
http://wrap.warwick.ac.uk/

Original citation:
Perry, S. C., Harper, J. S., Kerbyson, D. J. and Nudd, G. R. (1999) Theory and operation
of the Warwick multiprocessor scheduling (MS) system. University of Warwick.
Department of Computer Science. (Department of Computer Science Research Report).
(Unpublished) CS-RR-363

Permanent WRAP url:
http://wrap.warwick.ac.uk/61090

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/29189487?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/61090
mailto:publications@warwick.ac.uk

Theory and Operation of the Warwi
kMultipro
essor S
heduling (MS) SystemS. C. Perry and J. S. Harper and D. J. Kerbyson and G. R. NuddHigh Performan
e Systems GroupDepartment of Computer S
ien
eUniversity of Warwi
kCoventry, UKAbstra
tThis paper is
on
erned with the appli
ation of performan
e predi
tion te
hniques tothe optimisation of parallel systems, and, in parti
ular, the use of these te
hniqueson-the-
y for optimising performan
e at run-time. In
ontrast to other performan
etools, performan
e predi
tion results are made available very rapidly, whi
h allowstheir use in real-time environments. When applied to program optimisation, this al-lows
onsideration of run-time variables su
h as input data and resour
e availabilitythat are not, in general, available during the traditional (ahead-of-time) performan
etuning stage.The main
ontribution of this work is the appli
ation of predi
tive performan
edata to the s
heduling of a number of parallel tasks a
ross a large heterogeneousdistributed
omputing system. This is a
hieved through use of just-in-time perfor-man
e predi
tion
oupled with iterative heuristi
 algorithms for optimisation of themeta-s
hedule.The paper des
ribes the main theoreti
al
onsiderations for development of su
h as
heduling system, and then des
ribes a prototype implementation, the MS s
hedul-ing system, together with some results obtained from this system when operatedover a medium-sized (
ampus-wide) distributed
omputing network.1 Introdu
tionThe prin
iple motivation for the use of any parallel system is the in
reasedperforman
e that
an be a
hieved by distributing workload among a numberof separate nodes. With
omputational systems, the produ
tion of a paral-lel appli
ation requires
onsiderable extra work
ompared to the equivalentsequential program, and it is
learly very important to maximise the perfor-man
e reward for this additional e�ort. Consequently, development of parallelDraft version 19 O
tober 1999

appli
ations has traditionally
on
entrated on �nding the `best' parallel al-gorithm for an identi�ed target ar
hite
ture, and subsequent tuning usingperforman
e tools su
h as appli
ation measurement/tra
ing. These tools aregenerally used before the appli
ation is run in earnest, and the `optimisation'is ne
essarily spe
i�
 to the parti
ular target ar
hite
ture.However, the eÆ
ien
y with whi
h an appli
ation runs on a parallel ma
hinealso depends on other fa
tors not foreseeable when the
ode was originallyoptimised. For example, it is possible to optimise
a
he re-use on a data-dependent basis[1,2℄, and the
hoi
e of algorithm
an be made dependenton the input appli
ation parameters at run-time[3,4℄. Furthermore, hetero-geneous data ne
essitates load balan
ing within the appli
ation, and, at thesystem level, heterogeneous
omputing resour
es must also be s
heduled anddynami
ally load balan
ed. These issues be
ome even more
hallenging whenone
onsiders the trend towards large distributed
omputing systems, oftenbuilt from a range of
ommodity
omponents, whi
h provide a heterogeneousand
onstantly
hanging set of
omputing resour
es.Optimisation te
hniques used when a program is about to be exe
uted (here-after
alled dynami
 performan
e optimisation methods)
an be
onvenientlydivided into two
ategories:� Single-program issues are
on
erned with the optimisation of a single appli-
ation running on a parallel system. For example, the size and organisationof lo
al memory and the eÆ
ien
y of the network and message passinginterfa
e are `hardware fa
tors' in
uen
ing performan
e at this level. Themapping of data and subtasks
ontained within the parallel appli
ation tothe underlying network ar
hite
ture is the main `software fa
tor' in
uen
-ing performan
e; this is itself dependent upon the number of pro
essingnodes whi
h have been allo
ated, and their relative network topology. The
hoi
e of algorithms and data-partitioning strategies is
onsequently veryri
h at this stage, and dynami
 performan
e optimisation is
on
erned withsele
tion of these parameters on a system- and data-dependent basis.� Multiprogramming issues are
on
erned with optimising the performan
e ofthe parallel system as a whole. In parti
ular, the problems of quantitativepartitioning (i.e. the number of pro
essing nodes assigned to ea
h task) andqualitative partitioning (i.e. the parti
ular subset of nodes and, for a het-erogeneous system, their asso
iated
omputing power and
ommuni
ation
osts) are
ompromises between minimising the exe
ution time of any par-ti
ular task and maximising the overall eÆ
ien
y of the parallel system. Thesear
h spa
e for this multiple parameter optimisation problem is extremelylarge, and is not fully de�ned until run-time.In
ontrast to the dynami
 optimisation te
hniques
ited above[1{4℄, this paperwill
on
entrate on the se
ond
ategory, and, in parti
ular, the problem of2

