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Inferring Evolutionary Trees with Strong CombinatorialEvidenceVincent Berry� Olivier GascuelyAbstractWe consider the problem of inferring the evolutionary tree of a set of n species.We propose a quartet reconstruction method which speci�cally produces trees whoseedges have strong combinatorial evidence. Let Q be a set of resolved quartets de�nedon the studied species, the method computes the unique maximum subset Q� of Qwhich is equivalent to a tree and outputs the corresponding tree as an estimateof the species' phylogeny. We use a characterization of the subset Q� due to [6]to provide an O(n4) incremental algorithm for this variant of the NP-hard quartetconsistency problem. Moreover, when chosing the resolution of the quartets by theFour-Point Method (FPM) and considering the Cavender-Farris model of evolution,we show that the convergence rate of the Q� method is at worst polynomial when themaximum evolutive distance between two species is bounded. We complete thesetheoretical results by an experimental study on real and simulated data sets. Theresults show that i) as expected, the strong combinatorial constraints it imposeson each edge leads the Q� method to propose very few incorrect edges; ii) moresurprisingly, the method infers trees with a relatively high degree of resolution.Keywords: phylogeny reconstruction, quartet method, exact polynomial algorithm,partially resolved tree, combinatorial technique, worst-case convergence rate, experi-mental study.1 IntroductionA fundamental problem in computational biology is to retrieve the history of a set ofspecies by reconstructing their evolutionary tree. Such a tree, also called a phylogeny, hasits leaves bijectively labelled by the studied species, while internal nodes represent hy-pothetical ancestors. Evolutionary data used to reconstruct a phylogeny often consist of�Corr. author, Dept. of Computer Science University of Warwick, UK, vincent@dcs.warwick.ac.uk.This work was partly supported by ESPRIT LTR Project no. 20244 | ALCOM-IT.yD�epartement d'Informatique Fondamentale, LIRMM, Universit�e de Montpellier II, France.



homologous DNA sequences taken from the species' genome. These data are sometimestranslated into a matrix of pairwise distances between species, corrected according to agiven model of evolution, to account for hidden mutation events. An excellent overviewon phylogenetic reconstruction criteria and algorithms can be found in [48].Recently, there has been strong interest in providing polynomial time algorithms withperformance guarantees. Agarwala et al [1] proposed a 3-approximation algorithm forthe L1-nearest tree problem by relying on a classical result from dissimilarity analysis[8, 17]. Farach and Kannan [23] proved the �rst guaranteed convergence rate (for thealgorithm of [1] that they called Single Pivot, or SP) by introducing a variational distancebetween trees. More recently, Ambainis et al [4] improved this result by showing that ifthe solution provided by SP is improved to its local optimum, then the convergence rateof the method is within a constant factor of the best achievable rate, provided that thespecies' phylogeny does not contain very short edges. Erd�os et al [22] produced a quartetmethod (the Short Quartet Method, or SQM) and gave a bound on its convergence ratein the sense of the L1 metric, for the problem of recovering the topology of the species'phylogeny. The bound they obtain is, in some cases, better than the one derived for theSP method for this problem. The improvement results from the fact that the boundon the convergence rate of SQM depends on the depth (the rank) of the phylogeny,while the bound for the SP method depends on the diameter. For the same problem,Atteson [5] proved a bound on the convergence rate for two of the most popular distance-based algorithms used by practitioners, namely Neighbor Joining [44] and Addtree [45],while Kearney provided a bound on the convergence rate of methods utilizing ordinalassertions [35]. These sampling complexity results are of importance in the phylogeneticdomain since the amount of available data (i.e., the sequence length) is a very criticalresource.We investigate here a phylogenetic reconstruction method which speci�cally producestrees whose edges have a strong combinatorial support. The method is based on aquaternary relation introduced by Bandelt and Dress [6], and thus relies on a quartetreconstruction principle [6, 18, 22, 45, 46, 47].Quartet methods �rst compute subtrees of the phylogeny which correspond to subsetsof 4 species. Then they rely on a combinatorial algorithm to construct a phylogeny onthe entire set of species, respecting as many as possible of the (possibly conicting)structural constraints imposed by the subtrees on four species. These subtrees can be oftwo kinds: resolved (i.e., having an edge separating two species from the two others, cf.Fig. 1 (a-c)), which corresponds to the assumption that two species belong to a distinctgroup of species (e.g., carnivores) than the two others; or unresolved (i.e., having noedge separating two species from the others, cf. Fig. 1 (d)). Subtrees of the second kindonly express uncertainty with respect to which species belong to the same group, andare not considered as structural constraints. Indeed, the phylogeny of a set of speciesis usually assumed to be binary, so that for any four species, two of them belong to a



group excluding the two others. Thus, only resolved subtrees on four species (that wecall r4-trees) are considered to be of importance.The interest in quartet-based methods is that many methods exist which can e�-ciently infer trees on four species, but which can not be applied to many more speciesdue to mathematical or computational di�culties. Thus the best (or only) way to usethese methods for phylogenetic inference on larger sets of data, is to combine the r4-treesthey infer.A phylogeny is said to be consistent with (or to induce) an r4-tree if at least oneof its edges separates the concerned four species in the same way as the r4-tree. Anyphylogeny is uniquely de�ned by the set of r4-trees it induces [18]. Such an r4-tree set,i.e., which corresponds exactly with a phylogeny on the entire set of species, is saidto be tree-like. Knowing whether an r4-tree set Q is tree-like is polynomial, as well asreconstructing the tree to which it is equivalent [6]. Less restrictively, given an r4-tree setQ, knowing if there exists a phylogeny consistent with its r4-trees (but possibly inducingmore r4-trees) is an NP-complete problem [46]. Several polynomial-time heuristics havebeen designed to solve the corresponding NP-hard optimization problem, i.e., �ndinga maximum subset of Q which is consistent with a phylogeny, or some of its variations[6, 22, 47]. Here we consider the problem of �nding the maximum subset of Q which istree-like [6, 8, 14]. We call this subset Q�.The interest in the subset Q� for phylogeny reconstruction relies on several points:�rst, it corresponds to the maximum tree-like part that we can extract from the data,i.e. to the greatest part of the data which fully corresponds to the model we chose forrepresenting the species' history. Moreover, the tree to which Q� corresponds, called T �,has the interesting property that it does not contradict any piece of data (any r4-treeof the input set Q), nor does it necessitate any new hypothesis (it does not induce anyr4-tree not present in Q). Lastly, as long as the method inferring the r4-trees from thebiological data is not biased, T � can be seen as a safe estimate of the species' phylogeny,due to the stringent combinatorial constraints imposed on its internal edges, i.e., eachone must respect between O(n2) and 
(n4) data r4-trees. In this way, few wrong edgesare likely to be inferred due to random sampling errors. However, since T � containsonly edges showing strong convincing evidence, the chances are that this tree will bepoorly resolved and will only recover a small part of the species' phylogeny. In practice,T � is actually partially resolved, but it nevertheless contains a reasonably high numberof edges (see last section), so that it is likely to recover a non-negligible part of theestimated phylogeny.For the various reasons given above, it appears that T � would be useful for phyloge-netic reconstruction - if we could compute it e�ciently.Until now, no algorithm has been given in the various papers mentioning the problem[6, 8, 14], though this problem was thought to be polynomial (Bandelt and Steel, personalcommunications). In this paper, we provide an O(n4) incremental algorithm, called IQ�,



