
http://wrap.warwick.ac.uk/

Original citation:
Goldberg, Leslie Ann, MacKenzie, P. D., Paterson, M. S. and Srinavasan, A. (1998)
Contention resolution with constant expected delay. University of Warwick. Department
of Computer Science. (Department of Computer Science Research Report).
(Unpublished) CS-RR-340

Permanent WRAP url:
http://wrap.warwick.ac.uk/61053

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/29189457?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/61053
mailto:publications@warwick.ac.uk

Contention Resolution with Constant Expected Delay�Leslie Ann Goldbergy Philip D. MacKenziez Mike Paterson xAravind Srinivasan{March 25, 1998AbstractWe study contention resolution in a multiple-access channel such as the Ether-net channel. In the model that we consider, n users generate messages for thechannel according to a probability distribution. Raghavan and Upfal have givena protocol in which the expected delay (time to get serviced) of every messageis O(logn) when messages are generated according to a Bernoulli distributionwith generation rate up to about 1=10. We present a protocol in which the ex-pected average message delay is O(1) when messages are generated according toa Bernoulli distribution with a generation rate smaller than 1=e. To achieve thisresult we �rst consider an analogous model in which users are synchronized (i.e.,they agree about the time), there are potentially an in�nite number of users,and messages are generated according to a Poisson distribution with generationrate up to 1=e. (Each message constitutes a new user.) We give a protocol inwhich the expected delay of any message is O(1). Next we show how to simu-late the protocol using n synchronized users. Finally, we show how to build thesynchronization into the protocol.�Preliminary versions of this work appeared in a paper written by the third and fourth authors(Proc. IEEE Symposium on Foundations of Computer Science, pages 104{113, 1995), and in apaper written by the �rst and second authors (Proc. IEEE Symposium on Foundations of ComputerScience, pages 213{222, 1997).yleslie@dcs.warwick.ac.uk. Department of Computer Science, University of Warwick, Coven-try CV4 7AL, United Kingdom. This work was supported by EPSRC Research Grant GR/L60982| Design and Analysis of Contention-Resolution Protocols, by ESPRIT Project 21726 | RAND-IIand by ESPRIT LTR Project 20244 | ALCOM-IT.zphilmac@cs.idbsu.edu. Department of Mathematics and Computer Science, Boise State Uni-versity, Boise, ID, 83725. Part of this work was performed at Sandia National Labs and supportedby the U.S. Dept. of Energy under contract DE-AC04-76DP00789.xmsp@dcs.warwick.ac.uk. Department of Computer Science, University of Warwick, CoventryCV4 7AL, United Kingdom. This work was supported by ESPRIT LTR Project 20244 | ALCOM-IT.{aravind@iscs.nus.edu.sg. Department of Information Systems and Computer Science, Na-tional University of Singapore, Singapore 119260. Part of this work was supported by ESPRIT LTRProject 20244 | ALCOM-IT, and was done while this author was visiting the University of War-wick. Part of this work was done while visiting the Max-Planck-Institut f�ur Informatik, Im Stadtwald,66123 Saarbr�ucken, Germany. Part of this work was supported by National University of SingaporeAcademic Research Fund Grants RP960620 and RP970607, and was done at the National Universityof Singapore. 1

1 IntroductionA multiple-access channel is a broadcast channel that allows multiple users to com-municate with each other by sending messages onto the channel. If two or more userssimultaneously send messages, then the messages interfere with each other (collide),and the messages are not transmitted successfully. The channel is not centrally con-trolled. Instead, the users use a contention-resolution protocol to resolve collisions.Although the most familiar multiple-access channels are local-area networks (such asthe Ethernet network) which are implemented using cable, multiple-access channelsare now being implemented using a variety of technologies including optical commu-nications. Thus, good contention-resolution protocols can be used for communicationbetween computers on local-area networks, for communication in optical networks,and (therefore) for simulating shared-memory parallel computers (such as PRAMs)on optical networks.Raghavan and Upfal considered the model in which n users generate messagesaccording to a Bernoulli distribution with total generation rate up to about 1/10 [21].(More details about the arrival distribution are given in Section 1.1.) They gavea protocol in which the expected delay (time to get serviced) of every message isO(log n). Using the same model, we present a protocol in which the expected averagemessage delay is O(1) provided that the total generation rate is su�ciently small (lessthan 1=e). We derive our result by considering an analogous model in which usersare synchronized (i.e., they agree about the time), the number of users is potentiallyin�nite, and messages arrive according to a Poisson distribution with parameter upto about 1=e. Each message constitutes a new user. We give a protocol in whichthe expected delay of any message is O(1). The synchronizing of our users allowsour protocol to use di�erent time steps for di�erent purposes. Thus, for example,those time steps that are equal to 1 modulo 2 can be used for messages making their�rst attempt, time steps equalling 2 modulo 4 can be used for messages making theirsecond attempt, and so on. The partitioning of time steps is what makes it possibleto have bounded expected delay.Once we have proved that the expected delay of each message is O(1), we showhow to simulate the protocol using n synchronized users. Here each user is responsiblefor a potentially in�nite number of messages (rather than for a single message) andthe di�cult part is dealing with all of the messages in constant time.The analysis of our n-user protocol requires the n users to have synchronizedclocks. We next show how to simulate the synchronized clocks (for reasonably longperiods of time) by building synchronization into the protocol. Thus, our �nal proto-col consists of \normal" phases in which the users are synchronized and operating asdescribed above and \synchronization phases" in which the users are synchronizing.The synchronization phases are robust in the sense that they can handle pathologicalsituations (such as users starting in the middle of a synchronization phase). Thus, weare able to achieve constant expected message delay even for models in which usersare allowed to start and stop (see Section 1.1 for details).
2

1.1 The Multiple-Access Channel ModelFollowing previous work on multiple-access channels, we work in a time-slotted modelin which time is partitioned into intervals of equal length, called steps. During eachstep, the users generate messages according to a probability distribution. During eachstep, each user may attempt to send at most one message to the channel. If morethan one attempt is made during a given time step, the messages collide and mustbe retransmitted. If just a single user attempts to send to the channel, it receives anacknowledgment that the transmission was successful. Users must queue all unsuc-cessful messages for retransmission and they use a contention-resolution protocol todecide when to retransmit.In the Synchronized In�nitely-Many Users Model, there is a single parameter �.The number of messages generated at each step is determined according to a Poissondistribution with parameter �. Each message is deemed to be a new user. After auser has sent its message successfully, it leaves the system.There are two variants of the Finitely-Many Users Model. In both variants, thereare n users. The �rst variant (which we consider in Section 3) is the SynchronizedFinitely-Many Users Model. In this model, the n users are synchronized and they allrun for the entire time that the protocol is running. When we consider this model, wewill need to consider a variety of message-arrival distributions. In particular, we willsay that an arrival distribution is f�ig1�i�n-dominated (for �1; : : : ; �n > 0) ifPi �i issu�ciently small (i.e., at most � for � < 1=e) and for every user i, every time step tand every event E concerning the arrival of messages at steps other than t or to usersother than i, the probability, conditioned on event E, that user i generates a messageat step t is at most �i.The second variant of the Finitely-Many Users Model is called the UnsynchronizedFinitely-Many Users Model. In this model, the n users are not synchronized and areallowed to start and stop over time, provided that each user runs for at least a certainpolynomial number of steps every time it starts (see Section 4 for details). We willgeneralize the de�nition of a f�ig1�i�n-dominated distribution so that it applies tothis model by stipulating that no messages are generated at users which are stopped.We will be most interested in the f�ig1�i�n-Bernoulli arrivals distribution, in whicheach user i is associated with a positive probability �i and it generates a messageindependently with probability �i during each time step that the user is running.Once again, we require Pi �i < 1=e. The result of Raghavan and Upfal applies toany f�ig1�i�n-Bernoulli arrivals distribution in which Pi �i � �0 where �0 � 1=10.In the Synchronized In�nitely-Many Users Model we will show that the expecteddelay of any message is O(1). In the Unsynchronized Finitely-Many Users Model wewill show only that the expected average delay of messages is O(1). To be precise,let Wi be the delay of the ith message, and letWavg = limm!1 1m mXi=1Wi:(Intuitively, Wavg is the average waiting time of messages in the system.) We willshow that if the message generation rate is su�ciently small (less than 1=e), thenE[Wavg] = O(1). 3

The multiple-access channel model that we have described is acknowledgment-based because the only information that a user receives about the state of the channelis the history of its own transmission attempts. (In the Unsynchronized Finitely-ManyUsers Model, we also assume that the users all know some upper bound on the numberof simultaneous live users.) Other models have been considered. One popular modelis the ternary feedback model in which, at the end of each time step, each user receivesinformation indicating whether zero, one, or more than one messages were sent to thechannel at that time step. Stable protocols are known [12, 23] for the case in which� is su�ciently small (at most :4878 � � �). However, Tsybakov and Likhanov [22] haveshown that, in the in�nitely-many users model, no protocol achieves a throughputbetter than 0.568. (That is, in the limit, only a 0.568 fraction of the time-steps areused for successful sends.) By contrast, Pippenger [20] has shown that if the exactnumber of messages that tried at each time step is known to all users, there is a stableprotocol for every � < 1. We believe that the weaker acknowledgment-based modelis more realistic for purposes such as PRAM emulation and optical routing and wefollow [13, 17, 21] in focusing on this model henceforth.In this paper we focus on the dynamic contention-resolution problem in whichmessages arrive according to a probability distribution. Other work [17] has focussedon the static scenario in which a given set of users start with messages to send.Similar static contention-resolution problems arise in optical routing [4, 8, 9] and insimulating shared memory computers on distributed networks [7, 10, 17].1.2 Previous workThere has been a tremendous amount of work on protocols for multiple-access chan-nels. Here we will only discuss theoretical results concerning dynamic protocols in theacknowledgment-based model that we use. We refer the reader to the papers citedhere and in Section 1.1 for work on protocols using di�erent assumptions or models.The multiple-access channel �rst arose in the context of the ALOHA system,which is a multi-user communication system based on radio-wave communication [1].As we noted earlier, it also arises in the context of local-area networks. For example,the Ethernet protocol [19] is a protocol for multiple-access channels. Much researchon multiple-access channels was spurred by ALOHA, especially in the informationtheory community; see, for example, the special issue of IEEE Trans. Info. Theoryon this topic [15].We now give an informal description of a common idea that runs through mostknown protocols for our problem; this is merely a rough sketch, and there are manyvariants. In the In�nitely-Many Users Model, consider a newly-born message P . Pcould try using the channel a few times with some fairly high probability. If it issuccessful, it leaves the system; if not, then P could guess that its trial probabilitywas \too high", and try using the channel with lower and lower probability until itsuccessfully leaves the system.One way to formalize this is via backo� protocols, which are parameterized bya non-decreasing function f : Z+ ! Z+, where Z+ denotes the set of non-negativeintegers. In the In�nitely-Many Users Model, a message P that has made i � 0unsuccessful attempts at the channel, will pick a number r uniformly at randomfrom f1; 2; : : : ; f(i)g, and will next attempt using the channel r time steps from4

