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Theory and Operation of the Warwick
Multiprocessor Scheduling (MS) System

S. C. Perry and J. S. Harper and D. J. Kerbyson and G. R. Nudd

High Performance Systems Group
Department of Computer Science
University of Warwick
Coventry, UK

Abstract

This paper is concerned with the application of performance prediction techniques to
the optimisation of parallel systems, and, in particular, the use of these techniques
on-the-fly for optimising performance at run-time. In contrast to other performance
tools, performance prediction results are made available very rapidly, which allows
their use in real-time environments. When applied to program optimisation, this al-
lows consideration of run-time variables such as input data and resource availability
that are not, in general, available during the traditional (ahead-of-time) performance
tuning stage.

The main contribution of this work is the application of predictive performance
data to the scheduling of a number of parallel tasks across a large heterogeneous
distributed computing system. This is achieved through use of just-in-time perfor-
mance prediction coupled with iterative heuristic algorithms for optimisation of the
meta-schedule.

The paper describes the main theoretical considerations for development of such a
scheduling system, and then describes a prototype implementation, the MS schedul-
ing system, together with some results obtained from this system when operated
over a medium-sized (campus-wide) distributed computing network.

1 Introduction

The principle motivation for the use of any parallel system is the increased
performance that can be achieved by distributing workload among a number
of separate nodes. With computational systems, the production of a paral-
lel application requires considerable extra work compared to the equivalent
sequential program, and it is clearly very important to maximise the perfor-
mance reward for this additional effort. Consequently, development of parallel
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applications has traditionally concentrated on finding the ‘best’ parallel al-
gorithm for an identified target architecture, and subsequent tuning using
performance tools such as application measurement/tracing. These tools are
generally used before the application is run in earnest, and the ‘optimisation’
is necessarily specific to the particular target architecture.

However, the efficiency with which an application runs on a parallel machine
also depends on other factors not foreseeable when the code was originally
optimised. For example, it is possible to optimise cache re-use on a data-
dependent basis[1,2], and the choice of algorithm can be made dependent
on the input application parameters at run-time[3,4]. Furthermore, hetero-
geneous data necessitates load balancing within the application, and, at the
system level, heterogeneous computing resources must also be scheduled and
dynamically load balanced. These issues become even more challenging when
one considers the trend towards large distributed computing systems, often
built from a range of commodity components, which provide a heterogeneous
and constantly changing set of computing resources.

Optimisation techniques used when a program is about to be executed (here-
after called dynamic performance optimisation methods) can be conveniently
divided into two categories:

e Single-program issues are concerned with the optimisation of a single appli-
cation running on a parallel system. For example, the size and organisation
of local memory and the efficiency of the network and message passing
interface are ‘hardware factors’ influencing performance at this level. The
mapping of data and subtasks contained within the parallel application to
the underlying network architecture is the main ‘software factor’ influenc-
ing performance; this is itself dependent upon the number of processing
nodes which have been allocated, and their relative network topology. The
choice of algorithms and data-partitioning strategies is consequently very
rich at this stage, and dynamic performance optimisation is concerned with
selection of these parameters on a system- and data-dependent basis.

o Multiprogramming issues are concerned with optimising the performance of
the parallel system as a whole. In particular, the problems of quantitative
partitioning (i.e. the number of processing nodes assigned to each task) and
qualitative partitioning (i.e. the particular subset of nodes and, for a het-
erogeneous system, their associated computing power and communication
costs) are compromises between minimising the execution time of any par-
ticular task and maximising the overall efficiency of the parallel system. The
search space for this multiple parameter optimisation problem is extremely
large, and is not fully defined until run-time.

In contrast to the dynamic optimisation techniques cited above[1-4], this paper
will concentrate on the second category, and, in particular, the problem of



dynamically optimising the schedule of a large number of parallel tasks, to be
run on a heterogeneous computing network.

Theoretical considerations applicable to this problem will now be outlined.

1.1 Intractability

Consider for the moment the simpler case of a homogeneous computer system,
consisting of a number of identical processing nodes for which communication
costs are similar between all nodes, then the above problem can be stated
formally as follows.

