
http://wrap.warwick.ac.uk/   

 
 

 
 
 
 
 
 
 
Original citation: 
Perry, S. C., Harper, J. S., Kerbyson, D. J. and Nudd, G. R. (1999) Theory and operation 
of the Warwick multiprocessor scheduling (MS) system. University of Warwick. 
Department of Computer Science. (Department of Computer Science Research Report). 
(Unpublished) CS-RR-363  
 
Permanent WRAP url: 
http://wrap.warwick.ac.uk/61090            
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  Copyright © 
and all moral rights to the version of the paper presented here belong to the individual 
author(s) and/or other copyright owners.  To the extent reasonable and practicable the 
material made available in WRAP has been checked for eligibility before being made 
available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge.  Provided that the authors, title and 
full bibliographic details are credited, a hyperlink and/or URL is given for the original 
metadata page and the content is not changed in any way. 
 
A note on versions: 
The version presented in WRAP is the published version or, version of record, and may 
be cited as it appears here.For more information, please contact the WRAP Team at: 
publications@warwick.ac.uk 
 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/29189487?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/61090
mailto:publications@warwick.ac.uk


Theory and Operation of the WarwikMultiproessor Sheduling (MS) SystemS. C. Perry and J. S. Harper and D. J. Kerbyson and G. R. NuddHigh Performane Systems GroupDepartment of Computer SieneUniversity of WarwikCoventry, UKAbstratThis paper is onerned with the appliation of performane predition tehniques tothe optimisation of parallel systems, and, in partiular, the use of these tehniqueson-the-y for optimising performane at run-time. In ontrast to other performanetools, performane predition results are made available very rapidly, whih allowstheir use in real-time environments. When applied to program optimisation, this al-lows onsideration of run-time variables suh as input data and resoure availabilitythat are not, in general, available during the traditional (ahead-of-time) performanetuning stage.The main ontribution of this work is the appliation of preditive performanedata to the sheduling of a number of parallel tasks aross a large heterogeneousdistributed omputing system. This is ahieved through use of just-in-time perfor-mane predition oupled with iterative heuristi algorithms for optimisation of themeta-shedule.The paper desribes the main theoretial onsiderations for development of suh asheduling system, and then desribes a prototype implementation, the MS shedul-ing system, together with some results obtained from this system when operatedover a medium-sized (ampus-wide) distributed omputing network.1 IntrodutionThe priniple motivation for the use of any parallel system is the inreasedperformane that an be ahieved by distributing workload among a numberof separate nodes. With omputational systems, the prodution of a paral-lel appliation requires onsiderable extra work ompared to the equivalentsequential program, and it is learly very important to maximise the perfor-mane reward for this additional e�ort. Consequently, development of parallelDraft version 19 Otober 1999