then. If successful, P will leave the system, otherwise it will increment i and repeatthe process. In the Finitely-Many Users Model, each user queues its messages andconducts such a protocol with the message at the head of its queue; once this messageis successful, the failure count i is reset to 0. If f(i) = (i + 1)�(1) or 2i, then sucha protocol is naturally termed a polynomial backo� protocol or a binary exponentialbacko� protocol, respectively. (The function f , if it exists, must be chosen judiciously:if it grows too slowly, the messages will tend to try using the channel too often, thusleading to frequent collisions and hence long message lifetimes. But if f grows tooquickly, the messages will tend to use the channel too infrequently, and again thethroughput rate will su�er as messages are retained in the system.)For our model of interest, the dynamic setting with acknowledgment-based pro-tocols, the earliest theoretical results were negative results for the UnsynchronizedIn�nitely-Many Users Model. Kelly [16] showed that, for any � > 0, any backo�protocol with a backo� function f(i) that is smaller than any exponential functionis unstable in the sense that the expected number of successful transmissions to thechannel is �nite. Aldous [2] showed, for every � > 0, that the binary exponen-tial backo� protocol is unstable in the sense that the expected number of successfultransmissions in time steps [1; t] is o(t) and that the expected time until the systemreturns to the empty state is in�nite.In striking contrast to Kelly's result, the important work of [13] showed, amongother things, that in the Unsynchronized Finitely-Many Users Model for all f�ig1�i�n-Bernoulli distribution with Pi �i < 1 all superlinear polynomial backo� protocolsare stable in the sense that the expected time to return to the empty state andthe expected average message delay are �nite. However, they also proved that theexpected average message delay in such a system is
(n). Raghavan and Upfal showedthat, for any f�ig1�i�n-Bernoulli distribution with Pi �i up to about 1=10, there isa protocol in which the expected delay of any message is O(log(n)) [21]. It is alsoshown in [21] that, for each member P of a large set of protocols that includes allknown backo� protocols, there exists a threshold �P < 1 such that if � > �P thenE[Wave] =
(n) must hold for P.1.3 Our resultsWe �rst consider the Synchronized In�nitely-Many Users Model and give a protocolin which the expected delay of any message is O(1) for message generation rates upto 1=e. (Note that this arrival rate threshold of 1=e is higher than the threshold ofapproximately 1=10 allowed in [21]. We argue in Section 5 that handling arrival ratesgreater than 1=e is a challenging problem.) As far as we know our protocol is the�rst acknowledgment-based protocol which is provably stable in the sense of [13]. Aninteresting point here is that our results are complementary to those of [13]: while thework of [13] shows that (negative) results for the In�nitely-Many Users Model mayhave no bearing on the Finitely-Many Users Model, our results suggest that betterintuition and positive results for the Finitely-Many Users Model may be obtained viathe In�nitely-Many Users Model.Our in�nite-users protocol is simple. We construct an explicit, easily computablecollection fSi;t : i; t = 0; 1; 2; : : :g of �nite sets of nonnegative integers Si;t where, forall i and t, every element of Si;t is smaller than every element of Si+1;t. A message5

born at time t which has made i (unsuccessful) attempts to send to the channel sofar, picks a time r uniformly at random from Si;t, and tries using the channel at timer. If it succeeds, it leaves the system. Otherwise, it increments i and repeats thisprocess. We give bounds on the probability that the delay of the message is high andwe use these bounds to show that the expected number of messages (and hence theexpected total storage size) in the system at any given time is O(1), improving onthe O(logn) bound of [21].Once we have proved that the expected delay of each message is O(1), we show howto simulate the In�nitely-Many Users Protocol using n synchronized users, achievinglow expected delay for a variety of message-arrival distributions.Finally, we consider the Unsynchronized Finitely-Many Users Model. Our earlieranalysis required synchronized clocks and we show how to simulate this for reason-ably long periods of time by building synchronization into our �nal protocol. Thesynchronization is complicated by the fact that the model allows users to start andstop over time.The structure of our �nal protocol is simple. Most of the time, the users aresimulating our In�nitely-Many Users Protocol from Section 2. The users occasionallyenter a synchronizing phase to make sure that the clocks are synchronized (or toresynchronize after a user enters the system). Note that the synchronizing phase hassome probability of (undetectably) failing, and thus it must be repeated periodicallyto guarantee constant expected message delay.The idea of the \synchronization phase" was inspired by the \reset state" ideaof [21]. The key idea that allowed [21] to achieve low expected delay is to haveusers detect \bad events" and to enter a \reset state" when bad events occur. Insome sense, the structure of our protocol (normal phases, occasionally interrupted bysynchronization phases) is similar to the structure of [21]. However, there are majordi�erences between them. One di�erence is that, because lack of synchronizationcannot be reliably detected, synchronizing phases must be entered periodically evenwhen no particular bad event is observed. Another di�erence is that users in a resetstate are only allowed to send messages with very low probability, and this helpsother users to access the channel. However, our synchronization phase is designed toaccomplish the more-di�cult task of synchronizing the users (this is needed to obtainconstant expected delay rather than logarithmic expected delay), and accomplishingthis task requires many transmissions to the channel, which prevent access to thechannel by the other users. Thus, synchronization phases are costly in our protocol.A third di�erence is that in [21] a normal phase always tends towards low expecteddelay. When bad situations arise, there is a good probability of them being caught,thus causing a reset state to occur. In our protocol, a normal phase tends towards evenlower (constant) expected delay if the users are synchronized. However, if they are notsynchronized, the normal phase does not necessarily tend towards low expected delay,and there is no sure way to detect that the users are unsynchronized. Thus, the badsituation can only be remedied during the next time the users start a synchronizingphase, which may be after quite a long time! Fortunately, the e�ects of this type ofbehavior can be bounded, so we do achieve constant expected message delay.The synchronizing phase of our protocol is somewhat complicated, because itmust synchronize the users even though communication between users can only beperformed through acknowledgments (or lack thereof) from the multiple-access chan-6

nel. The analysis of our protocol is also complicated due to the very dynamic natureof the protocol, with possibilities of users missing synchronizing phases, trying tostart a synchronizing phase while one is already in progress, and so on. Our synchro-nizing phases are robust, in the sense that they can handle these types of events, andeventually the system will return to a normal synchronized state.To give an idea of the problems that arise when designing a robust synchronizationphase, consider the following scenario. Suppose that the set L of all live users entersa synchronization phase and, halfway through it, another set L0 of users starts up.Since the users in L0 have missed a large part of the synchronization phase, they willnot be able to synchronize with the other users. (This seems to be inherent in anyconceivable synchronization protocol.) There are two possible approaches for solvingthis problem. One is to try to design the protocol so that the users in L detectthe newly started users during the synchronization phase. Then they must somehowresynchronize with the newly joined users. However, any synchronization protocolmust perform various tasks (such as electing a leader) and it is di�cult to detectthe presence of the users in L0 during some of these tasks. A second approach isto allow the users in L to ignore the users in L0 and to �nish their synchronizationphase (either synchronized amongst themselves, or not). Then the set L0 of usersin the synchronization phase will very likely disrupt the normal operations of theusers in L, causing them to synchronize again. But now the users in L0 will beabout halfway through their synchronization, whereas the users in L are just startingsynchronization! Our solution to this problem is a combination of the two approaches,and is described in Section 4.1.4 OutlineIn Section 2 we consider the Synchronized In�nitely-Many Users Model. Subsec-tion 2.1 gives notation and preliminaries. Subsection 2.2 gives our protocol. Subsec-tions 2.3 and 2.4 bound the expected delay of messages. In Section 3 we considerthe Synchronized Finitely-Many Users Model and show how to simulate our protocolon this model, achieving bounded expected delay for a large class of input distri-butions. In Section 4 we consider the Unsynchronized Finitely-Many Users Model.Subsection 4.1 gives notation and preliminaries. Subsection 4.2 gives our protocol. InSection 4.3 we prove the key features of our protocol, namely, a message generated ata step in which no users start or stop soon before or after will have constant expecteddelay, and a message generated at a step in which a user starts soon before or afterwill have an expected delay of O(n37) steps. In Section 4.4 we show that our protocolachieves constant expected message delay for a fairly general multiple access channelmodel, with users starting and stopping.2 The In�nitely-Many Users Protocol2.1 Notation and PreliminariesFor any ` 2 Z+, we denote the set f1; 2; : : : ; `g by [`]; logarithms are to the basetwo, unless speci�ed otherwise. In any time interval of a protocol, we shall say that7

a message P succeeded in that interval if it reached the channel successfully duringthat interval.Theorem 2.1 presents the Cherno�-Hoe�ding bounds [6, 14]; see, e.g., AppendixA of [3] for details.Theorem 2.1 Let R be a random variable with E[R] = � � 0 such that either: (a)R is a sum of a �nite number of independent random variables X1;X2; : : : with eachXi taking values in [0; 1], or (b) R is Poisson. Then for any � � 1, Pr[R � ��] �H(�; �), where H(�; �) := (e��1=��)�:Fact 2.2 is easily veri�ed.Fact 2.2 If � > 1 then H(�; �) � e���=M� , where M� is positive and monotonedecreasing for � > 1.We next recall the \independent bounded di�erences tail inequality" of McDi-armid [18]. (The inequality is a development of the \Azuma martingale inequality";a similar formulation was also derived by Bollob�as [5].)Lemma 2.3 ([18, Lemma 1.2]) Let x1; : : : ; xn be independent random variables,with xk taking values in a set Ak for each k. Suppose that the (measurable) functionf : QAk ! R (the set of reals) satis�esjf(x)� f(x0)j � ck whenever the vectors x and x0 di�er only in the kth coordinate.Let Y be the random variable f(x1; : : : ; xn). Then for any t > 0,Pr [jY � E[Y]j � t] � 2 exp (� 2t2/Pnk=1 c2k):Suppose (at most) s messages are present in a static system, and that we have stime units within which we would like to send out a \large" number of them to thechannel, with high probability. We give an informal sketch of our ideas. A naturalscheme is for each message independently to attempt using the channel at a randomlychosen time from [s]. Since a message is successful if and only if no other messagechose the same time step as it did, the \collision" of messages is a dominant concern;the number of such colliding messages is studied in the following lemma.Lemma 2.4 Suppose at most s balls are thrown uniformly and independently at ran-dom into a set of s bins. Let us say that a ball collides if it is not the only ball in itsbin. Then, (i) for any given ball B, Pr[B collides] � 1� (1� 1=s)s�1 < 1� 1=e, and(ii) if C denotes the total number of balls that collide then, for any � > 0,Pr[C � s(1� 1=(e(1 + �)))] � F (s; �); where F (s; �) := e�s�2=(2e2(1+�)2):Proof: Part (i) is direct. For part (ii), number the balls arbitrarily as 1; 2; : : : .Let Xi denote the random choice for ball i, and C = f(X1;X2; : : :) be the numberof colliding balls. It is easily seen that, for any placement of the balls and for anymovement of any desired ball (say the ith) from one bin to another, we have ci � 2,in the notation of Lemma 2.3. Invoking Lemma 2.3 concludes the proof. 28

