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Polymorphi
 Systems with Arrays:De
idability and Unde
idability?Ranko Lazi�
1??, Tom New
omb2, and Bill Ros
oe21 Department of Computer S
ien
e, University of Warwi
k, UK2 Computing Laboratory, University of Oxford, UKAbstra
t. Polymorphi
 systems with arrays (PSAs) is a general 
lassof nondeterministi
 rea
tive systems. A PSA is polymorphi
 in the sensethat it depends on a signature, whi
h 
onsists of a number of type vari-ables, and a number of symbols whose types 
an be built from the typevariables. Some of the state variables of a PSA 
an be arrays, whi
h arefun
tions from one type to another. We present several new de
idabilityand unde
idability results for parameterised 
ontrol-state rea
habilityproblems on sub
lasses of PSAs.1 Introdu
tionContext. There has been mu
h interest in re
ent years in model 
he
king in�nite-state systems (e.g. [12℄). One of the most 
ommon reasons why a system 
anhave in�nitely many states is that it has one or more parameters whi
h 
an beunboundedly large. For example, a system might have an arbitrary number ofidenti
al parallel 
omponents, or it might work with data from an arbitrarilylarge data type. In su
h 
ases, the aim is usually to verify that the systemis 
orre
t not for spe
i�
 instantiations of the parameters, but for all possibleinstantiations.When a system has an arbitrary number of identi
al parallel 
omponents, the
ounting abstra
tion [11℄ 
an be used to represent it as a Petri net. If the sys-tem uses more than rendez-vous 
ommuni
ations between parallel 
omponents,extensions of Petri nets are used, su
h as transfer ar
s to represent broad
ast
ommuni
ations [9℄, or non-blo
king ar
s to represent partially non-blo
kingrendez-vous [21℄. Other abstra
t models related to Petri nets have also beenused for representing in�nite-state systems, su
h as broad
ast proto
ols [7℄ andmulti-set rewriting spe
i�
ations [6℄.Finding de
ision pro
edures for model 
he
king problems on Petri nets andrelated models is therefore useful for veri�
ation of a range of in�nite-state sys-tems. Unde
idability of su
h problems is also signi�
ant, for guiding further? We a
knowledge support from the EPSRC grant GR/M32900. The �rst au-thor was also supported by grants from the Intel Corporation and the EPSRC(GR/S52759/01), the se
ond author by QinetiQ Malvern, and the third author bythe US ONR.?? Also aÆliated to the Mathemati
al Institute, Serbian A
ademy of S
ien
es and Arts,Belgrade.



theoreti
al and pra
ti
al work. Many results of both kinds 
an be found in theliterature (e.g. [8, 9, 21, 15, 6℄).In pra
ti
e, in�nite-state systems are often given by UNITY-style syntax, i.e.using state variables, guards and assignments. This kind of syntax is 
ommon forde�ning �nite-state systems (e.g. [3℄), where the types of state variables are �niteenumerated types. It is easily extended for expressing in�nite-state systems, byusing type variables whi
h 
an be instantiated by arbitrary sets. For example, ifX , Y and Z are type variables representing pro
essor indi
es, memory addressesand storable data, then a 
a
he-
oheren
e proto
ol (e.g. [20℄) might have a statevariable 
a
he : (X�Y )! (Z�Enum3). Here, 
a
he is an array (i.e. a fun
tion)indexed by ordered pairs of pro
essor indi
es and memory addresses, and storingordered pairs of storable data and tags from the 3-element type Enum3. Notethat this system is parametri
 in three dimensions.It is therefore important to investigate de
idability of model 
he
king prob-lems on systems given by UNITY-style syntax with type variables and arraystate variables. Moreover, it is desirable to �nd algorithmi
 translations of su
hproblems to de
idable problems on Petri nets and related models. This avoidsdupli
ation of work, and enables use of the various te
hniques implemented forthe latter models (e.g. [6℄). However, UNITY-like syntax 
an su

intly expresssystems whi
h are parametri
 in several dimensions, 
ompared with Petri netsand related models whi
h are either restri
ted to one or two dimensions [9, 21,6℄ or relatively 
omplex [15℄. In parti
ular, relating the two kinds of systems isnon-trivial in general.Contributions. In this paper, we �x a UNITY-like syntax with type variablesand array state variables, and 
all su
h systems polymorphi
 systems with arrays(PSAs). For generality and su

in
tness, we use a typed �-
al
ulus to expressguards and right-hand sides of assignments. Basi
 types are formed from typevariables, produ
ts and sums (i.e. disjoint unions). We also use �rst-order fun
-tion types, as types of array state variables, or types of operation symbols (su
has �X : X � X ! Bool ). Assignments to array state variables 
an express arange of operations, in
luding writing to several array 
omponents, or resettingall 
omponents to a same value.A PSA is polymorphi
 in the sense that it has a signature, whi
h 
onsists ofa number of type variables and a number of symbols whose types 
an be builtfrom the type variables. A signature is instantiated by assigning non-empty setsto its type variables, and 
on
rete elements or operations to its symbols. Givena PSA and an instantiation of its signature, the semanti
s is a transition system.We study parameterised veri�
ation of PSAs, so a PSA also has a set of allinstantiations of its signature whi
h are of interest. The semanti
s is a transi-tion system 
onsisting of all transition systems for the given instantiations. Ifin�nitely many instantiations are given, this is in�nite-state.We present several new de
idability and unde
idability results for parame-terised 
ontrol-state rea
hability problems on sub
lasses of PSAs. Control-staterea
hability (CSR) 
an express a range of safety properties. We distinguish be-