appliations has traditionally onentrated on �nding the `best' parallel al-gorithm for an identi�ed target arhiteture, and subsequent tuning usingperformane tools suh as appliation measurement/traing. These tools aregenerally used before the appliation is run in earnest, and the `optimisation'is neessarily spei� to the partiular target arhiteture.However, the eÆieny with whih an appliation runs on a parallel mahinealso depends on other fators not foreseeable when the ode was originallyoptimised. For example, it is possible to optimise ahe re-use on a data-dependent basis[1,2℄, and the hoie of algorithm an be made dependenton the input appliation parameters at run-time[3,4℄. Furthermore, hetero-geneous data neessitates load balaning within the appliation, and, at thesystem level, heterogeneous omputing resoures must also be sheduled anddynamially load balaned. These issues beome even more hallenging whenone onsiders the trend towards large distributed omputing systems, oftenbuilt from a range of ommodity omponents, whih provide a heterogeneousand onstantly hanging set of omputing resoures.Optimisation tehniques used when a program is about to be exeuted (here-after alled dynami performane optimisation methods) an be onvenientlydivided into two ategories:� Single-program issues are onerned with the optimisation of a single appli-ation running on a parallel system. For example, the size and organisationof loal memory and the eÆieny of the network and message passinginterfae are `hardware fators' inuening performane at this level. Themapping of data and subtasks ontained within the parallel appliation tothe underlying network arhiteture is the main `software fator' inuen-ing performane; this is itself dependent upon the number of proessingnodes whih have been alloated, and their relative network topology. Thehoie of algorithms and data-partitioning strategies is onsequently veryrih at this stage, and dynami performane optimisation is onerned withseletion of these parameters on a system- and data-dependent basis.� Multiprogramming issues are onerned with optimising the performane ofthe parallel system as a whole. In partiular, the problems of quantitativepartitioning (i.e. the number of proessing nodes assigned to eah task) andqualitative partitioning (i.e. the partiular subset of nodes and, for a het-erogeneous system, their assoiated omputing power and ommuniationosts) are ompromises between minimising the exeution time of any par-tiular task and maximising the overall eÆieny of the parallel system. Thesearh spae for this multiple parameter optimisation problem is extremelylarge, and is not fully de�ned until run-time.In ontrast to the dynami optimisation tehniques ited above[1{4℄, this paperwill onentrate on the seond ategory, and, in partiular, the problem of2



dynamially optimising the shedule of a large number of parallel tasks, to berun on a heterogeneous omputing network.Theoretial onsiderations appliable to this problem will now be outlined.1.1 IntratabilityConsider for the moment the simpler ase of a homogeneous omputer system,onsisting of a number of idential proessing nodes for whih ommuniationosts are similar between all nodes, then the above problem an be statedformally as follows.Problem 1 A shedule for a set of parallel tasks fT0; T1; : : : ; Tn�1g whih areto be run on a network of idential proessing nodes fP0; P1; : : : ; Pm�1g isde�ned by the alloation to eah task Tj a set of nodes �j 2 fP0; : : : ; Pm�1gand a start time �j at whih the alloated nodes all begin to exeute the taskin unison. Beause the proessing nodes are idential, the exeution time foreah task is simply a funtion, tx()j, of the number of nodes alloated to it,and it is presumed that this funtion is known in advane. The system usesRun-To-Completion (RTC) sheduling, hene the tasks are not permitted tooverlap. The makespan, w, for a partiular shedule is de�ned as:w = max0�j�n�1 f�j + tx(jj�jjj)jg ; (1)whih is the latest ompletion time of any task. The goal is to minimise thisfuntion with respet to the shedule.Problem 1 is alled the Multiproessor Sheduling (MS) problem.The intratability of MS has been studied[5℄, and it is found that althoughpseudo-polynomial time algorithms exist for the ases of m = 2 and m = 3,MS is NP-hard for the general ase m > 4. Approximate algorithms havebeen proposed[6,7℄; these have a worst ase bound of w � 2w?, where w? isthe makespan of the optimal shedule. Although these algorithms are a usefulfall-bak, for high performane systems a fator of two is unaeptable in mostases, and one would hope to ahieve muh higher levels of optimisation.In order to �nd (near) optimal solutions to this ombinatorial optimisationproblem, the approah taken in this work is to �nd good shedules throughuse of iterative heuristi methods. Two heuristi tehniques have been studied:Simulated Annealing (SA)[8,9℄ and a Geneti Algorithm (GA)[10,11℄. Thesemethods proeed through use of a `�tness funtion' whih assigns a qualityvalue to any partiular solution (in this ase orresponding to a shedule for3



