Metadata, citation and similar papers at core.ac.uk

Provided by Warwick Research Archives Portal Repository

THE UNIVERSITY OF

WARWICK

Original citation:

Harper, J. S., Kerbyson, D. J. and Nudd, G. R. (1998) Analytical modeling of set-
associative cache behaviour. University of Warwick. Department of Computer Science.
(Department of Computer Science Research Report). (Unpublished) CS-RR-349

Permanent WRAP url:
http://wrap.warwick.ac.uk/61062

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:

The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

warwickpublicationswrap

————— L ——————————

highlight your research

http://wrap.warwick.ac.uk/

https://core.ac.uk/display/29189466?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/61062
mailto:publications@warwick.ac.uk

Analytical Modeling of Set-Associative
Cache Behavior

John S. Harper* Darren J. Kerbyson Graham R. Nudd

September 16, 1998

Abstract

Cache behavior is complex and inherently unstable, yet is a critical
factor affecting program performance. A method of evaluating cache per-
formance is required, both to give quantitative predictions of miss-ratio,
and information to guide optimization of cache use.

Traditional cache simulation gives accurate predictions of miss-ratio,
but little to direct optimization. Also, the simulation time is usually far
greater than the program execution time. Several analytical models have
been developed, but concentrate mainly on direct-mapped caches, often
for specific types of algorithm, or to give qualitative predictions.

In this work novel analytical models of cache phenomena are presented,
applicable to numerical codes consisting mostly of array operations in
looping constructs. Set-associative caches are considered, through an ex-
tensive hierarchy of cache reuse and interference effects, including numer-
ous forms of temporal and spatial locality. Models of each effect are given,
which, when combined, predict the overall miss-ratio. An advantage is
that the models also indicate sources of cache interference.

The accuracy of the models is validated through example program
fragments. The predicted miss-ratios are compared with simulations, and
shown typically to be within fifteen percent. The evaluation time of the
models is shown to be independent of the problem size, generally several
orders of magnitude faster than simulation.

1 Introduction

Cache performance is one of the most critical factors affecting the performance of
software, and with memory latency continuing to increase in respect to processor
clock speeds utilizing the cache to its full potential is more and more essential.
Yet cache behavior is extremely difficult to analyze, reflecting its unstable nature
in which small program modifications can lead to disproportionate changes in
cache miss ratio [2, 12]. A method of evaluating cache performance is required,
both to give quantitative predictions of miss ratio, and information to guide
optimization of cache use.

*john@dcs.warwick.ac.uk

Traditionally cache performance evaluation has mostly used simulation, em-
ulating the cache effect of every memory access through software. Although the
results will be accurate, the time needed to obtain them is prohibitive, typi-
cally many times greater than the total execution time of the program being
simulated [13]. Another possibility is to measure the number of cache misses in-
curred, using the performance monitoring features of modern microprocessors.
This can also give accurate results, and in reasonable time, but introduces the
restriction that only cache architectures for which actual hardware is available
can be evaluated.

To try and overcome these problems several analytical models of cache be-
havior have been developed. One such technique is to extract parameters from
an address trace and combine them with parameters defining the cache to derive
a model of cache behavior [1]. This method is able to accurately predict the
general trends in behavior, but lacks the fine detail that is needed to model the
instability noted above. Analytical models combined with heuristics have also
been used to guide optimizing compilers in their choice of source code trans-
formations [14, 4, 10]. The models developed however are usually unsuitable
for more general performance evaluation, since they often aim for qualitative,
rather than quantitative, predictions. Another area in which analytical models
have been employed has been in studying the cache performance of particular
types of algorithm, especially in the analysis of blocked algorithms [9, 3, 5].

Attempts have been made at creating general purpose models that are both
accurate and expressive, with some success [12, 6, 7], but in all cases limited
to describing direct-mapped caches. In this work we present novel analytical
techniques for predicting the cache performance of a large class of loop nest-
ings, for the general case of set-associative caches (i.e. with direct-mapped as
the case with associativity one). All forms of cache reuse and interference are
considered leading to accurate, yet rapidly evaluated, models. These benefits
and others are demonstrated through the examination of several example code
fragments. The work has a wide range of possible applications, from aiding
software development to on the fly performance prediction and management.
We also plan to integrate the model with an existing system for analyzing the
performance of parallel systems [11].

The paper is organized as follows: the next section outlines the problem
being addressed, and the classification of the cache phenomena being modeled.
Section 3 describes in detail how the effect of array references on the cache is
represented, and how this representation can be efficiently computed. In Sec-
tions 4, 5, and 6, the different types of cache reuse are considered, in terms of
the representation developed in Section 3. Finally, Section 7 presents experi-
mental data showing how the models compare with simulation, followed by a
discussion of these results and our conclusions in Sections 8 and 9.

DO ji1 =0, N7 -1
D0 j, =0, N>, - 1
DO j3 =0, N3 - 1

ENDDO
ENDDO
ENDDO

Figure 1: General form of considered loop constructs

2 Overview of methodology

2.1 Concepts

The models presented in this work consider the cache behavior of array refer-
ences accessed by regular looping constructs. The general form of a loop nesting
is shown in Figure 1; the loops are numbered from 1 to n, outer-to-innermost
respectively, and are assumed to be normalized such that they count upward
from zero in steps of one. The number of iterations performed by a loop at
a level k is labeled Ny, and the variable used to index arrays by this loop is
labeled jy.
Array references considered are of the form:

X(oﬂjy] + 61) Lery (ijym + Bm.))

where X is the name of an array, m is the number of dimensions of this array,
and «y, Pk, and vy are constants (with 1 <y < n).

Such array references can be rearranged into the form of a linear expression,
giving the address of the element accessed for a particular combination of values
of j1...jn, the general form being

B+A1j] +...+Anjn_)

where B and A; ... A, are constants. The base address of the array and the i
values combine to form B; the A values are derived from the loop multipliers
i and the dimensions of the array. Without loss of generality we assume that
array indices are in the Fortran style, and that all values are in terms of array
elements.

The concept of an iteration space is also important. The loop bounds
N7 ...N, represent the full n-dimensional iteration space of the array refer-
ence being examined. By limiting the range of certain loops the iteration space
can also be restricted. For example by only allowing j;1 to have the value 0, only
a single iteration of the outermost loop is specified. When modeling cache be-
havior this restriction of iterations is a natural way to consider some problems.
However, in this work we will only need to restrict the upper bound of loops,
for a loop k this can be handled by “binding” a temporary value to N.

Given two array references Ry and Ry, if their linear forms are identical

except By # B, then they are said to be in translation. This means that the
access patterns of both references are identical, but offset by |B1 — B2| elements
in the address space. References in translation with one another are said to be
in the same translation group.

2.2 Evaluation strategy

The function of the cache is to provide data reuse, that is, to enable memory
regions that have recently been accessed to be subsequently accessed with a
much smaller latency. Two basic forms of reuse exist: self dependence reuse
in which an array reference repeatedly accesses the same elements of an array,
and group dependence reuse in which elements are repeatedly accessed that
were most recently used by a different array reference.