Lemma 2.4 suggests an obvious improvement to our �rst scheme if we have manymore slots than messages. Suppose we have s messages in a static system and `available time slots t1 < t2 < � � � < t`, with s � `=(e(1 + �)) for some � > 0. Let`i(�) := `e(1 + �) �1� 1e(1 + �)�i�1 for i � 1; (1)thus, s � `1(�). The idea is to have each message try using the channel at somerandomly chosen time from fti : 1 � i � `1(�)g. The number of remaining messagesis at most s(1 � 1e(1+�)) � `2(�) with high probability, by Lemma 2.4(ii). Eachremaining message attempts to use the channel at a randomly chosen time fromfti : `1(�) < i � `1(�) + `2(�)g; the number of messages remaining is at most `3(�)with high probability (for s large). The basic \random trial" user of Lemma 2.4 isthus repeated a su�ciently large number of times. The total number of time slotsused is at most P1j=1 `j(�) = `, which was guaranteed to be available. In fact, we willalso need a version of such a scenario where some number z of such protocols are runindependently, as considered by De�nition 2.5. Although we need a few parametersfor this de�nition, the intuition remains simple.De�nition 2.5 Suppose `, m and z are positive integers, � > 0, and we are givensets of messages P1; P2; : : : ; Pz and sets of time slots T1; T2; : : : ; Tz such that: (i)Pi \ Pj = � and Ti \ Tj = � if i 6= j, and (ii) jTij = ` for all i. For each i 2 [z], letTi = fti;1 < ti;2 < � � � < ti;`g. De�ne `0 = 0, and `i = `i(�) as in (1) for i � 1.Then, RT(fPi : i 2 [z]g; fTi : i 2 [z]g;m; z; �) denotes the performance of zindependent protocols E1; E2; : : : ; Ez (\RT" stands for \repeated trials"). Each Eihas m iterations, and its jth iteration is as follows: each message in Pi that collidedin all of the �rst (j�1) iterations picks a random time from fti;p : `0+`1+� � �+`j�1 <p � `0 + `1 + � � �+ `jg, and attempts using the channel then.Remark. Note that the fact that distinct protocols Ei are independent followsdirectly from the fact that the sets Ti are pairwise disjoint.Since no inter-message communication is needed in RT, the following de�nition isconvenient.De�nition 2.6 If P 2 Pi in a protocol RT(fPi : i 2 [z]g; fTi : i 2 [z]g;m; z; �), theprotocol for message P is denoted P -RT(Ti;m; �).The following useful lemma shows that, for any �xed � > 0, two desirable factshold for RT provided jPij � `1(�) for each i (where ` = jTij), if ` and the number ofiterations m are chosen large enough: (a) the probability of any given message notsucceeding at all can be made smaller than any given small positive constant, and (b)the probability of there remaining any given constant factor of the original numberof messages can be made exponentially small in `.Lemma 2.7 For any given positive �, � and � (� � 1=2), there exist �nite positivem(�; �; �), `(�; �; �) and p(�; �; �) such that, for any m � m(�; �; �), any ` � `(�; �; �),any z � 1, and `i = `i(�) de�ned as in (1), the following hold if we perform RT(fPi :i 2 [z]g; fTi : i 2 [z]g;m; z; �), provided jPij � `1 for each i.9

(i) For any message P , Pr[P did not succeed] � �.(ii) Pr[in total at least `z� messages were unsuccessful] � ze�`�p(�;�;�).Proof: Let P 2 Pi. Let nj(i) denote the number of unsuccessful elements of Pibefore the performance of the jth iteration of protocol Ei, in the notation of De�-nition 2.5. By assumption, we have n1(i) � `1; iterative application of Lemma 2.4shows that Pr[nm+1(i) � `m+1] � Xj2[m]F (`j; �):It is also easily seen, using Lemma 2.4, that the probability of P failing throughoutis at most (1� 1=e)m + m�1Xj=1 F (`j ; �):These two failure probability bounds imply that if we pickm(�; �; �) > log(�=2)= log(1� 1=e)and then choose `(�; �; �) large enough, we can ensure part (i). Also, if we pickm(�; �; �) � log(�e(1+�))= log(1�1=(e(1+�))) and then choose `(�; �; �) large enoughand p(�; �; �) appropriately, we also obtain (ii). 2A variant. The following small change in RT will arise in Lemmas 3.1 and 3.2.Following the notation of De�nition 2.5, for each i 2 z, there may be one known timeti;g(i) 2 Ti which is \marked out": messages in Pi cannot attempt using the channelat time ti;g(i). To accommodate this, we modify RT slightly: de�ne j = j(i) to bethe unique value such that `0 + `1 + � � � + `j�1 < g(i) � `0 + `1 + � � � + `j. Thenany message in Pi that collided in all of the �rst (j � 1) iterations, will, in the jthiteration, attempt using the channel at a time chosen randomly from fti;p : (p 6=g(i)) and `0 + � � � + `j�1 < p � `0 + � � � + `jg. All other iterations are the same asbefore for messages in Pi, for each i.We now sketch why Lemma 2.7 remains true for this variant, if we take m(�; �; �)and `(�; �; �) slightly larger and reduce p(�; �; �) to a slightly smaller (but still positive)value. We start by stating the analogue of Lemma 2.4, which applies to the variant.(The proof that the analogue is correct is the same as the proof of Lemma 2.4.) Notethat, for s � 2, 1� (1� 1=s)s � 1� 1=e+K0=s, for some absolute constant K0 > 0.Lemma 2.40 There are positive constants K0;K1;K2 such that the following holds.For s � 2, suppose at most s + 1 balls are thrown uniformly and independently atrandom into s bins. Then (i) for any given ball B, Pr[B collides] = 1� (1� 1=s)s �1� 1=e +K0=s, and (ii) if C denotes the total number of balls that collide then, forany � > 0,Pr[C � s(1� 1=(e(1 + �)))] � G(s; �); where G(s; �) := K1e�K2s�2=(1+�)2 :Now note that the proof of Lemma 2.7 applies to the variant by using Lemma 2.40in place of Lemma 2.4. 10

2.2 The protocolWe present the ideas parameterized by several constants. Later we will choose valuesfor the parameters to maximize the throughput. There will be a trade-o� betweenthe maximum throughput and the expected waiting time for a message; a di�erentchoice of parameters could take this into consideration. The constants we have chosenguarantee that our protocol is stable in the sense of [13] for � < 1=e.From now on, we assume that � < 1=e is given. Let � � 3 be any (say, thesmallest) positive integer such that� � (1� 2=�)=e: (2)We de�ne �0 by 1 + �0 = 1e�+ 1=� : (3)Note that �0 > 0 by our assumptions on � and �.Three important constants, b; r and k, shape the protocol; each of these is apositive integer that is at least 2. At any time during its lifetime in the protocol, amessage is regarded as residing at some node of an in�nite tree T , which is structuredas follows. There are countably in�nitely many leaves ordered left-to-right, with aleftmost leaf. Each non-leaf node of T has exactly k children, wherek > r : (4)As usual, we visualize all leaves as being at the same (lowest) level, their parents beingat the next higher level, and so on. (The leaves are at level 0.) Note that the notionsof left-to-right ordering and leftmost node are well-de�ned for every level of the tree.T is not actually constructed; it is just for exposition. We associate a �nite nonemptyset of non-negative integers Trial(v) with each node v. De�ne L(v) := minfTrial(v)g,R(v) := maxfTrial(v)g, and the capacity cap(v) of v, to be jTrial(v)j. A required setof properties of the Trial sets is the following:P1. If u and v is any pair of distinct nodes of T , then Trial(u) \Trial(v) = �;P2. If u is either a proper descendant of v, or if u and v are at the same level withu to the left of v, then R(u) < L(v).P3. The capacity of all nodes at the same level is the same. Let ui be a genericnode at level i. Then, cap(u0) = b and cap(ui) = r � cap(ui�1) = bri, for i � 1.Suppose we have such a construction of the Trial sets. (Note (P1): in partic-ular, the Trial set of a node is not the union of the sets of its children.) Eachmessage P injected into the system at some time step t0 will initially enter theleaf node u0(P) where u0(P) is the leftmost leaf such that L(u0(P)) > t0. ThenP will move up the tree if necessary, in the following way. In general, supposeP enters a node ui(P) at level i, at time ti; we will be guaranteed the invariant\Q: ui(P) is an ancestor of u0(P), and ti < L(ui(P))." P will then run proto-col RT(Pui(P);Trial(ui(P));m; 1; �0), where Pui(P) is the set of messages enteringui(P) and m is a suitably large integer to be chosen later. If it is successful, P11