Problem 1 A schedule for a set of parallel tasks {Ty, T}, ..., Tn_1} which are
to be run on a network of identical processing nodes {Py, Py,..., Py 1} is
defined by the allocation to each task T; a set of nodes B; € {Py,..., Pn_1}
and a start time 7; at which the allocated nodes all begin to execute the task
in unison. Because the processing nodes are identical, the execution time for
each task is simply a function, t,();, of the number of nodes allocated to it,
and it is presumed that this function is known in advance. The system uses
Run-To-Completion (RTC) scheduling, hence the tasks are not permitted to
overlap. The makespan, w, for a particular schedule is defined as:

w= max {7+ L3 g

which is the latest completion time of any task. The goal is to minimise this
function with respect to the schedule.

Problem 1 is called the Multiprocessor Scheduling (MS) problem.

The intractability of MS has been studied[5], and it is found that although
pseudo-polynomial time algorithms exist for the cases of m = 2 and m = 3,
MS is NP-hard for the general case m > 4. Approximate algorithms have
been proposed[6,7]; these have a worst case bound of w < 2w*, where w* is
the makespan of the optimal schedule. Although these algorithms are a useful
fall-back, for high performance systems a factor of two is unacceptable in most
cases, and one would hope to achieve much higher levels of optimisation.

In order to find (near) optimal solutions to this combinatorial optimisation
problem, the approach taken in this work is to find good schedules through
use of iterative heuristic methods. Two heuristic techniques have been studied:
Simulated Annealing (SA)[8,9] and a Genetic Algorithm (GA)[10,11]. These
methods proceed through use of a ‘fitness function’ which assigns a quality
value to any particular solution (in this case corresponding to a schedule for



the task set). The algorithms are concerned only with the maximisation of
this value. Details of these methods’ implementation are given in section 2.

1.2 Heterogeneous combinatorial considerations

As mentioned above, the function ¢, (), which provides a program’s execution
time for a given allocation of processing nodes, § (hereafter referred to as
a performance scenario), is assumed to be known in advance. For an other-
wise unloaded homogeneous parallel system, where the execution times are
not data-dependent, profile data could conceivably be used for this purpose
(although for large one-shot applications this would somewhat defeat the ob-
ject of the optimisation). The nodes are identical, so, for example, with a 60
node system there exists exactly 60 different performance scenarios per task
(although if the optimum speedup occurs at a lower number of nodes then the
later scenarios will not be used).

However, for the more realistic case of a heterogeneous system, combinatorial
explosion generally precludes prior knowledge of the execution time. In the
extreme case, the number of performance scenarios for m entirely different
processing nodes is 7", k!, which for m = 60 is of the order 108'. Clearly,
for any non-trivial heterogeneous system it will not be possible to obtain the
function #,() in advance of the scheduling stage. To overcome this difficulty,
we propose to use data from a performance prediction system, calculated in
real time as the scheduling program requires it. This just-in-time approach
effectively provides ¢, () for the heuristic methods for heterogeneous systems.
The implementation is described further in section 5.2.

1.3 Performance prediction

This work will concentrate entirely on performance prediction as the method
of providing t,(/3), either in advance for homogeneous situations or in real
time for heterogeneous systems. Performance prediction is the technique of
estimating values for various aspects of how an application program will ex-
ecute on a computer system, given certain well-defined descriptions of both
program and system. The performance prediction toolset used here, PACE,
operates by characterising the application in terms of its principle operations
(representing computation costs) and its parallelisation strategy (which dic-
tates the communication pattern). These are then combined with models of
the system environment to produce a prediction for the execution time. The
key to this strategy is that the separation of program and system models
allows predictions for heterogeneous computing environments.



Predictions are made in a fraction of a second, and for applications whose
internal structures have a low level of data-dependence is generally accurate
to within 10 % of the measured time. However, it is important to note that
for run-time optimisation purposes the accuracy of the prediction is not an
overriding concern; any information from detailed trace data down to a basic
measure of program complexity is always useful — it is better than no infor-
mation at all. A complete description of the PACE system can be found in
[12].

2 Solution of MS using Heuristic Methods

A number of standard texts describe the operation of the SA and GA tech-
niques; the following sections detail only issues relating to solution of the MS
problem using these methods.

