
http://wrap.warwick.ac.uk/

Original citation:
Turner, J. D., Lopez-Hernandez, R., Kerbyson, D. J. and Nudd, G. R. (2003)
Performance optimisation of a lossless compression algorithm using the PACE Toolkit.
Department of Computer Science. (Department of Computer Science Research Report).
(Unpublished) CS-RR-389

Permanent WRAP url:
http://wrap.warwick.ac.uk/61241

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/29189584?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/61241
mailto:publications@warwick.ac.uk

Performance Optimisation of a Lossless Compression Algorithm
using the PACE Toolkit

J.D. Turner, R. Lopez-Hernandez, D.J. Kerbyson, G.R. Nudd
High Performance Systems Group, University of Warwick, Coventry, UKfjdt,roberto,djke,grng@dcs.warwick.ac.uk

Abstract

With the large increase in interest and research in dis-
tributed systems, the need for performance prediction and
modelling of such systems has become important to de-
crease the system’s complexity. One such prediction tech-
nique is PACE, a series of performance modelling tools
developed at Warwick, which allows a user to create very
accurate performance models of sequential and distributed
systems. Such a model can be used in an application steer-
ing method, where a performance model is added to the
overall system such that the application can be optimised
to match a particular constraint. To describe this method, a
lossless compression technique, also developed at Warwick,
is optimised to fit a distributed system where a time con-
straint is necessary. It is shown that the compression ratio
gained by the compression technique grows, as expected,
while the time constraint given to the application becomes
more relaxed.

1 Introduction

With the major advances in high performance systems
and networking technologies, the emphasis in high per-
formance has changed from large multi-processor arrays
to distributed systems, where individual computer systems
communicate over a powerful network. These distributed
systems, an example of which is the Information Power
GRIDS [3], allow a particular application to be executed
on theoretically an infinite number of systems with differ-
ent hardware and software components. The complexity
involved in such a distributed system raises dramatically
however, when more and more applications are executed on
such a system.

Within the GRIDS system, this complexity is reduced
with the use of performance information, which allows ap-
plication execution to be tuned to gain the best performance
for the distributed system available. Such performance
measurement tool-sets have been developed, which aim to

aid this performance prediction, such as Falcon [6], Paradyn
[7], and Pablo [2]. However, these tools are mainly focused
on the analysis of the performance after the execution has
taken place, to allow performance-hindering elements, such
as bottlenecks that may be inherent within the application,
to be discovered.

The performance modelling toolset being developed at
Warwick focuses more on the performance prediction as-
pects of the system. PACE (Performance Analysis and
Characterisation Environment) [8, 9] allows a performance
model of the system to be designed, such that accurate mea-
surements of the application’s execution behaviour can be
determined prior to the actual execution itself. These pre-
dictions can then be used to optimise the execution across
the distributed system.

An example of such an application that could be opti-
mised for such as system is the Spatial and Motion Com-
pression (SMC) algorithm, a lossless technique, which has
also been developed at Warwick. Although lossly tech-
niques are frequently used in applications such as DVD,
where complete reconstruction is not necessary, there are an
increasing number of applications where total reconstruc-
tion, and high compression ratios, are necessary. Exam-
ples of such are in professional video postproduction, where
lossy techniques would introduce errors within the video
stream that would be visible to the trained eye, even at the
cost of a low compression ratio. Another example is within
the medical imagery sector, where it is necessary to com-
press thousands of images but imperative to keep the high
quality of the image.

The method of optimisation chosen for this compres-
sion technique is to constrain the execution to a particular
time constraint, such that the best compression ratio can be
achieved for a given execution ‘slot’ within the distributed
system. This optimisation was implemented using an Ap-
plication Steering method [1], which allows the PACE per-
formance model to be included within the application im-
plementation. The performance model then specifies the
system parameters to the application such that any con-
straint is met.

1

In this paper, a detailed description of the performance
modelling techniques available within the PACE toolkit,
and the SMC lossless compression technique are found
within Sections 2 and 3 respectively. Section 4 covers the
application steering methods used, with emphasis placed on
the implementation of the performance model, with Section
5 showing the results achieved.

2 Performance Modelling using PACE

The PACE performance modelling toolkit devised at the
University of Warwick allows accurate performance predic-
tions on sequential, parallel, and distributed systems exe-
cuted on a vast array of hardware architectures. PACE was
designed such that a performance model of a system can
be implemented, and used to gain accurate predictions and
results of such a system, without requiring the person im-
plementing the model to have a detailed knowledge of the
theory behind performance modelling. Once the model has
been implemented, then a vast array of accurate predictions
can be found, but more importantly, predictions on various
sequential and distributed hardware systems.

The PACE toolset is based on a layered, characterisation
framework, which separates the software and hardware el-
ements of the system with parallel templates, as shown in
Figure 1. Each layer has one or more associative, modu-
lar objects that describe the individual sections of both the
software and hardware components. The modularity of the
design of these objects is such that they can be used for
many different application predictions. For example, the
same hardware object can be used with any model which
is executed on that system. Once these objects have been
defined, they are linked together using the CHIP3S compiler
to create the performance model. PACE includes a variety
of tools which allows the user to find the required informa-
tion from this model within the run-time environment. The
use of the layered framework, the various object definitions,
and the various results that can be predicted from the model
are described within this section.

2.1 The Characterisation Framework and Object
Definition

To accurately predict the performance of both distributed
and sequential systems, a three-layer approach is used, with
a layer for the software, parrallelisation, and hardware parts
of the system. The purpose of such layers are described
below.

2.1.1 Application Layer

The application layer is the interface between the user and
the rest of the model. It is here where the global parameters

Subtask

Hardware

Model Parameters

{Predicted Execution Time}

Application

Parallel Template

Figure 1. The PACE framework

to the system are defined, and where the individual subtasks
are predicited at the required times. The global parameters
are also altered as need be, and passed to the correct sub-
tasks such that the prediction of each individual subtask is
as accurate as possible.