will (of course) leave the system, otherwise it will enter the parent ui+1(P) of ui(P),at the last time slot (element of Trial(ui(P))) at which it tried using the channeland failed, while running RT(Pui(P);Trial(ui(P));m; 1; �0). (P knows what this timeslot is: it is the mth step at which it attempted using the channel, during thisperformance of RT.) Invariant Q is established by a straightforward induction oni, using Property P2. Note that the set of messages Pv entering any given nodev perform protocol RT(Pv ;Trial(v);m; 1; �0), and, if v is any non-leaf node withchildren u1; u2; : : : ; uk, then the trials at its k children correspond to RT(fPu1 ; : : : ;Pukg; fTrial(u1); : : : ;Trial(uk)g;m; k; �0); by Property P1. Thus, each node receivesall the unsuccessful messages from each of its k children; an unsuccessful message isimagined to enter the parent of a node u, immediately after it found itself unsuccessfulat u.The intuition behind the advantages o�ered by the tree is roughly as follows. Notethat in a multiple-access channel problem, a solution is easy if the arrival rate is alwaysclose to the expectation (e.g., if we always get at most one message per step, then theproblem is trivial). The problem is that, with probability 1, in�nitely often there willbe \bulk arrivals" (bursts of a large number of input messages within a short amountof time); this is a key problem that any protocol must confront. The tree helps inthis by ensuring that such bursty arrivals are spread over a few leaves of the treeand are also handled independently, since the corresponding Trial sets are pairwisedisjoint. One may expect that, even if several messages enter one child of a node v,most of the other children of v will be \well-behaved" in not getting too many inputmessages. These \good" children of v are likely to successfully transmit most of theirinput messages, thus ensuring that, with high probability, not too many messagesenter v. Thus, bursty arrivals are likely to be smoothed out, once the correspondingmessages enter a node at a suitable level in the tree. In short, our assumption ontime-agreement plays a symmetry-breaking role.Informally, if the proportion of the total time dedicated to nodes at level 0 is 1=s,where s > 1, then the proportion for level i will be approximately (r=k)i=s. Since thesum of these proportions for all i can be at most 1, we require s � k=(k � r); we willtake s = k=(k � r) : (5)More precisely, the Trial sets are constructed as follows; it will be immediate thatthey satisfy Properties P1, P2, and P3. First de�nes = �=(�� 1); k = 4�2; and r = 4�: (6)We remark that though we have �xed these constants, we will use the symbols k; s andr (rather than their numerical values) wherever possible. Also, rather than presentthe values of our other constants right away, we choose them as we go along, to clarifythe reasons for their choice.For i � 0, letFi = fj > 0 : 9h 2 [�� 1] such that j � h�i (mod �i+1)g: (7)Note that Fi is just the set of all j which, when written in base �, have zeroes intheir i least signi�cant digits, and have a non-zero in their (i + 1)st least signi�cant12

digit. Hence, the sets Fi form a partition of Z+. Let vi be a generic node at leveli; if it is not the leftmost node in its level, let ui denote the node at level i thatis immediately to the left of vi. We will ensure that all elements of Trial(vi) lie inFi. (For any large enough interval I in Z+, the fraction of I lying in Fi is roughly(� � 1)=�i+1 = (r=k)i=s; this was what we meant informally above, regarding theproportion of time assigned to level i of the tree being (r=k)i=s.)We now de�ne Trial(vi) by induction on i and from left-to-right within the samelevel, as follows. If i = 0, then if v0 is the leftmost leaf, we set Trial(v0) to bethe smallest cap(v0) elements of F0; else we set Trial(v0) to be the cap(v0) smallestelements of F0 larger than R(u0). If i � 1, let w be the rightmost child of vi. If viis the leftmost node at level i, we let Trial(vi) be the cap(vi) smallest elements of Fithat are larger than R(w); else de�ne Trial(vi) to be the cap(vi) smallest elements ofFi that are larger than maxfR(ui); R(w)g. In fact, it is straightforward to show bythe same inductive process that, if ui is de�ned, then R(w) > R(ui); hence for everynode vi with i � 1,L(vi) � R(w) + s(k=r)i; R(vi) � R(w) + s(k=r)i � bri = R(w) + sbki: (8)2.3 Waiting times of messagesOur main random variable of interest is the time that a generic message P will spendin the system, from its arrival. Let a = e(1 + �0) (9)and d be a constant greater than 1.De�nition 2.8 For any node v 2 T , the random variable load(v), the load of v, isde�ned to be the number of messages that enter v; for any positive integer t, node vat level i is de�ned to be t-bad if and only if load(v) > bridt�1=a: Node v is said tobe t-loaded if it is t-bad but not (t + 1)-bad. It is called bad if it is 1-bad, and goodotherwise.It is not hard to verify that, for any given t � 1, the probability of being t-bad is thesame for any nodes at the same level in T . This brings us to the next de�nitions.De�nition 2.9 For any (generic) node ui at level i in T and any positive integer t,pi(t) denotes the probability that ui is t-bad.De�nition 2.10 (i) The failure probability q is the maximum probability that a mes-sage entering a good node will not succeed during the functioning of that node. (ii)For any message P , let u0(P); u1(P); u2(P); : : : be the nodes of T that ui is allowedto pass through, where the level of ui(P) is i. Let Ei(P) be the event that P entersui(P).If a node u at level i is good then, in the notation of Lemma 2.7, its load is at most`1(�0), where ` = cap(u); hence, Lemma 2.7(i) shows that, for any �xed q0 > 0, q < q0can be achieved by making b and the number of iterations m large enough.Note that the distribution of Ei(P) is independent of its argument. Hence, forany i � 0, we may de�ne fi := Pr[Ei(P)] for a generic message P . Suppose P was13

unsuccessful at nodes u0(P); u1(P); : : : ; ui(P). Let A(i) denote the maximum totalamount of time P could have spent in these (i + 1) nodes. Then, it is not hard tosee that A(0) � s cap(u0) + s cap(u0) = 2sb and that, for i � 1, A(i) � kA(i � 1) +(k=r)isbri, using (8). Hence,A(i) � (i+ 2)sbki for all i. (10)The simple, but crucial, Lemma 2.11 is about the distribution of an importantrandom variable W (P), the time that P spends in the system.Lemma 2.11 (i) For any message P , Pr[W (P) > A(i)] � fi+1 for all i � 0, andE[W (P)] �P1j=0A(j)fj . (ii) For all i � 1, fi � qfi�1 + pi�1(1):Proof: Part (i) is immediate, using the fact that, for a non-negative integer-valuedrandom variable Z, E[Z] =P1i=1 Pr[Z � i]. For part (ii), note thatfi = fi�1 Pr[Ei j Ei�1]: (11)Letting ci = Pr[ui�1(P) was good j Ei�1],Pr[Ei j Ei�1] = ci Pr[Ei j ui�1(P) was good ^Ei�1] ++(1� ci) Pr[Ei j ui�1(P) was bad ^Ei�1]� Pr[Ei j ui�1(P) was good ^Ei�1] ++Pr[ui�1(P) was bad j Ei�1]� q + Pr[ui�1(P) was bad j Ei�1]� q + Pr[ui�1(P) was bad]=Pr[Ei�1]:Thus, by (11), fi � fi�1q + Pr[ui�1(P) was bad] = qfi�1 + pi�1(1). 22.4 The improbability of high nodes being heavily loadedAs is apparent from Lemma 2.11, our main interest is in getting a good upper boundon pi(1). However, to do this we will also need some information about pi(t) for t � 2,and hence De�nition 2.9. The basic intuition is that if a node is good then, with highprobability, it will successfully schedule \most" of its messages; this is formalized byLemma 2.7(ii). In fact, Lemma 2.7(ii) shows that, for any node u in the tree, the goodchildren of u will, with high probability, pass on a total of \not many" messages tou, since the functioning of each of these children is independent of the other children.To estimate pi(t), we �rst handle the easy case of i = 0. Recall that if X1 and X2are independent Poisson random variables with means �1 and �2 respectively, thenX1+X2 is Poisson with mean �1+�2. Thus, u0 being t-bad is a simple large-deviationevent for a Poisson random variable with mean sb�. If, for every t � 1, we de�ne�t := dt�1=(sa�) and ensure that �t > 1 by guaranteeingsa� < 1; (12)then Theorem 2.1 shows thatp0(t) = Pr[u0 is t-bad] � H(sb�; �t) : (13)14

Our choices for s and a validate (12): see (3), (9), (6) and (2).We now consider how a generic node ui at level i � 1 could have become t-bad,for any given t. The resulting recurrence yields a proof of an upper bound for pi(t) byinduction on i. The two cases t � 2 and t = 1 are covered by Lemmas 2.12 and 2.13respectively. We require d2 + k � 1 � dr ; (14)this is satis�ed by de�ning d = 2�:Lemma 2.12 For i � 1 and t � 2, if a node ui at level i in T is t-bad, then at leastone of the following two conditions holds for ui's set of children: (i) at least one childis (t+ 1)-bad, or (ii) at least two children are (t� 1)-bad. Thus,pi(t) � kpi�1(t+ 1) + k2! (pi�1(t� 1))2 :Proof: Suppose that ui is t-bad but that neither (i) nor (ii) holds. Then ui has atmost one child v that is either t-loaded or (t�1)-loaded, and none of the other childrenof ui is (t � 1)-bad. Node v can contribute a load of at most bri�1dt=a messages toui; the other children contribute a total load of at most (k � 1)bri�1dt�2=a. Thusthe children of ui contribute a total load of at most bri�1dt�2(d2 + k � 1)=a, whichcontradicts the fact that ui is t-bad, since (14) holds. 2In the case t = 1, a key role is played by the intuition that the good children ofui can be expected to transmit much of their load successfully. We now �x q and m,and place a lower bound on our choice of b. Note that (14) implies r > d. De�ne�1; �2 > 0 by �1 = minf r � da(k � 1) ; 12g and �2 = minf rak ; 12g :For q, we treat it as a parameter that satis�es0 < q < 1=k: (15)(Lemmas 3.1 and 3.2 will require that q is su�ciently small.) In the notation ofLemma 2.7, we de�ne m = maxfm(q; �0; �1);m(q; �0; �2)g (16)and require b � maxf`(q; �0; �1); `(q; �0; �2)g: (17)Lemma 2.13 For any i � 1,pi(1) � kpi�1(2) + k2! (pi�1(1))2+ k(k� 1)pi�1(1)e�bri�1p(q;�0;�1)+ ke�bri�1p(q;�0;�2):
15