dynami
ally optimising the s
hedule of a large number of parallel tasks, to berun on a heterogeneous
omputing network.Theoreti
al
onsiderations appli
able to this problem will now be outlined.1.1 Intra
tabilityConsider for the moment the simpler
ase of a homogeneous
omputer system,
onsisting of a number of identi
al pro
essing nodes for whi
h
ommuni
ation
osts are similar between all nodes, then the above problem
an be statedformally as follows.Problem 1 A s
hedule for a set of parallel tasks fT0; T1; : : : ; Tn�1g whi
h areto be run on a network of identi
al pro
essing nodes fP0; P1; : : : ; Pm�1g isde�ned by the allo
ation to ea
h task Tj a set of nodes �j 2 fP0; : : : ; Pm�1gand a start time �j at whi
h the allo
ated nodes all begin to exe
ute the taskin unison. Be
ause the pro
essing nodes are identi
al, the exe
ution time forea
h task is simply a fun
tion, tx()j, of the number of nodes allo
ated to it,and it is presumed that this fun
tion is known in advan
e. The system usesRun-To-Completion (RTC) s
heduling, hen
e the tasks are not permitted tooverlap. The makespan, w, for a parti
ular s
hedule is de�ned as:w = max0�j�n�1 f�j + tx(jj�jjj)jg ; (1)whi
h is the latest
ompletion time of any task. The goal is to minimise thisfun
tion with respe
t to the s
hedule.Problem 1 is
alled the Multipro
essor S
heduling (MS) problem.The intra
tability of MS has been studied[5℄, and it is found that althoughpseudo-polynomial time algorithms exist for the
ases of m = 2 and m = 3,MS is NP-hard for the general
ase m > 4. Approximate algorithms havebeen proposed[6,7℄; these have a worst
ase bound of w � 2w?, where w? isthe makespan of the optimal s
hedule. Although these algorithms are a usefulfall-ba
k, for high performan
e systems a fa
tor of two is una

eptable in most
ases, and one would hope to a
hieve mu
h higher levels of optimisation.In order to �nd (near) optimal solutions to this
ombinatorial optimisationproblem, the approa
h taken in this work is to �nd good s
hedules throughuse of iterative heuristi
 methods. Two heuristi
 te
hniques have been studied:Simulated Annealing (SA)[8,9℄ and a Geneti
 Algorithm (GA)[10,11℄. Thesemethods pro
eed through use of a `�tness fun
tion' whi
h assigns a qualityvalue to any parti
ular solution (in this
ase
orresponding to a s
hedule for3

the task set). The algorithms are
on
erned only with the maximisation ofthis value. Details of these methods' implementation are given in se
tion 2.1.2 Heterogeneous
ombinatorial
onsiderationsAs mentioned above, the fun
tion tx(), whi
h provides a program's exe
utiontime for a given allo
ation of pro
essing nodes, � (hereafter referred to asa performan
e s
enario), is assumed to be known in advan
e. For an other-wise unloaded homogeneous parallel system, where the exe
ution times arenot data-dependent, pro�le data
ould
on
eivably be used for this purpose(although for large one-shot appli
ations this would somewhat defeat the ob-je
t of the optimisation). The nodes are identi
al, so, for example, with a 60node system there exists exa
tly 60 di�erent performan
e s
enarios per task(although if the optimum speedup o

urs at a lower number of nodes then thelater s
enarios will not be used).However, for the more realisti

ase of a heterogeneous system,
ombinatorialexplosion generally pre
ludes prior knowledge of the exe
ution time. In theextreme
ase, the number of performan
e s
enarios for m entirely di�erentpro
essing nodes is Pmk=1 k!, whi
h for m = 60 is of the order 1081. Clearly,for any non-trivial heterogeneous system it will not be possible to obtain thefun
tion tx() in advan
e of the s
heduling stage. To over
ome this diÆ
ulty,we propose to use data from a performan
e predi
tion system,
al
ulated inreal time as the s
heduling program requires it. This just-in-time approa
he�e
tively provides tx(�) for the heuristi
 methods for heterogeneous systems.The implementation is des
ribed further in se
tion 5.2.1.3 Performan
e predi
tionThis work will
on
entrate entirely on performan
e predi
tion as the methodof providing tx(�), either in advan
e for homogeneous situations or in realtime for heterogeneous systems. Performan
e predi
tion is the te
hnique ofestimating values for various aspe
ts of how an appli
ation program will ex-e
ute on a
omputer system, given
ertain well-de�ned des
riptions of bothprogram and system. The performan
e predi
tion toolset used here, PACE,operates by
hara
terising the appli
ation in terms of its prin
iple operations(representing
omputation
osts) and its parallelisation strategy (whi
h di
-tates the
ommuni
ation pattern). These are then
ombined with models ofthe system environment to produ
e a predi
tion for the exe
ution time. Thekey to this strategy is that the separation of program and system modelsallows predi
tions for heterogeneous
omputing environments.4