to compute T �: starting from four species, T � is built up by progressively attaching theremaining species to the tree. In most usual cases, jQj2O(n4), and the IQ� algorithmthen has an optimal complexity bound. The same complexity is also usually requiredto infer the r4-trees from biological data, so that the whole phylogenetic reconstructionmethod based on IQ� is in O(n4). Note also that the complexity bound that we thusobtain for computing the maximum tree-like subset of Q, is the same as that requiredby the best algorithm [6] (to our knowledge) which enables to decide whether an r4-treeset Q is tree-like.Moreover, using Hoe�ding's inequality, we give a bound on the convergence rateof the IQ� algorithm when associated with a distance-based r4-tree inference methodunder the Cavender-Farris model of evolution, in a similar way as [5, 22]. This boundis polynomial when the evolutive distances between the studied species are bounded, asis usually the case in practice [42].In the following, we �rst give prerequisites (section 2) and introduce the incrementalprinciple enabling us to compute Q� in O(n5) (section 3). Next, we improve this resultby giving the O(n4) algorithm (section 4). Lastly, we concentrate on the use of Q�for phylogeny reconstruction, giving a bound on its convergence rate (section 5) andreporting experimental results from real and simulated data (section 6).2 PreliminariesIn this section, we present the basics of reconstructing phylogenies from r4-trees.De�nition 1 A phylogeny for a set S = f1; 2; : : : ; ng of species is a tree whose leavesare bijectively labelled by the species of S and whose internal (i.e., non-leaf) nodes havedegree � 3.To any quartet of species fx; y; z; tg there are four ways to associate a tree. Thethree possible topologies with ternary internal nodes (Fig. 1) are noted xyjzt, xzjyt andxtjyz, indicating how the species are split into two pairs by the central edge (note thatxyjzt � yxjzt � ztjyx). These topologies are called r4-trees (for resolved 4-trees). LetQ be a set of r4-trees de�ned on S. Q can be seen as a set of topological constraintsto respect when constructing the tree on the entire set S of species. The set Q is saidto be complete, when it contains an r4-tree for each quartet of species. When Q is notcomplete, we consider the unresolved quartets as associated with the unresolved startopology (with one internal node of degree 4). Other approaches could be investigated,but they are close (or identical) to the quartet tree-consistency problem and, therefore,seem di�cult to deal with from a computational standpoint.Any phylogeny T can be characterized by its r4-trees: T induces the r4-tree xyjzt i�the paths [xy] and [zt] are distinct in T . In this case, the topologies of both this r4-tree



and the subtree of T split the four species in the same way, each edge of the r4-treepossibly corresponding to several edges in T . The case where the paths [xy] and [zt]intersect in just one node (of degree � 4) of T corresponds to the star topology, thusT induces no r4-tree for the corresponding quartet. Let QT denote the set of r4-treesinduced by T , QT contains at most one r4-tree for each quartet of species. Similarly,we will only consider r4-tree sets Q containing at most one r4-tree for each quartet ofspecies.A phylogeny T can also be characterized by the set of bipartitions its edges induceon the set S of species [6, 14]. Indeed, deleting any edge from T disconnects T intotwo components, and thereby induces a bipartition on the whole set S. Its two partscorrespond respectively to the species of the two components. A bipartition is calledtrivial when one of its components contains less than 2 species, and hence induces nor4-tree. To each bipartition b=�j� we associate the set Qb=fxyjzt s.t. x; y2�; z; t2�gof r4-trees it induces. For a set B of bipartitions, we de�ne QB = [b2BQb. We clearlysee that there is a straightforward containment relation between the concepts of r4-tree,bipartition and tree: a tree may be considered as a set of bipartitions and a bipartitionas a set of r4-trees.A set of bipartitions is tree-like (or tree-compatible) i� there exists a tree with edgescorresponding to these bipartitions. The following are well-known results that we willneed further on:Lemma 1 ([14])� Two bipartitions b1 : �1j�1; b2 : �2j�2 are tree-compatible i� at least one of �1\�2,�1\�2, �1\�2, �1\�2 is empty.� A set B of bipartitions is tree-compatible i� every pair of bipartitions b1; b2 2 Bare tree-compatible (i.e., we only need to check the compatibility of subsets of twoelements to decide for the compatibility of the whole set).Corollary 1 A set B of bipartitions on a given set of species is tree-compatible i� QBcontains at most one r4-tree for each quartet of species.De�nition 2 An r4-tree set Q is� tree-consistent i� there exists a tree T such that Q�QT� tree-like i� there exists a tree T such that QT =Q.These two notions are computationally very di�erent since knowing if a given r4-treeset Q is tree-like is polynomial [6, 18] (as for a bipartition set [15]), whereas knowing ifQ is tree-consistent is NP-complete in general (except, e.g., when Q is complete) [46].



Finding the maximum tree-consistent subset of an r4-tree set Q is thus NP-hard. Herewe consider the problem of �nding the maximum tree-like subset of Q, that we note Q�.The uniqueness of this set is surprising but derives from the characterization Bandeltand Dress [6] gave for Q�. They originally de�ned Q� as:De�nition 3 ([6]) Let Q be an r4-tree set and B� be the set of bipartitions b=�j� suchthat Qb�Q, then Q�=S b2B� Qb :Corollary 2 Q� is the maximum subset of Q which is tree-like, i.e., there exists sometree T � with QT �=Q� �Q and 8Q0�Q, if Q0 is tree-like then Q0�Q� (and jQ0j�jQ�j).This result (including the uniqueness of Q�) derives from the fact that B� is a set oftree-compatible bipartitions (due to corollary 1 and to the fact that Q contains at mostone r4-tree for each quartet of species). Moreover, the tree-like subsets of Q correspondbijectively with the subsets of B�. Thus, tree-like subsets of Q form a lattice having asunique maximal (and maximum) element the set Q� corresponding to the complete setB�.Obtaining T �, Q� or B� from one another is easy, e.g., B� gives T � in linear time[30, 40] and T � gives Q� in linear time as well (see section 4). Trivially, when Q istree-like, Q� = Q. If Q is not tree-like, then in the worst case we have Q� = ;, thusall bipartitions of B� are trivial and T � corresponds to the star topology on S. Notealso that Q� is never the maximum tree-consistent subset of Q (except when Q�=Q),since it is not even a maximal tree-consistent subset of Q: 8r 2 Q � Q�, frg[Q� istree-consistent. Moreover, we can easily �nd counter-examples showing that Q� is notalways contained in the maximum set of tree-consistent r4-trees.The subset Q� is also related to the work of Buneman [14], who proposed a wayto infer a set of tree-compatible bipartitions from a dissimilarity matrix d. This set ofbipartitions is de�ned in such a way as to correspond to the set B� when the r4-trees ofQ are inferred from d by a simple distance principle (that we detail in section 5).



