname{MSR}(\mathrm{NC})$ specification $(\mathcal{P}, \mathrm{NC}, \mathcal{I}, \mathcal{R})$ can reach a configuration \mathcal{M} with $(z) \in \mathcal{M}$ from $F(\omega, \gamma, \theta)$ if and only if $\mathcal{M}=$ $F\left(\omega, \gamma, \theta^{\prime}\right)$ for some state $\left(\omega, \gamma, \theta^{\prime}\right)$ reachable from (ω, γ, θ).

Let $\mathbf{U}=\left\{\mathbf{z} \mid \mathrm{b}_{j}:\right.$ true $\}$. Then the PSA can reach a state with $b=e_{j}$ if and only if the MSR(NC) specification can reach a configuration in $\llbracket \mathrm{U} \rrbracket$, i.e. a configuration containing z and b_{j}. By [6, Theorem 2], there is an algorithm to decide the latter. (The algorithm in [6] involves elimination of existential quantifiers from NC constraints, which is not possible in general. However, it is straightforward to overcome this problem, by using an auxiliary unary predicate symbol $\varepsilon(x)$. Instead of eliminating $\exists x$, we keep $\varepsilon(x)$ in the constrained configuration. These predicates do not change the denotations of the constrained configurations \mathcal{M}, but they add empty multisets into the strings $\operatorname{Str}(\mathcal{M})$.)

Example 3. Our model of the Bully Algorithm is in the class X, \leq-to-Enum. Theorem 2 gives us a decision procedure for initialised and uninitialised CSR problems, such as those in the example in Section 3.

6 Future work

On-going work includes generalising the decidability results in [22] and [19, Chapter 8], and Theorem 2 to classes of PSAs with more than one array type.

Acknowledgements

We thank Sara Kalvala for a useful discussion.

References

1. M. Bozzano and G. Delzanno, Beyond Parameterized Verification, Proceedings of TACAS '02, Lecture Notes in Computer Science 2280, 221-235, 2002.
2. M. Bozzano and G. Delzanno, Automatic Verification of Invalidation-based Protocols, Proceedings of CAV '02, July 2002.
3. E.M. Clarke, O. Grumberg and D.A. Peled, Model Checking, MIT Press, January 2000.
4. G. Delzanno, Automatic verification of parameterized cache coherence protocols, Proceedings of the 12th International Conference on Computer-Aided Verification (CAV 2000), Lecture Notes in Computer Science 1855, 53-68, Springer, July 2000.
5. G. Delzanno, An Assertional Language for Systems Parametric in Several Dimensions, Proceedings of the Workshop on Verification of Parameterized Systems (VEPAS 2001), Electronic Notes in Theoretical Computer Science 50, Elsevier, 2001.
6. G. Delzanno, On the Automated Verification of Parameterized Concurrent Systems with Unbounded Local Data, Technical Report, Dipartimento Informatica e Scienze dell'Informazione, Università di Genova, 2002. Revised and extended version of [5], [1], [2].
7. E.A. Emerson and K.S. Namjoshi, On model checking for non-deterministic infinite-state systems, Proceedings of the 13th Annual IEEE Symposium on Logic in Computer Science (LICS), 1998.
8. J. Esparza, Decidability and complexity of Petri net problems - an introduction, Lectures on Petri Nets I: Basic Models, Advances in Petri Nets, Lecture Notes in Computer Science 1491, 374-428, Springer, 1998.
9. J. Esparza, A. Finkel and R. Mayr, On the verification of broadcast protocols, Proceedings of the 14th Annual IEEE Symposium on Logic in Computer Science (LICS), 352-359, July 1999.
10. H. Garcia-Molina, Elections in a distributed computing system, IEEE Transactions on Computers 31 (1): 48-59, 1982.
11. S.M. German and A.P. Sistla, Reasoning about Systems with Many Processes, Journal of the ACM 39 (3): 675-735, 1992.
12. Annual International Workshops on Verification of Infinite-State Systems (INFINITY).
13. R.S. Lazić, T.C. Newcomb and A.W. Roscoe, On model checking data-independent systems with arrays without reset, Programming Research Group Research Report RR-02-02, 31 pages, Oxford University Computing Laboratory, January 2002. Revised version to appear in the journal Theory and Practice of Logic Programming (TPLP), Cambridge University Press.
14. R. Lazić and A.W. Roscoe, Verifying determinism of concurrent systems which use unbounded arrays, Proceedings of the 3rd International Workshop on Verification of Infinite-State Systems (INFINITY '98), Report TUM-I9825, 2-8, Technical University of Munich, July 1998.
15. I. A. Lomazova, Nested Petri Nets: Multi-level and Recursive Systems, Fundamenta Informaticae 47, 283-294, IOS Press, 2001.
16. M. Maidl, A Unifying Model Checking Approach for Safety Properties of Parameterized Systems, Proceedings of the 13th International Conference on Computer Aided Verification (CAV 2001), Lecture Notes in Computer Science 2102, 311-323, Springer, July 2001.
17. N.M. Minsky, Finite and Infinite Machines, Prentice-Hall, 1967.
18. J.C. Mitchell, Type Systems for Programming Languages, in [23], 365-458.
19. T.C. Newcomb, Model Checking Data-Independent Systems with Arrays, D.Phil. thesis, Computing Laboratory, Oxford University, 2003.
20. S. Qadeer, Verifying sequential consistency on shared-memory multiprocessors by model checking, IEEE Transactions on Parallel and Distributed Systems 14 (8), August 2003.
21. J.-F. Raskin and L. Van Begin, Petri Nets with Non-blocking Arcs are Difficult to Analyse, Proceedings of the International Workshop on Verification of InfiniteState Systems (INFINITY 2003), Electronic Notes in Theoretical Computer Science.
22. A.W. Roscoe and R.S. Lazić, What can you decide about resetable arrays?, Proceedings of the 2nd International Workshop on Verification and Computational Logic (VCL'2001), Technical Report DSSE-TR-2001-3, 5-23, Declarative Systems and Software Engineering Research Group, Department of Electronics and Computer Science, University of Southampton, September 2001.
23. J. van Leeuwen (editor), Formal Models and Semantics, Handbook of Theoretical Computer Science, volume B, Elsevier, 1990.

[^0]: * We acknowledge support from the EPSRC grant GR/M32900. The first author was also supported by grants from the Intel Corporation and the EPSRC (GR/S52759/01), the second author by QinetiQ Malvern, and the third author by the US ONR.
 ** Also affiliated to the Mathematical Institute, Serbian Academy of Sciences and Arts, Belgrade.

[^1]: ${ }^{3}$ An order predicate can express the equality predicate by $t=t^{\prime} \Leftrightarrow t \leq t^{\prime} \wedge t^{\prime} \leq t$.
 ${ }^{4}$ The latter systems are less expressive because different types prevent values contained in the two arrays to be mixed.

[^2]: ${ }^{5}$ Any tuple of variables whose types do not contain type variables is isomorphic to a variable of type $E n u m_{n}$.

[^3]: ${ }^{6}$ Here $t=t^{\prime}$ and $t<t^{\prime}$ are abbreviations for $t \leq t^{\prime} \wedge t^{\prime} \leq t$ and $t \leq t^{\prime} \wedge \neg t^{\prime} \leq t$ respectively.