Predi
tions are made in a fra
tion of a se
ond, and for appli
ations whoseinternal stru
tures have a low level of data-dependen
e is generally a

urateto within 10 % of the measured time. However, it is important to note thatfor run-time optimisation purposes the a

ura
y of the predi
tion is not anoverriding
on
ern; any information from detailed tra
e data down to a basi
measure of program
omplexity is always useful { it is better than no infor-mation at all. A
omplete des
ription of the PACE system
an be found in[12℄.2 Solution of MS using Heuristi
 MethodsA number of standard texts des
ribe the operation of the SA and GA te
h-niques; the following se
tions detail only issues relating to solution of the MSproblem using these methods.2.1 Coding s
heme and �tness fun
tionBoth te
hniques require a
oding s
heme whi
h
an represent all legitimate so-lutions to the optimisation problem. For both algorithms, any possible solutionis uniquely represented by a parti
ular string, Si, and strings are manipulatedin various ways until the algorithm
onverges upon an optimal solution. Inorder for this manipulation to pro
eed in the
orre
t dire
tion, a method ofpres
ribing a quality value (or �tness) to ea
h solution string is also required.The algorithm for providing this value is
alled the �tness fun
tion fv(Si).The �tness values of solutions to the MS problem are readily obtained { thesolutions whi
h represent the s
hedule with the least makespan are the mostdesirable, and vi
e-versa. The pro
essing node set for ea
h task, and the orderin whi
h the tasks are exe
uted, are en
oded in ea
h solution string, and theexe
ution times for ea
h task (given the set of nodes allo
ated) are obtainedfrom the predi
tion system. It is therefore straightforward to
al
ulate themakespan of the s
hedule represented by any solution string Si. This numbermay be
onverted from a
ost fun
tion (f
) to a value fun
tion (fv) by multi-plying all the makespans by -1 and normalising on the interval 0 � fv(Si) � 1.The
oding s
heme we have developed for this problem
onsists of 2 parts:� An ordering part, whi
h spe
i�es the order in whi
h the tasks are to beexe
uted. This part of the string is q-ary
oded where q = n.� A mapping part, whi
h spe
i�es the allo
ation of pro
essing nodes to ea
htask. This part of the string is binary
oded,
onsisting of n�m bits spe
-5

task #2
map of map of

task #4
map of
task #3

map of
task #5

map of
task #0

map of
task #1

11010 01010 11110 01000 10111 01001

2 4 1 0 5 3 task ordering

ti
m

e

3 40 1 2

processor

task #5

task #4

task #2

task #0

task #1

task #3

Fig. 1. An example solution string (LHS) and Gantt
hart representing its s
hedule(RHS). The two parts of the solution string are shown separately, with the orderingpart above and the mapping part below. Note that the exe
ution times of the varioustasks are a fun
tion of the pro
essing node set allo
ated and are provided by theperforman
e predi
tion system. This data is asso
iated with the task obje
t andis never used dire
tly by the optimisation algorithm, but only through the �tnessfun
tion fv.ifying whether or not a parti
ular node is assigned to a parti
ular task.The ordering of the task-allo
ation se
tions in the mapping part of the stringis
ommensurate with the task order. A short example of this type of solutionstring and its asso
iated s
hedule are shown in Fig. 1. The ordering part ofthis string is always guaranteed to be legitimate by the various manipulationfun
tions used in the heuristi
 algorithms. However the same is not true ofthe mapping part, and if the �tness fun
tion en
ounters a string with a taskthat has no pro
essing nodes allo
ated it will randomly assign one. Furthermanipulation may be required when using the system in a heterogeneous en-vironment, as des
ribed in se
tion 4.From Fig. 1 it is
lear that the task of parallel s
hedule optimisation is a`pa
king problem' where the goal is to �t the programs together as tightlyas possible. Examples of a simple s
hedule before and after appli
ation of aheuristi
 algorithm are shown in Fig. 2.2.2 Geneti
 algorithm-based optimisationA GA-based optimisation program, using the
oding s
heme des
ribed above,was developed for testing with simulated (homogeneous) performan
e dataand the MS problem �tness fun
tion. The
ode was based upon the ideasdeveloped in [11℄, using a population size of 60 and sto
hasti
 remainder se-le
tion. Spe
ialised
rossover and mutation fun
tions were developed for usewith the two-part
oding s
heme. The
rossover fun
tion �rst spli
es the twoordering strings at a random lo
ation, and then re-orders the o�spring toprodu
e legitimate solutions. The mapping parts are
rossed over by �rst re-ordering them to be
onsistent with the new task order, and then performing6