3 Computing Q� by an incremental principleIn a context sharing similarities with that of Q�, Bandelt and Dress mention an O(n6)incremental algorithm to obtain the O(n2) d-splits of a distance matrix d [7]. Whenapplying the same principle to the r4-tree set Q, we derive a polynomial algorithm toobtain the O(n) bipartitions of B� Note that Bandelt also thought this to be possiblebut did not publish his result (Bandelt, personal communication). We �rst show thatthis incremental approach is correct for computing Q�. Then, we give the simple O(n5)algorithm which results. In the next section, we will show how a more sophisticatedO(n4) algorithm can be obtained.De�nition 4 We suppose an arbitrary order (1; 2; : : : ; n) on the species of S and let [i]denote the �rst i species.� Q[i] denotes the subset of r4-trees of Q only referencing species in [i], i.e., 8xyjzt2Q[i]; fx; y; z; tg � [i].� Qi denotes the subset of r4-trees of Q[i] referencing species i, i.e., 8xyjzt2Qi; i2fx; y; z; tg.� B�[i] is the set of bipartitions b=�j� on [i] s.t. Qb�Q[i]. Note that B�[i] containsat least the i trivial bipartitions f1gjf2; : : : ; ig, : : : , figjf1; : : : ; i�1g.� Q�[i]=S b2B�[i] Qb .From the above de�nitions, we see that Q�[i] is the unique maximum subset of Q[i]which is tree-like (T �[i] denotes the corresponding tree) and we have Q�[n]=Q�.The incremental principle consists in focusing on the successive bipartition sets B�[i]from which the r4-tree sets Q�[i] are de�ned. At each step a new species (say i) isconsidered and the set B�[i] is obtained from B�[i�1]. Each bipartition �j�2B�[i�1], de�nedon [i�1], may a priori be extended into two bipartitions de�ned on [i]: b= �[figj�and b0=�j�[fig. B�[i] contains one, both or neither of them, depending on Qb�Q andQb0�Q.Our next step is to specify the relation connecting the sets B�[i�1] and B�[i].3.1 Correctness of the approachDe�nition 5 Let b be a bipartition on [i], b ni denotes its restriction to the species [i�1].In a wider sense, B�ni denotes the bipartitions of B�[i] restricted to [i�1].For example, if b=f1; 2; 3gjf4; 5; 6g, then b n6=f1; 2; 3gjf4; 5g.



Lemma 2 B�ni � B�[i�1] :Proof. Let b= �j� be a bipartition of B�[i]. If b is trivial then b ni is trivial and thusbelongs to B�[i�1]. Otherwise assume that i2� (equiv. i2�). b2B�[i] implies 8x; y2�and z; t2�, fx; y; z; tg � [i] and xyjzt2Q[i]. Thus, either1. b ni=��figj� is trivial (j��figj=1) implying b ni2B�[i�1], or2. b ni is not trivial and 8x; y 2 ��fig and z; t 2 �, we have fx; y; z; tg � [i�1] andxyjzt2Q[i], thus more precisely xyjzt2Q[i�1]. Then by de�nition, b ni2B�[i�1]. �The lemma cannot be extended to state that B�ni=B�[i�1], as the following exampleshows: let Q = f12j34; 15j23; 15j24; 15j34g, then B�[4] contains f12gjf34g plus trivialbipartitions on [4], B�[5] contains f15gjf234g plus trivial bipartitions on [5], while B�n5only contains trivial bipartitions on [4]. We thus have b=f1; 2gjf3; 4g 2 B�[4] but b =2 B�n51, showing that in some cases B�ni 6=B�[i�1].Corollary 3 Any bipartition of B�[i] can be directly obtained from B�[i�1], i.e., 8b 2B�[i]; 9 b0=�j� 2 B�[i�1] s.t. b=� [ figj� or b=�j�[fig.Moreover, let b be a bipartition obtained by extending a bipartition b0 2B�[i�1]. Toknow if b 2 B�[i], we do not have to check for the presence of all r4-trees of Qb in Q,since we already know Qb0�Q. As Qb0�Qb, we only have to examine the new r4-trees(Qb�Qb0), induced by the addition of i in b0= �j�; to know if b = �[figj� (or equiv.b = �j�[fig) can be derived, we only check whether the subset Qi of Q contains the setof r4-trees xijyz for which x2� and y; z2�.3.2 A �rst incremental algorithmThe algorithm �rst considers the trivial case of four species, where B�[4] is readily ob-tained: it contains the �ve trivial bipartitions on these species plus possibly the bipar-tition fx; ygjfz; tg, with fx; y; z; tg=f1; 2; 3; 4g (if xyjzt2Q).Then the algorithm progressively enlarges the set of considered species and con-sequently extends the set of bipartitions. At the step where species i is considered,B�[i] is initialized with the trivial bipartition figjf1; : : : ; i�1g, then for each bipartitionb = �j� 2 B�[i�1], we check whether b0 = �[figj� and b00 = �j�[fig qualify as biparti-tions of B�[i]. As stated before, this only requires checking whether (Qb0�Qb)�Qi and(Qb00�Qb)�Qi, respectively. This procedure stops after species n has been processed.1to have b 2 B�n5 would require that f125gjf34g 2 B�[5] (impossible since f25j34; 12j35g 62 Q) orf12gjf345g 2 B�[5] (impossible since f12j35; 12j45g 62Q)



This simple algorithm computes B� in O(n) steps. Each step examines the twopossible extensions of O(n) bipartitions, each time potentially examining the O(n3) r4-trees referencing i, which gives thus an O(n5) algorithm. In fact, a �ner analysis showsthat the complexity oscillates between O(n5) for caterpillar trees (as in Figure 2) andO(n4 log n) for well balanced trees.4 IQ�: an O(n4) incremental algorithmWe now present the IQ� algorithm which consists of an improved version of the previoussimple algorithm. IQ� is based on the same incremental principle, but it enables us toobtain B�[i] in time O(n3) at each step rather than O(n4) previously. The main idea,wrt the previous algorithm, is to focus simultaneously on T �[i] and B�[i]. We can thenguarantee that each r4-tree is only processed once, by searching the tree T �[i] in a speci�corder and sharing information between the components of B�[i�1] bipartitions, on thebasis of the r4-trees they commonly concern.4.1 Basic principlesDe�nition 6 Let i be the species currently considered and b=�j� a bipartition on thespecies [i�1];� � and � are called the parts or the components of bipartition b.� we say that the r4-trees xijyz are required (to be in Q) by the component � of b ifthey are induced by the addition of i to this component, i.e., if x2� and y; z2�.We let R� denote the set of r4-trees required by �. Note that this de�nition onlyconsiders newly required r4-trees (i.e., referencing the species i) since the r4-treeson [i� 1] need not be reexamined as stated in the previous section.� r4-trees are called processed when their presence in Q has been examined.� In the following, the term subtrees only denotes the connected component of a treeT that can be obtained by deleting one of its edges.Each r4-tree may be required by components of several bipartitions. For example,in Fig. 2, the r4-tree xijyz is required by the component �1 of the bipartition �1j�1but also by the component �2 of �2j�2 since adding i to both these components, i.e.,inserting i to the left of e1, would lead the tree to induce the r4-tree xijyz.How do we know all the components that require a given r4-tree? Simply, by takingadvantage of the containment relations existing between components. For example, inFig. 2, x2�1 � �2, thus by de�nition, all r4-trees xijyz which reference pairs of speciesy; z2�2 are required by component �2, but as �2��1, they are also required by �1.