Each performance model has only one application ob-
ject.

2.1.2 Subtask Layer

The subtask layer is where all the main sequential parts of
the system, which may be parallelised, are defined. The
subtask objects which reside within this layer each repre-
sent one of these sequential parts, and describe the sequen-
tial execution dependent upon the parameters passed to the
subtask from the application object. There are likely to be
many subtask objects within the performance model.

Each subtask object is made up of two main sections.
The first is where all the parameters for the whole sub-
task are defined, which normally include parameters passed
down from the application object. These parameters affect
the execution time of the prediction code; which is the sec-
ond main section of the subtask. Every function associated
with the sequential execution of the system being modelled
is converted into a ‘cflow’ statement. Each ‘cflow’ state-
ment represents the flow of instructions executed on a cer-
tain hardware platform, and reads from the hardware layer
the correct information within the hardware object to pre-
dict the time that each of these instructions will take to ex-
ecute. ‘cflow’ statements may call other ‘cflow’ statements
within the same subtask; as functions may call other func-

2

tions within a C program.

2.1.3 Parallel Template Layer

The parallel template layer describes the parallel character-
istics of subtasks where the communication and computa-
tion interactions between processors is concerned. Each
template reads the required information from the hard-
ware objects to predict the parallel and communication time
across the processors. There may be many parallel template
objects within the model, with each one describing the par-
allel patterns concerned with a specific subtask. A specific
parallel template for sequential execution is also available.

Each parallel template object is made up of individual
steps, which either corresponds to an access to one or more
of the available hardware resources, whether it be computa-
tion on a CPU or communication across the network. This
execution is defined using a ‘step’ command, which defines
the hardware resource that will be used and any necessary
parameters. By evaluating each step, the PACE run-time
system calls the appropriate hardware model and returns the
execution time for each step. Thus an accurate prediction
for the parallel execution of the model is found.

2.1.4 Hardware Layer

The hardware layer contains the hardware objects which de-
scribe the computational and network communication pa-
rameters associated with each hardware platform. The num-
ber of hardware objects is dependant on the different hard-
ware platforms that the system is executed upon.

Each hardware object contains the time taken for every
possible sequential execution, every possible parallel com-
munication, and the possible results of the cache, for that
particular hardware device. Each of these parameters are
defined within the object, and when necessary, called upon
by either the appropriate subtask object (for sequential exe-
cution), or the appropriate parallel template object (for par-
allel communication).

An accurate hardware object is created automatically
with a PACE benchmarking tool. Depending on the hard-
ware system, this tool times the execution time for a large
number of certain micro-operations; the average of which is
stored within the hardware object. The benchmarking tool
outputs a standard deviation of the execution times found,
which gives the user a measure of the accuracy of the mea-
surements, and the choice to re-create the object.

2.2 The PACE Run-time Environment

Once a model containing a number of objects has been
designed and implemented, it is necessary to compile and

link them together to obtain the performance model exe-
cutable. This model can then be used for a number of dif-
ferent modelling techniques to find accurate performance
information of the system.

Each object is compiled using the CHIP3S compiler
‘chip3s’, whose outputs are linked together using the linker
‘chip3sld’. An example of which may look like this:

bash% chip3s -o app.o app.la
bash% chip3s -o sub.o sub.la
bash% chip3s -o par.o par.la
bash% chip3sld -o model app.o sub.o par.o

which would create an executable performance model
called ‘model’. Simply executing this model would then
output the performance prediction of the time taken to ex-
ecute the application for the default set of input parameters
defined within the application object. These input parame-
ters can naturally be changed to the user’s discretion. For
example

bash% ./model Nframe=5

will output the execution time if the parameter ‘Nframe’
was set to five instead of the model’s default value.

More detailed information can be obtained from the
model with various options which are inherent in the com-
piled model. Of the more important options are the ‘-debug’
option, which outputs a detailed prediction of all communi-
cation and execution times that the model produces. This
option is very powerful, and allows the user to really focus
on the required area.

3 SMC Compression

SMC (Spatial and Motion Compression) is a lossless
compression technique developed at the University of War-
wick, which can be applied to the compression of com-
puter generated animation sequences. SMC combines sev-
eral lossless compression techniques. It exploits the spatial
and temporal redundancies found in computer animations.
Consecutive animation frames are very similar. Most of the
objects in one frame appear again in the next frame with
slightly different positions and orientations. This kind of
similarities or redundancies can be exploited using a tem-
poral compression technique. However, there might be new
information that cannot be inferred from previous frames.
For example, an object that was occluded by other object
that is moving, new information introduced on one side
of the image when the camera is panning, new image de-
tails appearing when the camera is zooming in, a face that
was occluded on a rotating object, etc. This information
can sometimes be better encoded with a spatial compres-
sion technique, using neighbouring information in the same

3

frame. In particular, a spatial compression technique ex-
ploits the redundancies found in areas filled with the same
colour or areas with smooth changes of colour.

In this section all the components of the SMC lossless
compression technique for computer animation sequences
will be detailed. SMC stands for Spatial and Motion Com-
pression - it combines spatial compression techniques with
temporal compression techniques in order to obtain good
compression results. SMC is an asymmetric lossless com-
pression technique. This is, the compression can be, de-
pending on the compression parameters, slightly faster or
much slower than the decompression. It has been found
that good compression results can be obtained with fast op-
tions. However, slow compression options are available to
provide the option if higher compression ratios are required.

SMC uses only input pixel information RGB or RGBA
(Red, Green, Blue and Alpha channels) from each frame in
a sequence, thus not relying on the information contained
within the animation scripts [12]. It has been implemented
as a software library and can be easily incorporated into
other software packages. Compression ratios of 4:1 and
higher can be obtained using this technique.