2.1 Coding scheme and fitness function

Both techniques require a coding scheme which can represent all legitimate so-
lutions to the optimisation problem. For both algorithms, any possible solution
is uniquely represented by a particular string, S;, and strings are manipulated
in various ways until the algorithm converges upon an optimal solution. In
order for this manipulation to proceed in the correct direction, a method of
prescribing a quality value (or fitness) to each solution string is also required.
The algorithm for providing this value is called the fitness function f,(S;).

The fitness values of solutions to the MS problem are readily obtained — the
solutions which represent the schedule with the least makespan are the most
desirable, and vice-versa. The processing node set for each task, and the order
in which the tasks are executed, are encoded in each solution string, and the
execution times for each task (given the set of nodes allocated) are obtained
from the prediction system. It is therefore straightforward to calculate the
makespan of the schedule represented by any solution string S;. This number
may be converted from a cost function (f.) to a value function (f,) by multi-
plying all the makespans by -1 and normalising on the interval 0 < f,(S;) < 1.

The coding scheme we have developed for this problem consists of 2 parts:

e An ordering part, which specifies the order in which the tasks are to be
executed. This part of the string is g-ary coded where ¢ = n.

e A mapping part, which specifies the allocation of processing nodes to each
task. This part of the string is binary coded, consisting of n x m bits spec-
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Fig. 1. An example solution string (LHS) and Gantt chart representing its schedule
(RHS). The two parts of the solution string are shown separately, with the ordering
part above and the mapping part below. Note that the execution times of the various
tasks are a function of the processing node set allocated and are provided by the
performance prediction system. This data is associated with the task object and
is never used directly by the optimisation algorithm, but only through the fitness
function f,.

ifying whether or not a particular node is assigned to a particular task.

The ordering of the task-allocation sections in the mapping part of the string
is commensurate with the task order. A short example of this type of solution
string and its associated schedule are shown in Fig. 1. The ordering part of
this string is always guaranteed to be legitimate by the various manipulation
functions used in the heuristic algorithms. However the same is not true of
the mapping part, and if the fitness function encounters a string with a task
that has no processing nodes allocated it will randomly assign one. Further
manipulation may be required when using the system in a heterogeneous en-
vironment, as described in section 4.

From Fig. 1 it is clear that the task of parallel schedule optimisation is a
‘packing problem’ where the goal is to fit the programs together as tightly
as possible. Examples of a simple schedule before and after application of a
heuristic algorithm are shown in Fig. 2.

2.2 Genetic algorithm-based optimisation

A GA-based optimisation program, using the coding scheme described above,
was developed for testing with simulated (homogeneous) performance data
and the MS problem fitness function. The code was based upon the ideas
developed in [11], using a population size of 60 and stochastic remainder se-
lection. Specialised crossover and mutation functions were developed for use
with the two-part coding scheme. The crossover function first splices the two
ordering strings at a random location, and then re-orders the offspring to
produce legitimate solutions. The mapping parts are crossed over by first re-
ordering them to be consistent with the new task order, and then performing
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Fig. 2. Example schedules for 15 programs running on 10 processors, both before
optimisation (left panel) and after 500 iterations of the optimising (GA) algorithm
(right panel). The different shaded rectangles represent the programs indexed on
the left.

a single-point (binary) crossover. The motivation for the re-ordering is to pre-
serve the node mapping associated with a particular task from one generation
to the next. The mutation stage is also two-part, with a switching operator
randomly applied to the ordering parts, and a random bit-flip applied to the
mapping parts.

2.8  Stmulated annealing-based optimisation

The SA-based optimisation program used the same coding scheme and fitness
function described above, and was a modification of the travelling code given
in Numerical Recipes[13, chap. 7]. The program again uses a two-part re-
arrangement function, with path transport or reversal (performed according
to an annealing schedule derived from the metropolis algorithm) occurring
separately for the ordering and mapping parts, and the mapping part re-
ordered in between.

3 Performance of the heuristics

In order to conveniently test the performance of the algorithms with differ-
ent problem sizes, tasks were simulated from a simple homogeneous parallel
computation model, viz,

C
tx(z'):%Jermxi, i=1,...,m. (2)
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Fig. 3. Comparison of the (cumulative) best schedules found by the different heuris-
tic approaches for a set of 20 simulated tasks running on a 16 node system. The
lines are the average of 100 runs of each search method; the error bars show the
width of 1 standard deviation from the mean at convergence.

Hence from the derivative of Eq. 2 it was straightforward to create task sets
with specified distributions of sizes and optimum processing node numbers.