To systematize the use of these containment relations in the algorithm, we need toknow easily all such relations between components of B�[i�1] bipartitions. Since thesebipartitions are consistent with a tree (T �[i�1]), their components are in one to one corre-spondence with the subtrees of this tree. In the following, we will sometimes confuse thecomponents with their associated subtrees and use one term or the other depending onthe context. Thus we only have to follow the T �[i�1] topology to obtain the containmentrelations between components from the ones induced between subtrees. For example, inFig. 2 every edge on e1's right has its right component (subtree) contained in e1's rightcomponent (subtree), whereas its left component contains e1's left component.Figure 3 illustrates the situation arising around any given internal node r, connectedto edges e�; e1 : : : el. To these edges correspond the components �; �; �1; �1; : : : ; �l; �l.The r4-trees xijyz required by any �j ; j 2 1::l and such that x 2 �, are also requiredby �. We then easily see the interest that lies in an ordered processing of the B�[i�1]components to obtain B�[i]: suppose that the components �1; : : : ; �l are processed before�, the knowledge of whether the species i can be added to �1; : : : ; �l can be used in orderto know if i can be added to �, without testing Q again for the presence of the r4-treesthey commonly require. More generally, any component which contains � shares somerequired r4-trees with it. This indicates that all the components containing � shouldbe processed before �, to avoid at most as possible questioning Q when � is considered.This naturally calls for the use of a recursive search of the tree T �[i�1], since containmentrelations between components follow descendant relations between subtrees. We willlater detail how a suitable processing order of the components may be determined thisway. However, this principle may be of some use only if we can easily characterize therequired r4-trees that remain to be processed for a component, when all componentsthat contain it have already been considered. We solve this argument below.For any bipartition �j� of B�[i�1], in the following we only consider w.l.o.g. thecomponents �j which minimally contain � (i.e., �j � � and 6 9 � s.t. �j � � � �), andtheir opposite components, �j, minimally contained in � (�j�� and 6 9 � s.t. �j����).De�nition 7 Let � be a component contained in components �1; : : : ; �l, we call crossedr4-trees of � the r4-trees of the set R c� = Sj;kRj;k� (j 6=k21::l), where Rj;k� = fxijyz s.t.x2�; y2�j ; z2�kg.From de�nitions 6 and 7 and from the simple containment relations existing betweencomponents we can directly derive:



Claim 1� R c� �R� :� If components �1; : : : ; �l have been considered before �, then all r4-trees of R�have been processed except those of R c� :Thus, when considering a component � to know if it can contain species i, we haveonly to check Q for the presence of its crossed r4-trees R c�. We can then characterizethe recursive process of the components of B�[i�1] bipartitions as follows: a) Alwaysconsider a component after the components that contain it; b) When a component �is considered, decide whether it can be extended to include the species i according toR c� � Q and to the information derived for other required r4-trees of R�, previouslyexamined at step i. It now remains to be speci�ed: a) How we obtain a processing orderof the components ensuring that each component be considered after the componentswhich contains it; b) How we pass information between components, to use the result ofthe previous processing of r4-trees they commonly require.4.2 Transmitting informationAs previously seen, if ���j, then some r4-trees required by �j are also required by �.However, not all r4-trees of R�j are relevant to �. More precisely, r4-trees xijyz 2R�jsuch that x 2 �j�� are not required by �. As a consequence, when �j cannot beextended, we cannot systematically deduce the same answer for �, since the negativeanswer we got for �j might just result from r4-trees not required by �. Let Lj = fxs.t. 9xijyz 2R�j�Qg denote the set of all species x referenced in an r4-tree requiredby �j but lacking in Q. We have Lj 6= ; i� �j cannot be extended. But only whenLj \� 6= ; can we deduce from this result that � cannot be extended. This impliesthat when considering � we must know the sets Lj for the components �j in which itis contained. Note that these sets are available since, according to the principle of therecursive process, all components that contain � are previously considered. Thus, wehave the following decision rule:Claim 2 Component � can be extended to include the species i i� Sj Lj \ � = ; andR c��Q.Note that the paradoxical situation may arise where all components containing � canbe extended and yet � cannot, since the negative answer for � may be due only to thelack of some r4-trees R c� in Q. In terms of Fig. 3, this particular case arises when thenew external edge connecting i to the tree is attached to node r.Another particular situation arises when one (or several) component �j cannot beextended to include i, but ���j can. When considering this situation from the subtree



standpoint, this again seems paradoxical. However, as remarked in section 3, somebipartitions of B�[i�1] will not be extended into any bipartition of B�[i], meaning that thecorresponding edges of the tree will be deleted (by joining their two end-points). Thisis the case here for the bipartition �j j�j , and removing the corresponding edge of thetree resolves the apparent contradiction.Algorithm 1 gives the operations performed when considering a component �, as-suming that components �1; : : : ; �l which contain it have already been processed.The set L� is computed as a by-product and will be used by the components consid-ered after �. As a consequence, even if we know from the union of the Lj's that i cannotbe inserted in �, we still have to examine all r4-trees of R c� for L� to be complete. It caneasily be checked that L� = ; whenever � is a leaf (corresponding to a species w). Thismeans that any trivial bipartition �jfwg may always be extended into the bipartition�[figjfwg of B�[i] (and also possibly into �jfw; ig). Thus T �[n] will contain at least theedges corresponding to the star topology.4.3 Exploring the components in a speci�c orderWe now consider the problem of determining a processing order of the components ofthe B�[i�1] bipartitions. This order must respect the constraint that a component beprocessed only after the components which contain it. To satisfy this constraint, thetwo components of a common bipartition cannot generally be considered successively.This implies that several searches of the tree T �[i�1] are needed. In the following we provethat two recursive searches are enough.To simplify the presentation, we consider w.l.o.g. a simpler problem, where thesame ordering constraint is imposed. Suppose that for all subtrees of a given tree, wemust compute the list of the species they each contain, given that a subtree must beconsidered after the subtrees which contain it. Thus, we know the species associated toa given subtree by intersecting the species sets of the subtrees containing it.Choosing an arbitrary leaf of the tree as a root enables us to direct the tree. Toeach edge of the tree are now associated a lower subtree and an upper subtree (the partof the tree opposite to the former with respect to the edge). The �rst recursive searchof the tree, implemented as a postordered depth-�rst search, computes the informationassociated to all upper subtrees, using for each one the information already obtainedfor its children subtrees. For example, in Figure 4, we know that the upper subtreeinduced by edge number 4 contains the species f1; 2; 4; 5g \ f1; 2; 3; 5g. Upper subtreeswhose opposite (lower) subtree is a leaf are particular cases: they simply contain allspecies except the one referenced by that leaf (e.g., the upper subtree de�ned by edge1 , connecting species 2 to the tree, is labelled f1; 3; 4; 5g). Figure 4 shows the processingorder of the edges and the labels obtained for the upper subtrees.The second recursive search of the tree is implemented as a preordered depth-�rst