3.1 Overview of SMC Lossless Compression

A schematic view of the SMC compression technique is
shown in Figure 2. The main part of this compression tech-
nique consists of a loop in which the spatial and the tem-
poral compression techniques are applied. This loop is per-
formed for the number of reference frames specified, from
0 (no reference frames) up to n previous frames. The main
processing stages contained within SMC are as follows:

1. Initially the current frame (frame i) is coded using a
spatial compression operation (resulting in a prediction
image labelled S in Figure 2.).

2. For each reference frame (frames i-1, i-2, i-3, ...), block
movement is calculated resulting in a three-element
motion vector for each block - a position movement
vector (x, y) and also a z component indicating the
reference frame in which the matching block can be
found.

3. For each block in the image, the best matched block
is selected - either from the spatial prediction or from
one of the motion calculated frames.

4. A residual is calculated by the difference between the
frame constructed (with spatial and motion blocks) and
the original frame. This residual combined with the
motion vectors is all the information necessary to allow
lossless recontruction later.

5. Redundant motion vectors are then removed. These
occur since the blocks encoded using the spatial com-
pression technique do not have any motion informa-
tion.

6. The alpha channel and the vector component Z are en-
coded using a block area encoding technique.

7. Finally the residual and the vector information are fur-
ther encoded using an entropy coder. There are two
options available in this case. The fastest one is a rice
entropy encoder. The second option is a rice entropy
encoder followed by an arithmetic encoder.

Each of these stages contained in SMC are explained in
more detail below.

3.2 Spatial Encoding

The spatial compression technique incorporated in SMC
is the spatial predictor used in LOCO [10]. CALIC [11] is
the best spatial coder available today. However, LOCO uses
less prediction rules and therefore is faster. These two tech-
niques can detect object edges in the images. Consequently,
they usually outperform DPCM, which is the current loss-
less mode of the JPEG standard.

In a spatial prediction technique, the encoder and de-
coder perform the same prediction with information previ-
ously sent or received (respectively). The predicted valueis
then corrected by adding a residual. The residual is the dif-
ference between the original frame and the predicted frame.
The residual image is the only information required for the
reconstruction of the original image by the decoder. There-
fore, only the residual needs to be encoded.

In SMC, the spatial compression technique is applied be-
fore applying any other compression operation. Hence, the
LOCO predictor is applied to the current animation frame
and a prediction image is generated. The prediction image
consists of the predicted pixels produced by LOCO. This is
done on an individual pixel by pixel basis. A residual im-
age can be obtained from the difference between the origi-
nal frame and the prediction image. However, the temporal
compression technique must be applied first before calcu-
lating the final residual.

The spatial compression technique is given preference
over the temporal compression and is applied first, as it does
not require any further information such as motion vectors
apart from the residual image.

3.3 Motion Estimation

A temporal compression technique is applied to the ani-
mation frames, after the spatial compression step. In SMC,

4

SMC Framework

Select Best Block Encoder Entropy Encoder

R

Spatial

A

B

G

n previous frames

Motion

Compressed
Frame

Figure 2. The individual components of the SMC compression algorithm

block matching motion estimation was chosen as the tempo-
ral compression technique. In this technique the animation
frame is divided into blocks. For each block in the current
frame, the most similar block is searched for in a previous
frame. The criterion, to decide how similar a block is, can
be to minimize the mean square error between the blocks
or to minimize the absolute difference. The absolute differ-
ence is used in SMC because this is faster than the mean
square error. A pointer to the best matching block is stored
and is referred to as the motion vector. It consists of two
components, x and y, for movement. A residual image could
be obtained with the difference between the original frame
and the frame built with blocks from the previous frame ob-
tained by using the motion vectors.

The result of a block matching technique is affected by a
number of parameters:

Firstly, there is a trade off between the entropy of the
residual and the size of the motion vectors. A low entropy
of the residual image is obtained when the size of the blocks
used in block matching is small. So, a size of one pixel by
one pixel produces the lowest entropy of the residual image.
However, the size of the motion vectors becomes important
in this case, because there is one motion vector associated
with each pixel. The final compression ratio is therefore
low. On the other hand, using blocks of a bigger size greatly
reduces the amount of motion vectors. For example, a block
of 16 by 16 pixels will produce one motion vector for every
256 pixels. In this case, the entropy of the residual image
is badly affected, because it is more difficult to find exact
matches when the blocks are big. The size of the blocks
could be adjusted depending on the activity of different ar-
eas inside the frames.

Secondly, the size of the search space in the previous
frame significantly affects the execution time and the com-
pression ratios. A small search space is faster but produces
low compression ratios. A bigger search space will produce
better compression ratios, but it will be slower. The exe-
cution time increases exponentially with the search space,

when the search is exhaustive. In an exhaustive search, ev-
ery block within the search space is tested. Other options
to exhaustive searches are logarithmic searches and multi-
resolution searches. Both of them reduce the execution time
to a fraction of the original, but with the incovenience that
they not always provide the best matching block. Instead,
they usually stop the search in a local minimum.

An analysis of experiments performed with different pa-
rameters showed that the block size does not affect the ex-
ecution time. The results also showed that blocks of size
two by two pixels generally produce the best compression
results.

An exhaustive search method using a small search space
was prefered over faster techniques because of its accuracy
in low motion and static scenes. Dynamic scenes require
large search spaces, which produce longer motion vectors.
The entropy of these vectors is increased correspondly, and
at some point the compression ratio might not necessarily
become better with a bigger search space. The ACC loss-
less technique [5] does not implement big search spaces for
similar reasons. For dynamic scenes, the small search space
used in SMC is compensated by the spatial compression
technique applied previously. So there is no large degra-
dation in the resulting compression ratios.