tween initialised CSR, where all arrays are initialised at the start, and unini-tialised CSR.We show that initialised CSR is unde
idable for PSAs with ea
h of the fol-lowing restri
tions. In ea
h 
ase, the only allowed array operations are readsand writes, and the type variables are instantiated by arbitrary sets of the formf1; : : : ; kg.{ There is only one array, of type X �X ! Bool . The only operation on X isequality.{ There is only one array, of type X � Y ! Bool . The only operations on Xand Y are equalities.{ There are only two arrays, of types X ! Y and X ! Z. The only operationson X , Y and Z are equalities.{ There is only one array, of type X ! Y . The only operation on X is linearorder (�X),3 and on Y equality.For PSAs with arbitrary array operations, but whi
h have arrays only oftypes X ! Enumm, where the only operation on X is linear order, and whereX is instantiated by arbitrary sets of the form f1; : : : ; kg, we show that initialisedCSR is de
idable. The proof is by redu
ing to a rea
hability problem for multi-setrewriting spe
i�
ations with NC 
onstraints, whi
h has an implemented de
isionpro
edure [6℄.For uninitialised CSR, we obtain similar results.Comparisons. PSAs generalise data-independent systems with arrays [14, 13,22, 19℄ by allowing operations on type variables other than equality, and byallowing any array operation expressible using array instru
tion parameters andassignments of �-terms to array state variables.It was shown in [22℄ that initialised CSR is unde
idable for systems withonly two arrays, of type X ! Y , where the only operations on X and Y areequalities. Our unde
idability result strengthens this to two arrays with di�erentvalue types.4Our de
idability result extends the de
idability result in [22℄ by allowinglinear order on X instead of only equality, and by allowing a wider range ofarray operations.PSAs also generalise the parameterised systems in [16℄, where parameterisa-tion in only one dimension is 
onsidered. On the other hand, [16℄ treats quan-ti�
ation in guards, whi
h we do not 
onsider in this paper.Using a type variable X to represent the set of all pro
ess indi
es, and anarray s : X ! Enumn to store the state of ea
h pro
ess, any broad
ast proto
ol[7℄ 
an be expressed by a PSA. The only operation needed on X is equality.3 An order predi
ate 
an express the equality predi
ate by t = t0 , t � t0 ^ t0 � t.4 The latter systems are less expressive be
ause di�erent types prevent values 
on-tained in the two arrays to be mixed.



Organisation. In the next se
tion, we introdu
e the syntax and semanti
s ofPSAs. We de�ne initialised and uninitialised CSR problems in Se
tion 3. Theunde
idability and de
idability results are in Se
tions 4 and 5. In Se
tion 6, webrie
y point to future work.We use a model of the Bully Algorithm [10℄ as a running example.2 Polymorphi
 systems with arraysTo de�ne PSAs, we start with the syntax of types. We have basi
 types builtfrom type variables, produ
ts and non-empty sums, and fun
tion types from onebasi
 type to another. Fun
tion types will be used as types of array variables,and also as types of signature symbols su
h as equality predi
ates.B ::= X j B1 � � � � �Bn j B1 + � � �+ Bn�1T ::= B j B ! B0Next we need a syntax of terms, whi
h will be used to form one-step 
ompu-tations of PSAs. The terms are built from term variables, tuple formation, tupleproje
tion, sum inje
tion, sum 
ase, �-abstra
tion, and fun
tion appli
ation.We 
onsider only well-typed terms. A signature 
onsists of a �nite set 
 oftype variables, and a type 
ontext � whi
h is a sequen
e hx1 : T1; : : : ; xn : Tniof typed and mutually distin
t term variables, where the types Ti 
an 
ontainonly type variables from 
. A well-typed term-in-
ontext is written 
;� ` t : T ,where these valid type judgements are dedu
ed by standard typing rules [18℄.
;� hx : T i� 0 ` x : T
; � ` t1 : B1 � � � 
;� ` tn : Bn
;� ` (t1; : : : ; tn) : B1 � � � � �Bn
;� ` t : B1 � � � � �Bn
;� ` �i(t) : Bi
;� ` t : Bi
;� ` �B1+���+Bni (t) : B1 + � � �+Bn 8j 6= i � Vars(Bj) � 

;� ` t : B1 + � � �+Bn 
;� hx1 : B1i ` t01 : T � � � 
;� hxn : Bni ` t0n : T
; � ` 
ase t of x1:t01 or : : : or xn:t0n : T
; � hx : Bi ` t : B0
;� ` �x : B � t : B ! B0
;� ` t1 : B ! B0 
;� ` t2 : B
;� ` t1[t2℄ : B0Using the types and terms above, we 
an for example express:{ the singleton type Unit as the empty produ
t, and its unique element as theempty tuple;



{ the boolean type Bool as the sum of two Unit types, and terms false , true,and if t then t01 else t02;{ for any positive n, the n-element enumerated type Enumn as the sum of nUnit types, its elements e1, . . . , en, and a 
ase term.We 
an also express any given operation on the Bool and Enumn types, of anyarity.Semanti
s of types is de�ned as follows. A �nite set 
 of type variablesis instantiated by a mapping ! to non-empty sets. For any type T su
h thatVars(T ) � 
, its semanti
s with respe
t to ! is a non-empty set JT K!, whi
h isde�ned in the usual way. JXK! = !JXKJB1 � � � � �BnK! = JB1K! � � � � � JBnK!JB1 + � � �+BnK! = f1g � JB1K! [ � � � [ fng � JBnK!JB ! B0K! = (JB0K!)JBK!For semanti
s of terms, a signature (
;� ) is instantiated by an ! as above,and a mapping 
 2 J� K! , i.e. Dom(
) = Dom(� ) and 
JxK 2 JT K! for all x : Tin � . For any well-typed term-in-
ontext 
;� ` t : T , its semanti
s with respe
tto (!; 
) is an element JtK!;
 of JT K!, and is de�ned in the standard way.JxK!;
 = 
JxKJ(t1; : : : ; tn)K!;
 = (Jt1K!;
 ; : : : ; JtnK!;
)J�i(t)K!;
 = �i(JtK!;
)J�Bi (t)K!;
 = (i; JtK!;
)J
ase t of x1:t01 or : : : or xn:t0nK!;
 = Jt0iK!;
fxi 7!vg; where (i; v) = JtK!;
J�x : B � tK!;
 = fv 7! JtK!;
fx 7!vg j v 2 JBK!gJt1[t2℄K!;
 = Jt1K!;
(Jt2K!;
)De�nition 1. A PSA is a 5-tuple (
;�;�;R; I) su
h that:{ (
;� ) is a signature, 
onsisting of type variables and typed term variables(i.e. typed 
onstant or operation symbols) whi
h the PSA is parameterisedby.{ � is a type 
ontext disjoint from � , and su
h that (
;��) is a signature.� spe
i�es the state variables of the PSA and their types. A

ording to itstype, a state variable is either basi
 or an array.{ R is a �nite set of instru
tions. Ea
h � 2 R is of the form� : 
 � fx1 := t1; : : : ; xk := tkgwhere:� � is a type 
ontext disjoint from �� and su
h that (
;���) is a sig-nature,