search in order to process the lower subtrees (Fig. 5). The information for each of thesesubtrees is again computed from the information obtained for the subtrees which containit. Each lower subtree de�ned by an edge e is contained in a lower subtree (de�ned bythe father edge of e) and also in upper subtrees (the ones de�ned by brother edges ofe). For example, the lower subtree de�ned by edge number 3 (previously numbered4 ) is labelled f2; 3; 4; 5g \ f1; 3; 4; 5g \ f1; 2; 3; 4g. Here the only particular case is thelower subtree whose opposite (upper) subtree corresponds to the root. It is processedas particular cases of the �rst search, i.e., we know it contains all species except the oneat the root (e.g., in Fig. 5, this subtree is labelled f2; 3; 4; 5g).4.4 The IQ� algorithmWe now give the O(n4) IQ� algorithm resulting from the previous sections. The maindi�erence with the O(n5) algorithm of section 3.2 lies in the way the components ofthe B�[i�1] bipartitions are processed. At each step i, the IQ� algorithm explores thetree T �[i�1] using the two postordered and preordered searches described above. It thusobtains a suitable processing order for the components which ensures that informationcan be shared from one component to another. As a result, each r4-tree is only examinedonce. Algorithm 2 summarizes the principle of IQ�.In Algorithm 3, we detail how IQ� performs the postordered search of the tree T �[i�1],using the notation of Fig. 3, for which we now assume that component � contains theroot of the tree. We do not detail the preordered search since it is symmetric with thepostordered one, except that the component � is processed before calling the recursivesearch. Moreover, edges ej ; ek at step 6 are no longer child edges of the processed edge,but its sister or father edges in the tree. For example, in Fig. 3, if PreOrder(e1) isperformed, fj; kg are taken in f�; 2 : : : lg.4.5 Complexity resultWe show here that the complexity of the IQ� algorithm is in O(n4). This result mainlyrelies on the fact that each of the 3�n4� possible r4-trees is considered only once, as statedbelow.Lemma 3 The IQ� algorithm examines each possible r4-tree once.Proof. Each possible r4-tree r = xijyz is only considered at the step (let i) where thespecies of highest rank it references is added to the tree (i.e., x; y; z < i). At thisstep, only crossed r4-trees are examined during the postordered search of T �[i�1] and thesymmetric preordered search (line 7 of Algorithm 3). These two searches ensure thateach component � is considered once and thus, from algorithm 3, each set Rj;k� of crossedr4-trees is also considered once. Since, by de�nition, r = xijyz belongs to only one of



these sets (the set Rj;k� s.t. x2 �; y 2 �j; z 2 �k; j 6= k), r is considered once during thewhole algorithm.Theorem 1 B�, T � and thus Q� can be computed in time O(n4).The detailed proof can be found in the appendix. Moreover, Q� can be obtained inO(jQ�j) from T � by simply listing its crossed r4-trees, using the same two depth-�rstsearches as described in the previous section.5 Convergence rate of IQ� with FPM for sequence dataHere we consider applying the IQ� algorithm to the problem of recovering the unknownphylogeny of a set of species. Phylogenies are usually reconstructed from sequencesof molecular characters, taken from the DNA of the studied species. These sequencesare transformed into evolutionary distances between species by using a given model ofevolution. Then, r4-trees can be inferred on the basis of these distances. We chose herethe Four Point Method (noted FPM and also known as the weak Four-Point conditionMethod) to infer the r4-trees. We call Q� method the phylogenetic reconstruction methodwhich results from applying FPM, then IQ�.An important feature for a phylogenetic reconstruction method is to be consistent,i.e. to converge on the correct phylogeny when more and more data are available.Here, we are particularly interested in the consistency of the method to reconstructthe structure (i.e., the edges) of the phylogeny. As we have only a limited number ofcharacters at disposal, it is also important that the method converges fastly. We show inthis section how to derive a bound on the convergence rate of the Q� method under theCavender-Farris model of evolution. For this purpose, we use proof techniques similar tothose investigated for other phylogenetic reconstruction methods [5, 22]. The followingde�nitions are needed for the results of this section:De�nition 8 Let T be a phylogeny on a set S of species,� we note ET the set of its internal edges and l(e) � 0 the length of an edge e2ET ;� DT denotes the tree distance between species induced by the phylogeny T throughthe path-length metric, i.e., if we note [xy] the path between species x and y in T ,DTxy =Pe2[xy] l(e);� Let D and D0 be two distances (or dissimilarities) on the species S, L1(D;D0) =maxx;y2S jDxy �D0xyj.



5.1 The Cavender-Farris model of evolutionThe model of evolution known as the Cavender-Farris model [16, 24] is concerned withsequences of binary characters (having only state 0 or 1) and is a simpli�cation of aprevious model de�ned by Jukes and Cantor [34] for sequences of four-state characters(A,C,G,T). The reason for resorting to the two-state Cavender-Farris model is that thefour basic molecular states can be partitionned into two groups: purines (A and G)and pyrimidines (C and T). Substitutions between states of the same group, numerousand of poor information, are sometimes ignored by biologists who then only considersubstitutions from one group to the other.The Cavender-Farris model of evolution assumes that a sequence of charactersevolves from the root to the leaves of a model tree T , the characters evolving iden-tically and independently (i.i.d.) along its edges and the states at its root having equalprobability to be 0 or 1. The model associates independently with every edge e in T aprobability p(e) (0<p(e)<:5) of observing di�erent states at its two end-points for anygiven site of the sequence. This probability is lower than the expected number of substi-tutions which e�ectively occurs along e on this site, since multiple changes can lead toobserve a similar state for the site at the two end-points of e. Let l(e) be the expectednumber of substitutions along edge e, we have the formula l(e) = �12 ln(1�2p(e)). Thisformula is obtained by considering the Cavender-Farris model of evolution as a Poissonprocess. The tree T , associated with valuations l(e), de�nes the tree distance DT (cf.de�nition 8) that we seek to retrieve and which can be estimated from the sequences.The result of k characters evolving under the Cavender-Farris model is a set of binarysequences of length k obtained at the leaves of T . Let fxy be the average frequency withwhich we observe a di�erence for a site between sequences of the species x and y, andlet pxy denote the model probability of observing a change between x and y, so thatpxy = E(fxy). The evolutive distance DTxy between the two species, i.e., the expectednumber of mutations between x and y, is given by DTxy=�12 ln(1�2pxy). Therefore, theestimated evolutive distance between species x and y is obtained by D̂xy=�12 ln(1�2fxy).5.2 Inferring the r4-trees through the Four Point MethodLet D̂ be a distance (or dissimilarity) matrix obtained from character sequences availablefor the studied species. D̂ is a tree distance, i.e., is represented by a unique positivelyvalued tree, i� it satis�es the four-point condition [14] (also called the additivity condi-tion): for any four species x; y; z; t, the larger two of the three sums D̂xy+D̂zt, D̂xz+D̂yt,D̂xt+D̂yz are equal. If D̂xy+D̂zt is the smallest sum, then there must be at least oneedge separating x; y from z; t in the tree representing D̂. This topological constraintcorresponds to the r4-tree xyjzt.The r4-tree inference method FPM [6, 14, 22, 45] is designed on this basis, but can



be applied to any dissimilarity matrix D̂ and not only to tree distances:�D̂xy+D̂zt < � D̂xz+D̂ytD̂xt+D̂yz �, xyjzt :If none of the three sums is strictly lower than the others, then no r4-tree is inferred forthe quartet. FPM is proven to be well-founded for various phylogenetic reconstructioncriteria. For example, it is shown that FPM systematically indicates the same r4-treeas the least-square criterion (with the positivity constraints) [28] and the minimumevolution criterion [44].5.3 Convergence resultsWe proceed in several steps: �rst, we give the condition under which FPM correctlyrecovers an r4-tree as a function of the evolutive distance between studied species; then,we give a bound on the probability that any of these distances are accurately estimated;last, we obtain the probability that the species' phylogeny is fully (or partially) recoveredas a function of the number of characters, which equivalently gives us the number ofcharacters required to correctly infer the phylogeny with a �xed probability.Lemma 4 (Erd�os et al 97, modi�ed) Let T be a phylogeny on species S, let D̂ bean estimate of DT and let x; y; z; t2S. If xyjzt2QT and L1(DT ; D̂) <Pe2[xz]\[yt] l(e)2 ,then FPM returns the correct r4-tree xyjzt for the quartet x; y; z; t.The following result can be shown (see appendix) by using Hoe�ding's third inequality[32]:Lemma 5 Let T be a Cavender-Farris tree, and let d=maxDTxy denote the maximumdistance induced by the model between two species. Let D̂ be the estimated evolutivedistance observed between species S on the basis of k characters and corrected accordingto the Cavender-Farris model. For two species x and y, we haveP (jDTxy � D̂xyj < �) � 1� 2 e�(e�2��1)2e�4dk=2 :Using Hoe�ding's third inequality instead of Azuma-Hoe�ding's inequality [3], as in [22],leads to a better bound because the former is less general and tighter in our context.The Q� method enables us to recover the entire topology of T i� all r4-trees of QT arecorrectly inferred. As a consequence of lemma 4, this event occurs when L1(DT ; D̂) <mine2ET l(e)2 . Thus, this requires that the �n2� distances in D̂ be su�ciently close tothose induced by T . Then, from lemma 5, we obtain:



Theorem 2 Under the Cavender-Farris model of evolution, the probability that the Q�method recovers the entire topology of an unknown tree T is at least1� n2e�f2e�4dk=2where f =mine2ET l(e) (assuming f close to 0). Equivalently, if we suppose k charactersevolve on a phylogeny T under the Cavender-Farris model, then T � = T with probabilityat least 1�� (�>0) if k > 2 ln(n2� )e4df2 :It appears that the di�culty comes from short edges. However, since the inferenceof the di�erent edges is independent for the Q� method, we can obtain the followingresult in the same way as above:Theorem 3 Under the Cavender-Farris model of evolution, the probability that the Q�method recovers an edge e is at least1� n2e�l(e)2e�4dk=2:The same property holds for the Addtree method [45] but not for the Neighbor Joining(NJ) method [44], since in this method, the inferred edges are interdependent. However,if we consider retrieving the whole structure of the unknown phylogeny, the same boundas obtained on the convergence rate of the Q� method (theorem 2) can be shown forNJ and Addtree. This bound is better by a constant factor than the bound on theconvergence rate of the SP method [1] (as used by Farach and Kannan [23]). It di�ersfrom the bound shown for the SQM method mainly because it depends on the diameterof the phylogeny, whereas the bound for SQM depends on the depth of the phylogeny.In the worst case, the diameter and the depth are of the same order, but for somedistributions of trees (e.g., the Yule-Harding distribution [31]), the depth is signi�cantlyless than the diameter with high probability. However, both measures are bounded bya small constant in practice. E.g., Nei [42] recommends D̂xy < 1. A higher (but stillsmall) constant can be considered if the evolutionary model takes rates heterogeneityinto account. The reason for which biologists usually consider data sets with small D̂xyvalues, is that high distances have a high variability, resulting in unprecise distanceestimations, with the risk of leading any phylogenetic reconstruction method to infererroneous trees. Thus, the di�erence between diameter and depth might be worthy inpractice, but leads to bounds of the same order (see [4] for other reasons supporting thisclaim).Considering d as a constant implies that the bound obtained on the convergencerate of all the above mentioned algorithms is O( log nf2 ). f can be considered as varying



in a sense opposite to n, because increasing n necessarily leads to decreasing f (newlyadded species break existing edges). In practice, biologists are confronted with problemsresulting from the presence of small edges in the tree [25, 33, 48]. f can be very small,leading the above methods to require too high a number of characters to produce thecorrect tree with high probability. Moreover, it is improbable that a method will everexist that can produce a reliable estimate of the complete phylogeny, in this area of theparameter space.Finally, note that theorem 2 easily extends to more general stochastic models (cf.appendix). E.g., for the generalized Jukes Cantor model [49] (enabling to considermolecular characters with 4, 20 or more states), we have k > 2 1f2 ln(n2� )e2d=b. With fourstates, we have b = 1 � (a2 + b2 + c2 + d2), where a (resp. c; g; t) is the probability ofstate A (resp. C,G,T) at the root. In that framework, the result for the original Jukesand Cantor model [34] is obtained with b = 34 , and for the Cavender Farris model withb = 12 .6 Experimental resultsThe previous section showed theoretical worst case guarantees for the Q� method. Herewe focus on experimental results, to give insights as to the usefulness of the Q� methodfor reconstructing phylogenies in practice.6.1 Real dataThe condition for edges to be in T � is that all r4-trees they induce are in the data set Q.This could seem too strict a constraint to produce any edge, and it is indeed the case forrandom data. For highly diverging sequences, i.e., submitted to a high evolutive noise,it is likely that the Q� method will only detect part of the inter-species relationships.However, most biological data sets do contain information that can be extracted by theQ� method, as shown by the trees we obtained by applying the IQ� algorithm to severalreal data sets taken from the literature: we obtained at least partially resolved trees(i.e., no star tree) and even some fully resolved trees. As an example, we present in Fig.6 the tree obtained for 11 mammals from a data set provided by D. Penny [43]. Thedata consists of DNA sequences of 191 nucleotides, obtained from several genes (�- and�-hemoglobins, �brinopeptides A and B, cytochrome c, myoglobins, �-chrystallin). Ther4-tree set Q was obtained by running FPM on distances collected from the sequences,corrected according to the Jukes Cantor model of evolution [34] (for this purpose weused the dnadist program of the phylip package [27]). Most of the inferred inter-species relationships co��ncide with what is expected, e.g., primates (human, gorilla,ape) and ungulates (cow, sheep, pig, horse). The Dog-Kangaroo group, also inferred



by other methods, such as NJ (see [43]) and Maximum Parsimony (as can be checkedby running existing software [27]), may be suspected of being incorrect, but Penny etal [43] report that they did not reach any �rm conclusion concerning that edge. TheQ� relation takes no decision concerning the position of the rodent and the rabbit, inrelation to the other mammals. To date, there is no consensus on the position of therodent and the recent polemic concerns the possibility of the rodent being at the rootof the mammalian evolution [21, 29].Running times of the method are reasonable. For example, a non-optimized versionof IQ� required 0:03 seconds (including the time consuming I/O operations) to computethe above tree on 11 species (330 r4-trees processed) on a SUN SPARC 5. In contrast,inference of the r4-trees, including distance corrections, required 0:07s.6.2 Simulated dataTo further investigate the performances of the Q� method, we performed simulationsunder various conditions of evolution, along the lines of [11, 37]. We generated rootedphylogenies by randomly chosing their structure from the Yule-Harding distribution[2, 31] and �xing their edge-lengths according to a Poisson model. The evolution ofmolecular sequences was then simulated along the edges of these phylogenies, from theroot to the leaves, according to a given condition of evolution (fast evolutionary rateson all edges, medium rates on all edges, slow rates on all edges, fast/slow rates on halfof the edges, fast/slow rates on half of the sites) and to the Kimura 2-parameter modelof evolution [36]. This model was applied with a transition/transversion rate of 2:0.For each run, a data set was made up by taking the sequences obtained at the leavesof the phylogeny and converting them into a distance matrix, which was then correctedaccording to the Kimura model. In this way, we generated 25; 000 data sets on 10 speciesfor the �ve conditions of evolution previously de�ned. We applied the Q� method (i.e.,the FPM method, then the IQ� algorithm) independently to each data set, measuringeach time the number of incorrect edges inferred by the method (which may be seenas false positives), as well as the size of the tree T � it output. The same process wasapplied to the NJ method. This method always inferred a fully resolved tree, so thateach time it inferred a wrong edge, it forgot a correct edge (which may be seen as a falsenegative).Depending on the condition of evolution, the sequence length and the data set, someedges of the model phylogeny T did not support any mutation. As a result, data setsdid not always contain information for each edge of T (which mimics to some extentreal situations). In these cases, the reconstruction method had no support to infer thecorresponding edges. To account for this phenomenon, we also measured, for each dataset, the number eR of realized internal edges, i.e., internal edges of the phylogeny whichsupported at least one substitution [38].