The criterion used to choose the best matching block is
the absolute difference error. Other block matching tech-
niques include the length of the motion vector and the co-
herence between neighbouring vectors in the criterion. Al-
though these techniques reduce the entropy of the motion
vectors, the entropy of the residual image is increased. The
residual image is very sensitive to any technique used to
reduce the entropy of the vectors. For example, coherent
vectors are needed to implement techniques that use match-
ing blocks of different size. However, this will increment
the entropy of the residual image. In SMC, the size of
the blocks for block matching is fixed over the entire im-
age. Lossy techniques, on the other hand, can afford the use
of techniques to reduce the entropy of the vectors, because

5

they allow the loss of information in the residual image in
order to obtain good compression ratios.

3.4 Selection of the Best Compression Method

The main part in the SMC compression technique is a
loop in which the best compression technique (spatial or
temporal) is selected in a block by block basis. The loop
starts with the spatial compression being applied to the cur-
rent frame. A prediction frame is obtained as a result. This
prediction frame is divided into blocks of the same size as
the matching blocks - although the spatial technique was ap-
plied pixel by pixel. A vector component Z is used to spec-
ify which previous frame is used to obtain the best match-
ing block. In the case of the spatial compression, the vector
component Z is filled completely with zeros. Zero means
that no previous frame is used and therefore the block is
compressed with a spatial technique. The second iteration
consists of applying the block matching technique using the
first previous frame (i-1). The best matching blocks of the
previous frame are compared with the prediction blocks ob-
tained with the spatial technique. The best blocks are se-
lected, that is the ones which are more similar to the original
blocks in the current frame. The vector component Z will be
filled with 1 only in places where the best matching block
is better than the spatial predicted block. The loop is iter-
ated for the number of reference frames (i-2, i-3, ...). At the
end of this loop three vector components X, Y and Z, and a
prediction frame will be obtained. The prediction frame is
made by spatial predicted blocks and temporal blocks (ob-
tain with block matching). The final residual image is ob-
tained by subtracting the prediction frame from the current
frame.

3.5 Removal of Redundant Motion Vectors

When the spatial compression technique is used, the mo-
tion vectors are not required. So, for every motion vector,
where its vector component Z is equal to zero, the vector
components X and Y can simply be removed. This is why
spatial compression is prefered over temporal compression
when both techniques produce the same absolute difference
error.

3.6 Block Area Coding

The vector component Z is made of a small alphabet. Ar-
eas filled with the same value (reference frame number) are
likely to occur. A good technique to reduce the redundancy
of these areas is block area coding. This technique is very
similar to runlength coding. The difference is that a rectan-
gular area instead of a single line is used. Block area coding
is developed in [4].

The block area coding technique consists of encoding
a large area filled with the same colour by using a special
symbol, followed by the size of the area and its colour. So,
four symbols are required to encode a rectangular area filled
with the same colour. The special symbol must be one that
is not used as a colour. If a block, which is larger than the
minimum size allowed, is not found then the original pixels
are kept intact. The final encoded image consists of a stream
of symbols that represent pixels until the special symbol for
a block is found. In this case, the next three symbols will
represent the width, height and colour of the constant rect-
angular area. Colour symbols can follow these three last
symbols until a special block symbol is found again.

Notice that in SMC the block area coding technique is
applied to the vector component Z and not to the RGB chan-
nels of the animation frame. The alpha channel is also en-
coded using the block area coding technique.

3.7 Entropy Coding

The final step in the compression consists on applying
an entropy coder. There are two entropy coders available in
SMC to encode the residual, the alpha channel (after block
area coding) and the motion vectors (after the removal of
redundant motion vectors and block area coding).

The first option is a rice coder. Rice coding is faster than
arithmetic coding. It gives good compression ratios when
it is applied to the compression of residuals. In SMC, this
option is available for a fast compression of the residual.
The motion vectors and the alpha channel are entropy coded
using an arithmetic coder.

The second option consists of applying the rice coder to
the residual. The result is then coded again with an arith-
metic coder. Our experiments showed that this combination
is faster and produces better compression ratios than just ap-
plying arithmetic coding. The motion vectors and the alpha
channel are entropy coded using only the arithmetic coder.

Rice coding compression ratios are particularly good
when the histogram of the residual (or any other file) has
an exponential form. Residual images generated by pre-
diction techniques and block matching techniques have ap-
proximately this form. The symbols of the residual pro-
duced in SMC are ordered, from highest frequency counts
to lowest frequency counts, in order to obtain an approx-
imation of the exponential form. This ordering procedure
can also speed up the arithmetic decompression, if the arith-
metic coder were applied alone, but in SMC we are always
applying rice coding first.

Arithmetic coding produces compression ratios nearly
optimal. This is, a compression ratio suggested by the first
order entropy of the image. However, arithmetic coding is
slow. We obtained a little speed up by applying rice coding
first, followed by the arithmetic coding. The compression

6

ratio was also a little better. Notice that we are using this
combination only for the residual. The motion vectors and
the alpha channel use arithmetic coding alone. This is be-
cause these last components do not have an exponential his-
togram. Their size is also much smaller than the residual,
so there is no big impact on the final execution time.

3.8 Number of Previous Frames

It is recommended that the animation sequence be split
up into small sub-groups. The recommended length of each
sub-group is about 25 animation frames or even smaller.
Each sub-group is then encoded separately. More frames
in the sub-group does increase a little bit the compression
but makes it more difficult to decompress a particular ani-
mation frame from the sub-group. More specifically, all the
previous frames in the sub-group must be decompressed to
be able to decompress a particular frame.