Proof: Suppose that ui is 1-bad. There are two possibilities: that at least one childof ui is 2-bad or that at least two children are 1-bad. If neither of these conditionsholds, then either (A) ui has exactly one child which is 1-loaded with no other childbeing bad, or (B) all children are good.In case (A), the k � 1 good children must contribute a total of at leastcap(ui)a � cap(ui�1)da = bri�1(r � d)a � bri�1(k � 1)�1messages to ui. In the notation of Lemma 2.7, z = k� 1, ` = bri�1 and � = �1. Sincethere are k choices for the 1-loaded child, Lemma 2.7(ii) shows that the probabilityof occurrence of case (A) is at mostk(k � 1)pi�1(1)e�bri�1p(q;�0;�1):In case (B), the k good children contribute at least cap(ui)=a = bri=a. By a similarargument, the probability of occurrence of case (B) is at mostke�bri�1p(q;�0;�2):The inequality in the lemma follows. 2Next is a key theorem that proves an upper bound for pi(t), by induction on i.We assume that our constants satisfy the conditions (4, 5, 9, 12, 14, 15, 16, 17).Theorem 2.14 For any �xed � < 1=e and any q 2 (0; 1=k), there is a su�cientlylarge value of b such that the following holds. There are positive constants �; � and, with �; � > 1, such that8i � 0 8t � 1; pi(t) � e��i�t�1 :Before proving Theorem 2.14, let us see why this shows the required propertythat E[W (P)], the expected waiting time of a generic message P , is �nite. Theo-rem 2.14 shows that, for large i, pi�1(1) is negligible compared to qi and hence, byLemma 2.11(ii), fi = O(qi). Hence, Lemma 2.11(i) combined with the bound (10)shows that, for any choice q < 1=k, E[W (P)] is �nite (and good upper tail boundscan be proven for the distribution of W (P)). Thus (15) guarantees the �niteness ofE[W (P)].Proof: (of Theorem 2.14) This is by induction on i. If i = 0, we use inequality (13)and require that H(sb�; �t) � e��t�1 : (18)From (12), we see that �t > 1; thus by Fact 2.2, there is some M = M�t such thatH(sb�; �t) � e��tsb�=M : Therefore to satisfy inequality (18), it su�ces to ensure thatdt�1b=(aM) � �t�1: We will do this by choosing our constants so as to satisfyd � � and b � aM : (19)We will choose � and � to be fairly close to (but larger than) 1, and so the �rstinequality will be satis�ed. Although will have to be quite large, we are free tochoose b su�ciently large to satisfy the second inequality.16

We proceed to the induction for i � 1. We �rst handle the case t � 2, and thenthe case t = 1.Case I: t � 2. By Lemma 2.12, it su�ces to show thatke��i�1�t + k2!e�2�i�1�t�2 � e��i�t�1 :It is straightforward to verify that this holds for some su�ciently large , provided� > � and 2 > �� : (20)We can pick � = 1+ � and � = 1+2� for some small positive �, � < 1, to satisfy (20).Case II: t = 1. The �rst term in the inequality for pi(1) given by Lemma 2.13 isthe same as for Case I with t = 1; thus, as above, an appropriate choice of constantswill make it much smaller than e��i . Similarly, the second term in the inequality forpi(1) can be handled by assuming that � < 2 and that is large enough. The �naltwo terms given by Lemma 2.13 sum tok(k � 1)pi�1(1)e�bri�1p(q;�0;�1) + ke�bri�1p(q;�0;�2): (21)We wish to make each summand in (21) at most, say, e��i=4. We just need to ensurethat bri�1p(q; �0; �1) � �i + ln(4k2) and bri�1p(q; �0; �2) � �i + ln(4k) : (22)Since r > �, both of these are true for su�ciently large i. To satisfy these inequalitiesfor small i, we choose b su�ciently large to satisfy (17,19,22), completing the proofof Theorem 2.14. 2It is now easily veri�ed that conditions (4,5,12,14,19,20) are all satis�ed. Thus,we have presented stable protocols for � < 1=e.Theorem 2.15 Fix any � < 1=e. In the Synchronized In�nitely-Many Users Model,our protocol guarantees an expected waiting time of O(1) for every message.We also get a tail bound as a corollary of Theorem 2.14:Corollary 2.16 Let `0 be a su�ciently large constant. Fix any � < 1=e and c1 > 1.We can then design our protocol such that, for any message P , in addition to havingE[W (P)] = O(1), we also have for all ` � `0 that Pr[W (P) � `] � `�c1.Proof: Using (10) we see that if W (P) � ` then P enters j levels where Pji=1(i+2)ki > `=(2sb), so j(j + 2)kj � `=(2sb). This implies thatj � (logk (`2sb)� 2 logk logk (`2sb)):As we mentioned in the paragraph preceding the proof of Theorem 2.14, fj = O(qj).Thus, Pr[W (P) � `] = O(qlogk(`=(2sb))�2 logk logk(`=(2sb))):The result follows by designing the protocol with q � k�c2c1 for a su�ciently largepositive constant c2. 2Remark. In practice, the goal is often simply to ensure that the probability thatany given packet is delivered to the channel is at least 1� � for some constant �. Bythe corollary, we can achieve this goal by truncating each packet after (1=�)1=c1 steps,or equivalently by truncating the in�nite tree after O(logk(1=�)) levels.17

3 The Synchronized Finitely-Many Users ProtocolWe transfer to the Synchronized Finitely-Many Users Model (see Section 1.1). Here,we shall let � = Pi �i be any constant smaller than 1=e, and show how to simulatethe In�nitely-Many Users Protocol on n synchronized users. Suppose for the momentthat each message can do its own processing independently (this assumption will beremoved shortly). With this assumption, the di�erence between the synchronizedin�nitely-many users model which we have been considering and the synchronized�nitely-many users model is that, instead of being a Poisson distribution with pa-rameter �, the input arrival distribution can be any f�ig1�i�n-dominated distribu-tion (see Section 1.1). Although the arrivals may not be independent, the strongcondition in the de�nition of \f�ig1�i�n-dominated" allows us to apply Theorem 2.1(a) to the message arrivals (using stochastic domination). Therefore, (13) still holdsin the synchronized �nitely-many users model.We need to avoid the assumption that each message is processed separately. Thedi�culty is that each user must be responsible for a potentially unbounded numberof messages and must manage them in constant time at each step. We �rst sketchhow to manage the messages and then give further details. Each user s maintains,for each i � 0, a linked list L(s; i) of the messages belonging to it that are at leveli of the tree. If it is the turn of messages at level i of the tree to try in the currenttime step t, then each user s will compute the probability ps;t of exactly one messagein L(s; i) attempting to use the channel in our Synchronized In�nitely-Many UsersProtocol. Then, each s will independently send the message at the head of L(s; i)to the channel with probability ps;t. (The reader may have noticed that in orderto simulate faithfully our in�nitely-many users protocol, s should also calculate theprobability rs;t that more than one message in L(s; i) attempts to use the channel.It should send a dummy message to the channel with probability rs;t. This solutionworks, but we will show at the end of this section that dummy messages are notnecessary.)We now present the details of this message-management scheme. Let all theparameters such as k;�, etc., be as de�ned in Section 2. For each t 2 Z+, de�neactive(t) to be the index of the least signi�cant digit of t that is nonzero, if t iswritten in base �. Recall from (7) that if the current time is t then the messages inL(sj; active(t)), taken over all users sj, are precisely those that may attempt usingthe channel at the current step. Thus, if active(t) = i, each user s �rst needs accessto the head-pointer of L(s; i) in O(1) time. For this, it su�ces if s counts time in base� and has an in�nite array whose ith element is the head-pointer of L(s; i). However,such static in�nite storage is not required: s can count time in base � using a linkedlist, where the ith element of the list additionally contains the head-pointer of L(s; i).This list can be augmented with pointers to jump over substrings (of the base-�representation of t) that are composed of only � � 1, so that s can maintain t andactive(t) in O(1) time. We leave the tedious but straightforward details of this to thereader. (Alternatively, as mentioned in the remark following Corollary 2.16, we maysimply truncate the tree to a certain �nite height, if we only desire that each messagereaches the channel with su�ciently high probability. Then, of course, s may simplyhave a �nite array that contains head-pointers to the L(s; i).) Thus, we assume thats can access the head-pointer to L(s; active(t)) in O(1) time.18

Each list L(s; i) will also have the value of jL(s; i)j at its head. In addition, L(s; i)will have a pointer to its last element, so that concatenating two such lists can bedone in O(1) time. Each L(s; i) will also have the important property that the rankof any message P in the list order is uniformly distributed. For each s, we maintainthese properties by induction on i. To establish these properties for the base casei = 0, we shall require the following assumption on the message arrivals: in eachstep t, the messages arriving at user s arrive in random order (among each other)and, when arriving, they increment jL(s; 0)j and get appended to the head of L(s; 0).Once these properties are true for level i, they are easily maintained for i+ 1: sinceL(s; i+ 1) is the disjoint union of at most r = O(1) such lists from level i (one fromeach child of a node). We just need to generate a random permutation of [r] andconcatenate these lists in the permuted order.We need to show the probability computations to be done by s. Recall that the setof messages Pv entering any given node v perform protocol RT(Pv;Trial(v);m; 1; �0).Suppose s is managing its messages at node v in level i of the tree at time step t. LetTrial(v) = ft1 < t2 < � � � < t`g. Recall from De�nition 2.5 that the messages in Pvproceed in m iterations. Suppose s is conducting the jth iteration at time t; thus,t 2 S := ftp : `0 + `1 + � � �+ `j�1 < p � `0 + `1 + � � �+ `jg:User s needs to compute the probability ps;t of exactly one message in L(s; i) attempt-ing to use the channel. We show how to do this, for each tp such that (Pj�1h=0 `h) <p � (Pjh=0 `h). Recall that s knows the value of N := jL(s; i)j = jPv j: this is presentat the head of L(s; i). At time step tq where q = 1 + b(Pj�1h=0 `h)c, s generates arandom integer r1 2 f0g [[N], wherePr[r1 = j] = Nj !� 1jSj�j �1� 1jSj�N�j :Note that r1 has the same distribution as the number of messages in L(s; i) thatwould have attempted using the channel at step tq in our Synchronized In�nitely-Many Users Protocol. At time step tq, if r1 = 1, s will send the message at thehead of L(s; i) to the channel. Similarly, if t = tq+1, s will generate a random integerr2 2 f0g [[N � r1] such thatPr[r2 = j] = N � r1j !� 1jSj � 1�j �1� 1jSj � 1�N�r1�j :Once again, r2 has the same distribution as the number of messages in L(s; i) thatwould have attempted using the channel at step tq+1; as before, s will send themessage at the head of L(s; i) to the channel at time step tq+1 if and only if r2 = 1.It is immediate that, at each step, s correctly computes the probability of a \uniquesend".At this point, it is clear that the in�nitely-many users protocol can be simulatedby �nitely-many users provided that the users send \dummy messages" as explainedpreviously. We now argue that sending dummy messages is unnecessary because theprotocol is \deletion resilient" in the sense that if an adversary deletes a message(for example, one that would have collided with a dummy), the expected lifetime of19