the task set). The algorithms are onerned only with the maximisation ofthis value. Details of these methods' implementation are given in setion 2.1.2 Heterogeneous ombinatorial onsiderationsAs mentioned above, the funtion tx(), whih provides a program's exeutiontime for a given alloation of proessing nodes, � (hereafter referred to asa performane senario), is assumed to be known in advane. For an other-wise unloaded homogeneous parallel system, where the exeution times arenot data-dependent, pro�le data ould oneivably be used for this purpose(although for large one-shot appliations this would somewhat defeat the ob-jet of the optimisation). The nodes are idential, so, for example, with a 60node system there exists exatly 60 di�erent performane senarios per task(although if the optimum speedup ours at a lower number of nodes then thelater senarios will not be used).However, for the more realisti ase of a heterogeneous system, ombinatorialexplosion generally preludes prior knowledge of the exeution time. In theextreme ase, the number of performane senarios for m entirely di�erentproessing nodes is Pmk=1 k!, whih for m = 60 is of the order 1081. Clearly,for any non-trivial heterogeneous system it will not be possible to obtain thefuntion tx() in advane of the sheduling stage. To overome this diÆulty,we propose to use data from a performane predition system, alulated inreal time as the sheduling program requires it. This just-in-time approahe�etively provides tx(�) for the heuristi methods for heterogeneous systems.The implementation is desribed further in setion 5.2.1.3 Performane preditionThis work will onentrate entirely on performane predition as the methodof providing tx(�), either in advane for homogeneous situations or in realtime for heterogeneous systems. Performane predition is the tehnique ofestimating values for various aspets of how an appliation program will ex-eute on a omputer system, given ertain well-de�ned desriptions of bothprogram and system. The performane predition toolset used here, PACE,operates by haraterising the appliation in terms of its priniple operations(representing omputation osts) and its parallelisation strategy (whih di-tates the ommuniation pattern). These are then ombined with models ofthe system environment to produe a predition for the exeution time. Thekey to this strategy is that the separation of program and system modelsallows preditions for heterogeneous omputing environments.4



Preditions are made in a fration of a seond, and for appliations whoseinternal strutures have a low level of data-dependene is generally aurateto within 10 % of the measured time. However, it is important to note thatfor run-time optimisation purposes the auray of the predition is not anoverriding onern; any information from detailed trae data down to a basimeasure of program omplexity is always useful { it is better than no infor-mation at all. A omplete desription of the PACE system an be found in[12℄.2 Solution of MS using Heuristi MethodsA number of standard texts desribe the operation of the SA and GA teh-niques; the following setions detail only issues relating to solution of the MSproblem using these methods.2.1 Coding sheme and �tness funtionBoth tehniques require a oding sheme whih an represent all legitimate so-lutions to the optimisation problem. For both algorithms, any possible solutionis uniquely represented by a partiular string, Si, and strings are manipulatedin various ways until the algorithm onverges upon an optimal solution. Inorder for this manipulation to proeed in the orret diretion, a method ofpresribing a quality value (or �tness) to eah solution string is also required.The algorithm for providing this value is alled the �tness funtion fv(Si).The �tness values of solutions to the MS problem are readily obtained { thesolutions whih represent the shedule with the least makespan are the mostdesirable, and vie-versa. The proessing node set for eah task, and the orderin whih the tasks are exeuted, are enoded in eah solution string, and theexeution times for eah task (given the set of nodes alloated) are obtainedfrom the predition system. It is therefore straightforward to alulate themakespan of the shedule represented by any solution string Si. This numbermay be onverted from a ost funtion (f) to a value funtion (fv) by multi-plying all the makespans by -1 and normalising on the interval 0 � fv(Si) � 1.The oding sheme we have developed for this problem onsists of 2 parts:� An ordering part, whih spei�es the order in whih the tasks are to beexeuted. This part of the string is q-ary oded where q = n.� A mapping part, whih spei�es the alloation of proessing nodes to eahtask. This part of the string is binary oded, onsisting of n�m bits spe-5
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Fig. 1. An example solution string (LHS) and Gantt hart representing its shedule(RHS). The two parts of the solution string are shown separately, with the orderingpart above and the mapping part below. Note that the exeution times of the varioustasks are a funtion of the proessing node set alloated and are provided by theperformane predition system. This data is assoiated with the task objet andis never used diretly by the optimisation algorithm, but only through the �tnessfuntion fv.ifying whether or not a partiular node is assigned to a partiular task.The ordering of the task-alloation setions in the mapping part of the stringis ommensurate with the task order. A short example of this type of solutionstring and its assoiated shedule are shown in Fig. 1. The ordering part ofthis string is always guaranteed to be legitimate by the various manipulationfuntions used in the heuristi algorithms. However the same is not true ofthe mapping part, and if the �tness funtion enounters a string with a taskthat has no proessing nodes alloated it will randomly assign one. Furthermanipulation may be required when using the system in a heterogeneous en-vironment, as desribed in setion 4.From Fig. 1 it is lear that the task of parallel shedule optimisation is a`paking problem' where the goal is to �t the programs together as tightlyas possible. Examples of a simple shedule before and after appliation of aheuristi algorithm are shown in Fig. 2.2.2 Geneti algorithm-based optimisationA GA-based optimisation program, using the oding sheme desribed above,was developed for testing with simulated (homogeneous) performane dataand the MS problem �tness funtion. The ode was based upon the ideasdeveloped in [11℄, using a population size of 60 and stohasti remainder se-letion. Speialised rossover and mutation funtions were developed for usewith the two-part oding sheme. The rossover funtion �rst splies the twoordering strings at a random loation, and then re-orders the o�spring toprodue legitimate solutions. The mapping parts are rossed over by �rst re-ordering them to be onsistent with the new task order, and then performing6