The number of previous frames (reference frames) used
to encode a particular frame is set up by the user. Usually,
this number is one or three previous frames. Notice that
this number is different from that in the discussion above.
Therefore, all the previous frames in a sub-group have to
be decoded in order to decode a particular frame even when
one or three previous frames are used to encode a frame.
This is because the previous frames must be available un-
compressed. So to decompress the previous frames, the
previous frames to the previous frames need to be decom-
pressed and so on.

Suppose the user selected three previous frames (refer-
ence frames) to be used by the SMC encoding technique.
The first frame in a sub-group of frames does not have any
previous frames. So the SMC technique applies only spa-
tial compression as the temporal compression cannot be ap-
plied without previous frames. The second frame in the
sub-group can be temporal encoded, but using a maximum
of one previous frame. The third frame in the sub-group is
encoded with two previous frames, and finally, the fourth
and subsequent frames can be encoded with three previous
frames.

Increasing the number of previous frames used to en-
code a frame increases the calculation time. It is suggested
to keep the number of previous frames small. The previ-
ous frames (reference frames) are stored in main memory
in order to perform the block matching searches. Conse-
quently, increasing the number of previous frames requires
more main memory. However, the implementation of SMC
can be easily modified to keep only one previous frame in
main memory at any time, even when the user selects sev-
eral previous frames (reference frames) to perform the en-
coding.

3.9 SMC Decompression

The steps to perform the decompression correspond to
the steps to perform the compression in inverse order. The
entropy decoders are applied first (in inverse order). The
alpha channel and the vector component Z are decoded by
filling the areas that were encoded with the same colour.
The redundant motion vectors are restored again. This is
done because the motion vectors are misplaced without the
redundant vectors. Blocks from previous frames are copied
to reconstruct the current frame. The residual is added to
them in order to obtain the original blocks. Finally, the spa-
tial predictor is used together with the residual to obtain the
original blocks that were spatial encoded.

3.10 SMC Compression Parameters

There are several parameters that affect the final com-
pression ratio and the speed of the compression. These are
listed below:

1. Search space:The size of the search space used in
block matching. The execution time usually increases
to the square of the search space. The compression
ratio is usually better with bigger search spaces.

2. Block size:The size of the blocks used in block match-
ing, and in the selection of the best technique (spatial
or temporal). This is typically set to be a size of 2,
which usually gives the best compression ratio. Gener-
ally, the size of the blocks does not affect the execution
time.

3. Previous frames:The number of previous frames used
in temporal compression. This is typically set to ei-
ther one or three frames. The execution time usually
increases linearly with the number of previous frames.
The compression ratio can increase using more previ-
ous frames.

4. Applying arithmetic coding to the residual:This is an
option. If it is false, the arithmetic coder will not be
used. If it is true, the arithmetic coder will be applied.
The rice encoder is always used to encode the residual,
regardless of this option. Arithmetic coding is slower
but produces better compression ratios.

Although the user can specify each of these parameters,
a different approach is used in SMC. The user can specify
the time available to do the compression and a special mod-
ule can select the best parameters given this time constrain.
This is explained with more details in the next sections. The
advantage of this approach is that the user can use the com-
pression software without knowledge of how the different
parameters affect the compression. This also allows the

7

compression software to produce better compression ratios
when faster machines are used.

4 SMC Compression Application Steering

A use of the PACE toolkit developed at Warwick is in
adding a performance model to the final execution code
such that the overall execution can be optimised for a par-
ticular problem. A common case in distributed systems is
a time constraint, where a problem has a limited execution
time on the system. Optimising the SMC compression al-
gorithm with the use of the Application Steering method is
described in this section.

Executing the SMC compression algorithm on a particu-
lar data set, hardware system, and with a given set of com-
pression parameters, results in a compression ratio and an
execution time that is dependant on all three of these pa-
rameters. The idea of application steering, is to add a PACE
performance model of the application to the overall imple-
mentation, which optimises the execution for the problem
concerned. Figure 3 describes this method.

For example, it is required in this problem to use appli-
cation steering to optimise the compression ratio gained for
a certain time constraint. Therefore, a performance model
of the compression algorithm is added to the executable,
and chooses the best compression parameters to use to fit
the time constraint. All the time predictions are found from
exhaustive accesses to the PACE performance model exe-
cutable.

Extending the compression algorithm into the applica-
tion steering system shown in Figure 3 requires two distinct
parts. The first is to create the PACE performance model,
and then secondly to add this model to the final application.
These two parts are described in detail below.

4.1 Compression Model Implementation

Before designing and implementing the performance
model within PACE, it is essential to have a good knowl-
edge of the structure of the program that you are writing the
performance model for. Luckily, the full source code was
available, so this was not a problem. One possible design of
the model would be to have an application object which just
called one big subtask which represented the whole com-
pression algorithm, but this would result in a messy and
cluttered model which would be very hard to maintain and
debug. Therefore, it was decided that each main section
of the algorithm would be split up into a total of five sub-
tasks, each of which would be called by the application ob-
ject when need be. These five sections would be the spa-
tial, temporal, block, arithmetic, and rice encoding algo-
rithms. A simple parallel template is then used to complete
the model, which just describes a sequential program, as

the compression algorithm model being implemented was a
sequential one. The final model is represented in Figure 4.

SMC Model Parameters

{Predicted Execution Time}

Encoder
Spatial

Encoder
Temporal

Encoder
Block

Encoder
Rice

Encoder
Arithmetic

SMC

Async

Hardware

Figure 4. The final SMC PACE performance model, con-
siting of five sequential subtask objects, and one applica-
tion, parallel template and hardware object

4.1.1 Application Object

The application object was the first to be designed, and in-
cluded all the algorithm’s input parameters, the subtasks for
each part of the algorithm explained previously, templates
for sequential processing, and hardware specifications that
were to be used throughout the model.