Fig. 2. Example s
hedules for 15 programs running on 10 pro
essors, both beforeoptimisation (left panel) and after 500 iterations of the optimising (GA) algorithm(right panel). The di�erent shaded re
tangles represent the programs indexed onthe left.a single-point (binary)
rossover. The motivation for the re-ordering is to pre-serve the node mapping asso
iated with a parti
ular task from one generationto the next. The mutation stage is also two-part, with a swit
hing operatorrandomly applied to the ordering parts, and a random bit-
ip applied to themapping parts.2.3 Simulated annealing-based optimisationThe SA-based optimisation program used the same
oding s
heme and �tnessfun
tion des
ribed above, and was a modi�
ation of the travelling
ode givenin Numeri
al Re
ipes[13,
hap. 7℄. The program again uses a two-part re-arrangement fun
tion, with path transport or reversal (performed a

ordingto an annealing s
hedule derived from the metropolis algorithm) o

urringseparately for the ordering and mapping parts, and the mapping part re-ordered in between.3 Performan
e of the heuristi
sIn order to
onveniently test the performan
e of the algorithms with di�er-ent problem sizes, tasks were simulated from a simple homogeneous parallel
omputation model, viz,tx(i) = C
pui + C
om � i; i = 1; : : : ; m: (2)7

Fig. 3. Comparison of the (
umulative) best s
hedules found by the di�erent heuris-ti
 approa
hes for a set of 20 simulated tasks running on a 16 node system. Thelines are the average of 100 runs of ea
h sear
h method; the error bars show thewidth of 1 standard deviation from the mean at
onvergen
e.Hen
e from the derivative of Eq. 2 it was straightforward to
reate task setswith spe
i�ed distributions of sizes and optimum pro
essing node numbers.Examples of the
onvergen
e times for a simple s
heduling problem are pre-sented in Fig. 3. The �gure shows the relative performan
e of the heuristi
algorithms and a random sear
h algorithm (using peak speedup node allo-
ations for ea
h task). The intra
tability of the MS problem pre
ludes
om-parison of the results with an optimal s
hedule, but we assume the resultsat
onvergen
e to be near-optimal. As expe
ted, the heuristi
 methods o�eran appre
iable improvement over the random sear
h (whi
h demonstrates thevastness of the sear
h spa
e even for a relatively simple problem). Althoughthe solution quality for the two heuristi
 algorithms is
omparable at
onver-gen
e, in general GA provides higher-quality solutions at shorter times thanSA. The reason for this is believed to be that the operation of SA is basedupon patient movement towards a minimum following an annealing s
hedule,and does not lend itself to early termination. Conversely, GA is based upon theevolution of a set (population) of solution strings, whi
h not only �nds minimamore qui
kly, but also adapts easily to
hanges in the problem (e.g. the addi-tion or
ompletion of a task, or a
hange in the available hardware resour
es),be
ause any
urrent solution set will serve as good quality starting points ina slightly
hanged situation. Hen
e hen
e for realisti
, real-time s
hedulingenvironments, where the pool of tasks and
omputing resour
es is
onstantly
hanging, the ratio of the
onvergen
e times for GA vs. SA (shown in Fig. 3)is greatly exaggerated, with SA having to
omplete its annealing s
hedule forea
h new situation, whereas GA
an qui
kly evolve from the previous solution,8

and hen
e start mu
h further along the
onvergen
e
urve.3.1 Real-time extension of the MS problemThe simulations des
ribed above were
on
erned with the solution of the MSproblem as de�ned in Prob. 1, with all the tasks and their asso
iated perfor-man
e data known in advan
e. Consider now a slightly more realisti

ase,where new tasks may be added to the queue after the �rst tasks have started.Hen
e the MS problem be
omes dynami
; tasks are added and removed (whenthey are
omplete) from the s
heduling problem in real time. As mentionedearlier, the evolutionary basis of GA is parti
ularly well suited to this situa-tion, and this was the only heuristi
 used for the following simulations.The simulations work by �rst allowing a \warm-up" period for the GA witha set of tasks, and then removing the tasks whi
h have been s
heduled forexe
ution (i.e. the ones at the beginning of the Gantt
hart). This tends toleave a jagged `base' whi
h forms the basis of the next pa
king problem. Whena task
ompletes, the algorithm is stopped and interrogated for its best solu-tion, and any tasks at the bottom of the s
hedule begin exe
ution. Tasks are
ontinuously added so as to keep the number of pre-s
heduled tasks
onstant.For the
ase where the queue initially
ontains all the tasks to be exe
uted,minimisation of the makespan provides the most eÆ
ient s
hedule. However,for the real time
ase now
onsidered, one should also take into a