Fig. 2. Example shedules for 15 programs running on 10 proessors, both beforeoptimisation (left panel) and after 500 iterations of the optimising (GA) algorithm(right panel). The di�erent shaded retangles represent the programs indexed onthe left.a single-point (binary) rossover. The motivation for the re-ordering is to pre-serve the node mapping assoiated with a partiular task from one generationto the next. The mutation stage is also two-part, with a swithing operatorrandomly applied to the ordering parts, and a random bit-ip applied to themapping parts.2.3 Simulated annealing-based optimisationThe SA-based optimisation program used the same oding sheme and �tnessfuntion desribed above, and was a modi�ation of the travelling ode givenin Numerial Reipes[13, hap. 7℄. The program again uses a two-part re-arrangement funtion, with path transport or reversal (performed aordingto an annealing shedule derived from the metropolis algorithm) ourringseparately for the ordering and mapping parts, and the mapping part re-ordered in between.3 Performane of the heuristisIn order to onveniently test the performane of the algorithms with di�er-ent problem sizes, tasks were simulated from a simple homogeneous parallelomputation model, viz,tx(i) = Cpui + Com � i; i = 1; : : : ; m: (2)7



Fig. 3. Comparison of the (umulative) best shedules found by the di�erent heuris-ti approahes for a set of 20 simulated tasks running on a 16 node system. Thelines are the average of 100 runs of eah searh method; the error bars show thewidth of 1 standard deviation from the mean at onvergene.Hene from the derivative of Eq. 2 it was straightforward to reate task setswith spei�ed distributions of sizes and optimum proessing node numbers.Examples of the onvergene times for a simple sheduling problem are pre-sented in Fig. 3. The �gure shows the relative performane of the heuristialgorithms and a random searh algorithm (using peak speedup node allo-ations for eah task). The intratability of the MS problem preludes om-parison of the results with an optimal shedule, but we assume the resultsat onvergene to be near-optimal. As expeted, the heuristi methods o�eran appreiable improvement over the random searh (whih demonstrates thevastness of the searh spae even for a relatively simple problem). Althoughthe solution quality for the two heuristi algorithms is omparable at onver-gene, in general GA provides higher-quality solutions at shorter times thanSA. The reason for this is believed to be that the operation of SA is basedupon patient movement towards a minimum following an annealing shedule,and does not lend itself to early termination. Conversely, GA is based upon theevolution of a set (population) of solution strings, whih not only �nds minimamore quikly, but also adapts easily to hanges in the problem (e.g. the addi-tion or ompletion of a task, or a hange in the available hardware resoures),beause any urrent solution set will serve as good quality starting points ina slightly hanged situation. Hene hene for realisti, real-time shedulingenvironments, where the pool of tasks and omputing resoures is onstantlyhanging, the ratio of the onvergene times for GA vs. SA (shown in Fig. 3)is greatly exaggerated, with SA having to omplete its annealing shedule foreah new situation, whereas GA an quikly evolve from the previous solution,8