The input parameters to the model are the algorithm pa-
rameters such as the number of frames to be compressed,
the number of previous frames searched for during the tem-
poral encoding, the width and height of each frame (as-
sumed constant throughout the video stream), and so on.
The application object also passes the required input param-
eters to the individual subtasks that require them. For ex-
ample, the number of previous frames parameter is passed
to the temporal subtask only, as this is the only part of the
compression algorithm that looks at previous frames. Calls
to these subtasks are then managed by the application ob-
ject depending on these input parameters, and the current
frame being processed. For example, if the number of chan-
nels encoded within the images includes the alpha channel
as well as the normal RGB channels, then the application
model has to call the block and arithmetic subtasks again
for each frame, to compensate for the extra time taken to
execute this functionality within the algorithm. The hard-
ware specifications point the model to the correct hardware
platform that the compression algorithm will be running on,
allowing the model to predict the execution time with the
highest amount of accuracy.

8

{S
ys

te
m

}

Implementation
Decision

System
Decision

Code m

Code 2

Code 1

ApplicationUser Parameters
{Problem}
{System}

System 1

System 2

Code m

Code 2

Code 1

System 1

System 2

User Parameters
{Problem}

Performance
Model

Figure 3. Application Steering Methodology

4.1.2 Subtask Objects

The design of the subtasks for the individual functionality
of the algorithm is split into two distinct parts. These are
porting the original code to the PACE instruction system,
and organising the parameters sent by the application model
within the subtask.

Porting the original code into the PACE instruction sys-
tem is made simple with a PACE tool called ‘capp’. ‘Capp’
takes C code from a file, translates it to instructions which
PACE can understand, and then writes the result out to the
standard output. Each original C function is returned as
a PACE ‘cflow’ expression, which evaluates the function
and predicts the execution time. In addition to this, prob-
abilities and loop counts have to be assigned to each con-
ditional branch within the ‘cflow’ expression, so that the
performance model knows the likelihood for each ‘if’ and
‘case’ statements, and the number of repetitions for ‘for’
and ‘while’ statements. The rest of the subtask consists
of assigning these probabilities and loop counts, which are
normally linked to the parameters passed to the subtask
from the application object. The ‘cflow’ statement to be
predicted first is also assigned.

Assigning these probabilities and loop counts to the
cflow statements are not as simple as it may first appear,
even if a good knowledge of the original software is avail-
able. Even the author of the software can only guess these
values, and although some of these guesses may be reason-
ably accurate, they often lead to large inaccuracies in the
accuracy of the model prediction. To overcome this mis-
fortune, a profiling tool was used to find values for these
probability and loop count assignments over many repeti-
tions of the algorithm. This profiling method is described

later within this section, as it is physically used at the later
stages of the model implementation.

4.1.3 Parallel Template Object

As the SMC compression algorithm was a wholly sequen-
tial one, a single, sequential parallel template was neces-
sary. The ‘async’ parallel template, which accompanies
PACE, was used.

4.1.4 Hardware Object

The hardware object used was for that of the hardware
system used throughout the writing of this report and the
gaining of the compression and application steering results
found in the next section of this report. The system used was
a Sun Ultra SPARC V, running at 360 MHz under the So-
laris VII operating system. An accurate benchmark of this
system when idle was created prior to the implementation
of the model.

4.1.5 Increasing Accuracy (Profiling and
Data Dependancy)

Increasing the accuracy of the model involves using profil-
ing techniques to increase the accuracies of the probabili-
ties and loop counts found within the subtasks, and also to
compare varying data dependencies which may affect the
execution performance.

Vast debugging information can be retrieved from the C
compiler ‘gcc’ if the correct arguments to the compiler are
used, and then the profiling tool ‘gcov’ can take this debug-
ging output and create a list of the number of times each

9

function, and even line of code, was executed. This infor-
mation gives the implementer of the model a huge hand in
vastly increasing the accuracies of the model.

Data dependencies, especially in a compression algo-
rithm, can greatly affect the time taken to execute, providing
even greater inaccuracy in the model. For example, the ver-
sion of the model created from profiling with complex video
was over 100% inaccurate when a simple video stream was
used. It soon became apparent that the model would have
to be fine-tuned so that data dependency could be taken into
account.

To do this, an extension to the PACE performance model
had to be written which would scan the video stream to be
compressed, and make assumptions about the complexity of
the video, which could then be passed to the model to refine
the prediction. Running the compression algorithm on both
the complex and simple streams and comparing the profil-
ing results showed that the main differences occurred within
the temporal and arithmetic sections, where the comparison
between the current and previous frames where found. As
explained previously, if a perfect match is found between a
block in the current frame and one of the previous frames
then the other previous frames will not be compared, which
saves a lot of time within the algorithm. This explains why
a simple video stream, where its is likely that a previous
frame is very similar to the current frame, will compress in
a much quicker time than a complex stream, as only a small
fraction of the previous frames are being compared.

Now that the source for the data dependencies was
found, the extension to the model could be designed and
implemented. This extension scans the video stream and
returns the probability that all the previous frames will be
scanned. This probability is then passed as a parameter to
the model so that the temporal and arithmetic subtasks are
refined for the specific data. Adding this data dependency
part to the model helped increase the accuracy of the model
to predict the execution time within five percent of the ac-
tual time.

4.2 Execution Time Constraint

With a highly accurate performance model designed and
implemented, it was now possible to return to the main aim
of constraining the compression parameters to obtain the
highest possible compression results within a certain time
constraint. Another piece of software was implemented,
which continuously used the model to predict the execution
time for various input parameters until the best parameters
to fit the time constraint were found. These parameters were
then fed into the original compression algorithm.

A few examples and their results of the final performance
model can be found within the next section.

5 Results

The total time to execute the compression is affected by
a number of different factors. On one side we have the char-
acteristics of the machine used to run the compression and
on the other side we have the characteristics of the data. So,
given the compression parameters, the characteristics of the
machine and the characteristics of the data, we can produce
a good prediction of the total execution time.