other messages can only shorten. Formally, we must show that the simulated systemwithout dummy messages evolves with no worse probabilities than in the in�nite case.We observe from our proof (for the Synchronized In�nitely-Many Users Model) thatit su�ces to show the following analogue of Lemma 2.4. We need to show that if thenumber of available time slots (elements of the set S) is at least as high asPj jL(sj ; i)j(the sum taken over all users sj), then: (a) for any s and any message P 2 L(s; i),the probability that P succeeds in the jSj time slots above is greater than 1=e, and(b) the total number of colliding messages C satis�es the tail bound in part (ii) ofLemma 2.4.It is not hard to see that the probability of a collision in any one of the time stepsabove is at most 1=e. Thus (b) follows by the same proof as for part (ii) of Lemma 2.4.So, let us show (a) now. Let jL(s; i)j = N , and let M 2 [N; jSj] denote Pj jL(sj ; i)j.In any given step among the jSj steps, the probability that s successfully transmitteda message, is at leastNjSj �1� 1jSj�M�1 � NjSj �1� 1jSj�jSj�1 > NejSj :Thus, by linearity of expectation, the expected number of successful transmissionsby s is more than N=e. Once again by linearity, this equals the sum of the successprobabilities of the messages in L(s; i), each of which is the same by symmetry. Thus,for any given message P 2 L(s; i), P succeeds with probability more than 1=e.This completes the proof for the Synchronized Finitely-Many Users Model.3.1 A VariantWe will take n to be su�ciently large (if n is smaller than a certain constant, we canuse the protocol of [13], which can handle any arrival rate � < 1). We will assumewithout loss of generality that n is even; if n is odd, just add a dummy user whichgets no messages and does nothing.Let P be a protocol running on n completely synchronized users which simulatesthe Synchronized In�nitely-Many Users Protocol from Section 2 for n2� 1 steps thenskips a step and continues; this \skip" happens at every step of the form jn2 � 1,where j 2 Z+. Inputs might, however, arrive during the skipped step. To simplifyP, note from (2) that we can take � to be even. Now (7) shows that, for all i � 1,all elements of Fi will be even; thus, since all skipped steps (which are of the formjn2�1) are odd since n is even, we see that no skipped step occurs in the Trial set ofnodes at level i � 1. Thus, the skipped steps occur only during the time slots assignedto the nodes at the leaf level. Since the Trial sets of the leaves have cardinality b andas we may take n > pb, we have that such \marked out" (skipped) steps occur atmost once in the Trial set of any leaf. Thus, as long as b is su�ciently large (and nis chosen larger), the \variant" discussed after Lemma 2.7 shows that P is essentiallythe same as the Synchronized In�nitely-Many Users Protocol as far as our analysis isconcerned.We prove the following two useful lemmas about P. In both lemmas, P is run forat most n40 steps. 20

Lemma 3.1 Suppose � < 1=e and that P is run with a f�ig1�i�n-dominated arrivaldistribution for � � n40 steps. Then the expected delay of any message that arrivesis O(1). Furthermore, the probability that any message has delay more than n7=2 isat most n�60.Proof: As discussed above, we can handle P just as if it were the SynchronizedIn�nitely-Many Users Protocol. Thus, by choosing c1 � 18 in the notation of Corol-lary 2.16 and as long as n is su�ciently large, Corollary 2.16 shows that the lemmaholds. 2Lemma 3.2 Suppose � < 1=e and that P is run with a f�ig1�i�n-dominated arrivaldistribution for � � n40 steps. Suppose further that a message arrives at user p atstep t0 � � . Then the expected delay of any message that arrives is O(1). Furthermore,the probability that any message has delay more than n7=2 is at most n�60.Proof: The only place where the proof in Section 2 uses the arrival distributionis in bound (13). We argued at the beginning of this section that (13) still holds forany f�ig1�i�n-dominated arrival distribution. We now show that a similar boundholds even if the arrival distribution is conditioned on a message arriving at user p atstep t0 � � . Recall that a leaf u0 is t-bad if and only if its load (the number of arrivalsin the relevant period of sb steps) exceeds bdt�1=a. The number of arrivals in sbsteps is at most 1 plus the sum of nsb random variables Xi;j where, for 1 � i � n and1 � j � sb,Xi;j is a random variable that has value 1 with probability at most �i (evenconditioned on other arrivals) and value 0 otherwise. Using stochastic domination,we can apply Theorem 2.1. We let � 0t = (bdt�1�a)=(asb�). Since sa� < 1 (12), b canbe chosen su�ciently large to make � 0t > 1. By Theorem 2.1, the probability that thesum of the random variables exceeds ((dbt�1)=a)� 1 = (sb�)� 0t is at most H(sb�; � 0t).Thus, in place of (13), we now have \Pr[u0 is t-bad] � H(sb�; � 0t)". A small furtherchange to be made to our proof for the Synchronized In�nitely-Many Users Protocolis, in the sentence following (18), to de�ne M =M�0t . The whole proof goes throughnow. 24 The Unsynchronized Finitely-Many Users Protocol4.1 Notation and PreliminariesIn our basic model, we have n users which can start and stop at arbitrary steps, withthe constraint that each time a user starts, it runs for at least a certain polynomialnumber of steps. (For the constant expected message delay results in Section 4.4,we require this polynomial to be 8n71; however, n33 is su�cient for all proofs inSection 4.3. No attempt has been made to optimize these polynomials.) Also recallthat n is taken to be su�ciently large and that � =Pi �i < 1=e.4.2 The ProtocolThe users typically simulate protocol P from Section 3. However, the starting andstopping of users causes the system to become unsynchronized, so the protocol syn-chronizes itself from time to time. 21

Here is an informal description of our protocol. In the normal state a user main-tains a bu�er B of size n7 and an unbounded queue Q, each containing messages tobe sent. When a message is generated it is put into B. For each message m 2 Bthe user maintains a variable trial(m) which contains the next step on which the userwill attempt to send m. The step trial(m) will be chosen using protocol P. WhenP is \skipping a step" our protocol will take the opportunity to try to send somemessages from Q: at such steps, with probability 1=(3n), the user attempts to sendthe �rst message in Q. Each user also maintains a list L which keeps track of theresults (either \failure" or \success") of the (up to n2) most recent message sendingattempts from Q.A user goes into a synchronizing state if any message has remained in the bu�erfor n7 steps or if L is full (contains n2 results) and only contains failures. It also goesinto a synchronizing state from time to time even when these events do not occur.(It synchronizes if it has been simulating P for at least n40 steps, and it synchronizeswith probability n�30 on any given step.) If the user does go into a synchronizingstate, it transfers all messages from B to the end of Q.In the synchronizing state, a user could be in one of many possible stages, and itsactions depend on the stage that it is in. It will always put any generated messagesinto the queue. Also, it sends only dummy messages in the synchronizing state.(The dummy messages are used for synchronizing. Real messages that arrive duringthe synchronization phase must wait until the next normal phase to be sent.1) Thesequence of synchronization stages which a user goes through is as follows.De�nition: Let W = 12n4.JAMMING The user starting the synchronization jams the channel by sendingmessages at every step. In this way, it signals other users to start synchronizingalso.FINDING LEADER Each user sends to the channel with probability 1=n on eachstep. The �rst user to succeed is the leader.ESTABLISHING LEADER In this stage, a user has decided it is the leader, andit jams the channel so no other user will decide to be the leader.SETTING CLOCK In this stage, a user has established itself as the leader, and itjams the channel once every 4W steps, giving other users a chance to synchronizewith it.COPYING CLOCK In this stage, a user has decided it is not the leader, and itattempts to copy the leader's clock by polling the channel repeatedly to �ndthe synchronization signal (namely, the jamming of the channel every 4W stepsby the leader). Speci�cally, it sends to the channel with probability 1=(3n) oneach step and, if it succeeds, it knows that the current step (mod 4W) does notcorrespond to the leader's clock. After many attempts, it should be left withonly one step (mod 4W) that could correspond to the leader's clock. At theend of this stage, it synchronizes its clock to the leader's clock.1Of course, there is no harm in using real messages for synchronizing, but this does not improvethe provable results, so we prefer to use dummy messages for synchronizing in order to keep theexposition clear. 22

WAITING This stage is used by a user after COPYING CLOCK in order to syn-chronize with the leader's clock. The user idles during this stage.POLLING A user in this stage is simply \biding its time" until it switches to anormal stage. While doing so, it attempts to send to the channel occasionally(with probability 1=(3n) on each step) in order to detect new users which mightbe joining the system and re-starting a synchronization phase. If new users aredetected, the user re-starts the synchronization phase. Otherwise, it begins thenormal phase of the protocol.The length of each of these stages is very important in terms of achieving both ahigh probability of synchronization and a high level of robustness. The high proba-bility of synchronization is achieved by making the \preliminary" stages (i.e., JAM-MING, FINDING LEADER, and ESTABLISHING LEADER) of length �(W) (thisis long enough to guarantee all users in a normal state will detect a synchronization),and the \synchronizing" stages (i.e., SETTING CLOCK, COPYING CLOCK, andWAITING) of length �(Wn2) (this gives users enough time to determine the leader'sclock modulo 4W with high probability). The high level of robustness is achieved bythe following properties:1. the lengths of the \preliminary" and \synchronizing" stages are as above,2. only the preliminary stages can cause the channel to be jammed,3. the \synchronizing" stages cannot detect a new synchronization occurring,4. the POLLING stage is of length �(Wn3) (longer than all of the other stagescombined), and5. the POLLING stage is able to detect new synchronizations.The di�ering lengths of time for the \preliminary", \synchronizing" and POLLINGstages, and the fact that only the POLLING stage could cause another synchro-nization to occur, guarantee that bad events as described at the end of Section 1.3cannot occur, even when up to n users are starting at di�erent times (and stoppingperiodically).Whenever a user joins the multiple-access channel, it starts the protocol withstate = SYNCHRONIZING, sync stage = JAMMING, clock = 0, and L empty. Wenow give the details of the protocol.ProtocolAt each step doIf (state = NORMAL) call Procedure NormalElse call Procedure SynchronizingProcedure NormalIf a message m is generatedPut m in BChoose trial(m) by continuing the simulation of PIf ((clock mod n2) = n2 � 1) call Procedure Queue StepElse call Procedure Normal Step 23