Examples of the convergence times for a simple scheduling problem are pre-
sented in Fig. 3. The figure shows the relative performance of the heuristic
algorithms and a random search algorithm (using peak speedup node allo-
cations for each task). The intractability of the MS problem precludes com-
parison of the results with an optimal schedule, but we assume the results
at convergence to be near-optimal. As expected, the heuristic methods offer
an appreciable improvement over the random search (which demonstrates the
vastness of the search space even for a relatively simple problem). Although
the solution quality for the two heuristic algorithms is comparable at conver-
gence, in general GA provides higher-quality solutions at shorter times than
SA. The reason for this is believed to be that the operation of SA is based
upon patient movement towards a minimum following an annealing schedule,
and does not lend itself to early termination. Conversely, GA is based upon the
evolution of a set (population) of solution strings, which not only finds minima
more quickly, but also adapts easily to changes in the problem (e.g. the addi-
tion or completion of a task, or a change in the available hardware resources),
because any current solution set will serve as good quality starting points in
a slightly changed situation. Hence hence for realistic, real-time scheduling
environments, where the pool of tasks and computing resources is constantly
changing, the ratio of the convergence times for GA vs. SA (shown in Fig. 3)
is greatly exaggerated, with SA having to complete its annealing schedule for
each new situation, whereas GA can quickly evolve from the previous solution,



and hence start much further along the convergence curve.

3.1 Real-time extension of the MS problem

The simulations described above were concerned with the solution of the MS
problem as defined in Prob. 1, with all the tasks and their associated perfor-
mance data known in advance. Consider now a slightly more realistic case,
where new tasks may be added to the queue after the first tasks have started.
Hence the MS problem becomes dynamic; tasks are added and removed (when
they are complete) from the scheduling problem in real time. As mentioned
earlier, the evolutionary basis of GA is particularly well suited to this situa-
tion, and this was the only heuristic used for the following simulations.

The simulations work by first allowing a “warm-up” period for the GA with
a set of tasks, and then removing the tasks which have been scheduled for
execution (i.e. the ones at the beginning of the Gantt chart). This tends to
leave a jagged ‘base’ which forms the basis of the next packing problem. When
a task completes, the algorithm is stopped and interrogated for its best solu-
tion, and any tasks at the bottom of the schedule begin execution. Tasks are
continuously added so as to keep the number of pre-scheduled tasks constant.

For the case where the queue initially contains all the tasks to be executed,
minimisation of the makespan provides the most efficient schedule. However,
for the real time case now considered, one should also take into account the
nature of the idle time in the schedule. Idle time at the bottom of the schedule
is particularly undesirable, because this is the processing time which will be
wasted first, and is least likely to be recovered by further iteration of the GA
or when more tasks are added. For this reason we propose and use a modified
cost function:

£ =w x {1 + 3 [ti;ﬂe(())]} (3)

nodes

Where tijdle(t) is the amount of idle time on node j starting at time ¢, with time
beginning at zero. Within this regime solutions with idle time at the beginning
of the schedule on any of the processors are penalised with a higher cost
function, in proportion to the overall makespan. Equation 3 will be referred
to as the Extended MS (XMS) cost function.

Shown in table 1 are the task execution rates for the standard and extended
cost functions used with the GA, compared with the results from a simpler
first-come-first-served (FIFO) scheduler. GA-XMS gives a 20 % improvement
in the task execution rate over GA-MS (using the normal MS quality func-



<7 > 16 32 64
FIFO 242 110 58
GA-MS | 821 357 182
GA-XMS | 963 428 222

Table 1

Rates of execution (hr™') for simulated tasks of average size 7;. The row marked
“FIFO” shows results for a ‘first-come-first-served’ schedule. The rows prefixed
“GA” show results for GA optimised schedules with different quality functions,
as described in the text.

tion, i.e. makespan alone). However, separate simulations have shown that the
makespan is generally 10 % worse for GA-XMS at convergence. This discrep-
ancy demonstrates the penalty incurred for lack of knowledge of the entire
task queue before scheduling begins.

In either case, the heuristic algorithms give an increase in the execution rate
of 3-4 times over the standard queueing method — this is a direct result of
knowledge of the execution time function, ¢,(3), provided by performance
prediction.