When considering an array reference R, its reuse dependence R is defined
as the reference from which its reuse arises. When R = R it is a self dependence,
conversely, when R # Ritisa group dependence. Since it is possible for
more than two references to access the same data elements, when identifying
dependences R is defined as the reference with the smallest reuse distance from
R, related to the number of loop iterations occurring between R accessing an
element, and R reusing it.

Unlike the most well known system for classifying cache misses, the “three
C’s” model (compulsory, capacity and conflict misses [8]), the method presented
by this paper uses a two part model. Compulsory misses are defined as before,
but capacity and conflict misses are considered a single category—interference
misses—since the underlying cause is the same, reusable data being ejected
from the cache.

To predict the number of cache misses suffered by an array reference interfer-
ence is divided into several types, dependent on their source. Self interference
occurs when the reference obstructs its own reuse, internal cross interference
occurs due to references in the same translation group, and ezternal cross in-
terference is caused by references in different translation groups. Sections 5
and 6 describe how these effects are modeled for self and group dependences
respectively.

A distinction is also made between the temporal and spatial components of
a reference’s miss ratio. The spatial miss ratio is defined as the average number
of cache misses needed to load a single cache line of data; all three types of
interference contribute to this ratio, and are modeled in Section 4. The spatial
miss ratio is applied to the predicted number of temporal misses to give the
total number of cache misses for a reference. Repeating this procedure for all
references in the loop nesting gives the prediction for the entire code fragment.

3 Modeling cache footprints

A common requirement when modeling interference is to identify the effect on
the cache of accessing all references in a single translation group, for a specified

C/La

(a) Cache representation (b) Example of VP

Figure 2: Examples of cache layout and set overlap V.

iteration space. Once the effect on the cache is known, it can be used to predict
the effect on the reuse of the references being examined, and from this the
resulting number of cache misses can be predicted.

A cache of size C, with £ elements in a line, and associativity a can be
considered as a rectangular grid, C/La cache lines wide and a lines deep, as
shown in Figure 2(a). Each vertical column represents a single “set” of the cache,
each containing a lines. A mapping function determines which set a memory
element is stored in; the usual mapping function, which this paper examines,
is simply x mod (C/La), where x is the address of the element in question.
The line in the set that is actually used depends on the replacement strategy
employed. In this paper only the “least-recently-used” strategy is considered,
replacing the line in the set that was last accessed the earliest.

Given this view of the cache, the effect of a translation group on the cache
can also be visualized. For each of the C/La sets a certain number of the lines
contain data accessed by the translation group. This number can be thought of
as the “overlap” of each set, and is labeled . Figure 2(b) shows an example for
a small 4-way set-associative cache (C = 64L, a = 4). Data elements loaded into
the cache are darkly shaded, with the value of { for each set shown underneath.

To identify interference, cache footprints such as this are compared with the
footprints of the data being reused, either set-by-set or statistically as a whole.
The method of detecting interference is simple: it occurs wherever the combined
overlap of the footprints is greater than the level of associativity.

The model represents each cache footprint as a sequence of regions, each
region having a constant value of \, the overlap. As well as \, two other
parameters define each region, its first element of the region (i.e. a value between
zero and (C/a)—1), and the number of elements in the region. Considering the
example footprint in Figure 2(b), it is clear that it is defined by the following
sequence of regions (start, size,),

(0,£,1),(£,2£,2),(3L,L,1),(6L£,2L,2),(8L£,3L,5),(11L,3L, 3). (1)

In the rest of this section of the paper, we show how footprints of this form can
be calculated efficiently for individual translation groups.

|
|

cache sets

1 array footprint region I cache data

Figure 3: Example of mapping array footprint regions into the cache.

3.1 Finding the cache footprint of a single reference

An accurate method of mapping a regular data footprint into a direct-mapped
cache has previously been presented in detail [7, 12]. As such we only consider
the problem briefly, extending the method given in [7] (which is descended
from [12]) to set-associative caches.

Given an array reference we wish to find the cache footprint of the data
it accesses for a particular iteration space, the form of which is defined by
the values A7 ...N,. The structure of these array elements is defined by the
reference itself, the array dimensions, and the iteration space. For the majority
of array references encountered, the array footprint can be expressed using four
parameters: the address of the first element ¢t, the number of elements in each
contiguous region St, the distance between the start of two such regions ot, and
finally the number of regions Nt.

After identifying these four parameters, the array footprint they describe is
mapped into the cache to give the cache footprint of the reference in question.
The cache footprint is defined by parameters similar to those describing the
array footprint: the interval between regions o, the number of regions N, and
the position of the first’ region ¢. Two parameters define the structure of the
data elements in each region, the level of overlap {, as defined in Section 3, and
S, the number of elements in the region divided by the overlap. Considering
Figure 2, { and S can be thought of as the average “height” and “width” of
each region in the footprint.

To find the parameters defining the cache footprint we use a recursive
method of dividing the cache into regular areas. At each level of recursion k,
areas of size oy are mapped into a single area of size oy _1, illustrated in Fig-
ure 3 for part of a cache. A recurrence relation defines the sequence of oy values,
representing how the array footprint regions map into the cache,

oo =C/a, o1 =0, Ok = Ox_1] — Ok_> mod Ox_1, for k> 0. (2)

The sequence is truncated at a level s, where either all Nt regions map into the
cache without overlapping, or overlapping occurs between regions. To detect

Tthe “first” region is not the one nearest cache set zero, but she first region in the sequence
of N, this sequence may cross the cache boundary.

overlap from either end of an area of size o1 a value Gy is introduced, the
smallest distance between two regions in the area. If & < S' overlapping occurs
on level k, where,

6‘k:min(0‘k,ck,1 —Gk). (3)

At level s, the cache has been divided into 0o9/0s 1 areas of size 0s_1; in each
there are a certain number of footprint regions of size St, each a distance & from
the previous. There are 1 areas that contain ngs + 1 regions, and (0g/0s_1) — 1
areas containing ng,

t
ng = {%J , and r=|N'—ng(0o/0s_1)]. (4)
In the simplest case, when s = 1, i.e. the array footprint didn’t wrap around
the end of the cache (no overlapping), 0 = 05 and N = N*t. In the general case
when s > 1, the distance between each area 0 = 051, and the total number
of areas N = |00/0s—1]. The position of the first region can also be found,
¢ = ¢t mod (C/a).

The overlap of a single area is found by dividing the total number of elements
in it by the distance from the start of the first region to the end of the last. The
average level of overlap 1 is found by combining the overlap for both types of
area,

(nsS/fins))(o0/0s—1 — 1) + ((ns + 1)SY/filns +1))r (5)
N)

V=

where fi(x) = St + (x — 1) " &, the distance from the start of the first region to
the end of the last.?

To find S for a single area, the size of the “gaps” between regions is sub-
tracted from the distance from the start of the first region to the end of the last
region. As when finding 1\ the values for both types of area are combined,

_ filng)(oo/0s—1 —71) +filns + 1)r
N
filx) = fulx) = (x = 1) (&, —=SH)*

The function f;(x) gives the value of S for an area containing x regions, each &
from the previous.