and hene start muh further along the onvergene urve.3.1 Real-time extension of the MS problemThe simulations desribed above were onerned with the solution of the MSproblem as de�ned in Prob. 1, with all the tasks and their assoiated perfor-mane data known in advane. Consider now a slightly more realisti ase,where new tasks may be added to the queue after the �rst tasks have started.Hene the MS problem beomes dynami; tasks are added and removed (whenthey are omplete) from the sheduling problem in real time. As mentionedearlier, the evolutionary basis of GA is partiularly well suited to this situa-tion, and this was the only heuristi used for the following simulations.The simulations work by �rst allowing a \warm-up" period for the GA witha set of tasks, and then removing the tasks whih have been sheduled forexeution (i.e. the ones at the beginning of the Gantt hart). This tends toleave a jagged `base' whih forms the basis of the next paking problem. Whena task ompletes, the algorithm is stopped and interrogated for its best solu-tion, and any tasks at the bottom of the shedule begin exeution. Tasks areontinuously added so as to keep the number of pre-sheduled tasks onstant.For the ase where the queue initially ontains all the tasks to be exeuted,minimisation of the makespan provides the most eÆient shedule. However,for the real time ase now onsidered, one should also take into aount thenature of the idle time in the shedule. Idle time at the bottom of the sheduleis partiularly undesirable, beause this is the proessing time whih will bewasted �rst, and is least likely to be reovered by further iteration of the GAor when more tasks are added. For this reason we propose and use a modi�edost funtion: f = w � (1 + Xnodes Æ htidlej (0)i) (3)Where tidlej (t) is the amount of idle time on node j starting at time t, with timebeginning at zero. Within this regime solutions with idle time at the beginningof the shedule on any of the proessors are penalised with a higher ostfuntion, in proportion to the overall makespan. Equation 3 will be referredto as the Extended MS (XMS) ost funtion.Shown in table 1 are the task exeution rates for the standard and extendedost funtions used with the GA, ompared with the results from a simpler�rst-ome-�rst-served (FIFO) sheduler. GA-XMS gives a 20 % improvementin the task exeution rate over GA-MS (using the normal MS quality fun-9



< �j > 16 32 64FIFO 242 110 58GA-MS 821 357 182GA-XMS 963 428 222Table 1Rates of exeution (hr�1) for simulated tasks of average size �j. The row marked\FIFO" shows results for a `�rst-ome-�rst-served' shedule. The rows pre�xed\GA" show results for GA optimised shedules with di�erent quality funtions,as desribed in the text.tion, i.e. makespan alone). However, separate simulations have shown that themakespan is generally 10 % worse for GA-XMS at onvergene. This disrep-any demonstrates the penalty inurred for lak of knowledge of the entiretask queue before sheduling begins.In either ase, the heuristi algorithms give an inrease in the exeution rateof 3-4 times over the standard queueing method { this is a diret result ofknowledge of the exeution time funtion, tx(�), provided by performanepredition.
4 An Implementation: The MS Sheduling SystemThe ideas presented in the previous setions have been developed into aworking system for sheduling sequential and parallel tasks over a hetero-geneous distributed omputing network. The goal of this projet, alled theMS sheduling system, is to investigate and demonstrate the role of perfor-mane predition in the optimisation of large distributed systems. We hopethat this work is omplementary to the many other distributed omputingprojets in operation at the moment [14,15℄. Our prototype system addressesthe issues of intratability, heterogeneous systems, dynami and evolving om-puting resoures, and performane predition. We do not attempt to dupliateor re-invent previous or ongoing work, hene our prototype system does notaddress issues suh as seurity, network operating systems, resoure disov-ery/identi�ation et. The state-of-the-art in these and other areas are overedin [15℄.An overview of the design and implementation of the MS system is givenbelow. 10