4 An Implementation: The MS Scheduling System

The ideas presented in the previous sections have been developed into a
working system for scheduling sequential and parallel tasks over a hetero-
geneous distributed computing network. The goal of this project, called the
MS scheduling system, is to investigate and demonstrate the role of perfor-
mance prediction in the optimisation of large distributed systems. We hope
that this work is complementary to the many other distributed computing
projects in operation at the moment [14,15]. Our prototype system addresses
the issues of intractability, heterogeneous systems, dynamic and evolving com-
puting resources, and performance prediction. We do not attempt to duplicate
or re-invent previous or ongoing work, hence our prototype system does not
address issues such as security, network operating systems, resource discov-
ery/identification etc. The state-of-the-art in these and other areas are covered
in [15].

An overview of the design and implementation of the MS system is given
below.
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4.1 System organisation

The MS scheduling system has at its heart a GA scheduling program to provide
good-quality solutions to the scheduling problem in real time, as described
above. However, a number of other programs (daemons) and design features
are necessary in order to produce a working system.

The main goal of the implementation was to make the ‘state’ of the system
both visible and transcendent. To this end, MS makes extensive use of the
filesystem (which should facilitate its extension to larger distributed comput-
ing environments such as GLOBUS), and a collection of various directories
and database files represent its complete state at any particular instant in
time.

The most important type of file is a job-file. After a job' has been submitted,
it undergoes a series of state changes, with each state representing a particular
stage in its lifetime. In reality, this corresponds to a job-file (a database which
uniquely represents the job, and contains various job parameters and other
information) being moved through a directory hierarchy. At most changes of
state, additional information is added to the job-file. This hierarchy is shown
schematically on the LHS of Fig. 4.

Other important files are the hosts and host-stats databases, which provide MS
with real-time information on the state of the available computing resources.
These databases will be described further in section 5.1.5. The various job
states (directories) will now be described individually.

e Submitted. This is the entry point to the scheduling system, where the
user presents jobs to be executed. At this point the job-file contains the
basic information required to run the job, including the location of the
executable(s), the input data, and various information pertaining to the
performance data or model.

e Queued. When the job-file is moved into this directory it is given a unique
job identification number (JID). It then awaits the attention of the schedule
optimiser.

e Scheduling. Once the schedule optimiser becomes aware of a job it is moved
into this directory for the duration of the optimisation procedure.

e Runnable. At the time that the schedule optimiser decides to run a job it
moves the job-file into this directory where another daemon is responsible for
running it on the system. The schedule optimiser specifies the computing

LA task is called a “job” within the context of the scheduling system (by analogy
with batch queue systems), and we will use the two terms interchangeably here.
Likewise, processor nodes are referred to as “hosts”, as they generally correspond
to individual workstations in distributed systems.

11



user -7 RN - add/remove hosts

4 N
J performance model N
// \\\
! \ \
/ | \
1 | \
!
I/ /‘
!
!
// -7 -7 N N
,’ \ e g N
i ! 7 \
! AN . . query host
/ J Ihde;tlfy available + load avg,
0sts ;
; I,’ heeEEEEE host stats Vidle etc...
! Vo7 !
| report results | 4 /
| by email RN AN /
I s T T T T A N 4
! A +host-spec ~. ‘
/7 . -~ ¥
) ) l +predicted-tx \g!eq“@ perf.
! S ————— . » . estimate for ms stats
A ! NI . —
\ /11 runnable | \Jobhost
' o | ! *. ~ configuration
yy ,’ \\ i Tl N N N AN
1 \ . N \\
ll \‘ \\ l +start-time \\ N
\ \
\‘ y\ N N ,ﬁ 7777777777777 \
\ N . 1
‘\ | 1 running ;
\ N /
\ L
\ \ |
\ N l +finish-time } | evaluate performance model
| N '
\ N 1 \\
\ v finished ! eval
\\ R J» ,,,,,,,, 4
\
\
\
\
\\ "' 77777777777777777 “
\ 1 1 1
. ; exited !
. o B ]
N /
] ! job states state changes

S deemons 0 0------ - information flow
Q data stores

Fig. 4. Flowchart diagram of the MS scheduling system. A full explanation is given
in the text. Note that not all MS daemons are shown in this diagram.

resources on which the job is to be run, and adds information about the
predicted execution time to the job-file.

e Running. Once the job has begun to be executed on the system its job-file
is moved to this directory, where the start-time is added (the start-time and
predicted execution times of the currently running jobs are required by the
schedule optimiser, to provide the ‘base’ for the packing problem).