� 
;��� ` 
 : Bool , and� x1, . . . , xk are mutually distin
t variables in �, and 
;��� ` ti : �(xi)for ea
h i.The semanti
s of � will be that � 
onsists of parameters whose values are
hosen nondeterministi
ally subje
t to satisfying 
, and then the assignmentsxi := ti are performed simultaneously.In ea
h state of the system, any instru
tion in R 
an be performed.{ I is a set of instantiations of (
;� ).The following are some array operations whi
h 
an be expressed as assign-ments to array variables:Reset. Assigning a value t : B0 to ea
h 
omponent of a:a := �x : B � twhere x is a fresh variable name.Copy. Assigning an array a0 to a: a := a0Map. Applying an operation t : (B01�� � ��B0n)! B00 
omponentwise to severalarrays: a := �x : B � t[(a01[x℄; : : : ; a0n[x℄)℄where x is fresh.Multiple partial assign. Assigning t1, . . . , tn to 
omponents x of a whi
hsatisfy 
onditions d1, . . . , dn respe
tively, where x may o

ur free in the tiand di: a := �x : B � if d1 then t1 elseif � � � dn then tn else a[x℄We may abbreviate this as a[x : d1; � � � ; dn℄ := t1; � � � ; tn. Note that if di anddj with i < j overlap, assigning ti takes pre
eden
e.Write. Assigning t01, . . . , t0n to a[t1℄, . . . , a[tn℄:a[x : x = t1; � � � ;x = tn℄ := t01; � � � ; t0nwhere x is fresh. We may abbreviate this asa[t1; � � � ; tn℄ := t01; � � � ; t0nCross-se
tion. For example, assigning to a row t of an array a : (B1�B2)! B0:a[x : (�1(x) = t)℄ := t0Using instru
tion parameters, we 
an for example also express:Choose. Nondeterministi
ally 
hoosing a whole array:ha0 : B ! B0i : true � fa := a0g



De�nition 2. The semanti
s of a PSA (
;�;�;R; I) is the transition system(S;!) de�ned as follows:{ The set of states S 
onsists of all (!; 
; �) su
h that (!; 
) 2 I and � 2 J�K!.{ (!; 
; �) ! (!0; 
0; �0) i� !0 = !, 
0 = 
, and there exists � 2 R whi
h 
anprodu
e �0 from �.More pre
isely, as � is of the form � : 
 �fx1 := t1; : : : ; xk := tkg, there exists� 2 J�K! su
h that J
K!;
�� = tt, and:� �0JxiK = JtiK!;
�� for ea
h i;� �0Jx0K = �Jx0K for all x0 62 fx1; : : : ; xkg.Example 1. We express as a PSA a model of the Bully Algorithm for leadershipele
tion in a distributed system in whi
h pro
ess identi�ers are linearly ordered[10℄.The signature is (fXg; h�X : X �X ! Bool i), where X represents the set ofall pro
ess identi�ers. We 
onsider all instantiations whi
h assign to X a set ofthe form f1; : : : ; kg, and to �X the standard ordering.We model passing of time and dete
tion of failure as follows. A pro
ess whi
hhas not failed 
an broad
ast to relevant pro
esses with lower identi�ers, to signalits presen
e. At that point, its 
lo
k is set to 1. Whenever the system performsa to
k transition, all 
lo
ks are in
reased by 1. If this would make the 
lo
k ofa pro
ess greater than a 
onstant TS, that pro
ess fails. Pro
esses 
an also failat other times. In any 
ase, it is not possible for an alive pro
ess to let TS to
ktransitions happen without signalling its presen
e.Sin
e pro
esses periodi
ally inform others of their presen
e, there is no needto have expli
it ele
tion broad
asts: a pro
ess in Ele
t mode 
an simply waitfor TE time units, and if it does not re
eive a signal from a higher pro
ess duringthat time, it goes into Coord mode.In order for the system to be within the X ,�-to-Enum 
lass, pro
esses donot store identi�ers of their 
oordinators, although a pro
ess in Coord modeperiodi
ally informs all lower pro
esses that it is their 
oordinator. For spe
i�-
ation purposes, we 
an maintain 
oordinator identi�ers for a bounded numberof pro
esses.The state of a pro
ess 
onsists of its mode and two 
lo
ks. The primary 
lo
kis used to measure the time sin
e the pro
ess last signalled its presen
e. These
ondary 
lo
k measures waiting time of the pro
ess: either during an ele
tion,or while awaiting a 
oordinator, or sin
e it last heard from a 
oordinator whilerunning. We use one array variable to hold all this information:a : X ! (fEle
t ;Coord ;Await ;Run;Fldg�f1; : : : ; TSg � f1; : : : ;maxfTE; TA; TRgg)It remains to present the system's instru
tions. We write a[t℄:m, a[t℄:
 anda[t℄:
0 instead of �1(a[t℄), �2(a[t℄) and �3(a[t℄).to
k This instru
tion in
reases by 1 the primary 
lo
ks of all pro
esses whi
hare not in the Fld mode. If that would make the primary 
lo
k of a pro
ess



greater than TS , that pro
ess be
omes Fld and its 
lo
ks are reset to 1. Theinstru
tion also in
reases by 1 the se
ondary 
lo
ks of all pro
esses in theEle
t , Await , or Run modes. If that would make the se
ondary 
lo
k of apro
esses greater than the 
orresponding 
onstant TE, TA, or TR, the modeof that pro
ess is 
hanged and its se
ondary 
lo
k is reset to 1. For example,if a pro
ess is Run, but has not heard from a Coord for TR time units, itgoes into Ele
t mode.hi : true�a := �x : X � if a[x℄:m 6= Fld ^ a[x℄:
 = TS then (Fld ; 1; 1)elseif a[x℄:m = Ele
t ^ a[x℄:
0 = TE then (Coord ; a[x℄:
+ 1; 1)elseif a[x℄:m = Await ^ a[x℄:
0 = TA then (Ele
t ; a[x℄:
+ 1; 1)elseif a[x℄:m = Run ^ a[x℄:
0 = TR then (Ele
t ; a[x℄:
+ 1; 1)elseif a[x℄:m 6= Fld ^ a[x℄:m 6= Coordthen (a[x℄:m; a[x℄:
 + 1; a[x℄:
0 + 1)elseif a[x℄:m = Coord then (a[x℄:m; a[x℄:
 + 1; a[x℄:
0)else a[x℄signal This instru
tion signals the presen
e of a pro
ess to all relevant pro
esseswith lower identi�ers, and it resets the primary 
lo
k of the pro
ess to 1. Ifa pro
ess in the Ele
t , Await , or Run mode signals to a pro
ess whi
h isin the Ele
t or Coord mode, the latter be
omes Await . If a Coord signalsto a pro
ess whi
h is not in the Fld mode, it \bullies" the latter to go intothe Run mode. Equality between two terms of type X is an abbreviation fort �X t0 ^ t0 �X t.hx : Xi : a[x℄:m 6= Fld �a := �x0 : X � if x0 = x then (a[x℄:m; 1; a[x℄:
0)elseif x0 < x ^ a[x℄:m 6= Coord^a[x0℄:m 2 fEle
t ;Coordg then (Await ; a[x0℄:
; 1)elseif x0 < x ^ a[x℄:m = Coord ^ a[x0℄:m 6= Fldthen (Run; a[x0℄:
; 1)else a[x0℄fail At any point, a pro
ess 
an fail.hx : Xi : a[x℄:m 6= Fld � a[x℄ := (Fld ; 1; 1)revive At any point, a Fld pro
ess 
an revive, and it goes into the Ele
t mode.hx : Xi : a[x℄:m = Fld � a[x℄ := (Ele
t ; 1; 1)3 Model-
he
king problemsFor a range of safety properties of PSAs, where it is assumed that initially allarrays are reset to some spe
i�ed values, their 
he
king 
an be redu
ed to thefollowing de
ision problem.