3.2 Combining individual cache footprints

Using the techniques presented in the previous section, the cache footprint
of a reference for a defined iteration space can be identified. This gives the
information necessary to predict how that reference interacts with the footprints
of other references, thus allowing interference to be detected.

Generally, however, there are more than two references in a loop nesting, and
therefore interference on a reference can originate from more than one source.

2Note that x* = max(x,0).

As well as modeling the interference from each reference in the loop nesting, it
is also important that interference on a single element only be counted once.
Simply comparing the cache footprint of every reference in the loop with the
footprint of the reference being examined will not meet this requirement.

As noted in Section 2.1, it is possibly to classify the array references in a
loop nesting into translation groups, all members of a group have exactly the
same access pattern, the only difference being that the patterns are offset from
one another in the address space. This allows the references in a translation
group to be combined into a single cache footprint—it is this meta-footprint
that is used to identify interference.

The problem can be stated as follows: given q references in translation:
R1...Ry, it is necessary to find the cumulative cache footprint of these refer-
ences, assuming that the array footprint of the references is defined by the pa-
rameters S*, N* and o*, and the values ¢ ... d{,. The combined cache footprint
is defined as a sequence of regions defined by triples, (¢, S,1{*), the position of
the region, the size in elements, and the level of overlap, as shown in (1).

3.2.1 Finding the one-dimensional footprint

Examining the calculations in Section 3.1 shows that the only parameter of
the cache footprint depending on ¢t is ¢, the position of the first region, de-
fined as ¢ = ¢' mod (C/a). It follows therefore that all references Ry ...Rq
share the same cache footprint, but with individual values of ¢: (¢} mod
(C/a))... (¢ mod (C/a)).

This property is easy to visualize, form a cylinder from the rectangular
representation of the cache in Figure 2(a), such that the first and last sets are
adjacent to one another. The surface area of the cylinder represents the cache.
If we project a cache footprint onto the cylinder, such that it starts at the
first element of the cache (i.e. ¢ = 0), by rotating the footprint ¢ positions®
around the circumference of the cylinder we have the actual cache footprint.
This simplifies the problem of finding the combined cache footprint, instead of
computing q footprints and merging them, it is only necessary to compute one
footprint, then consider rotated copies.

Generating the position of every footprint region. From the definition
of ¢ given above, the start and end points of each region in the cache footprint of
each reference can be enumerated. The region starting positions for reference R;
are defined by the series,

(¢ + ko) mod (C/a) [k=0...N—1] (6)
= ¢! mod (C/a), ($f + 0) mod (C/a), ..., ($f + (N —1)o) mod (C/a).

and the position of the end of each region by,

[($f +S+ko) mod (C/a) [k=0...N—1].

30r rather ¢t mod (C/a) since the circumference of the cylinder is C/a.

One possible method of merging all q footprints would be to enumerate the
start and end positions of each reference, and then sort them into smallest-
first order. Fortunately, there is a much more efficient method. Each rotated
footprint can only cross the boundary between cache position C/a and position
zero once. This allows the start and end positions of each region to be generated
in numerical order, by generating the points after the cache boundary, followed
by the points before the cache boundary.

First the starting points of each region in the footprint of reference 1 are con-
sidered. The first region (when counting from zero) to start after position C/a,
is,

start_after, = [
o

C/a— (¢! mod (C/anw

The list of starting positions in (6) can now be split in two and recombined, so
that the list of positions in ascending order is,

[(pf + ko) mod (C/a) |k = start_after; ... (N —1)]
++ [(cl):f + ko) mod (C/a) | k =0...(start_after; — l)] ,
assuming that the ++ operator concatenates two lists.

A similar method can be used to generate the end points of each region in
the footprint of reference R;. The first end point after cache position C/a is,

C/a—((S+ ¢i) mod (C/a))w

o

end_after; = [

and the list of end points in numerical order is,

[(S+ ¢f + ko) mod (C/a) | k = end_after; ... (N —1)]
+ [(S%—d)ff—l—kO‘) mod (C/a) |k:0...(end_afteri—1)] .

Merging the q footprints. Given q lists of region start positions, and q lists
of end positions as defined in the previous section it is straightforward to con-
struct a new list of regions, such that no two regions overlap. The end product
of this process is a sequence of triples, each of the form (¢, S, [vi...vq]). The
two values ¢ and S define the position and size of the region; v is a bit-vector
such that vi = 1 if the region is a subset of reference i’s individual footprint.
It can be seen that {* is a consequence of v, since the level of overlapping in a
region is directly related to the references being accessed in that region.

The merging process is straightforward since the lists of region boundaries
are known to be in ascending numerical order. A working value of v is main-
tained, initially set to reflect the references whose footprints wrap around from
the end to the start of the cache. While there are elements left in any of the
2q lists, the list with the smallest first element is found. This element is deleted,
and a footprint region is created from the previously found point to the current
point, with the current value of v. Assuming that the list refers to reference Ry;
if it is the list of start points then vy is set to one, otherwise it is set to zero.

3.2.2 Finding the cumulative overlap of a region

After merging the reference’s footprints as in the previous section the structure
of the translation group’s cache footprint is almost complete. Instead of the
($,S,*) representation that is required, it is in the form (¢, S, [v1 ...vq]).The
problem then, is to calculate {* given vector v.

The average level of overlap of a reference’s cache footprint has already been
calculated as 1, in (5). Using the same logic as in Section 3.2.1 all references
in the translation group must have the same value of .

A natural method of finding 1\ * is to simply multiply 1\ by the number of bits
in v that are set, i.e. the number of references in the region. On considering how
caches work, it can be seen that this method is only guaranteed to work when
no two references access the same array. If two or more references do access the
same array, there is the possibility that there could be an intersection between
the two sets of array elements accessed. If such an intersection occurs, these
elements will only be stored in the cache once, not twice as predicted if we take
2\ as the overlap of the two references combined.

This feature means that the amount of sharing between any two references
must be examined. We define this by a ratio, ranging from zero, if they have no
elements in common, to one, when all elements are accessed by both references.
This ratio, sharing(Ry, Ry) for two references Ry and Ry, is calculated from the
array footprint of the translation group—the parameters St, ot, Nt, and ¢t
defined in Section 3.1.

Calculating sharing(Ry,Ry). The definition of sharing(Ry,Ry) consists of
two expressions: the degree of sharing between the two array footprints when
considered as two contiguous regions, and the degree of sharing between the
individual regions inside the footprints. The distinction between these two
concepts is shown in Figure 4 for the two references R, and Ry, first as single
regions, then as a sequence of regions.

Considering the footprints as two single regions (Figure 4(a)) it can be seen
that the distance between the two regions is |$pf — d)fJI, subtracting this value
from the total extent of the region N'c' gives the total number of shared ele-
ments. Hence the ratio of shared elements is (N*o* — b} —)" /(N*a").