12



e Finished. Once the job process has completed it is moved to this directory,
where it waits for the schedule optimiser to move it to the next directory.
In this way, the optimiser program is able to keep track of when jobs finish
relative to their predicted finish time.

e Exited. When the job-file reaches this directory it signifies that the job is
completed as far as the system is concerned. The JID number is recycled,
and the user is sent notification that the job has been completed.

The maintenance of these directories and databases is the responsibility of
various daemons, as described in the section 5.1.

5 The MS toolset

The various programs and libraries which make up the MS system will now
be described.

5.1 Daemons

A number of background processes, or daemons, are used to implement the
state machine described above. All interprocess communication is performed
via the file-system, with a single daemon being designated the owner of each
particular queue directory. Ownership gives the right to edit the job files in a
directory. Daemons without ownership of a directory are only allowed to read
or add jobs in the queue.

5.1.1 ms-init

The ms-init daemon monitors the submission queue. As job files are added to
the directory by a user, the init daemon allocates an unused job id, and moves
the job into the queueing directory, ready for the scheduler.

5.1.2 ms-sched

The scheduler daemon encompasses the ideas of sections 1-3 of this paper. It
uses the GA heuristic to search for optimal solutions to the schedule problem
at hand, and interrogates the GA when there are free resources available, in
order to submit jobs for execution.

The daemon operates by periodically scanning the “queued” queue for new
entries; when these are found the job is passed to the GA for addition to its

13



optimisation pool, and the job is moved to the “schedule” queue. The scheduler
also scans the “running” queue, in order to find the base for the optimisation
(packing) problem, as described earlier. It also monitors the “finished” queue,
in order to ascertain if the predicted execution times were correct, and modify
its schedule base if this is not the case. When the scheduler finds a job in the
“finished” queue it is moved to the “exited” queue, in order to let the system
know that the scheduler is aware of the job’s completion, and that it is no
longer required.

When the scheduler submits a job to the “runnable” directory it adds the
specification for the hosts that the job is to be run on. It also adds the predicted
execution time for the job, which it requires once the job has started running,
as described above.

5.1.3 ms-run

After the scheduler, the ms-run daemon is perhaps the most complex. It is
responsible for executing the program associated with a job on a specified list
of hosts. Currently, only MPI conforming programs are supported, but it is
envisaged that this will be extended as the system matures (for example to
support PVM-based applications). Various fields of the job data structure are
used to control the execution of the program, these include options to control
the arguments to the process, and how the input and output streams of the
process are treated.

Currently, the executable programs must be pre-compiled and available in all
local filesystems. Heterogeneity is handled by allowing the filenames to be
constructed on a host-by-host basis, and including local parameter substitu-
tions, such as the name of the architecture. A framework is in place to allow
executables to be compiled on demand from “packets” of source code, but this
is yet to be completed.

The ms-run daemon scans the “runnable” queue, executing any jobs before
moving them to the “running” queue. After they complete their execution,
the exit status and time of completion are added to the job structure, before
being moved to the “finished” queue.

If for some reason a job is unable to be run, it is returned to the “queueing”
directory, ready to be rescheduled at a later date, unless this it has already
been queued too many times, in which case it is rejected.

14



5.1.4 ms-reaper

After the scheduler has noted job completions, and moved them to the “ex-
ited” queue, the ms-reaper daemon reports the results back to the user (in the
current implementation this is done via email). If no destination was speci-
fied for the program’s standard output stream, the output of the program is
included in the report. The report also includes information concerning the
execution time of the program (and how accurate the performance model was),
and which hosts the job was executed on. Finally the job file is deleted, and
its job id is recycled.

The reaper daemon also monitors the “reject” queue. This is where the other
daemons place jobs that are in some way incorrectly specified, or otherwise
unable to be executed.

5.1.5 ms-stats

The ms-stats daemon is responsible for gathering statistics concerning the
hosts on which tasks may be scheduled. The three statistics required are the
uptime, load average, and idle time of each host. The uptime is the time since
the system was booted, the idle time is the time since the user of that machine
last gave any input (or infinity if there is no current user), and the load average
is the number of processes in the system scheduler’s run queue, amortised over
a recent fixed period.