De�nition 3. Suppose we have a PSA (
;�;�;R; I) with:{ a state variable b : Enumn,5{ i; j 2 f1; : : : ; ng, and{ for ea
h array state varible a : B ! B0, a term 
;��bas ` ta : B0, where�bas is � restri
ted to basi
 state variables.The initialised 
ontrol-state rea
hability problem is to de
ide whether thereexists a sequen
e of transitions from a state satisfyingb = ei ^ ^a:B!B02� 8x : B � a[x℄ = tato a state satisfying b = ej.For safety properties where it is not assumed that arrays are initialised, wehave the following de
ision problem.De�nition 4. Suppose we have a PSA (
;�;�;R; I) with a state variable b :Enumn, and i; j 2 f1; : : : ; ng.The uninitialised 
ontrol-state rea
hability problem is to de
ide whether thereexists a sequen
e of transitions from a state satisfying b = ei to a state satisfyingb = ej .Example 2. The following safety properties of the Bully Algorithm model 
anbe expressed as initialised CSR in an extended system.{ There are never two distin
t pro
esses in Coord mode. We add a state vari-able b : f0; 1g, and an instru
tionhx : X; x0 : Xi : x 6= x0 ^ a[x℄:m = Coord ^ a[x0℄:m = Coord � b := 1The 
he
k is whether, from a state in whi
h b = 0 and 8x : X � a[x℄ =(Ele
t ; 1; 1), the system 
an rea
h a state in whi
h b = 1.{ A pro
ess 
annot 
ontinuously be Run sin
e re
eiving a signal from a Coorduntil re
eiving a signal from a Coord whose identi�er is smaller than that ofthe previous one. We add state variables b : f0; 1; 2g and y; y0 : X . We 
anmodify the instru
tions to
k, signal and fail, so that:� if b = 0 and a Coord x signals to pro
ess y, b is set to 1 and y0 is set tox;� if b = 1 and pro
ess y leaves the Run mode, b is set to 0;� if b = 1 and a Coord x � y0 signals to pro
ess y, y0 is set to x;� if b = 1 and a Coord x < y0 signals to pro
ess y, b is set to 2.The 
he
k is whether, from a state in whi
h b = 0 and 8x : X � a[x℄ =(Ele
t ; 1; 1), the system 
an rea
h a state in whi
h b = 2.{ There is never a Coord pro
ess and a Run pro
ess with a greater identi�er.We add a state variable b : f0; 1g, and an instru
tionhx : X; x0 : Xi : x < x0 ^ a[x℄:m = Coord ^ a[x0℄:m = Run � b := 1The 
he
k is as in the �rst example.5 Any tuple of variables whose types do not 
ontain type variables is isomorphi
 to avariable of type Enumn.



4 Unde
idability resultsWe 
onsider the following 
lasses of PSAs:X �X-to-Bool. This 
lass 
onsists of all PSAs (
;�;�;R; I) su
h that:{ 
 = fXg and � = h=X : X �X ! Bool i;{ there is only one array variable in �, and it is of type X �X ! Bool ;{ instru
tions in R do not 
ontain array parameters, and ea
h array as-signment is a write;{ I 
onsists of all (!; 
) su
h that ! assigns to X a set of the form k̂ =f1; : : : ; kg, and 
 assigns to =X the equality predi
ate on k̂.X � Y -to-Bool. Here X and Y are distin
t type variables, and the restri
tionsare:{ 
 = fX;Y g and � = h=X : X �X ! Bool ;=Y : Y � Y ! Bool i;{ there is only one array variable in �, and it is of type X � Y ! Bool ;{ instru
tions in R do not 
ontain array parameters, and ea
h array as-signment is a write;{ I 
onsists of all (!; 
) su
h that ! assigns to X and Y some k̂ and l̂, and
 assigns to =X and =Y the equality predi
ates.X-to-Y ,Z. Here X , Y , Z are distin
t type variables, and the restri
tions are:{ 
 = fX;Y; Zg and � = h=X : X �X ! Bool ;=Y : Y � Y ! Bool ;=Z :Z � Z ! Bool i;{ there are only two array variables in �, and they are of types X ! Yand X ! Z;{ instru
tions in R do not 
ontain array parameters, and ea
h array as-signment is a write;{ I 
onsists of all (!; 
) su
h that ! assigns to X , Y , Z some k̂, l̂, m̂, and
 assigns to =X , =Y , =Z the equality predi
ates.X,�-to-Y . Here X and Y are distin
t type variables, and the restri
tions are:{ 
 = fX;Y g and � = h�X : X �X ! Bool ;=Y : Y � Y ! Bool i;{ there is only one array variable in �, and it is of type X ! Y ;{ instru
tions in R do not 
ontain array parameters, and ea
h array as-signment is a write;{ I 
onsists of all (!; 
) su
h that ! assigns to X and Y some k̂ and l̂,
J�XK is the ordering on k̂, and 
J=Y K is the equality predi
ate on l̂.Theorem 1. Initialised CSR is unde
idable for ea
h of the 
lasses X �X-to-Bool, X � Y -to-Bool, X-to-Y ,Z, and X,�-to-Y .Proof. We �rst re
all some unde
idability results for two-
ounter ma
hines (2CMs).A 2CM 
onsists of a �nite non-empty set fL1; : : : ; Lug of lo
ations, two
ounters 
1 and 
2, and for every lo
ation Li, an instru
tion of one of the followingforms:{ Li : 
j := 
j + 1; goto Li0{ Li : 
j := 
j � 1; goto Li0{ Li : if 
j = 0 then goto Li0 else goto Li00