4.1 System organisationThe MS sheduling system has at its heart a GA sheduling program to providegood-quality solutions to the sheduling problem in real time, as desribedabove. However, a number of other programs (daemons) and design featuresare neessary in order to produe a working system.The main goal of the implementation was to make the `state' of the systemboth visible and transendent. To this end, MS makes extensive use of the�lesystem (whih should failitate its extension to larger distributed omput-ing environments suh as GLOBUS), and a olletion of various diretoriesand database �les represent its omplete state at any partiular instant intime.The most important type of �le is a job-�le. After a job 1 has been submitted,it undergoes a series of state hanges, with eah state representing a partiularstage in its lifetime. In reality, this orresponds to a job-�le (a database whihuniquely represents the job, and ontains various job parameters and otherinformation) being moved through a diretory hierarhy. At most hanges ofstate, additional information is added to the job-�le. This hierarhy is shownshematially on the LHS of Fig. 4.Other important �les are the hosts and host-stats databases, whih provide MSwith real-time information on the state of the available omputing resoures.These databases will be desribed further in setion 5.1.5. The various jobstates (diretories) will now be desribed individually.� Submitted. This is the entry point to the sheduling system, where theuser presents jobs to be exeuted. At this point the job-�le ontains thebasi information required to run the job, inluding the loation of theexeutable(s), the input data, and various information pertaining to theperformane data or model.� Queued. When the job-�le is moved into this diretory it is given a uniquejob identi�ation number (JID). It then awaits the attention of the sheduleoptimiser.� Sheduling. One the shedule optimiser beomes aware of a job it is movedinto this diretory for the duration of the optimisation proedure.� Runnable. At the time that the shedule optimiser deides to run a job itmoves the job-�le into this diretory where another daemon is responsible forrunning it on the system. The shedule optimiser spei�es the omputing1 A task is alled a \job" within the ontext of the sheduling system (by analogywith bath queue systems), and we will use the two terms interhangeably here.Likewise, proessor nodes are referred to as \hosts", as they generally orrespondto individual workstations in distributed systems.11
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Fig. 4. Flowhart diagram of the MS sheduling system. A full explanation is givenin the text. Note that not all MS daemons are shown in this diagram.resoures on whih the job is to be run, and adds information about thepredited exeution time to the job-�le.� Running. One the job has begun to be exeuted on the system its job-�leis moved to this diretory, where the start-time is added (the start-time andpredited exeution times of the urrently running jobs are required by theshedule optimiser, to provide the `base' for the paking problem).12



� Finished. One the job proess has ompleted it is moved to this diretory,where it waits for the shedule optimiser to move it to the next diretory.In this way, the optimiser program is able to keep trak of when jobs �nishrelative to their predited �nish time.� Exited. When the job-�le reahes this diretory it signi�es that the job isompleted as far as the system is onerned. The JID number is reyled,and the user is sent noti�ation that the job has been ompleted.The maintenane of these diretories and databases is the responsibility ofvarious daemons, as desribed in the setion 5.1.5 The MS toolsetThe various programs and libraries whih make up the MS system will nowbe desribed.5.1 DaemonsA number of bakground proesses, or daemons, are used to implement thestate mahine desribed above. All interproess ommuniation is performedvia the �le-system, with a single daemon being designated the owner of eahpartiular queue diretory. Ownership gives the right to edit the job �les in adiretory. Daemons without ownership of a diretory are only allowed to reador add jobs in the queue.5.1.1 ms-initThe ms-init daemon monitors the submission queue. As job �les are added tothe diretory by a user, the init daemon alloates an unused job id, and movesthe job into the queueing diretory, ready for the sheduler.5.1.2 ms-shedThe sheduler daemon enompasses the ideas of setions 1-3 of this paper. Ituses the GA heuristi to searh for optimal solutions to the shedule problemat hand, and interrogates the GA when there are free resoures available, inorder to submit jobs for exeution.The daemon operates by periodially sanning the \queued" queue for newentries; when these are found the job is passed to the GA for addition to its13