Every five minutes the ms-stats daemon queries each system in the database
of known hosts for these three parameters. It uses standard UNIX utilities to
gather the information: finger and rup. As the statistics are gathered, they
are added to the database of host statistics.

5.2 FEvaluation Library

As noted earlier, the search space is generally so large such that it is not
possible to pre-calculate all required performance estimates ahead of time.
Instead a demand-driven evaluation scheme is used, coupled with a cache of
past evaluations. The motivation for the cache is that there is a large degree
of repetition in the list of performance scenarios that the GA will require.

Although it would be straightforward to use other prediction methods, this
implementation uses models created by the PACE environment. For each ap-
plication that is submitted to the MS system there must be an associated
performance model. PACE allows the textual performance descriptions to be
compiled into a binary executable; invoking this binary with a list of parameter
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$ ./AppParticles -i
pace? list

Nproc 1

N 500

pace? set Nproc 2
pace? set N 20000
pace? eval
2.19181e+08

pace? hrduse SunUltral SunUltral
pace? eval
4.89571e+08

pace? set N 10000
pace? eval
1.22434e+08

Fig. 5. Example PACE session

definitions will evaluate the performance model for the specified configuration.

To avoid the startup overhead associated with evaluating a model, PACE pro-
vides an interactive interface, where multiple evaluations can be performed,
specifying the parameters and hardware configurations for each separate eval-
uation. Figure 5 shows an example interactive session. The MS evaluation
library creates a process running each performance model, then uses the ses-
sion interface to invoke evaluations and read the results, communicating across
a pair of sockets. This method allows the possibility of distributing evaluations
across multiple hosts, although this hasn’t been necessary as yet.

When requesting evaluations the scheduler translates from the vector of host
names specifying which hosts the job would run on, to a vector of architecture
names and cpu load averages. For example if a specified host is a Sun Ultra-1
workstation, the associated PACE hardware model is called SunUltral, and its
current load average is 0.3 (this data is collected by the statistics daemon, de-
scribed in Section 5.1.5), the string SunUltral:hardware/CPU_LOAD=0 would
be specified as the hardware model of that particular host. Repeating this
process for all hosts that the job would run on gives the vector of hardware
models that the evaluation requires.

Although evaluations complete relatively quickly (usually in the order of a
few tenths of a second), this is still a less than ideal. For example, if the
GA has a population size of 50, and there are 20 jobs being scheduled, then
1000 evaluations are required each generation. If each evaluation takes 0.01
seconds, then this is 10 seconds per generation. However, many of the eval-
uations requested by the genetic algorithm are likely to be exactly the same
as those required by previous generations (due to the nature of the crossover
and mutation operators).
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To capitalise on this redundancy a cache of all previous evaluations has been
added between the scheduler and the performance model. When a particular
evaluation result is requested, the cache is searched (the cache uses a hash-
table, so lookups are fast). If the result already exists, it is returned to the
scheduler. Otherwise the performance model is called, and the result is added
to the cache before being returned to the scheduler. The library also supports
a secondary level of caching, using a database stored in the file system. The re-
sults of all previous evaluations of a particular model are recorded, along with
the model parameters for each result. This has several benefits to the sched-
uler: firstly it is possible to stop and then restart scheduler processes without
losing the evaluation history, and secondly similar jobs may be scheduled more
than once, but the model is only evaluated the first time.

5.8 User Interface

Naturally, the end user of the scheduling system can not be expected to ma-
nipulate the job files themselves. To this end a graphical user interface has
been developed, allowing all of the information contained within the system
to be displayed and modified.

The first part of the interface is the browser. This allows all of the databases
in the system to be displayed. These databases include the job queue direc-
tories, and the control databases, such as those containing the host data and
statistics. A screenshot of the browser is shown in Figure 6.

The other part of the user interface is the scheduler front end. This displays
the Gantt chart of the current schedule, and allows the various daemons to be
controlled. Figure 7 shows a typical screenshot of the scheduler interface.

An alternative interface to the system is via the World Wide Web, through
a CGI script. This interface allows much the same actions as the desktop
interface, with the exception of the schedule Gantt chart (we are currently
developing a Java applet to allow this).
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