A 
on�guration of the 2CM is of the form (Li; v1; v2), where v1; v2 2 N are thevalues of 
1 and 
2. The instru
tion at Li produ
es a unique next 
on�guration,ex
ept that Li : 
j := 
j � 1 
annot exe
ute when vj = 0.From [17℄, 
on�guration rea
hability is unde
idable, i.e. whether a given 2CM
an rea
h a given 
on�guration (Lj ; v1; v2) from (L1; 0; 0). It is straightforward toredu
e this problem to lo
ation rea
hability, i.e. whether a given 2CM 
an rea
ha 
on�guration with a given lo
ation Lj from (L1; 0; 0), so the latter problem isalso unde
idable.Suppose we have a 2CM as above, and a lo
ation Lj . We prove the theoremby showing how to redu
e the question whether the 2CM 
an rea
h a 
on�gu-ration with lo
ation Lj from (L1; 0; 0) to an initialised CSR question for a PSA(
;�;�;R; I) in ea
h of the 
lasses above in turn. In ea
h 
ase, 
, � and Iare spe
i�ed in the de�nition of the 
lass, so it remains to 
onstru
t the statevariables �, the instru
tions R, and the CSR question.X �X-to-Bool. Let � equalhb : Enum5u+1; x1; x01; x2; x02; x00; x000 : X; a : X �X ! Bool iwhere we shall denote the elements of Enum5u by ei for i 2 f0; : : : ; ug, andej0j;i for i 2 f1; : : : ; ug and j; j0 2 f1; 2g. The ei for i > 0 will represent thelo
ations of the 2CM, whereas e0 and the ej0j;i will be used as auxiliary 
ontrolstates of the PSA.The CSR question is whether the PSA 
an rea
h a state with b = ej from astate with b = e0 and8(x; x0) : X �X � a[(x; x0)℄ = falseWe represent a value vj of a 
ounter 
j by a sequen
e of mutually distin
tindi
es xj1, . . . , xjvj+1 su
h that a[(xjk ; xjk+1)℄ is true for all k. The sets indi
esfor 
1 and 
2 will be disjoint. The remaining entries of a will be false .The state variables xj will 
ontain xj1, and x0j will 
ontain xjvj+1.At 
ontrol state e0, we ensure that x1 6= x2. We then initialise the represen-tations of 
1 and 
2 to zero, and move to 
ontrol state e1.hi : b = e0 ^ x1 6= x2 � fb := e1; x01 := x1; x02 := x2gFor any instru
tion Li : 
j := 
j + 1; goto Li0 of the 2CM, the PSA hasthe following four instru
tions. The �rst one 
hooses a value x00 from X forextending the representation of 
j by an entry true at (x01; x00). It also startsthe 
omputation for 
he
king that x00 is a fresh value. An invariant duringthis 
omputation is that if the 
ontrol state is ej0j;i0 , then x00 does not o

uramong the indi
es in the representation of 
j0 up to x000.hxy : Xi : b = ei ^ xy 6= x1 � fb := e1j;i0 ; x00 := xy; x000 := x1gIf x00 has been 
ompared against the whole representation of 
1, we move to
omparing it against the representation of 
2:hi : b = e1j;i0 ^ x000 = x01 ^ x00 6= x2 � fb := e2j;i0 ; x000 := x2g



When the 
omputation is 
omplete, we extend the representation of 
j 
or-responding to the in
rement by 1, and move to ei0 :hi : b = e2j;i0 ^ x000 = x02 � fb := ei0 ; x0j := x00; a[(x0j ; x00)℄ := truegThe fourth instru
tion performs a step in 
omparing x00 with the indi
es inthe representation of 
j0 :hxy : Xi : b = ej0j;i0 ^ xy 6= x00 ^ a[(x000; xy)℄ � fx000 := xygFor any instru
tion Li : 
j := 
j � 1; goto Li0 of the 2CM, the PSA has thefollowing instru
tion, whi
h redu
es the representation of 
j by moving x1to the next index in the sequen
e:hxy : Xi : b = ei ^ a[(xj ; xy)℄�fb := ei0 ; xj := xy; a[(xj ; xy)℄ := falsegA zero-test instru
tion of the 2CM is straightforward to represent, sin
e 
jhas value 0 if and only if xj = x0j :hi : b = ei � fb := if xj = x0j then ei0 else ei00gIt is 
lear that this PSA is in the 
lass X �X-to-Bool.For any 
on�guration (Li; v1; v2) of the 2CM, let F (Li; v1; v2) be the set ofall states (!; 
; �) of the PSA su
h that �JbK = JeiK and � assigns to x1, x01,x2, x02 and a a representation of v1 and v2 as above. It is straightforward to
he
k that:(i) if the 2CM 
an rea
h (Li0 ; v01; v02) from (Li; v1; v2), then the PSA 
anrea
h a state in F (Li0 ; v01; v02) from a state in F (Li; v1; v2);(ii) any state (!; 
; �) whi
h the PSA 
an rea
h from a state in F (Li; v1; v2)and whi
h satis�es b 2 fe1; : : : ; eug, is in F (Li0 ; v01; v02) for some (Li0 ; v01; v02)whi
h the 2CM 
an rea
h from (Li; v1; v2).It follows that the 2CM 
an rea
h a 
on�guration with lo
ation Lj from(L1; 0; 0) if and only if the PSA satis�es the initialised CSR question above.Alternatively, unde
idability of initialised CSR for this 
lass follows fromunde
idability for the 
lass X � Y -to-Bool. Given a PSA S in X � Y -to-Bool, let S 0 be the PSA in X �X-to-Bool obtained from S by substitutingX for Y . Then S satis�es an initialised 
ontrol-state re
hability question ifand only if S 0 satis�es the same question with X substituted for Y .X � Y -to-Bool. The 
onstru
tion of a PSA in this 
lass whi
h represents the2CM follows the same pattern as the 
onstru
tion above for the 
lass X�X-to-Bool. It is more 
omplex be
ause the array is now indexed by two di�erenttypes. To represent a value vj of a 
ounter 
j , we use 2vj + 1 entries trueinstead of vj .Let � equalhb : Enum5u+1; x1; x01; x2; x02; x00; x000 : X; y1; y01; y2; y02; y00; y000 : Y;a : X � Y ! Bool i