The level of sharing between two regions of the footprint (Figure 4(b)) is
found in a similar manner. The distance between two possibly overlapping
regions is |p — d);| mod ot. Since overlapping could occur in either direction
the smallest possible distance between overlapping regions 6 is defined as,

5 = min (| — ¢} | mod 0%, 0" — (|d} — $;,| mod ¢')) .

If § > St then there is no sharing, otherwise St — & elements are shared between
the two regions. Then the ratio defining the level of sharing between the two
regions is (St —§)*/St.

Multiplying the two sharing ratios, that for the footprints as a whole and
that for two regions, gives the overall ratio of shared elements between the two

10

Ntst

(a) Footprints as single regions

o Y : 5 \:q;; — ¢yl mod 0":" o

(b) Footprints as multiple regions

Figure 4: Array footprint sharing

footprints, i.e.

tot | nt o pt])t t +
sharing(RX,Ry):<(N A o))((s —5)) -

Ntgt St

Finding 1{* of a region. The sharing(R«,R,) function defined in (7) allows
the combined level of overlap between two references to be found. For example
if Pr,ur, is the level of overlap occurring when R, and R, access the same
region of the cache, g, and P, are the overlaps of the individual references,
and Pr,nr, is the overlap shared between R, and Ry, then,

PYrUR, = YR, + VR, —VR,NR,,

- | (8)
=1 (2 — sharing(Ry,Ry)) .

The second line of this equation follows since only references in translation are
merged in this way, and the intersection is directly related to how many elements
the two references share (as an average across the entire cache).

To find {*, the average level of overlap across all references {R; |v; =1}, it
is necessary to extend the union operator shown above to include an arbitrary
number of references. Considering (8) it’s evident that there is a similarity
between finding the combined overlap and the number of elements in a union
of sets. That is, (8) is analogous to

IS1 U Szl = [S1]+[S2l — [S1 N S2]. (9)

The general form of this expression for the number of elements in a union is,

S1U---USal=) ISl) 1SNl

+D L ISiNS NS~ £[S1NS2N-- NSyl

11

where the) ; symbol stands for the summation of all i-element combinations
of S1...Sn. The expression |S7 U --- U Sy | is analogous to P, u...ur,, in exactly
the same way that (9) is analogous to to (8), and therefore

YR u-UR, =T — Zzll)kimzi

(10)
+ Zg'leiﬁRiﬂRk — - YriAR AR, -

It is still necessary to define the average overlap of an intersection between an
arbitrary number of references. A two-reference intersection was shown in (8),
this can be extended to an arbitrary number of references,

Vrinenr, =" [] sharing(Ri, Ry) (11)

where the symbol [], stands for the product of all two-element combinations
of R; and R;.

Now it is possible to find 1*, the average overlap of a cache footprint region
containing references defined by the vector v. Computing (10) for the references
included in the region, i.e. the set {R; |vi = 1}, gives *.

3.2.3 Notes on optimizing the calculation of {*

The method shown in the previous paragraphs is obviously highly combinatorial
in nature. When the bit vector v contains n ones, the number of multiplications

required is,
=/ [n
ot =1+ 3 (1)(3):
k=2

this grows rapidly, making computing * slow for relatively small values of n
(for example op(10) ~ 4.5 x 10, and op(15) ~ 3.4 x 10°). Since one of the main
reasons for using analytical methods is their increased speed this is clearly unde-
sirable. Fortunately two straightforward modifications push the combinatorial
barrier back some distance.

Firstly, the value of {* does not have to be completely evaluated at the
boundary of each footprint region. Considering the identity,

IS1U--USnUSwyal =IS1U---USnl +Sni1l =D [Si NS

+D L 18iNS NSwpal = £[S1 NN SuNSnpal,

shows that {* can be adaptively calculated from the previous region’s value
when a single reference enters or leaves the union. This approximately halves
the number of multiplications required.

Secondly, since one of the constraints of the model is that an array may
not overlap any other arrays, there can be no sharing of data elements between
references accessing different arrays. This means that only a subset of vector v
need be examined when computing *—those where vi = 1 and where refer-
ence R; accesses the same array as that accessed by the array reference whose

12

state changed at the region boundary. Depending upon the distribution of ar-
ray references to arrays, this modification can decrease the complexity of the
V* calculation by orders of magnitude.

4 Modeling spatial interference

As noted in Section 2 the temporal and spatial cache effects of an array reference
are modeled separately. Spatial reuse occurs when more than one element in a
cache line is accessed before the data is ejected from the cache. For a reference R
the innermost loop on which spatial reuse may occur is labeled 15, where

ls=max {i |[0< Ay < L}.

The spatial miss ratio of a reference, labeled Mg, is defined such that multi-
plying it by the predicted number of temporal misses suffered by a reference
predicts the actual number of cache misses occurring. This ratio encapsulates
all spatial effects on the reference, and is found by combining four more specific
miss ratios: the compulsory miss ratio Cg, the self interference miss ratio Sq,
the internal cross interference miss ratio I, and finally the external cross inter-
ference ratio Eg,

M; = min (1, max(Cs,Ss) + I + Eg) .

The value of Cg for a particular reference follows directly from the array
footprint of the reference defined over all loops 1...n. It is the ratio between
the number of cache lines in each footprint region and the number of referenced
elements within each region.

When studying the level of interference affecting a spatial reuse dependence
it is necessary to examine what happens between each iteration of loop 1.
Figure 5 illustrates this for self interference. The left hand side of the figure
shows a square matrix Y being accessed by the array reference Y(2j1,j2); on the
right is shown how this maps into the cache, both over time and for a complete
iteration of loop j1 (assuming a 4-way associative cache). The elements that
may interfere with Y(6,0) reusing the data loaded into the cache by Y (4,0) are
shaded. The three types of spatial interference are considered in the following
sections.

4.1 Calculating spatial self interference

As shown in Figure 5 the reference being modeled can obstruct its own spatial
reuse; this happens when the number of data elements accessed on a single iter-
ation of loop ls that map to a particular set in the cache is greater than the level
of associativity. To analyze this mapping process the recurrence shown in (2)
is used, but with slightly different array footprint parameters. The distance
between each footprint region ot is defined by the distance between elements
accessed on successive iterations of loop ls (see Figure 5), and the size of each

13

awp

W clements being reused

[l elements that may interfere

Figure 5: Example of spatial reuse from Y (2j1,j2)

footprint region is defined as the size of a cache line £ to ensure that interference
between lines is detected.

As in Section 3.1, the result of the mapping process is that the cache is
divided into 0y/0s_1 areas of size 05_1; each with a certain number of footprint
regions, each a distance G5 from the previous. There are r areas that contain
ns + 1 regions, and (0p/0s—1) — 1 areas containing ns (Section 3.1).

By examining each of the two types of area separately, calculating the value
of S¢ in each, and combining the two values, it is possible to predict the overall
level of self interference,

+fsns +1)

Nt

Ss =1- (fs (Tl—s) (LO-O/GS*]J 71‘)(“5) -

(T)(ns+1)>

where the function fg(x) gives the probability that an element in an area of size
0s—1, containing x elements, does not suffer from spatial interference.