ount thenature of the idle time in the s
hedule. Idle time at the bottom of the s
heduleis parti
ularly undesirable, be
ause this is the pro
essing time whi
h will bewasted �rst, and is least likely to be re
overed by further iteration of the GAor when more tasks are added. For this reason we propose and use a modi�ed
ost fun
tion: f
 = w � (1 + Xnodes Æ htidlej (0)i) (3)Where tidlej (t) is the amount of idle time on node j starting at time t, with timebeginning at zero. Within this regime solutions with idle time at the beginningof the s
hedule on any of the pro
essors are penalised with a higher
ostfun
tion, in proportion to the overall makespan. Equation 3 will be referredto as the Extended MS (XMS)
ost fun
tion.Shown in table 1 are the task exe
ution rates for the standard and extended
ost fun
tions used with the GA,
ompared with the results from a simpler�rst-
ome-�rst-served (FIFO) s
heduler. GA-XMS gives a 20 % improvementin the task exe
ution rate over GA-MS (using the normal MS quality fun
-9

< �j > 16 32 64FIFO 242 110 58GA-MS 821 357 182GA-XMS 963 428 222Table 1Rates of exe
ution (hr�1) for simulated tasks of average size �j. The row marked\FIFO" shows results for a `�rst-
ome-�rst-served' s
hedule. The rows pre�xed\GA" show results for GA optimised s
hedules with di�erent quality fun
tions,as des
ribed in the text.tion, i.e. makespan alone). However, separate simulations have shown that themakespan is generally 10 % worse for GA-XMS at
onvergen
e. This dis
rep-an
y demonstrates the penalty in
urred for la
k of knowledge of the entiretask queue before s
heduling begins.In either
ase, the heuristi
 algorithms give an in
rease in the exe
ution rateof 3-4 times over the standard queueing method { this is a dire
t result ofknowledge of the exe
ution time fun
tion, tx(�), provided by performan
epredi
tion.
4 An Implementation: The MS S
heduling SystemThe ideas presented in the previous se
tions have been developed into aworking system for s
heduling sequential and parallel tasks over a hetero-geneous distributed
omputing network. The goal of this proje
t,
alled theMS s
heduling system, is to investigate and demonstrate the role of perfor-man
e predi
tion in the optimisation of large distributed systems. We hopethat this work is
omplementary to the many other distributed
omputingproje
ts in operation at the moment [14,15℄. Our prototype system addressesthe issues of intra
tability, heterogeneous systems, dynami
 and evolving
om-puting resour
es, and performan
e predi
tion. We do not attempt to dupli
ateor re-invent previous or ongoing work, hen
e our prototype system does notaddress issues su
h as se
urity, network operating systems, resour
e dis
ov-ery/identi�
ation et
. The state-of-the-art in these and other areas are
overedin [15℄.An overview of the design and implementation of the MS system is givenbelow. 10

4.1 System organisationThe MS s
heduling system has at its heart a GA s
heduling program to providegood-quality solutions to the s
heduling problem in real time, as des
ribedabove. However, a number of other programs (daemons) and design featuresare ne
essary in order to produ
e a working system.The main goal of the implementation was to make the `state' of the systemboth visible and trans
endent. To this end, MS makes extensive use of the�lesystem (whi
h should fa
ilitate its extension to larger distributed
omput-ing environments su
h as GLOBUS), and a
olle
tion of various dire
toriesand database �les represent its
omplete state at any parti
ular instant intime.The most important type of �le is a job-�le. After a job 1 has been submitted,it undergoes a series of state
hanges, with ea
h state representing a parti
ularstage in its lifetime. In reality, this
orresponds to a job-�le (a database whi
huniquely represents the job, and
ontains various job parameters and otherinformation) being moved through a dire
tory hierar
hy. At most
hanges ofstate, additional information is added to the job-�le. This hierar
hy is showns
hemati
ally on the LHS of Fig. 4.Other important �les are the hosts and host-stats databases, whi
h provide MSwith real-time information on the state of the available
omputing resour
es.These databases will be des
ribed further in se
tion 5.1.5. The various jobstates (dire
tories) will now be des
ribed individually.� Submitted. This is the entry point to the s
heduling system, where theuser presents jobs to be exe
uted. At this point the job-�le
ontains thebasi
 information required to run the job, in
luding the lo
ation of theexe
utable(s), the input data, and various information pertaining to theperforman
e data or model.� Queued. When the job-�le is moved into this dire
tory it is given a uniquejob identi�
ation number (JID). It then awaits the attention of the s
heduleoptimiser.� S
heduling. On
e the s
hedule optimiser be
omes aware of a job it is movedinto this dire
tory for the duration of the optimisation pro
edure.� Runnable. At the time that the s
hedule optimiser de
ides to run a job itmoves the job-�le into this dire
tory where another daemon is responsible forrunning it on the system. The s
hedule optimiser spe
i�es the
omputing1 A task is
alled a \job" within the
ontext of the s
heduling system (by analogywith bat
h queue systems), and we will use the two terms inter
hangeably here.Likewise, pro
essor nodes are referred to as \hosts", as they generally
orrespondto individual workstations in distributed systems.11

submitted

queued

scheduling

runnable

running

finished

exited

ms_stats

host stats

hosts

cache

eval

user

job states

daemons

data stores

state changes

information flow

evaluate performance model

query host
load avg,
idle, etc...