Procedure Begin SyncMove all of the messages in B to QEmpty Lstate SYNCHRONIZING, sync stage JAMMING, clock 0Procedure Normal StepIf (clock � n40 or any message in B has waited more than n7 steps)Call Procedure Begin SyncElse With Probability n�30, call Procedure Begin SyncOtherwiseIf more than one message m in B has trial(m) = clockFor each m 2 B with trial(m) = clockChoose a new trial(m) by continuing the simulation of PIf exactly one message m in B has trial(m) = clockSend mIf m succeeds, remove it from BElse choose a new trial(m) by continuing the simulation of Pclock clock + 1Procedure Queue StepWith probability 1=(3n)If (Q is empty) send a dummy messageElse Send the �rst message in QIf the outcome is \success", remove the message from QAdd the outcome of the send to LOtherwise add \failure" to LIf (jLj = n2 and all of the entries of L are \failure")Call Procedure Begin SyncElse clock clock + 1Procedure SynchronizingIf a message arrives, put it in QIf (sync stage = JAMMING) call Procedure JamElse If (sync stage = FINDING LEADER) call Procedure Find LeaderElse If (sync stage = ESTABLISHING LEADER) call Procedure Establish LeaderElse If (sync stage = SETTING CLOCK) call Procedure Set ClockElse If (sync stage = COPYING CLOCK) call Procedure Copy ClockElse If (sync stage = WAITING) call Procedure WaitElse If (sync stage = POLLING) call Procedure Poll24

Procedure JamSend a dummy messageIf (clock < W=2� 1), clock clock + 1Else sync stage FINDING LEADER, clock 0Procedure Find LeaderWith probability 1=nSend a dummy messageIf it succeedssync stage ESTABLISHING LEADER, clock 0If (clock < W � 1) clock clock + 1Else for i = 0 to 4W � 1possibletime[i] Yessync stage COPYING CLOCK, clock 0Procedure Establish LeaderSend a dummy messageIf (clock < 2W � 1) clock clock + 1Else sync stage SETTING CLOCK, clock 0Procedure Set ClockIf (clock = 0 mod 4W)Send a dummy messageIf (clock < 20Wn2 � 1) clock clock + 1Else sync stage POLLING, clock 0Procedure Copy ClockWith probability 1=(3n)Send a dummy messageIf it succeedspossibletime[clock mod 4W] NoIf (clock < 20Wn2 � 1) clock clock + 1Else If possibletime[j] = Yes for exactly one j,clock �jIf (j = 0) sync stage POLLINGElse sync stage WAITINGElse sync stage POLLING, clock 0Procedure Waitclock clock + 1If (clock = 0), sync stage POLLING25

Procedure PollWith Probability 1=(3n)Send a dummy messageAdd the outcome of this send to the end of LOtherwise Add \failure" to LIf (jLj = n2 and all of the entries of L are \fail")Empty Lsync stage JAMMING, clock 0Else If (clock < Wn3 � 1), clock clock + 1Else Empty Lstate NORMAL, clock 04.3 The Main ProofStep 0 will be the step in which the �rst user starts the protocol. Users will start andstop (perhaps repeatedly) at certain predetermined times throughout the protocol.We say that the sequence of times at which users start and stop is allowed if everyuser runs for at least n33 steps each time it starts. Just before any step, t, we willrefer to the users that are running the protocol as live users. We will say that thestate of the system is normal if all of these users are in state NORMAL. We will saythat it is good if1. it is normal, and2. for some C < n40 � n7, every user has clock = C, and3. every user with jLj � n2=2 has a success in the last n2=2 elements of L, and4. no message in any user's bu�er has been in that bu�er for more than n7=2 steps.We say that the state is a starting state if the state is good and every clock = 0. Wesay that it is synchronizing if� every user has state = NORMAL, or has state = SYNCHRONIZING witheither sync stage = JAMMING or sync stage = POLLING, and� some user has state = SYNCHRONIZING with sync stage = JAMMING andclock = 0.We say that the system synchronizes at step t if it is in a normal state just beforestep t and in a synchronizing state just after step t. We say that the synchronizationis arbitrary if every user with state = SYNCHRONIZING, sync stage = JAMMINGand clock = 0 just after step t had its clock < n40, had no message waiting more thann7 steps in its bu�er, and either had jLj < n2 or had a success in L, just before step t.De�nition: The interval starting at any step t is de�ned to be the period [t; : : : ; t+n33 � 1]. 26

De�nition: An interval is said to be productive for a given user if at least n29=2messages are sent from the user's queue during the interval, or the queue is empty atsome time during the interval.De�nition: An interval is said to be light for a given user if at most n17 messagesare placed in the user's queue during the interval.De�nition: Step t is said to be an out-of-sync step if either the state is normal justbefore step t, but two users have di�erent clocks, or the state was not normal justbefore any step in [t� 13n7 +1; : : : ; t]. (Intuitively, an out-of-synch step is the resultof an \unsuccessful" synchronizing phase.)Procedure Normal Step simulates protocol P from Section 3. Thus, from anystarting state until a synchronization, our system simulates P. This implies that oursystem stops simulating P when a user starts up, since that user will immediatelystart a synchronization. Then P is simulated again once a starting state is reached.We will use the following lemma.Lemma 4.1 Given a random variable X taking on non-negative values, and any twoevents A and B, E[XjA ^B] � E[XjB]=Pr[AjB].Proof: E[X j B] = E[X j A ^B] Pr[A j B] + E[X j A ^B] Pr[A j B]. 2Lemmas 4.2 to 4.6 outline the analysis of the normal operation of the synchro-nization phase of our protocol.Lemma 4.2 Suppose that the protocol is run with a sequence of user start/stoptimes in which no user starts or stops between steps t and t + W . If the systemis in a synchronizing state just before step t, then every live user sets sync stage toFINDING LEADER just before some step in [t; : : : ; t+W].Proof: A user can have state = SYNCHRONIZING and sync stage = JAMMINGfor only W=2 steps. Also, every user with state = SYNCHRONIZING, sync stage =POLLING, and clock < Wn3 � n2 will set sync stage to JAMMING after at mostn2 steps; every user with state = SYNCHRONIZING sync stage = POLLING, andclock �Wn3� n2 will either set sync stage to JAMMING within n2 steps, or switchto state = NORMAL within n2 steps, and set sync stage to JAMMING after at mostan additional n4 steps (since when state = NORMAL, a queue step is taken onlyonce every n2 steps); and every user with state = NORMAL will set sync stage toJAMMING after at most n4 steps. The lemma follows by noting that n2+n4 < W=2,and that a user remains in sync stage = JAMMING for W=2 steps. 2Lemma 4.3 Suppose that the protocol is run with a sequence of user start/stop timesin which no users start or stop between steps t and t + 4W . If every user setssync stage = FINDING LEADER before some step in [t; : : : ; t+W] then, with prob-ability at least 1 � e�n3 , exactly one user sets sync stage = SETTING CLOCK justbefore some step in [t+ 2W + 1; : : : ; t+ 4W] and every other user sets sync stage =COPYING CLOCK just before some step in [t+W; : : : ; t+ 2W].Proof: At most one leader is elected since, after being elected it does not allowany users to access the channel for 2W steps. Also no user will have sync stage =27

FINDING LEADER just before step t+2W , since sync stage = FINDING LEADERfor at most W steps.Suppose P is the last user to set sync stage = FINDING LEADER. Then aslong as no leader has been elected, the probability that P is elected at a given stepis at least (1=n)(1 � (1=n))n�1 � 1=(en). Thus the probability that no leader iselected is at most (1� 1=(en))W , which is at most e�n3 . Then the leader will spend2W steps with sync stage = ESTABLISHING LEADER before setting sync stageto SETTING CLOCK, while each of the other users will directly set sync stage toCOPYING CLOCK. 2Lemma 4.4 Suppose that the protocol is run with a sequence of user start/stop timesin which no user starts or stops between steps � � 3W and � +20Wn2. If exactly oneuser sets sync stage = SETTING CLOCK just before step � in [t+ 2W; : : : ; t+ 4W]and every other user sets sync stage = COPYING CLOCK just before some step in[� � 3W; : : : ; �], then, with probability at least 1� 4Wne�n, all users set sync stage =POLLING with clock = 0 just before step � + 20Wn2.Proof: The statement in the lemma is clearly true for the user that sets sync stage =SETTING CLOCK. Suppose that P is some other user. For each i in the range0 � i < 4W , if P 's clock = i mod 4W when the leader's clock = 0 mod 4W ,possibletime[i] will be Yes. If not, P has at least b(20Wn2 � 3W)=(4W)c chancesto set possibletime[i] to No, i.e., it has that many chances to poll when its clock =i mod 4W and the leader has already set sync stage = SETTING CLOCK. Now,5n2 � 1 = b(20Wn2 � 3W)=(4W)c. The probability that P is successful on a givenstep is at least 23(13n), and so the probability that it is unsuccessful in 5n2 � 1 stepsis at most (1� 29n)5n2�1 � e�n. The lemma follows by summing failure probabilitiesover all users and moduli of 4W . 2Lemma 4.5 Suppose that the protocol is run with a sequence of user start/stop timesin which no users start or stop between steps � and � + Wn3. If all users setsync stage = POLLING with clock = 0 just before step � then, with probability atleast 1 �Wn4e�n=10, all users set state = NORMAL and clock = 0 just before step� +Wn3.Proof: Say a sequence of n2=2 steps is bad for user P if P does not have a successfultransmission on any step in the sequence. Then the probability that a given user P isthe �rst to set sync stage = JAMMING is at most the probability that it has a badsequence of n2=2 steps, assuming all other users still have sync stage = POLLING.This is at most the probability that it either does not send, or is blocked on each stepof the sequence, which is at most�1� 13n + 13n �13��n2=2 = �1� 29n�n2=2 � e�n=10:The lemma follows from summing over all steps (actually this overcounts the numberof sequences of n2=2 steps) and all users. 228