Defining fs(x). It is immediately possible to identify two special cases,

1. if 65 = 0 then all elements in the area occupy the same cache set; if the
number of elements x is greater than the level of associativity interference
occurs, thus

fs (X) =

{0 fx<a when G, = 0.

1 ifx>a.

2. if there is only one element per set and no overflow between neighboring
areas, then reuse must be total,

fs(x) =1, when 65 > £ and x65 < 05_1.
In the general case the solution is not so straightforward, the main complication

being the possibility that the distance from the first to the last element in the
area (i.e. x0s) is greater than the size of the area itself, and therefore the

14

elements “wrap-around” the end of the area, possibly interfering with those at
the start.

To handle this a hybrid analytical-simulation technique is used: each of the
x elements in the area has £ different positions in a cache line where it might
occur, each position is analyzed for whether reuse can occur or not, leading to
the overall probability of reuse for that element. Repeating for the other x — 1
elements, and combining all the individual probabilities gives the value of fq(x).

For an element y from 0...x — 1, it is possible to list the positions in the
cache of the elements surrounding it,

points(y) = before(y) ++ after(y)
before(y) = [k6s |k =0...(y—1)]
after(y) = ks +d | k=(y+1)...(x=1)]
B {—stride if 0s >0
+stride if 05 <0

where the stride of a reference is the distance between elements accessed on
successive iterations of the spatial reuse loop Ls.

The essence of the problem is now as follows. From points(y), deduce the
number of points that occur in the cache line-sized region z...(z + £), given
that the points wrap around to zero at position o5 1. A generalized form of
the series defined above is

[KA+B |k=0...(C—1)],
with,

before(y) = A=06s, B=0, C=y,
after(y) = A=06s, B=(y+16s+9, C=(x—-y -1

For this general series the number of points within an interval z...(z + £),
including the wrap around effect, is given by,

|'(C—1)A+B

incl(z) =) [Z |]] (min (c, P; Bw +> — min (C, [#w +>>

where z; =z +1i0s_1.

Thus to find the total number of elements within a particular cache-line sized
interval the above expression is evaluated for both before(y) and after(y), so
that the total number of elements in a particular interval z...(z + £) is

incl(z, before(y)) + 1 + incl(z, after(y)).

If this value, the number of elements in a particular line, is greater than the
level of associativity a, then self interference occurs; by averaging over the £—1
possible positions for the start of a line containing the interval y, the probability

15

of reuse can be found. By repeating this process for the x — 1 other elements in
the area the overall probability, and hence Sg, can be calculated.

4.2 Internal spatial cross interference

As well as being caused by the reference itself, spatial interference may also arise
due to the other references in the same translation group. When the number
of data elements mapping to a particular cache set, on a single iteration of
loop 1s, is greater than the level of associativity a, interference will occur. This
phenomena is often referred to as “ping-pong” interference, and may affect
performance massively since it is possible for all spatial reuse by the reference
to be prevented.

When considering a reference R, ping-pong interference is detected by calcu-
lating the cache footprint of all references in the translation group, for a single
iteration of the spatial reuse loop (i.e. let A7 1 = 1). Considering only the
regions where 1* > aq, if any are less than £ elements from the position of
the first element accessed by R, i.e. ¢r mod (C/a), then ping pong interference
occurs.

Assuming that the closest footprint region before ¢pr mod (C/a) is dp posi-
tions away, and the closest region after R is §, positions away, then the miss
ratio due to internal interference is defined as follows,

Nt +
IS:min<],<]6a£]> +<]6fb> >

4.3 External spatial interference

After considering the interference from the reference’s own translation group,
interference from the other translation groups—external interference—must be
modeled. Each group is examined in turn, the overall miss ratio due to external
interference Eg being the sum of each group’s individual external interference
ratio.

For a reference R, with spatial reuse on loop 1, the probability Pg, that
accessing a random data element will find an element in a set containing data
spatially reused by R, is defined by,

NgrSg
Pr —
R C/Cl ’

where Ng and Sy are the number and size of regions in reference R’s cache
footprint on loop 1 respectively (see Section 3.1).

Restricting the iteration space to a single iteration of loop 1g (i.e. let A, =
1), the cache footprint of each translation group (of which R is not a member)
is examined. By counting the number of elements in these footprints that could
cause spatial interference on R, and multiplying by Pg, a prediction of the
number of misses is made.

16

If the average level of overlap for the translation group containing R is Vg,
and the footprint of each other translation group is represented by a sequence
of (¢,S,*) triples, then an individual footprint region can possibly interfere
with R only if g + ¥* > a. Also, if interference does occur, the number of
cache misses for that set can not be greater than the actual number of elements
in the set. This leads to the definition of the following function giving the “miss
overlap”,

P-miss (g, $*) = min (Pr, (Pr +* —a)’). (12)

Mapping this function, multiplied by the size of each region, over the cache
footprint of each translation group gives the total number of elements accessed
by the group that might cause a cache miss*. Multiplying this value by Pg, and
dividing by the total number of iterations made by loop 1, gives the external
miss ratio for a single translation group G,

P X, (-miss (r, *) x S)

e VPR RETEvS VAR

where the symbol) stands for the summation across all of the translation
group’s cache footprint regions (¢, S,1{*). By summing E¢(G) over all transla-
tion groups G, such that R ¢ G, the overall value of Eg is found.

5 The cache behavior of a self dependence

As noted in Section 2, a self dependence occurs when an array reference accesses
particular data elements more than once. This happens when one or more of
the loop variables j; ...j,, are not used by the reference. For example, the array
reference A(j3,j1) does not use j,, and therefore all iterations of loop 2 access
exactly the same set of elements, namely {A(0,j1)...A(N3 —1,j1)}. The inner-
most loop on which reuse occurs is defined as loop 1, where | = {maxk | Ax =0}

In theory, each time loop 1 is entered the first iteration would load the refer-
enced elements into the cache, and subsequent iterations reuse them. That the
first iteration of loop 1 must load the elements gives the number of compulsory
misses,

1-1 n
M; HNk H N, (13)
k=1 k=141
that is: the spatial miss ratio, multiplied by the number of times loop 1 is
entered, multiplied by the number of unique elements referenced.

But the cache capacity is limited—it may not be possible to hold all elements
referenced by loop 1 in the cache at once. This factor is not only dependent on
whether the size of the cache is greater than the number of elements, as with
spatial reuse the accessed elements may map into the cache in such a way as
to prevent reuse. Although using a cache with high associativity can prevent

4When the referenced array is significantly smaller than the number of sets in the cache,
only footprint regions that actually overlap with the array are considered.

17

interference in certain cases, as the number of elements accessed increases the
problem may return.

5.1 Self interference

Self interference on a reference is modeled by mapping the array footprint of the
elements accessed by a single iteration of loop 1 into the cache, removing those
elements that fall in sets with overlap greater than the level of associativity.
Subtracting the number of elements left from the original number of elements
gives the number of cache misses per iteration.