where we shall denote the elements of Enum5u by ei for i 2 f0; : : : ; ug, andej0j;i for i 2 f1; : : : ; ug and j; j0 2 f1; 2g. The ei for i > 0 will represent thelo
ations of the 2CM, whereas e0 and the ej0j;i will be used as auxiliary 
ontrolstates of the PSA.The CSR question is whether the PSA 
an rea
h a state with b = ej from astate with b = e0 and8(x; y) : X � Y � a[(x; y)℄ = falseWe represent a value vj of a 
ounter 
j by 2vj + 1 entries true in the arraya. If their indi
es are (xjk ; yjk) for k 2 f1; : : : ; 2vj + 1g, then ea
h xj2k willequal xj2k+1, and ea
h yj2k�1 will equal yj2k. All the xj2k�1, and also all theyj2k�1 will be mutually distin
t. Moreover, the sets of all x1k and all x2k willbe disjoint, as well as the sets of all y1k and y2k . The remaining entries of awill be false .The state variables xj and yj will 
ontain xj1 and yj1, and x0j and y0j will
ontain xj2vj+1 and yj2vj+1.At 
ontrol state e0, we ensure that x1 6= x2 and y1 6= y2. We then initialisethe representations of 
1 and 
2 to zero, and move to 
ontrol state e1.hi : b = e0 ^ x1 6= x2 ^ y1 6= y2�fb := e1; x01 := x1; y01 := y1; x02 := x2; y02 := y2;a[(x1; y1); (x2; y2)℄ := true; truegFor any instru
tion Li : 
j := 
j + 1; goto Li0 of the 2CM, the PSA has thefollowing four instru
tions. The �rst one 
hooses a value x00 from X and avalue y00 from Y for extending the representation of 
j by entries true atindi
es (x00; y0j) and (x00; y00). It also starts the 
omputation for 
he
king thatx00 and y00 are fresh values. An invariant during this 
omputation is that ifthe 
ontrol state is ej0j;i0 , then x00 and y00 do not o

ur among the indi
es inthe representation of 
j0 up to (x000; y000).hxy : X; yy : Y i : b = ei ^ xy 6= x1 ^ yy 6= y1�fb := e1j;i0 ; x00 := xy; y00 := yy; x000 := x1; y000 := y1gIf x00 and y00 have been 
ompared against the whole representation of 
1, wemove to 
omparing them against the representation of 
2:hi : b = e1j;i0 ^ x000 = x01 ^ y000 = y01 ^ x00 6= x2 ^ y00 6= y2�fb := e2j;i0 ; x000 := x2; y000 := y2gWhen the 
omputation is 
omplete, we extend the representation of 
j 
or-responding to the in
rement by 1, and move to ei0 :hi : b = e2j;i0 ^ x000 = x02 ^ y000 = y02�fb := ei0 ; x0j := x00; y0j := y00; a[(x00; y0j); (x00; y00)℄ := true; trueg



The fourth instru
tion performs a step in 
omparing x00 and y00 with theindi
es in the representation of 
j0 :hxy : X; yy : Y i :b = ej0j;i0 ^ xy 62 fx00; x000g ^ yy 62 fy00; y000g ^ a[(xy; y000)℄ ^ a[(xy; yy)℄�fx000 := xy; y000 := yygFor any instru
tion Li : 
j := 
j � 1; goto Li0 of the 2CM, the PSA has thefollowing instru
tion, whi
h redu
es the representation of 
j by moving xjand yj from the �rst entry true to the third:hxy : X; yy : Y i : b = ei ^ xy 6= xj ^ yy 6= yj ^ a[(xy; yj)℄ ^ a[(xy; yy)℄�fb := ei0 ; xj := xy; yj := yy; a[(xj ; yj); (xy; yj)℄ := false ; falsegA zero-test instru
tion of the 2CM is straightforward to represent, sin
e 
jhas value 0 if and only if xj = x0j and yj = y0j :hi : b = ei � fb := if xj = x0j ^ yj = y0j then ei0 else ei00gIt is 
lear that this PSA is in the 
lass X � Y -to-Bool.For any 
on�guration (Li; v1; v2) of the 2CM, let F (Li; v1; v2) be the set ofall states (!; 
; �) of the PSA su
h that �JbK = JeiK and � assigns to x1, x01,x2, x02, y1, y01, y2, y02 and a a representation of v1 and v2 as above. The restis as in the 
ase X �X-to-Bool.X-to-Y ,Z. The proof for this 
ase di�ers from the 
ase X � Y -to-Bool by howthe 
ounters are represented.We represent a value vj of a 
ounter 
j by 2vj entries in ea
h of the arraysa : X ! Y and b : X ! Z. If their indi
es are xjk and x0jk , then JaK(xj2k�1) =JaK(xj2k), JbK(x0j2k�1) = JbK(x0j2k), and xj2k = x0j2k�1. The values JaK(xj2k�1) aremutually distin
t, and distin
t from a value y whi
h �lls the rest of the arraya. In the same way, the values JbK(x0j2k�1) are mutually distin
t, and distin
tfrom a value z whi
h �lls the rest of the array b.The state variables xj will 
ontain xj1, and x0j will 
ontain x0j2vj . We shall havexj = x0j if and only if vj = 0.� = hb : Enum5u+1; x1; x01; x2; x02; x00 : X; y; y0 : Y; z; z0 : Z;a : X ! Y; b : X ! ZiThe CSR question is whether the PSA 
an rea
h a state with b = ej from astate with b = e0 and 8x : X � a[x℄ = y ^ b[x℄ = zAt 
ontrol state e0, the representations of the 
ounters are initialised to zero,and we move to e1:hi : b = e0 ^ x1 6= x2 � fb := e1; x01 := x1; x02 := x2g