request perf.
estimate for

job/host
configuration

identify available
hosts

submit job with

add/remove hosts

performance model

+host-spec
+predicted-tx

+start-time

+finish-time

report results
by email

+job-id

Fig. 4. Flow
hart diagram of the MS s
heduling system. A full explanation is givenin the text. Note that not all MS daemons are shown in this diagram.resour
es on whi
h the job is to be run, and adds information about thepredi
ted exe
ution time to the job-�le.� Running. On
e the job has begun to be exe
uted on the system its job-�leis moved to this dire
tory, where the start-time is added (the start-time andpredi
ted exe
ution times of the
urrently running jobs are required by thes
hedule optimiser, to provide the `base' for the pa
king problem).12

� Finished. On
e the job pro
ess has
ompleted it is moved to this dire
tory,where it waits for the s
hedule optimiser to move it to the next dire
tory.In this way, the optimiser program is able to keep tra
k of when jobs �nishrelative to their predi
ted �nish time.� Exited. When the job-�le rea
hes this dire
tory it signi�es that the job is
ompleted as far as the system is
on
erned. The JID number is re
y
led,and the user is sent noti�
ation that the job has been
ompleted.The maintenan
e of these dire
tories and databases is the responsibility ofvarious daemons, as des
ribed in the se
tion 5.1.5 The MS toolsetThe various programs and libraries whi
h make up the MS system will nowbe des
ribed.5.1 DaemonsA number of ba
kground pro
esses, or daemons, are used to implement thestate ma
hine des
ribed above. All interpro
ess
ommuni
ation is performedvia the �le-system, with a single daemon being designated the owner of ea
hparti
ular queue dire
tory. Ownership gives the right to edit the job �les in adire
tory. Daemons without ownership of a dire
tory are only allowed to reador add jobs in the queue.5.1.1 ms-initThe ms-init daemon monitors the submission queue. As job �les are added tothe dire
tory by a user, the init daemon allo
ates an unused job id, and movesthe job into the queueing dire
tory, ready for the s
heduler.5.1.2 ms-s
hedThe s
heduler daemon en
ompasses the ideas of se
tions 1-3 of this paper. Ituses the GA heuristi
 to sear
h for optimal solutions to the s
hedule problemat hand, and interrogates the GA when there are free resour
es available, inorder to submit jobs for exe
ution.The daemon operates by periodi
ally s
anning the \queued" queue for newentries; when these are found the job is passed to the GA for addition to its13

optimisation pool, and the job is moved to the \s
hedule" queue. The s
heduleralso s
ans the \running" queue, in order to �nd the base for the optimisation(pa
king) problem, as des
ribed earlier. It also monitors the \�nished" queue,in order to as
ertain if the predi
ted exe
ution times were
orre
t, and modifyits s
hedule base if this is not the
ase. When the s
heduler �nds a job in the\�nished" queue it is moved to the \exited" queue, in order to let the systemknow that the s
heduler is aware of the job's
ompletion, and that it is nolonger required.When the s
heduler submits a job to the \runnable" dire
tory it adds thespe
i�
ation for the hosts that the job is to be run on. It also adds the predi
tedexe
ution time for the job, whi
h it requires on
e the job has started running,as des
ribed above.
5.1.3 ms-runAfter the s
heduler, the ms-run daemon is perhaps the most
omplex. It isresponsible for exe
uting the program asso
iated with a job on a spe
i�ed listof hosts. Currently, only MPI
onforming programs are supported, but it isenvisaged that this will be extended as the system matures (for example tosupport PVM-based appli
ations). Various �elds of the job data stru
ture areused to
ontrol the exe
ution of the program, these in
lude options to
ontrolthe arguments to the pro
ess, and how the input and output streams of thepro
ess are treated.Currently, the exe
utable programs must be pre-
ompiled and available in alllo
al �lesystems. Heterogeneity is handled by allowing the �lenames to be
onstru
ted on a host-by-host basis, and in
luding lo
al parameter substitu-tions, su
h as the name of the ar
hite
ture. A framework is in pla
e to allowexe
utables to be
ompiled on demand from \pa
kets" of sour
e
ode, but thisis yet to be
ompleted.The ms-run daemon s
ans the \runnable" queue, exe
uting any jobs beforemoving them to the \running" queue. After they
omplete their exe
ution,the exit status and time of
ompletion are added to the job stru
ture, beforebeing moved to the \�nished" queue.If for some reason a job is unable to be run, it is returned to the \queueing"dire
tory, ready to be res
heduled at a later date, unless this it has alreadybeen queued too many times, in whi
h
ase it is reje
ted.14