We use the same mapping process as shown in Section 3.1, with one impor-
tant modification, the function f;(x) is replaced by f,(x) (and the way in which
P is calculated is changed to reflect this). Whereas f;(x) gave the number of
sets that could interfere in an area containing x regions, f.(x) gives the number
that can be reused, i.e. those where \p < a. Given f,(x) the number of reusable
elements in the footprint follows as NS, and therefore the total number of
cache misses due to self interference is

M, (ﬁ@ W ((I Nk> Ns¢>

k=1 k=1+1

—the number of times loop | is entered multipled by the number of cache misses
each iteration (excluding when j; = 0, which is handled by the compulsory miss
calculation shown in (13)).

The definition of function f,.(x) uses a similar method to that shown in Sec-
tion 4.1 for calculating spatial self interference. The structure of the cache sec-
tion being examined was described in Section 3.1; an area of size 051 containing
x regions of size S, each at an interval & from the previous. The first region
is located at the beginning of the area, and the regions wrap around the end of
the area (i.e. the position in the area of region k is actually (k&) mod o5_1).

For an area with this structure, the function f,(x) must calculate the number
of positions in which the level of overlap is less than or equal to the level of
associativity, i.e. where no interference occurs. For a single position z in the
area, the level of overlap (i.e. the number of regions crossing this point) is
given by the number of regions beginning before this point minus the number
of regions ending before it. To include the wrapping effect this expression is
summed over all possible “wrap arounds” in which a region appears, i.e.,

e .
overlap(z) = Z min <x, L'TIJ +]> — ’7167-‘ (14)
i-0 s s

where z; =z +10s_1.

A possible definition f,(x) would be to test every position in the area, i.e.
z = 0...(0s—1 — 1), and count the number of times that overlap(z) < a.
Fortunately there is a more efficient method: since there are only x footprint
regions, the value of overlap(z) can only change a maximum of 2x times (at

18

the start and end of each region). Using a similar method to when finding
the one-dimensional footprint of a translation group (see Section 3.2.1), these
2x positions are enumerated in ascending order, and the atomic regions they
define are examined.

Finally, the definition of { in (5) includes positions in the area where reuse
cannot occur (since it is still relevant when calculating interference). However,
when looking at the reuse of a footprint it is necessary for 1\ to be the average
overlap of the positions in the footprint where reuse does occur. This can be
calculated while computing the value of f,(x).

5.2 Internal cross interference

After examining the level of self interference on a self dependent reference the
cache footprint of the data not subject to self interference is known; character-
ized by the parameters S, o, N and V. It is still uncertain whether or not these
regions of the cache can be reused since data accessed by the other array refer-
ences in the loop nesting may map to the same cache sets, possibly preventing
reuse.

Interference from other references in the same translation group is considered
first. The cache footprint of these references is identified (using the techniques
shown in Section 3) and then compared region by region with the footprint of
the data not subject to self interference. Interference can only occur wherever
the two footprints overlap, and only when the combined level of overlap is
greater than the level of associativity, that is when { + {* > a. Assuming
that two footprint regions overlap for size positions, then the number of misses
occurring on each iteration of loop 1 is

stze X P-miss (P, ") x M.

The summation of this expression over all sections of the cache where two foot-
print regions overlap gives the total number of cache misses on each iteration
of the reuse loop; multiplying by A7 ... A7 gives the total number of misses.

To increase the accuracy of the next stage—predicting the level of external
interference—the values of NS and { (the number of reusable positions and
average overlap) are adjusted to take account of internal interference. The
number of reusable positions after considering internal interference NS’ is the
combined size of all regions where interference doesn’t occur, and the adjusted
overlap 1\’ is the average value of \ + * across all these regions.

5.3 External interference

The final source of temporal interference on a self dependence to be considered
is external cross interference. This is interference arising from references in
other translation groups to the reference being examined. Unlike when mod-
eling internal cross interference, it is not possible to simply compare the two
cache footprints (the reference’s possibly reusable data, and the footprint of the

19

interfering translation group) exactly because they are not in translation. The
footprints are “moving” through the cache in different ways and hence incom-
parable. Instead, a statistical method is used, based on the dimensions of the
two footprints—the total size and the average overlap.

Similarly to when modeling external interference on spatial dependences
(see Section 4.3) each external translation group is considered in turn. The
number of footprint positions that could possibly cause interference are found
by summation over the cache footprint of the group. To find the average number
of cache misses this quantity is multiplied by the size of the reusable footprint
and divided by the number of possible positions,

NS’ (3 (S x wemiss (', 1))
C/a '

external misses = My

This gives the number of misses on each iteration of loop 1 caused by a partic-
ular translation group. Summing this expression over all external groups and
multiplying by the total number of iterations of loop 1 gives the actual number
of cache misses due to external interference.

6 Modeling group dependences

A group dependence occurs when an array reference reuses data that was most
recently accessed by another reference in the same translation group. For a
reference R the reference that it is dependent upon is denoted ﬁ; Section 2.2
has described how dependences are identified.

The definition of the spatial miss ratio given in Section 4 must be altered
slightly to model group dependences, it must also include any spatial group
reuse occurring. This is when R is in the same cache line as R a certain number
of times per every L elements accessed. If the constant distance between the
two references, By — Bg, is less than the size of a cache line, then this is the
number of times that R must load an element itself per cache line. Therefore
the actual spatial miss ratio is defined by,

L— (B~ - BR)
M! = MS+.

The number of compulsory misses is defined by the number of elements
accessed only by R, not by R, multiplied by the spatial miss ratio. Since the
sharing(Ry, Ry) function defined in (7) gives the ratio of elements shared be-

tween R, and Ry, we have that

n
compulsory misses = M (H ./\/k> (] — sharing (R, ﬁ)) .
k=1

For a reference R, the innermost loop on which group reuse occurs is defined
as

g = max {vi(R) |1<i<m, Bu(R) £ Bu(R)]

20

where m is the number of dimensions in the array being accessed. To identify
cross interference on a group dependence it is only necessary to examine the
period between R accessing an arbitrary element and R reusing it. This is defined
as 04 iterations of loop lg:

8o = Bk(R) — Bi(R),

with k the innermost dimension of the array where the . constants of the two
references differ.

Consider for example, the case when R = A(j2,j1) and R = A(j2,j1 +2).
Here l; =1, and 64 = 2, that is, after R accesses element A(j2,2), two iterations
of loop 1 pass before R accesses the same element. Interference occurs if the
element has been ejected from the cache during these two iterations.

6.1 Internal interference

Internal cross interference is found by examining the cache footprint of the
translation group of R for the first 5, iterations of loop lg, i.e. the iteration
space with NV7...N, 1 =1 and N, = §,. For each region in the footprint
that contains data accessed by R the probability of interference is calculated, the
maximum probability across the whole footprint is then the actual probability
of internal interference. For a footprint region with average overlap 1*, this
probability is defined as,

Pi(‘ll)*) = min“)‘ll)* - CL)+,

i.e. for interference to definitely occur 1\ > a + 1, while if 1 < a interference
definitely doesn’t occur; there is a gradient between these two certainties.