optimisation pool, and the job is moved to the \shedule" queue. The sheduleralso sans the \running" queue, in order to �nd the base for the optimisation(paking) problem, as desribed earlier. It also monitors the \�nished" queue,in order to asertain if the predited exeution times were orret, and modifyits shedule base if this is not the ase. When the sheduler �nds a job in the\�nished" queue it is moved to the \exited" queue, in order to let the systemknow that the sheduler is aware of the job's ompletion, and that it is nolonger required.When the sheduler submits a job to the \runnable" diretory it adds thespei�ation for the hosts that the job is to be run on. It also adds the preditedexeution time for the job, whih it requires one the job has started running,as desribed above.
5.1.3 ms-runAfter the sheduler, the ms-run daemon is perhaps the most omplex. It isresponsible for exeuting the program assoiated with a job on a spei�ed listof hosts. Currently, only MPI onforming programs are supported, but it isenvisaged that this will be extended as the system matures (for example tosupport PVM-based appliations). Various �elds of the job data struture areused to ontrol the exeution of the program, these inlude options to ontrolthe arguments to the proess, and how the input and output streams of theproess are treated.Currently, the exeutable programs must be pre-ompiled and available in allloal �lesystems. Heterogeneity is handled by allowing the �lenames to beonstruted on a host-by-host basis, and inluding loal parameter substitu-tions, suh as the name of the arhiteture. A framework is in plae to allowexeutables to be ompiled on demand from \pakets" of soure ode, but thisis yet to be ompleted.The ms-run daemon sans the \runnable" queue, exeuting any jobs beforemoving them to the \running" queue. After they omplete their exeution,the exit status and time of ompletion are added to the job struture, beforebeing moved to the \�nished" queue.If for some reason a job is unable to be run, it is returned to the \queueing"diretory, ready to be resheduled at a later date, unless this it has alreadybeen queued too many times, in whih ase it is rejeted.14



5.1.4 ms-reaperAfter the sheduler has noted job ompletions, and moved them to the \ex-ited" queue, the ms-reaper daemon reports the results bak to the user (in theurrent implementation this is done via email). If no destination was spei-�ed for the program's standard output stream, the output of the program isinluded in the report. The report also inludes information onerning theexeution time of the program (and how aurate the performane model was),and whih hosts the job was exeuted on. Finally the job �le is deleted, andits job id is reyled.The reaper daemon also monitors the \rejet" queue. This is where the otherdaemons plae jobs that are in some way inorretly spei�ed, or otherwiseunable to be exeuted.5.1.5 ms-statsThe ms-stats daemon is responsible for gathering statistis onerning thehosts on whih tasks may be sheduled. The three statistis required are theuptime, load average, and idle time of eah host. The uptime is the time sinethe system was booted, the idle time is the time sine the user of that mahinelast gave any input (or in�nity if there is no urrent user), and the load averageis the number of proesses in the system sheduler's run queue, amortised overa reent �xed period.Every �ve minutes the ms-stats daemon queries eah system in the databaseof known hosts for these three parameters. It uses standard UNIX utilities togather the information: finger and rup. As the statistis are gathered, theyare added to the database of host statistis.5.2 Evaluation LibraryAs noted earlier, the searh spae is generally so large suh that it is notpossible to pre-alulate all required performane estimates ahead of time.Instead a demand-driven evaluation sheme is used, oupled with a ahe ofpast evaluations. The motivation for the ahe is that there is a large degreeof repetition in the list of performane senarios that the GA will require.Although it would be straightforward to use other predition methods, thisimplementation uses models reated by the PACE environment. For eah ap-pliation that is submitted to the MS system there must be an assoiatedperformane model. PACE allows the textual performane desriptions to beompiled into a binary exeutable; invoking this binary with a list of parameter15