For an in
rement Li : 
j := 
j + 1; goto Li0 , we have the following fourinstru
tions: hyy : Y; zy : Zi : b = ei ^ yy 6= y ^ zy 6= z�fb := e1j;i0 ; y0 := yy; z0 := zy; x00 := x1ghi : b = e1j;i0 ^ x00 = x01 � fb := e2j;i0 ; x00 := x2ghxy : X; xz : Xi :b = e2j;i0 ^ x00 = x02 ^ a[xy℄ = y ^ b[xy℄ = z ^ b[xz℄ = z ^ a[xz℄ = y�fb := ei0 ; x0j := xz; a[x0j ;xy℄ := y0; y0; b[xy; xz℄ := z0; z0ghxy : X; xz : Xi :b = ej0j;i0 ^ xy 6= x00 ^ xz 6= xy ^ a[x00℄ = a[xy℄ 62 fy; y0g ^ b[xy℄ = b[xz℄ 6= z0�fx00 := xzgFor a de
rement Li : 
j := 
j � 1; goto Li0 , we have:hxy : X; xz : Xi :b = ei ^ xy 6= xj ^ xz 6= xy ^ a[xj ℄ = a[xy℄ 6= y ^ b[xy℄ = b[xz℄�fb := ei0 ; xj := xz; a[xj ;xy℄ := y; y; b[xy; xz℄ := z; zgA zero-test Li : if 
j = 0 then goto Li0 else goto Li00 is represented byhi : b = ei � fb := if xj = x0j then ei0 else ei00gX,�-to-Y . Again, the di�eren
es from the 
ase X � Y -to-Bool are in how the
ounters are represented.Here, we represent values v1 and v2 of the 
ounters 
1 and 
2 by 2v1+2v2+2entries in an array a : X ! Y . If their indi
es arex11 < � � � < x12v1+1 < x21 < � � � < x22v2+1we have:{ JaK(xj1) = JaK(xj3),{ JaK(xj2k) = JaK(xj2k+3) for all k 2 f1; : : : ; vj � 1g, and{ JaK(x11), JaK(x21), and all the values JaK(xj2k) are mutually distin
t, anddistin
t from a value y whi
h �lls the rest of the array a.The state variables xj will 
ontain xj1, and x0j and x00j will 
ontain xj2vj andxj2vj+1. We shall have xj = x0j if and only if vj = 0.� = hb : Enum5u+1; x1; x01; x001 ; x2; x02; x002 ; x[; x℄ : X;y; y0 : Y; a : X ! Y iThe CSR question is whether the PSA 
an rea
h a state with b = ej from astate with b = e0 and 8x : X � a[x℄ = y



At 
ontrol state e0, the representations of the 
ounters are initialised to zero,and we move to e1:hyy : Y; yz : Y i : b = e0 ^ x1 < x2 ^ yy 6= y ^ yz 62 fy; yyg�fb := e1; x01 := x1; x001 := x1; x02 := x2; x002 := x2; a[x1;x2℄ := yy; yzgFor an in
rement Li : 
j := 
j+1; gotoLi0 , we have the following �ve instru
-tions. The third and fourth instru
tions extend the representations of 
1 and
2 respe
tively, 
orresponding to the in
rement. They di�er only be
ause the
onstraint x12v1+1 < x21 needs to be maintained when in
rementing 
1.hyy : Y i : b = ei ^ yy 62 fy; a[x1℄g � fb := e1j;i0 ; y0 := y; x[ := x1; x℄ := x1ghi : b = e1j;i0 ^ x[ = x01 ^ y0 6= a[x2℄ � fb := e2j;i0 ; x[ := x2; x℄ := x2ghxy : X; xz : Xi : b = e21;i0 ^ x[ = x02 ^ x001 < xy < xz < x2�fb := ei0 ; x01 := xy; x001 := xz; a[xy;xz℄ := y0; a[x01℄ghxy : X; xz : Xi : b = e22;i0 ^ x[ = x02 ^ x002 < xy < xz�fb := ei0 ; x02 := xy; x002 := xz; a[xy;xz℄ := y0; a[x02℄ghxy : X; xz : Xi : b = ej0j;i0 ^ a[x[℄ = a[xz℄ ^ x℄ < xy < xz ^ y0 6= a[xy℄�fx[ := xy; x℄ := xzgFor a de
rement Li : 
j := 
j � 1; goto Li0 , we have:hxy : X; xz : Xi : b = ei ^ a[xj ℄ = a[xz℄ ^ xj < xy < xz ^ a[xy℄ 6= y�fb := ei0 ; xj := xy; x00j := if x00j = xz then xy else x00j ; a[xj ;xz℄ := y; ygA zero-test is represented by:hi : b = ei � fb := if xj = x0j then ei0 else ei00g2Corollary 1. For 
lasses of PSAs obtained by extending the 
lasses above toallow resets of arrays, uninitialised CSR is unde
idable. 2In [22℄, it was shown that uninitialised CSR is de
idable for systems witharrays fromX with equality to enumerated types. In [19, Chapter 8℄, de
idabilityof the same problem was shown for systems with an array fromX with equality toY with equality. Theorem 1 tells us that de
idability fails when the former arraysare generalised to two-dimensional, and when the latter arrays are generalisedto X with a linear ordering.By regarding X as the type of pro
essor indi
es, Y as the type of memoryaddresses, and Bool as the type of storable data, the 
lassX�Y -to-Bool 
ontains
lasses of 
a
he-
oheren
e proto
ols (e.g. [4, 20℄). By Theorem 1, any de
idabilityresult for initialised CSR for su
h a 
lass of proto
ols must depend on someproperties of the proto
ols whi
h are not 
ommon to the whole 
lass X � Y -to-Bool.



5 De
idability resultLet X ,�-to-Enum be the 
lass of all PSAs (
;�;�;R; I) su
h that:{ 
 = fXg and � = h�X : X �X ! Bool i;{ the type of any array variable in �, and of any array parameter in R, is ofthe form X ! Enumm;{ I 
onsists of all (!; 
) su
h that ! assigns to X some k̂, and 
 assigns to �Xthe linear ordering on k̂.Theorem 2. Initialised and uninitialised CSR problems are de
idable for the
lass X,�-to-Enum.Proof. Suppose we have an instan
e of the initialised or uninitialised CSR prob-lem, whi
h is for a PSA (
;�;�;R; I) in the 
lass X ,�-to-Enum. We show howto redu
e this to whether a monadi
 MSR(NC) spe
i�
ation (P ;NC; I;R) 
anrea
h the upward 
losure of a �nite set of 
onstrained 
on�gurations U. Thelatter problem was proved de
idable in [6℄.We 
an use the following properties of the typed �-
al
ulus to simplify thestate variables �:{ any variable of produ
t type B1 � � � � � Bn is representable by variables oftypes B1, . . . , Bn;{ any variable of sum type B1 + � � �+Bn is representable by a variable of theenumerated type Enumn and variables of types B1, . . . , Bn;{ a �nite number of variables of enumerated types is representable by onevariable of enumerated type;{ a �nite number of arrays of types X ! Enumm1 , . . . , X ! Enummk isrepresentable by one array of type X ! Enumm1�����mk .We 
an therefore assume � is of the formhb : Enumn; x1 : X; : : : ; xl : X; a : X ! EnummiThe parameters of any instru
tion in R 
an be simpli�ed in the same way.Furthermore, an instru
tion with a parameter of type Enumn0 is equivalent ton0 instru
tions without that parameter. We 
an thus assume the parameters ofany � 2 R are of the formhxl+1 : X; : : : ; xl+l0 : X; a0 : X ! Enumm0iand that this type 
ontext is the same for all �inR.An instru
tion whose guard is a disjun
tion 
 _ 
0 is equivalent to two in-stru
tions with guards 
 and 
0. Therefore, using redu
tion of terms of the typed�-
al
ulus to normal form, we 
an assume that the guard of any � 2 R is of theform b = f ^ l+l0̂i=1 a[xi℄ = gi ^ l+l0̂i=1 a0[xi℄ = g0i ^ d