The number of cache misses is defined as the number of elements that could
theoretically be reused, multiplied by the maximum value of Pi({*) and the
spatial miss ratio,

]'g
int. misses = M/ H N | sharing (R, ﬁ) (max, Pi(V™*)).
k=1

6.2 External interference

When the maximum value of P; is less than 1, and therefore internal interference
is not total, external cross interference must also be considered. Again the
iteration space is defined as 84 iterations of loop lg, but this time the cache
footprints of the translation groups that R is not a member of are examined.
For each such group, the number of cache misses caused is found by counting
the number of positions in its footprint where interference may occur, and ap-
plying the same probabilistic method used when predicting external interference
on a self dependence (see Section 5.3). Assuming that the cache footprint of
the translation group containing R has an average overlap of \’ in the regions
containing data accessed by R (this can be calculated while finding internal

21

interference), then a footprint region with overlap \{* may possibly cause inter-
ference if P’ +1V* > a. The actual number of misses per translation group is
defined as

ext. misses = M Z (S x P-miss (P*, 1))
VY'+p*>a
1,1

x (C/a) (1—maxPy) [JT Mc| (M, —5g).
k=1

7 Example results

To demonstrate the validity and benefits of the techniques described, this section
presents experimental results obtained using an implementation of the model.
Code fragments are expressed in a simple language which allows the details of
the arrays being accessed, the loop structures, and the array references them-
selves to be specified. Here three examples typical of nested computations are
shown, chosen for their contrasting characteristics to ensure that all parts of
the cache model are exercised. Each manipulates matrices of double precision
values, arranged in a single contiguous block of memory. They are:

1. A matrix-multiply, consisting of three nested loops, containing four array
references in total. Each reference allows temporal reuse to occur within
one of the loops, one reference may be subject to considerable spatial
interference. The Fortran code is shown in Figure 6(a).

2. A “Stencil” operation, from [10]. This kernel shows group dependence
reuse, and doesn’t always access memory sequentially. See Figure 6(b).

3. A two dimensional Jacobi loop, from [2], originally part of an applica-
tion that computes permeability in porous media using a finite difference
method. This kernel exhibits large amounts of group dependence reuse,
and contains significantly more array references than the others. The
matrices IVX and IVY contain 32-bit integers. See Figure 6(c).

Each example kernel has been evaluated for a range of cache parameters,
comparing the predicted miss ratio against that given by standard simulation
techniques®. The average percentage errors are shown in Table 1.

The results for C = 16384, L = 16, and for C = 32768, L = 16 are shown in
Figure 7 for the three example kernels. Miss ratio and absolute error are plotted
against the width and height of the matrices. Also shown, in Table 2, are the
range of times taken to evaluate each problem on a 167MHz SUN ULTRA-1
workstation, for a single cache configuration.

5A locally written cache simulator was used that accepts loop descriptions in the same
form that the analytical model uses. It has been validated by comparing its results with Hill’s
Dinero III trace-driven simulator [8].

22

DO I =0, N-1
D0 J =0, N-1 DO I =0, N-2
Z(J, I) = 0.0 DO J = 0, N-2
DO K =0, N-1 AT, I) = A(J, I+1)
Z(J, 1) = z(J, 1) + B(J, I) + B(J+1, I)
+ X(X, I) *» Y(J, K) + C(I, J) + C(I+1, J)
ENDDO ENDDO
ENDDO ENDDO
ENDDO

(b) Stencil
(a) Matrix multiply

DO J =1, N-2
DO I =1, N-2
VEN(I,J) = (cO * VXO0(I,J) + dty2 * (VXO(I-1,J) + VXO(I+1,J))
+ dtx2 * (VX0(I,J+1) + VX0(I,J-1))
- dtx * (PO(I,J) - PO(I,J-1)) - c1) * IVX(I,J)
VYN(I,J) = (cO * VYO(I,J) + dty2 * (VYO(I-1,J) + VYO(I+1,J))
+ dtx2 * (VYO(I,J+1) + VYO(I,J-1))
- dty * (PO(I-1,J) - PO(I,J)) - c2) * IVY(I,J)
ENDDO
ENDDO

(c) 2D Jacobi

Figure 6: Example kernels

8 Discussion

The experimental data presented in the previous section shows that the predic-
tions made by the model are generally very accurate: the majority of average
errors are within ten percent, with all but three of the fifty four examples having
average errors of less than fifteen percent. When combined with the increased
speed of prediction we believe that the analytical approach is more practical
than simulation when examining the individual kernels of an application.

One of the motivations for this work was to minimize the time taken when
evaluating a program fragment. As expected the analytical model is much
quicker to compute than a simulation, typically by several orders of magnitude,
even with the smallest problem sizes. As the number of memory references
grows the gulf widens: simulation time increasing proportionally to the number
of accesses, the time needed to evaluate the analytical model staying mostly
constant. The Jacobi example is the slowest to evaluate analytically because
it has eighteen array references to evaluate, compared to Stencil’s six and the
matrix multiply’s four. Even so, the combinatorial effects that might have been
feared are not a problem.

It is also clear from the miss ratio plots that using set-associative caches

23

05 05 05
predicted miss-ratio predicted miss-ratio redicted miss-ratio
d\lference from simulation - d\lference from simulation dlflerence from simulation
0.4 0.4 0.4
03 03 03
02 02 0.2
0.1 0.1 0.1
0 0

6384, L=32, a=2 N

6384, L=32, a=4

N N
80 100 120 140 160 20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 16
05 05 0.5
predicted miss-ratio predicted miss-ratio predicted miss-ratio
difference from simulation - difference from simulation difference from simulation
04 04 0.4
03 03 0.3
0.2 0.2 0.2
0.1 0.1 0.1
0 0 0
01 =32768, L=16, N =32768, L=16, a= N 2768, L=16, a=4 N
: 0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 16
Matrix multiply
05 05 0.5
predicted miss-ratio —— predicted miss-ratio redicted miss-ratio
d\lference from simulation - d\lference from simulation dlflerence from simulation
0.4 0.4 0.4
03 03 0.3
0.2 0.2 0.2
0.1 0.1 0.1
ol or ; 0 foe
o 1C=16384,K=32‘ =16384, L=32, a=2 N 16384, L‘=32‘ a=4
o 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 40!
05 05 0.5
predicted miss-ratio predicted miss-ratio predicted miss-ratio
difference from simulatiop - differel I - ference from simulatioy
04 04 0.4
03 03 0.3
0.2 0.2 0.2
0.1 0.1 0.1
0 PO E——r ° ok

eeres. L:lGJa‘ il

32768, L=16, a=2

32768, L=16, a=4

0 50 100 150 250 300 350 400 0 50 100 150 200 250 300 350 400 50 100 150
Stencil
05 05 0.5
ip ——] predicted miss-ratio predicted miss-ratio
differerjce from imulatiol difference from simulation difference from simulation
0.4 0.4 0.4
03 03 03
0.2 0.2 0.2
0.1
ol

200 250 300 350 400

05 05 05
predicted miss-ratio predicted miss-ratio
differefice from fimulatio diference from simulation
04 04 04
03 03 03
02 02 02
0.1
0 -
i i 32768, L=16, a=4 N
50 100 150 200 250 300 350 400 100 150 200 250 300 350 400 50 100 150 200 250 300 350 40

Jacobi

Figure 7: Predicted miss ratios and absolute errors for C = 16384, £ = 32, and
C = 32768, L = 16 configurations.