Table 1 displays, the experimental results obtained for the various conditions ofevolution and sequence lengths.Results con�rm that the Q� method usually produces trees which possess almostonly safe edges. More precisely, it induced less than one wrong edge in ten trees (�1:3% incorrect edges) on average over all conditions of evolution. Even for the mostdi�cult condition considered, i.e., unequal rates of evolution among di�erent sites (whichviolates an assumption of the Kimura model and thus lowers the accuracy of the distancecorrections), the Q� method only induced � 3:9% incorrect edges on average. As aconsequence of inferring almost only safe edges, Q� usually produces trees which are tosome extent partially resolved (eT �<100%). This implies that some correct edges werenot inferred. However, less than 1=3 of the correct edges were missing on average (thepercentage of false negatives are obtained from Table 1 by 1�%eT �+%efp). Moreover,we can see from the table that there is a real correlation between %eR and %eT , meaningthat the Q� method does not try to randomly resolve edges for which the data set doesnot contain any information.This behavior contrasts with that of most other methods, which infer fully resolvedtrees but usually with a non-negligible percentage of unsafe edges. E.g., in the simula-tions, the NJ method always inferred fully resolved trees, containing on average morethan one wrong edge in a tree, i.e., � 15:3% incorrect edges. The reason why usualmethods infer fully resolved trees lies in the objective criterion they optimize: its valuecan always be improved by adding a new edge to the constructed tree. Thus, the re-sulting tree usually contains some edges speci�c to the data set rather than from thespecies' history. Biologists are aware of this over�tting problem from several studiesshowing a high variability observed within trees obtained by di�erent methods on thesame piece of data [26, 37], or when slightly varying the set of studied species [39, 43].The Q� method is one of the few methods which tries to avoid this over�tting e�ect (see[9] for other methods designed in that sense).Because of their di�erent purposes, it is di�cult to compare the Q� method to theusual reconstruction methods on the basis of their total error (i.e., accounting for bothfalse positives and false negatives). When giving the same cost to false positives andfalse negatives, we observed that NJ was on average better than Q� in 7 conditionsof evolution. However, in practice false positives are given much more importance, andgiving them only twice as much importance as the false negatives (which can be thoughtas a minimum) leads the Q� method to outperform the NJ in 9 conditions over 10.



7 ConclusionWe proposed a new quartet method, called Q�, to reconstruct phylogenies. This methodhas the speci�city to infer trees containing only combinatorially safe edges. As a result,this method is unlikely to produce incorrect edges (as con�rmed by the experimentalstudy). This suits the requirements of most biologists well, as they prefer having par-tially resolved trees with safe edges, rather than fully resolved trees with a non-negligiblenumber of unsafe edges, as usually proposed by other methods. Unsafe edges greatlylimit the con�dence in the proposed tree, as all the inferred edges are usually interde-pendent. Note that this is not case in the Q� method, where each edge only depends onthe data r4-trees.The objective criterion on which the Q� method relies (maximum tree-like subsetof r4-trees) can be exactly optimized in O(n4), where n is the number of species. Thisagain contrasts with most of the usual criteria used to reconstruct phylogenies, whichare NP-hard to optimize [19, 20, 46]. It is unlikely that we can improve the O(n4) timecomplexity for computing Q� in the general case, i.e., when the input is an arbitrary setof resolved quartets. However, if we consider as input a dissimilarity matrix D̂ on thespecies, we might hope to lower the above complexity due to the fact that D̂ containsonly O(n2) information, from which we can infer all the resolved quartets by a distanceprinciple.Simulations showed that the Q� method usually produces a partially resolved tree.If one aims at a more resolved tree, one can still consider T � as a safe basis to which newedges should be added, e.g., see [9, 12]. Warnow also recently showed the success of thisapproach [50] by completing T � with the compatible edges of the NJ tree. The goodresults obtained through this practice [12, 50] also show that the Q� method infers anon-negligible number of \non-trivial" edges, i.e., edges which are not recovered by moretraditional methods. This enlights another aspect of its usefulness. Moulton and Steel[41] also proposed completing the tree T �, by considering a re�nement of the Bunemanrelation (to which this T � is equivalent) which can be computed in polynomial time[10, 13]. There is now some need of an experimental study to compare the variousmethods proposed for completing T �.Another topic worth exploring is the case where the input r4-tree set can containseveral resolutions for some quartets (e.g. as with the ordinal r4-tree inference method[35]). In this paper, we chose to remove such r4-trees from the input data set, butdesigning an algorithm which can really handle such cases would be interesting.Another issue to examine is whether the Q� method may be of help to tackle inpractice the NP-hard quartet consistency problem [46]. E.g., the tree T � might be agood basis for a branch-and-bound algorithm.Finally, note that the source code and the executable of the Q� method are availableat the address http://www.lirmm.fr/~berry.
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8 Appendices8.1 Proof of theorem 1The IQ� algorithm uses few data structures. The array Ext, addressed by the various component,indicates for each one if it can be extended from the current step i to the next one. For each component� we also store the species it contains in a set X�, implemented as a chained list. The L� sets are codedas binary arrays of size n, indicating for each species if it belongs to � and in the same time to an r4-treerequired by � but lacking in Q. Bipartitions of B�i are also stored as binary arrays.Algorithm 2:� The initializations require only constant time.� At each of the O(n) steps, the X� sets are initialized (line 1) by a simple recursive search of thetree T �i�1. This requires each time O(n2), proportional to the information to be stored, and thusO(n3) over the whole algorithm.� One postordered search and a preordered one are initiated at each step of the main loop. Thecosts of these searches are detailed below (Algorithm 3).� The set B�i is initialized in O(n) by creating the bipartition figj[i � 1]. From the Ext array weknow in O(1) if each of the O(n) components of bipartitions of B�i�1 can be extended (line 2).In the worst case all bipartitions of B�i�1 can be extended, but one of them at most can supportthe addition of species i in its both components: the edge on which i is attached to the tree (ifnot on a node r, cf Fig. 3). Thus, bipartitions of B�i are simply obtained by adding species iin O(1) time to the O(n) bipartitions of B�i�1 and by making a copy of one of them at most inO(n), before adding i to it. Thus obtaining B�i requires O(n) at each step, i.e., O(n2) globally.� The tree T �i is obtained in linear time from B�i by using Meacham's (1981) or Gus�eld's (1991)algorithm.Algorithm 3:The tree T �i�1 contains O(n) edges, each one being processed twice at step i: once during thepreordered search and once during the preordered one. Thus, from the global standpoint, O(n2) edgese� are considered over the whole algorihtm, i.e., Algorithm 3 is performed O(n2) times. We now considerthe various operations performed during this algorithm.line 3: Emptying L� when a leaf is encountered in the tree (line 3) only costs O(n), thus these operationis in time O(n3) over the whole algorithm.line 4: O(n2) recursive calls are issued.line 5: The initialization of L� is done in O(n2) since each union requires O(n). Since algorithm 3 isperformed O(n2) times, this operation globally costs O(n4).lines 6-8: This set of operations consists in examining once each of the 3�n4� possible r4-trees (as establishedby Lemma 3). Issuing the request to Q for each r4-tree is done in time O(1) from the X�sets (coded as chained lists). Moreover, knowing if a given r4-tree is contained in Q (line 8) isimmediate since we reasonnably assume that Q is stored as a four-dimentionned array (if not,an O(n4) simple preprocessing insures it). This array indicates for each quartet of species thecorresponding r4-tree present in Q (or the absence of r4-tree). Adding a species x to L� is alsoimmediate.As a result, lines 6-8 globally require time O(n4). Moreover, the leading coe�cient is small since3�n4� < c:n4, with c < 1.