In the case of SMC lossless compression, a fast pre-
processing module to scan the animation data before the
compression was developed in order to obtain an approx-
imated measurement of the temporal redundancies in the
data. This measurement or probability, which is part of the
data characteristics, is then passed to PACE. This produces
more accurate predictions.

The results obtained from the performance model are
split into two categories. The first focuses just on the perfor-
mance model, and compares the predicted times verses the
actual compression times for a variety of input parameters
and for both the Drunky and Limbo video streams. Twenty-
five frames were selected, and at various parts of the video
stream, to allow the accuracy of the data dependency exten-
sion to the model to become apparent. These results show
just how accurate the final implementation of the model, in-
cluding the data dependency predictions, were.

The second part of these results focuses on the final sys-
tem, where the compression result is constrained to a spe-
cific value of time. Each graph shows both the predicted
time to compress twenty frames and the actual real com-
pression time for the parameters chosen by the model. Ta-
bles are also provided to complement the graphs, which
show the compression parameters predicted by the model
to fit the time constraint.

5.1 Performance Model Prediction

The graphical results shown below compare the perfor-
mance model’s predicted time with the actual time taken
to compress the described frames and compression level.
Each compression level defined within the compression al-
gorithm is a unique set of input parameters to the com-
pression, which allow for better compression results to be
achieved, although within a longer space of time.

Different areas of the Drunky video stream were used
to show the accuracy of the data dependency part of the
model. Frames 360 to 384 are very different from each
other as the camera is moving quickly, and this results in
a longer time to search for similar blocks in the previous
frames, and therefore a longer time for the compression to
complete. Frames 850 to 874, on the other hand, are very
similar, and this results in a much shorter time to search for
similar blocks and therefore a much shorter time to com-

10

0

20

40

60

80

100

5 10 15 20 25

T
im

e
(s

)

Number of Frames

PACE
Real

Figure 5. Compression Time Prediction for DRUNKY
(Compression Level 1, Frames 360-384)

0

50

100

150

200

5 10 15 20 25

T
im

e
(s

)

Number of Frames

PACE
Real

Figure 6. Compression Time Prediction for DRUNKY
(Compression Level 4, Frames 850-874)

plete the compression. It is also noted that the compression
ratio gained is also considerably higher for the latter set of
frames. These two areas of the Drunky video sequence were
chosen on purpose to show that the data dependency part of
the model does in fact tune the model to correctly predict
the execution time for varying data sets.

Figures 5, 6, 7, and 8 support the performance model
prediction section of the results achieved. The percentage
error between the predicted and real compression times is
less than 8% for all the results shown.

5.2 Time Constraint Prediction

Tables 1, 2 and 3 show the results of the time constraint
extension to the performance model. For various parts of
the Drunky video stream, the compression of twenty frames
within time constraints of between 50 and 250 seconds were
predicted using the performance model. The predicted com-

0

5

10

15

20

25

30

35

40

45

50

5 10 15 20 25

T
im

e
(s

)

Number of Frames

PACE
Real

Figure 7. Compression Time Prediction for LIMBO
(Compression Level 1, Frames 37-61)

0

10

20

30

40

50

60

70

80

90

5 10 15 20 25

T
im

e
(s

)

Number of Frames

PACE
Real

Figure 8. Compression Time Time Prediction for LIMBO
(Compression Level 4, Frames 37-61)

pression parameters to constrain the compression to these
times were then input to the compression algorithm, and
the time taken to compress with these parameters was also
recorded.

6 Conclusion

Within this paper it has been shown how an applica-
tion steering method can be used to optimise applications
for distributed systems where certain constraints have to be
met. The example used here was of a lossless compres-
sion technique, where a time constraint may be enforced
for a particular system where a large number of applications
have to be scheduled. The results show that the compression
parameters chosen by the performance model optimise the
compression technique to gain the best possible compres-
sion ratio as the time constraint becomes more relaxed.

The application steering method involves adding the

11

PACE performance model with the compression executable
such that the compression parameters are chosen by the
PACE model instead of the user. Thus the user chooses the
time constraint, which the PACE model takes and calculates
the compression parameters which will results in the high-
est compression ratio.

The PACE system is currently being extended to allow
for the constant changes that are likely within distributed
systems such as the Computational GRIDS.

7 Acknowledgment

This work is funded in part by DARPA contract N66001-
97-C-8530, awarded under the Performance Technology
Initiative administered by NOSC.

The Drunky video stream that were referred to through-
out this report were donated by Mental Images. The Limbo
video stream was acquired from Blue Moon Rendering
Tools (BMRT).

References

[1] A.M. Alkindi, D.J. Kerbyson, E. Papaefstathiou,
G.R. Nudd, “Run-time Optimisation Using Dynamic
Performance Prediction”.

[2] L. DeRose, Y. Zhang, D.A. Reed, “SvPablo: A Multi-
Language Performance Analysis System”, Proceed-
ings of the 10th International Conference on Com-
puter Performance. Spain. 252-255 (1998).

[3] I. Foster, C. Kesselman, “The Grid : Blueprint for a
New Computing Infrastructure”, Morgan Kaufmann.
279-290 (1998).

[4] J.M. Gilbert, R.W. Brodersen, “A Lossless 2-D Image
Compression Technique for Synthetic Discrete-Tone
Images”, IEEE DCC. 359-368 (1998).

[5] E. Groller, W. Stockers, “ACC - Lossless Data Com-
pression of Animation Sequences”, IFIP Transactions
of Graphics, Design and Visualization. 75 (1993).

[6] W. Gu, G. Eisenhauer, K. Schwan, “On-line Monitor-
ing and Steering of Parallel Programs”, Concurrency:
Practice and Experience.10(9), 699-736 (1998).