24

C 8192 16384 32768
a L | 16 32 16 32 16 32
1 579 9.36 | 499 6.97 | 499 7.19
2 3.85 7.02|4.07 6.22 | 4.89 6.12
4 242 489|329 351390 3097
1 121 11.2 | 129 123 | 10.1 11.8
Stencil 2 16.1 179 | 12,5 19.2 | 4.78 9.60
4
1
2
4

Experiment

Matrix
Multiply

10.9 134 | 6.17 8.78 | 1.73 3.64
748 9.57 | 10.3 11.8 | 9.66 10.8
6.04 7.75 | 11.1 125 | 10.7 11.8
472 6.99 | 9.16 10.5|9.3¢ 10.2

Jacobi

Table 1: Average percentage errors of example predictions when compared with
simulated results.

Analytical Model Simulation
Experiment Min. | Max. | Mean Min. | Max. | Mean

Matrix mult. | 0.00093 | 0.018 | 0.0014 | 0.0058 | 18.20 | 4.93
2D Jacobi 0.0095 | 0.019 | 0.010 | 0.019 | 4.21 1.50
Stencil 0.0016 | 0.018 | 0.0029 | 0.0079 | 1.45 0.52

Table 2: Calculation times for C = 16384, L = 32, a = 2 experiments (seconds.)

does not avoid the problem of cache interference. Even for a 4-way associative
cache there are still large variations in miss ratio, especially in the Stencil and
Jacobi kernels, i.e. as the number of array references increases. By using using
well known techniques such as padding array dimensions and controlling base
addresses, guided by an analytical model such as presented here, the variations
can be reduced to decrease the miss ratio.

A benefit of using analytical models that has not yet been mentioned is the
extra information available through using analytical models. When trying to
lower the number of cache misses in a program it is important to know both
where and why the cache misses occur. Due to the structure of the method
presented in this paper both requirements can be met simply by examining
the outputs of the component models. For example, with the matrix multiply
kernel we can examine both the miss ratio of each reference (Figure 8(a)), and
the miss ratio due to each type of interference (Figure 8(b)). These show that
the vast majority of the misses are due to reference Y(J,K), and that between
80 and 90 percent of the interference is self interference (in this case spatial self
interference, due to array Y being accessed non-sequentially).

9 Conclusions

A hierarchical method of classifying cache interference has been presented, for
both self and group dependent reuse of data, considering both temporal and

25

0.5

0.4

0.3

0.2

0 ;
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160

(a) Reference miss ratios (b) % miss ratio by type
Figure 8: Examining the Matrix multiply, C = 16348, £ =32,a =1.

spatial forms. Analytical techniques of modeling each category of interference
have been developed for array references in loop nestings. It has been shown
that these techniques give accurate results, comparable with those found by
simulation, and that they can be implemented such that predictions can be
made at a much faster rate than with simulation. More importantly, the pre-
diction rate has been shown to be dependent on the number of array references
in the program, rather than the actual number of memory accesses (as with
simulation).

It is envisaged that the benefits of the models—accuracy and speed of
prediction—will allow their use in a wide range of situations, including those
that are impractical with more traditional techniques. An important example
of such a use will be run-time optimization of programs, using analytical models
of the cache behavior of algorithms to drive the optimization process. Areas
that will be addressed in future work include such optimization strategies, as
well as extensions to the model itself. It is also intended to use the techniques
as part of a general purpose performance modeling system [11].

Acknowledgements. This work is funded in part by DARPA contract N66001-
97-C-8530, awarded under the Performance Technology Initiative administered
by NOSC.

References

[1] Anant Agarwal, Mark Horowitz, and John Hennessy. An analytical cache
model. ACM Transactions on Computer Systems, 7(2):184-215, May
1989.

[2] Francois Bodin and André Seznec. Skewed associativity improves program
performance and enhances predictability. IEEE Transactions on Com-
puters, 46(5):530-544, May 1997.

26

[3]

[4]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

Stephanie Coleman and Kathryn S. McKinley. Tile size selection using
cache organisation and data layout. In Proceedings of the SIGPLAN ’95
Conference on Programming Language Design and Implementation,
volume 30, pages 279—289, June 1995.

Thomas Fahringer. Automatic cache performance prediction in a paralleliz-
ing compiler. In Proceedings of the AICA’983 — International Section,
September 1993.

Christine Fricker, Olivier Temam, and William Jalby. Influence of cross-
interferences on blocked loops: A case study with matrix-vector multi-
ply. ACM Transactions on Programming Languages and Systems,
17(4):561-575, July 1995.

Somnath Ghosh, Margaret Martonosi, and Sharad Malik. Cache miss equa-
tions: An analytical representation of cache misses. In Proceedings of the
11th ACM International Conference on Supercomputing, Vienna, Aus-
tria, July 1997.

John S. Harper, Darren J. Kerbyson, and Graham R. Nudd. Predicting the
cache miss ratio of loop-nested array references. Research Report CS-RR-
336, Department of Computer Science, University of Warwick, Coventry,
UK, December 1997.

Mark D. Hill. Aspects of Cache Memory and Instruction Buffer Per-
formance. PhD thesis, University of California, Berkeley, 1987.

Monica S. Lam, Edward E. Rothberg, and Michael E. Wolf. The cache
performance and optimizations of blocked algorithms. In Proceedings of
the Fourth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 63-74, Santa Clara,
California, 1991.

Kathryn S. McKinley and Olivier Temam. A quantitative analysis of loop
nest locality. In Proceedings of the 7th Conference on Architectural
Support for Programmaing Languages and Operating Systems, volume 7,
Cambridge, MA, October 1996.

E. Papaefstathiou, D. J. Kerbyson, G. R. Nudd, and T. J. Atherton. An
overview of the CHIP3S performance toolset for parallel systems. In Proc.
of the ISCA Int. Conf. on Parallel and Distributed Computing Sys-
tems, page 527, Orlando, September 1995.

Olivier Temam, Christine Fricker, and William Jalby. Cache interference
phenomena. In Proceedings of ACM SIGMETRICS, pages 261-271, 1994.

Richard A. Uhlig and Trevor N. Mudge. Trace-driven memory simulation:
A survey. ACM Computing Surveys, 29(2):129-170, June 1997.

27

[14] Michael E. Wolf and Monica S. Lam. A data locality optimizing algorithm.
In Proceedings of the SIGPLAN ’91 Conference on Programming Lan-
guage Design and Implementation, volume 26, pages 3044, June 1991.

28