line 9: Deciding whether a component can be extended requires the complete examination of L�, i.e.,O(n). Ext� is set in O(1). Thus, over the O(n2) executions of Algorithm 3, this line requirestime O(n3).The above analysis shows that IQ� computes T � and B� in time O(n4), steps 5 and 6-8 being themost time-consuming. �8.2 Proof of lemma 5For the sake of clarity, we denote DTxy by D, D̂xy by D̂, pxy by p and fxy by f . We give the proof forthe generalized Jukes Cantor model [49], where we haveD = �b ln(1� p=b) and D̂ = �b(1� f=b) ;where b = 1�Xs2X p(s)2 ;X being the set of all states that considered characters can take (e.g., X = fA;C;G; Tg for nucleotidesequences) and p(s) being the probability of observing state s (the process is assumed to be at equilib-rium). An important property used below is that the function �b ln(1� p=b) is strictly increasing.To prove the lemma, we �rst concentrate on the eventjD � D̂j � � : (1)We separately analyze the two cases:1. D > D̂ (and p > f): jD � D̂j � � � D � D̂ � �� b ln� b� pb� f � � � �� 1� p� fb� f � e��=b� p� f � (1� e��=b)(b� f)) p� f � (1� e��=b)(b� p) : (2)2. D < D̂ (and f > p): jD � D̂j � � � D̂ �D � �� b ln�b� fb� p� � � �� 1 + p� fb� p � e��=b� f � p � (1� e��=b)(b� p) : (3)From (2) and (3) we have:jD � D̂j � � ) jp� f j � (1� e��=b)(b� p)) jp� f j � b(1� e��=b)e�D=b � b(1� e��=b)e�d=b ; (4)(since d = maxxy DTxy).



Hoe�ding's third inequality [32] states that:P (jp� f j�g) � 2 e�2kg2 :We use this inequality in the following way:P �jp� f j � b(1� e��=b)e�d=b� � 2 e�2kb2(1�e�=b)2e�2d=b : (5)From (4) and (5) we then haveP (jD � D̂j � �) � 2 e�2kb2(1�e��=b)2e�2d=b ;which gives the result: P (jD � D̂j < �) � 1� 2 e�2kb2(1�e��=b)2e�2d=b :For example, for the Cavender Farris model, where we have b = 12 , this givesP (jD � D̂j < �) � 1� 2 e� 12 k(1�e�2�)2e�4d : �



Algorithm 1: Deciding whether a component � of a B�[i�1] bipartition can be ex-tended to include the species i.L�  SjLj \ �foreach pair �j ; �k of maximal subtrees of �foreach x2�; y2�j ; z2�k (�xijyz2Rj;k� )if xijyz 62Q then L�  L� [ fxgif L� = ; then answer YES else answer NO.



Algorithm 2: Main part of IQ�.Input : A set Q of r4-trees de�ned on species 1; 2; : : : ; n.Output: The tree T � � Q�./* Initializations */B�[4]  f f1gjf2; 3; 4g; f2gjf1; 3; 4g; f3gjf1; 2; 4g; f4gjf1; 2; 3g gif 9 r=xyjzt, fx; y; z; tg=f1; 2; 3; 4g and s.t. r 2 Q thenB�[4]  B�[4] [ f fx; ygjfz; tg g , T �[4]  topology of relse T �[4]  star topology on species f1; 2; 3; 4g/* Progressively insert the remaining species */foreach step i 5 to n1 foreach subtree �2T �[i�1] do compute the set X� of species contained in �Let e be the edge incident to the root of T �[i�1]PostOrder(e) /* process components associated with upper subtrees of T �[i�1] */PreOrder(e) /* process components associated with lower subtrees of T �[i�1] *//* Deduce B�[i] and T �[i] */B�[i]  f figjf1; : : : ; i� 1g g2 foreach bipartition �j� 2 B�[i�1]if Ext� then B�[i]  B�[i] [ f� [ figj�gif Ext� then B�[i]  B�[i] [ f�j� [ figgConstruct T �[i] from B�[i]



Algorithm 3: PostOrder(e�): performs a postordered search of the lower subtree� incident to edge e�. This enables us to know if the component � associated withthe upper subtree of e� can contain species i, i.e., if �j�2B�[i�1] can be extended into� [ figj�2B�[i].3 if the lower subtree induced by e� is a leaf then L�  ;else/* Process the components which contain � */4 foreach ej ; j21::l, child edge of e� in T �[i�1] do PostOrder(ej)/* Process � *//* 1: reuse results obtained for r4-trees r2R��Rc� */5 L�  Sj21::l Lj \X�/* 2: examine r4-trees r2Rc� */6 foreach pair j; k 2 1::l of child edges of e� do/* examine r4-trees of Rj;k� */7 foreach r4-tree xijyz s.t. x2X�; y2X�j ; z2X�k do8 if r =2Q thenL�  L� [ fxg /* keep track of species belonging to � and to anr4-tree responsible for the non-extension of � *//* Decide whether component � can be extended */9 if L�=; thenExt� = YES /* all r4-trees required by � to include i are present in Q */else Ext� = NO /* some r4-trees required by � are lacking in Q */



Table 1: Experimental results for the Q� and NJ methodrates #sites % efp(NJ) % efp(Q�) % eT� % eRslow 300 35.14 1.00 54.7 58.61000 14.00 0.71 76.9 82.4medium 300 11.71 0.57 72.4 88.71000 5.29 0.14 84.7 96.5fast 300 8.86 0.28 75.1 95.01000 3.57 0.14 86.4 98.7fast/slowper edge 300 22.14 1.42 59.7 78.31000 12.43 1.14 71.0 90.8fast/slowper site. 300 22.29 3.43 59.4 95.11000 18.29 4.43 70.9 98.4Note to Table 1: results (averaged over 25; 000 data sets on 10 species) obtained by the Q� and the NJmethod for reconstructing a phylogeny under various conditions of evolution for sequences of 300 and1000 sites. The following conditions of evolution were investigated: slow rates (� 0:02 expected numberof mutations per site from root to a leaf), medium rates (� 0:1 expected mutations), fast rates (� 0:2expected mutations), fast/slow per edges (fast rate on half of the edges and slow rate on the others),and fast/slow per site (fast rate on half of the sites, slow rate on the others). % efp(NJ) and % efp(Q�)express (in percent) the number of incorrect edges inferred by the corresponding method divided bythe number of internal edges of the correct phylogeny T (i.e., 7). % eT� is (in percent) the number ofinternal edges contained in the tree inferred by the Q� method divided by the number of internal edgesof T . % eR is (in percent) the number of internal edges of the model phylogeny where mutations actuallyoccured when generating a data set, divided by the number of internal edges of T .
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Figure 1: The four possible subtrees on four species: (a-c) the three r4-trees; (d) thestar topology.
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