5.1.4 ms-reaperAfter the s
heduler has noted job
ompletions, and moved them to the \ex-ited" queue, the ms-reaper daemon reports the results ba
k to the user (in the
urrent implementation this is done via email). If no destination was spe
i-�ed for the program's standard output stream, the output of the program isin
luded in the report. The report also in
ludes information
on
erning theexe
ution time of the program (and how a

urate the performan
e model was),and whi
h hosts the job was exe
uted on. Finally the job �le is deleted, andits job id is re
y
led.The reaper daemon also monitors the \reje
t" queue. This is where the otherdaemons pla
e jobs that are in some way in
orre
tly spe
i�ed, or otherwiseunable to be exe
uted.5.1.5 ms-statsThe ms-stats daemon is responsible for gathering statisti
s
on
erning thehosts on whi
h tasks may be s
heduled. The three statisti
s required are theuptime, load average, and idle time of ea
h host. The uptime is the time sin
ethe system was booted, the idle time is the time sin
e the user of that ma
hinelast gave any input (or in�nity if there is no
urrent user), and the load averageis the number of pro
esses in the system s
heduler's run queue, amortised overa re
ent �xed period.Every �ve minutes the ms-stats daemon queries ea
h system in the databaseof known hosts for these three parameters. It uses standard UNIX utilities togather the information: finger and rup. As the statisti
s are gathered, theyare added to the database of host statisti
s.5.2 Evaluation LibraryAs noted earlier, the sear
h spa
e is generally so large su
h that it is notpossible to pre-
al
ulate all required performan
e estimates ahead of time.Instead a demand-driven evaluation s
heme is used,
oupled with a
a
he ofpast evaluations. The motivation for the
a
he is that there is a large degreeof repetition in the list of performan
e s
enarios that the GA will require.Although it would be straightforward to use other predi
tion methods, thisimplementation uses models
reated by the PACE environment. For ea
h ap-pli
ation that is submitted to the MS system there must be an asso
iatedperforman
e model. PACE allows the textual performan
e des
riptions to be
ompiled into a binary exe
utable; invoking this binary with a list of parameter15

$./AppParti
les -ipa
e? listNpro
 1N 500pa
e? set Npro
 2pa
e? set N 20000pa
e? eval2.19181e+08pa
e? hrduse SunUltra1 SunUltra1pa
e? eval4.89571e+08pa
e? set N 10000pa
e? eval1.22434e+08Fig. 5. Example PACE sessionde�nitions will evaluate the performan
e model for the spe
i�ed
on�guration.To avoid the startup overhead asso
iated with evaluating a model, PACE pro-vides an intera
tive interfa
e, where multiple evaluations
an be performed,spe
ifying the parameters and hardware
on�gurations for ea
h separate eval-uation. Figure 5 shows an example intera
tive session. The MS evaluationlibrary
reates a pro
ess running ea
h performan
e model, then uses the ses-sion interfa
e to invoke evaluations and read the results,
ommuni
ating a
rossa pair of so
kets. This method allows the possibility of distributing evaluationsa
ross multiple hosts, although this hasn't been ne
essary as yet.When requesting evaluations the s
heduler translates from the ve
tor of hostnames spe
ifying whi
h hosts the job would run on, to a ve
tor of ar
hite
turenames and
pu load averages. For example if a spe
i�ed host is a Sun Ultra-1workstation, the asso
iated PACE hardware model is
alled SunUltra1, and its
urrent load average is 0.3 (this data is
olle
ted by the statisti
s daemon, de-s
ribed in Se
tion 5.1.5), the string SunUltra1:hardware/CPU LOAD=0 wouldbe spe
i�ed as the hardware model of that parti
ular host. Repeating thispro
ess for all hosts that the job would run on gives the ve
tor of hardwaremodels that the evaluation requires.Although evaluations
omplete relatively qui
kly (usually in the order of afew tenths of a se
ond), this is still a less than ideal. For example, if theGA has a population size of 50, and there are 20 jobs being s
heduled, then1000 evaluations are required ea
h generation. If ea
h evaluation takes 0.01se
onds, then this is 10 se
onds per generation. However, many of the eval-uations requested by the geneti
 algorithm are likely to be exa
tly the sameas those required by previous generations (due to the nature of the
rossoverand mutation operators). 16