$ ./AppPartiles -ipae? listNpro 1N 500pae? set Npro 2pae? set N 20000pae? eval2.19181e+08pae? hrduse SunUltra1 SunUltra1pae? eval4.89571e+08pae? set N 10000pae? eval1.22434e+08Fig. 5. Example PACE sessionde�nitions will evaluate the performane model for the spei�ed on�guration.To avoid the startup overhead assoiated with evaluating a model, PACE pro-vides an interative interfae, where multiple evaluations an be performed,speifying the parameters and hardware on�gurations for eah separate eval-uation. Figure 5 shows an example interative session. The MS evaluationlibrary reates a proess running eah performane model, then uses the ses-sion interfae to invoke evaluations and read the results, ommuniating arossa pair of sokets. This method allows the possibility of distributing evaluationsaross multiple hosts, although this hasn't been neessary as yet.When requesting evaluations the sheduler translates from the vetor of hostnames speifying whih hosts the job would run on, to a vetor of arhiteturenames and pu load averages. For example if a spei�ed host is a Sun Ultra-1workstation, the assoiated PACE hardware model is alled SunUltra1, and itsurrent load average is 0.3 (this data is olleted by the statistis daemon, de-sribed in Setion 5.1.5), the string SunUltra1:hardware/CPU LOAD=0 wouldbe spei�ed as the hardware model of that partiular host. Repeating thisproess for all hosts that the job would run on gives the vetor of hardwaremodels that the evaluation requires.Although evaluations omplete relatively quikly (usually in the order of afew tenths of a seond), this is still a less than ideal. For example, if theGA has a population size of 50, and there are 20 jobs being sheduled, then1000 evaluations are required eah generation. If eah evaluation takes 0.01seonds, then this is 10 seonds per generation. However, many of the eval-uations requested by the geneti algorithm are likely to be exatly the sameas those required by previous generations (due to the nature of the rossoverand mutation operators). 16



To apitalise on this redundany a ahe of all previous evaluations has beenadded between the sheduler and the performane model. When a partiularevaluation result is requested, the ahe is searhed (the ahe uses a hash-table, so lookups are fast). If the result already exists, it is returned to thesheduler. Otherwise the performane model is alled, and the result is addedto the ahe before being returned to the sheduler. The library also supportsa seondary level of ahing, using a database stored in the �le system. The re-sults of all previous evaluations of a partiular model are reorded, along withthe model parameters for eah result. This has several bene�ts to the shed-uler: �rstly it is possible to stop and then restart sheduler proesses withoutlosing the evaluation history, and seondly similar jobs may be sheduled morethan one, but the model is only evaluated the �rst time.5.3 User InterfaeNaturally, the end user of the sheduling system an not be expeted to ma-nipulate the job �les themselves. To this end a graphial user interfae hasbeen developed, allowing all of the information ontained within the systemto be displayed and modi�ed.The �rst part of the interfae is the browser. This allows all of the databasesin the system to be displayed. These databases inlude the job queue dire-tories, and the ontrol databases, suh as those ontaining the host data andstatistis. A sreenshot of the browser is shown in Figure 6.The other part of the user interfae is the sheduler front end. This displaysthe Gantt hart of the urrent shedule, and allows the various daemons to beontrolled. Figure 7 shows a typial sreenshot of the sheduler interfae.An alternative interfae to the system is via the World Wide Web, througha CGI sript. This interfae allows muh the same ations as the desktopinterfae, with the exeption of the shedule Gantt hart (we are urrentlydeveloping a Java applet to allow this).
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Fig. 6. MS browser

Fig. 7. MS shedule viewer18
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