where f 2 fe1; : : : ; eng, gi 2 fe1; : : : ; emg, g0i 2 fe1; : : : ; em0g, and d is an NC
onstraint over x1, . . . , xl+l0 , i.e.6d ::= false j true j xi = xj j xi < xj j d ^ d0Finally, using redu
tion of terms to normal form again, we 
an assume thatthe assignments of any � 2 R are of the formfb := f 0; x1 := y1; : : : ; xl := yl;a := �x : X � if x = x1 then g001 elseif � � � x = xl+l0 then g00l+l0 elseh[(a[x℄; a0[x℄)℄gwhere f 0 2 fe1; : : : ; eng, yi 2 fx1; : : : ; xl+l0g, g00i 2 fe1; : : : ; emg, and h representsa fun
tion from Enumm � Enumm0 into Enumm.We now 
onstru
t a monadi
 MSR(NC) spe
i�
ation (P ;NC; I;R). Let P
onsist of:{ nullary predi
ate symbols z, nz, b1, . . . , bn;{ unary predi
ate symbols x1, . . . , xl;{ unary predi
ate symbols aa0i;j for i 2 f1; : : : ;mg, j 2 f0; 1; : : : ;m0g.NC is the system of name 
onstraints [6℄:' ::= false j true j x = x0 j x < x0 j ' ^ '0NC 
onstraints are interpreted over the integers Z . The usual entailment relationfor linear integer 
onstraints is used and denoted v
.The simpli�
ations of the state variables� above mean that the CSR problemnow refers to a proje
tion of the state variable b. Thus we need to de
ide whethera state in whi
h b has one of a set of values is rea
hable from a state in whi
hb has one of another set of values (and the array state variable a is initialisedappropriately). This is equivalent to a �nite number of questions for pairs ofvalues of b, so we 
an work with the original form of the CSR problem.If the CSR problem is uninitialised, i.e. to de
ide whether a state with b = ejis rea
hable from a state with b = ei, let I 
onsist of all 
on�gurations of theform z j bi j x1(v1) j � � � j xl(vl) j aa0i1;0(1) j � � � j aa0ik ;0(k)su
h that k is a positive integer and v1; : : : ; vl 2 k̂.If the CSR problem is initialised, i.e. to de
ide whether a state with b = ejis rea
hable from a state with b = ei and 8x : X � a[x℄ = ta, let I 
onsist of all
on�gurations as above, su
h that in addition all ii0 equalJtaKfX 7!k̂g;f�X 7!�k̂;b 7!i;x1 7!v1;:::;xl 7!vlgFor any instru
tion � 2 R, whose form is as above, R 
ontains a rulenz j bf j x1(x1) j � � � j xl(xl) j aa0g1;g01(x1) j � � � j aa0gl+l0 ;g0l+l0 (xl+l0 ) �!z j bf 0 j x1(y1) j � � � j xl(yl) j aa0g001 ;0(x1) j � � � j aa0g00l+l0 ;0(xl+l0 )[aa0i;j(x0i;j) ,! aa0JhK(i;j);0(x0i;j) : i 2 f1; : : : ;mg ^ j 2 f1; : : : ;m0g℄ : d6 Here t = t0 and t < t0 are abbreviations for t � t0 ^ t0 � t and t � t0 ^ :t0 � trespe
tively.



For simpli
ity of presentation, we used here multiple o

uren
es of the variablesx1, . . . , xl+l0 and x0i;j instead of extending by equalities the 
onstraint of therule.The purpose of the predi
ate symbols z and nz, and the indi
es 0 in the rea
-tions aa0i;j(x0i;j) ,! aa0JhK(i;j);0(x0i;j), is to ensure that always aa0i;j 6= aa0JhK(i0;j0);0,as required in [6, De�nition 27℄. The following rule 
hanges all su
h indi
es to 1.Using the predi
ate symbols z and nz, this rule is �red in alternation with therules above. z �! nz[aa0i;0(x0i) ,! aa0i;1(x0i) : i 2 f1; : : : ;mg℄ : trueWhen j 6= 0, an atomi
 formula aa0i;j(x) represents a[x℄ = ei and a0[x℄ = ej .The remaining rules, one for ea
h i 2 f1; : : : ;mg and j 2 f2; : : : ;m0g, 
an be�red an arbitrary number of times after the previous rule. They ensure that thevalues a0[x℄ 
an be arbitrary, 
orresponding to the array a0 being a parameter inthe instru
tions in R. nz j aa0i;1(x) �! nz j aa0i;j(x) : trueFor any state (!; 
; �) of the PSA (
;�;�;R; I), where ! = fX 7! k̂g and
 = f�X 7!�k̂, letF (!; 
; �) = z j b�JbK j x1(�Jx1K) j � � � j xl(�JxlK) j aa0�JaK(1);0(1) j � � � j aa0�JaK(k);0(k)It is straightforward to show that the MSR(NC) spe
i�
ation (P ;NC; I;R) 
anrea
h a 
on�guration M with (z) 2 M from F (!; 
; �) if and only if M =F (!; 
; �0) for some state (!; 
; �0) rea
hable from (!; 
; �).Let U = fz j bj : trueg. Then the PSA 
an rea
h a state with b = ej if andonly if the MSR(NC) spe
i�
ation 
an rea
h a 
on�guration in JUK, i.e. a 
on�g-uration 
ontaining z and bj . By [6, Theorem 2℄, there is an algorithm to de
idethe latter. (The algorithm in [6℄ involves elimination of existential quanti�ersfrom NC 
onstraints, whi
h is not possible in general. However, it is straightfor-ward to over
ome this problem, by using an auxiliary unary predi
ate symbol"(x). Instead of eliminating 9x, we keep "(x) in the 
onstrained 
on�guration.These predi
ates do not 
hange the denotations of the 
onstrained 
on�gurationsM, but they add empty multisets into the strings Str(M).) 2Example 3. Our model of the Bully Algorithm is in the 
lass X ,�-to-Enum.Theorem 2 gives us a de
ision pro
edure for initialised and uninitialised CSRproblems, su
h as those in the example in Se
tion 3.6 Future workOn-going work in
ludes generalising the de
idability results in [22℄ and [19, Chap-ter 8℄, and Theorem 2 to 
lasses of PSAs with more than one array type.
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