To
apitalise on this redundan
y a
a
he of all previous evaluations has beenadded between the s
heduler and the performan
e model. When a parti
ularevaluation result is requested, the
a
he is sear
hed (the
a
he uses a hash-table, so lookups are fast). If the result already exists, it is returned to thes
heduler. Otherwise the performan
e model is
alled, and the result is addedto the
a
he before being returned to the s
heduler. The library also supportsa se
ondary level of
a
hing, using a database stored in the �le system. The re-sults of all previous evaluations of a parti
ular model are re
orded, along withthe model parameters for ea
h result. This has several bene�ts to the s
hed-uler: �rstly it is possible to stop and then restart s
heduler pro
esses withoutlosing the evaluation history, and se
ondly similar jobs may be s
heduled morethan on
e, but the model is only evaluated the �rst time.5.3 User Interfa
eNaturally, the end user of the s
heduling system
an not be expe
ted to ma-nipulate the job �les themselves. To this end a graphi
al user interfa
e hasbeen developed, allowing all of the information
ontained within the systemto be displayed and modi�ed.The �rst part of the interfa
e is the browser. This allows all of the databasesin the system to be displayed. These databases in
lude the job queue dire
-tories, and the
ontrol databases, su
h as those
ontaining the host data andstatisti
s. A s
reenshot of the browser is shown in Figure 6.The other part of the user interfa
e is the s
heduler front end. This displaysthe Gantt
hart of the
urrent s
hedule, and allows the various daemons to be
ontrolled. Figure 7 shows a typi
al s
reenshot of the s
heduler interfa
e.An alternative interfa
e to the system is via the World Wide Web, througha CGI s
ript. This interfa
e allows mu
h the same a
tions as the desktopinterfa
e, with the ex
eption of the s
hedule Gantt
hart (we are
urrentlydeveloping a Java applet to allow this).
A
knowledgmentsThis work is funded in part by U.K. government E.P.S.R.C. grant GR/L13025and by DARPA
ontra
t N66001-97-C-8530 awarded under the Performan
eTe
hnology Initiative administered by NOSC.17

Fig. 6. MS browser

Fig. 7. MS s
hedule viewer18

Referen
es[1℄ John S. Harper, Darren J. Kerbyson, and Graham R. Nudd. EÆ
ientanalyti
al modelling of multi-level set-asso
iative
a
hes. In Pro
eedings of theInternational Conferen
e HPCN Europe '99, volume 1593 of LNCS, pages 473{482. Springer, 1999.[2℄ John S. Harper, Darren J. Kerbyson, and Graham R. Nudd. Analyti
almodeling of set-asso
iative
a
he behavior. To appear in IEEE Transa
tions onComputers.[3℄ D. J. Kerbyson, E. Papaefstathiou, and G. R. Nudd. Appli
ation exe
utionsteering using on-the-
y performan
e predition. In High-Performan
eComputing and Networking, volume 1401 of Le
ture Notes in Computer S
ien
e,pages 718{727, Amsterdam, April 1988. Springer.[4℄ S. C. Perry, D. J. Kerbyson, E. Papaefstathiou, G. R. Nudd, and R. H.Grimwood. Performan
e optimization of �nan
ial option
al
ulations. Journalof Parallel Computing, spe
ial issue on E
onomi
s, Finan
e and De
isionMaking, 26, 2000.[5℄ J. Du and J. Leung. Complexity of s
heduling parallel task systems. SIAMJournal on Dis
rete Mathemati
s, 2:473, November 1989.[6℄ K. Belkhale and P. Banerjee. Approximate s
heduling algorithms for thepartitionable independent task s
heduling problem. In Pro
eedings of the 1990International Conferen
e of Parallel Pro
essing, volume I, page 72, August 1990.[7℄ J. Turek, J. L. Wolf, and P. S. Yu. Approximate algorithms for s
hedulingparallelizable tasks. ACM Performan
e Evaluation Review, page 225, June1992.[8℄ S. Kirkpatri
k, D. C. Gelatt, and M. P. Ve

hi. Statisti
al me
hani
s algorithmfor monte
arlo optimization. Physi
s Today, pages 17{19, 1982.[9℄ S Kirkpatri
k, C D Gelatt, and M P Ve

hi. Optimisation by simulatedannealing. S
ien
e, 220:671{680, 1983.[10℄ J. H. Holland. Adaption in Natural and Arti�
ial Systems. University ofMi
higan Press, Ann Arbor, MI, 1975.[11℄ D. E. Goldberg. Geneti
 Algorithms in Sear
h, Optimization and Ma
hineLearning. Addison-Wesley Publishing Co., In
., Reading, MA., 1989.[12℄ G. R. Nudd, D. J. Kerbyson, E. Papaefstathiou, S. C. Perry, J. S. Harper, andD. V. Wil
ox. Pa
e - a toolset for the performan
e predi
tion of parallel anddistributed systems. A

epted for publi
ation in International Journal of HighPerforman
e and S
ienti�
 Appli
ations, 1999.[13℄ W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numeri
alRe
ipies in C: The art of S
ienti�
 Programming. Cambridge University Press,Cambridge, England, 1988. 19

[14℄ I. Foster and C. Kesselman. Globus: A meta
omputing infrastru
ture toolkit.International Journal of Super
omputer Appli
ations, 11(2):115{128, 1997.[15℄ Ian Foster and Carl Kesselman, editors. The GRID - Blueprint for a NewComputing Infrastru
ture. Morgan Kaufmann, San Fran
is
o, USA, 1999.

20