[7] B.P. Miller, M.D. Callaghan, J.M. Cargille,
J.K. Hollingsworth, R.B. Irvin, K.L. Karavanic,
K. Kunchithapadam, T. Newhall, “The Paradyn
Parallel Performance Measurement Tools”, IEEE
Computer.28(11)27-46 (1995).

[8] G.R. Nudd, D.J. Kerbyson, E. Papaefstathiou,
S.C. Perry, J.S. Harper, D.V. Wilcox, “PACE - A

Toolset for the Performance Prediction of Parallel and
Distributed Systems”, International Journal of High
Performance Computing Applications, Special Issues
on Performance Modelling.14(3), 228-251 (2000).

[9] E. Papaefstathiou, D.J. Kerbyson, G.R. Nudd,
T.J. Atherton, “An Overview of the CHIP3S Perfor-
mance Prediction Toolset for Parallel Systems”, 8th
ISCA Int. Conf on Parallel and Distributed Comput-
ing Systems. Florida USA. 527-533 (1995).

[10] M. Weinberger, G. Seroussi, G. Sapiro, “The LOCO-
I Lossless Image Compression Algorithm: Principles
and Standardization into JPEG-LS”, Hewlett Packard
Labs HPL. 98-193 (1998).

[11] X. Wu, N. Memon, “Context-based Adaptive Lossless
Image Coding”, IEEE Transactions.45(4) 437-444
(1997).

[12] H.C. Yun, B.K. Guenter, R.M. Mersereau, “Loss-
less Compression of Computer-Generated Animation
Frames”, ACM Transactions on Graphics.16(4)359-
396 (1997).

12

Time Constraint Time Prediction Real Time Taken Compression Ratio No. Previous Frames Search Space Arithmetic Encoding Used
50.00 62.74 66.16 4.67 0 1 OFF
60.00 62.74 66.34 4.67 0 1 OFF
70.00 69.38 89.26 4.92 0 1 ON
80.00 69.38 89.15 4.92 0 1 ON
90.00 85.89 92.77 5.20 1 1 OFF
100.00 92.54 111.06 5.87 1 1 ON
110.00 92.54 110.83 5.87 1 1 ON
120.00 92.54 111.14 5.87 1 1 ON
130.00 92.54 111.02 5.87 1 1 ON
140.00 92.54 110.89 5.87 1 1 ON
150.00 92.54 111.09 5.87 1 1 ON
160.00 92.54 110.86 5.87 1 1 ON
170.00 92.54 110.89 5.87 1 1 ON
180.00 92.54 111.09 5.87 1 1 ON
190.00 182.47 181.41 6.06 3 2 ON
200.00 182.47 181.52 6.06 3 2 ON
210.00 182.47 181.42 6.06 3 2 ON
220.00 210.84 201.99 6.07 4 2 ON
230.00 210.84 202.19 6.07 4 2 ON
240.00 237.44 220.86 6.07 5 2 ON
250.00 237.44 220.65 6.07 5 2 ON

Table 1. Time contraint predictions and compression ratio achievedfor DRUNKY: Frames 420-429

Time Constraint Time Prediction Real Time Taken Compression Ratio No. Previous Frames Search Space Arithmetic Encoding Used
80.00 69.92 88.49 5.10 0 1 ON
90.00 85.12 92.96 5.31 1 1 OFF
100.00 91.61 110.35 6.06 1 1 ON
110.00 91.61 110.19 6.06 1 1 ON
120.00 91.61 110.04 6.06 1 1 ON
130.00 91.61 110.34 6.06 1 1 ON
140.00 91.61 110.15 6.06 1 1 ON
150.00 91.61 110.20 6.06 1 1 ON
160.00 91.61 110.27 6.06 1 1 ON
170.00 91.61 110.19 6.06 1 1 ON
180.00 173.86 177.73 6.34 3 2 ON
190.00 173.86 177.76 6.34 3 2 ON
200.00 199.88 197.67 6.35 4 2 ON
210.00 199.88 197.61 6.35 4 2 ON
220.00 199.88 197.52 6.35 4 2 ON
230.00 224.28 215.66 6.37 5 2 ON
240.00 224.28 215.80 6.37 5 2 ON
250.00 247.05 232.79 6.38 6 2 ON

Table 2. Time constraint predictions and compression ratio achieved for DRUNKY: Frames 670-679

Time Constraint Time Prediction Real Time Taken Compression Ratio No. Previous Frames Search Space Arithmetic Encoding Used
50.00 61.27 63.39 5.42 0 1 OFF
60.00 61.27 62.97 5.42 0 1 OFF
70.00 67.18 82.13 5.86 0 1 ON
80.00 67.18 82.12 5.86 0 1 ON
90.00 88.07 102.45 7.35 1 1 ON
100.00 88.07 102.32 7.35 1 1 ON
110.00 88.07 102.58 7.35 1 1 ON
120.00 88.07 102.46 7.35 1 1 ON
130.00 88.07 102.63 7.35 1 1 ON
140.00 88.07 102.34 7.35 1 1 ON
150.00 144.07 156.21 7.78 3 2 ON
160.00 144.07 156.32 7.78 3 2 ON
170.00 162.03 171.90 7.81 4 2 ON
180.00 178.87 186.10 7.82 5 2 ON
190.00 178.87 186.09 7.82 5 2 ON
200.00 194.59 199.24 7.83 6 2 ON
210.00 209.18 211.38 7.84 7 2 ON
220.00 209.18 211.54 7.84 7 2 ON
230.00 222.65 222.57 7.84 8 2 ON
240.00 238.37 246.97 7.84 3 3 ON
250.00 238.37 247.05 7.84 3 3 ON

Table 3. Time constraint predictions and compression ratio achieved for DRUNKY: Frames 850-859

13