Lemma 4.6 Suppose that the protocol is run with a sequence of user start/stop timesin which no user starts or stops between steps t and t + 13n7. If the system is in asynchronizing state just before step t then, with probability at least 1 � 2Wn4e�n=10,there is a t0 in [t+ 12n7; : : : ; t+ 13n7] such that it is in the starting state just beforestep t0.Proof: The lemma follows from Lemmas 4.2, 4.3, 4.4 and 4.5. 2Lemmas 4.7 to 4.12 outline the analysis of the robustness of the synchronizationphase. Lemma 4.7 shows that no matter what state the system is in (i.e., possiblynormal, possibly in the middle of a synchronization), if some user starts a synchro-nization (possibly because it just started) then, within W=2 steps, every user will bein an early part of the synchronization phase. Then Lemma 4.8 shows that with highprobability, within a reasonable amount of time, all users will be beyond the stageswhere they would jam the channel, and furthermore there is a low probability of anygoing back to those stages (i.e., a low probability of any synchronization starting).Finally, Lemma 4.9 shows that soon all users will be in the polling stage. At thispoint, as shown in Lemma 4.10, they will either all proceed into the normal state,or if a synchronization is started, they will all detect it and with high probabilityproceed into a good state as in Lemma 4.6.Note that these lemmas require the assumption that no users start or stop. Thisis because they are used for showing that the system returns to a normal state fromany situation, even from a bad situation such as a user just having started in themiddle of a synchronization phase. If another user starts before the system returnsto normal, then we would again use these lemmas to show that the system will returnto normal within a reasonable amount of time after that user started.Lemma 4.7 If the protocol is run and some user sets sync stage = JAMMING justbefore step t, and that user does not stop for W=2 steps, then there is a t0 in [t; : : : ; t+(W=2)] such that just before step t0 no user has state = NORMAL, and every userthat has sync stage = POLLING has clock �W=2.Proof: Every user P that has state = NORMAL or sync stage = POLLING justbefore step t will detect the channel being jammed and set state = SYNCHRONIZINGand sync stage = JAMMING just before some step in [t + 1; : : : ; t + (W=2)]. Thelemma follows. 2Lemma 4.8 Suppose that the protocol is run with a sequence of user start/stop timesin which no user starts or stops between steps t and t+ 5nW . If, just before step t,no user has state = NORMAL and every user with sync stage = POLLING hasclock �W=2, then, with probability at least 1�5Wn2e�n=10, there is a t0 in [t; : : : ; t+5nW] such that, just before step t0, each user has state = SYNCHRONIZING withsync stage set to SETTING CLOCK, COPYING CLOCK, WAITING, or POLLING.Furthermore, if a user has sync stage = POLLING, it has clock � 5nW +W=2 andeither it has clock � n2=2 or it has had a success in the last n2=2 steps.Proof: Say a user is calm at a given step if it has state = SYNCHRONIZING, andsync stage set to SETTING CLOCK, COPYING CLOCK, WAITING, or POLLING,29

and if sync stage = POLLING then its clock is at most W=2 + 5nW . Note that eachuser is uncalm for at most 4W steps in t; : : : ; t + 5nW , so there is a sequence of Wsteps in t; : : : ; t + 5nW in which every user is calm. Let t0 be the random variabledenoting the (n2=2 + 1)st step in this sequence.Say a sequence of n2=2 steps is bad for a user P if P has sync stage = POLLINGjust before every step in the sequence, and all of its transmissions during the sequenceare blocked by other calm users. The probability that a user with sync stage =POLLING adds a failure to L on a given step, either due to not transmitting or dueto being blocked by a calm user, is at most 1� 1=(3n) + (1=(3n))(1=3) = 1� 2=(9n).Thus, the probability that a given sequence of n2=2 steps is bad for a given user isat most (1� 2=(9n))n2=2 � e�n=10. Thus, with probability at least 1 � 5Wn2e�n=10,no sequence of n2=2 steps in t; : : : ; t + 5nW is bad for any user. In particular, thesequence of n2=2 steps preceding t0 is not bad for any user, so any user that hassync stage = POLLING just before step t0 with clock > n2=2 has a success in thesequence of n2=2 steps preceding t0. 2Lemma 4.9 Suppose that the protocol is run with a sequence of user start/stop timesin which no user starts or stops between steps t and t+ 5nW + (W=2) + 20Wn2. Ifsome user sets sync stage = JAMMING just before step t then, with probability atleast 1� 21Wn3e�n=10, there is a t0 in [t; : : : ; t+ 5nW + (W=2) + 20Wn2] such that,just before step t0, each user has sync stage = POLLING.Proof: We know by Lemmas 4.7 and 4.8 that, with probability at least 1 �5Wn2e�n=10, there is a � in [t; : : : ; t + 5nW + (W=2)] such that, just before step � ,each user has state = SYNCHRONIZING and sync stage set to SETTING CLOCK,COPYING CLOCK, WAITING, or POLLING. Furthermore, if a user has sync stage= POLLING, it has clock � 5nW +W=2, and either it has clock � n2=2 or it hashad a successful poll in the last n2=2 polls.Unless a user sets sync stage = JAMMING in the next 20Wn2 steps, therewill be a step t0 such that each user has sync stage = POLLING. But to setsync stage = JAMMING, a user with sync stage = POLLING must be unsuccessfulin all transmission attempts during some n2=2 consecutive steps. For a single userand a single set of n2=2 consecutive steps, the probability of this is at most e�n=10(as in the proof of Lemma 4.5). For all users and all possible sets of n2=2 consecutivesteps in �; : : : ; � + 20Wn2, this probability is bounded by 20Wn3e�n=10. The lemmafollows. 2Lemma 4.10 Suppose that the protocol is run with a sequence of user start/stoptimes in which no user starts or stops between steps t and t+Wn3+13n7. If the systemis in a state in which every user has state = NORMAL or sync stage = POLLINGjust before step t then, with probability at least 1 � 2Wn4e�n=10, there is a t0 in[t; : : : ; t+Wn3 + 13n7] such that the system is in a normal state just before step t0.Proof: If no user sets sync stage = JAMMING during steps [t; : : : ; t +Wn3 � 1]then the system reaches a normal state before step t + Wn3. Otherwise, supposethat some user sets sync stage = JAMMING just before step t00 � t+Wn3 � 1. By30

Lemma 4.6, with probability at least 1�2Wn4e�n=10, the system will enter a startingstate by step t00 + 13n7. 2Observation 4.11 Suppose that the protocol is run with a sequence of user start/stoptimes in which no user starts between steps t and t + 21Wn2 � 1. Suppose that nouser sets sync stage = JAMMING during steps t; : : : ; t + 21Wn2 � 1. Then everyuser has state = NORMAL or sync stage = POLLING just before step t+ 21Wn2.Lemma 4.12 Suppose that the protocol is run with a sequence of user start/stoptimes in which no user starts or stops between steps t and t+ n8. Given any systemstate just before step t, with probability at least 1 � 3Wn4e�n=10, there is a t0 in[t; : : : ; t+ n8] such that the system is in a normal state just before step t0.Proof: The lemma follows from Lemma 4.10, Observation 4.11 and Lemma 4.9. 2Lemmas 4.13{4.16 and Theorem 4.17 show that if the protocol is run with af�ig1�i�n-dominated message arrivals distribution then the system is usually in agood state (i.e., synchronized and running the P protocol), and thus the expectedtime that messages wait in the bu�er is constant.Lemma 4.13 Suppose that the protocol is run with a sequence of user start/stoptimes in which no user starts or stops during steps t; : : : ; t + n31=4 � 1. Given anysystem state just before step t, with probability at least 1� 6Wn4e�n=10, there is a t0in [t; : : : ; t+ n31=4] such that the system is in a starting state just before step t0.Proof: By Lemma 4.12, no matter what state the system is in at step t, with prob-ability at least 1� 3Wn4e�n=10 it will be in a normal state within n8 steps. Then theprobability that it does not enter a synchronizing state within n31=8 steps is at most(1�n�30)(n31=8)�(n29=8) � e�n=10. Then by Lemma 4.6, once it enters a synchronizingstate, with probability at least 1 � 2Wn4e�n=10 it will be in a starting state within13n7 steps. The lemma follows directly from summing failure probabilities. 2Lemma 4.14 Suppose that the protocol is run with a sequence of user start/stoptimes in which no user starts or stops between steps t and t+ n31 � 2n8. Given anysystem state just before step t, with probability at least 1 � 4Wn4e�n=10 there is a t0in [t; : : : ; t + n31 � 2n8] such that the system is in a synchronizing state just beforestep t0.Proof: From Lemma 4.12, with probability at least 1 � 3Wn4e�n=10, the systemwill be in a normal state at some time steps in [t; : : : t + n8]. Once the system is ina normal state, on every step except one out of every n2 steps, with probability atleast n�30 a user will switch to a synchronizing state. The probability of this nothappening in the next n31� 3n8 steps is at most (1� n30)(n31�3n8�n29) � e�n=2. Thelemma follows from summing the failure probabilities. 2Arrival distribution. For the remainder of this subsection, we will assume (withoutfurther mention) that the arrival distribution is f�ig1�i�n-dominated.31

Lemma 4.15 Let � be a non-negative integer less than n40 � n7. Suppose that nouser starts or stops between steps t and t+ � . If the system is in a starting state justbefore step t then, with probability at least 1 � (13:5)n�22, the system is in a goodstate just before step t+ � .Proof: Consider the following experiment, in which the protocol is started in astarting state just before step t and run according to the experiment.i tresyncing falseDo foreverSimulate a step of the protocolIf (resyncing = false)If some message has waited more than n7=2 stepsFAIL2If some user with jLj � n2=2 has no success in the last n2=2 elements of LFAIL1If the new state of the system is synchronizingIf (i � t+ � � 13n7), FAIL3Elseresyncing truej 0ElseIf (the new state of the system is a starting state)resyncing falsej j + 1If ((j � 13n7) and (resyncing = true)), FAIL4i = i+ 1If (i � t+ �), SUCCEEDIf none of fFAIL1; : : : ;FAIL4g occurs then the system is in a good state just beforestep t + � . As in the proof of Lemma 4.4, the probability that a given elementof L is \success" is at least 2=(9n), so the probability that FAIL1 occurs is at most�ne�n=9. By Lemma 3.1, and the fact that at most n40=W starting states occur inthe experiment (so P is started at most n40=W times), the probability that FAIL2occurs is at most (n40=W)n�60 < n�24. In the experiment, the clocks of the usersnever reach n40. If the state is normal, all users have the same value of c, every userwith jLj � n2=2 has a success in the last n2=2 elements of L, and every user has nomessage that has waited more than n7=2 steps, then the probability that a given usersets state = SYNCHRONIZING on a given step is at most n�30. Thus, the probabilitythat FAIL3 occurs is at most 13n�22. By Lemma 4.6, the probability of failing tosuccessfully restart after a given synchronization state is at most 2Wn4e�n=10. Hence,the probability of FAIL4 occurring is at most 2�Wn4e�n=10. 2De�nition: Let T = n31.Lemma 4.16 Suppose that no user starts or stops between steps t and t+ T . Givenany system state just before step t, with probability at least 1� 14n�22, the system isin a good state just before step t+ T . 32

Proof: The lemma follows from Lemma 4.14, Lemma 4.6, and Lemma 4.15. 2Theorem 4.17 Suppose that no user starts or stops during steps [t� T; : : : ; t+ n7].Given any system state just before step t� T , suppose that a message is generated atstep t. The expected time that the message spends in the bu�er is O(1).Proof: Let X be the time that the message spends in the bu�er and let G be theevent that the state just before step t is good and has clock less than T . Since X isalways at most n7, E[X] � n7 Pr[G] +E[XjG]. Now, Pr[G] is at most the probabilitythat the state just before step t is not good plus the probability that the state justbefore step t has clock at least T . By Lemma 4.13, the latter probability is at most6Wn4e�n=10, and, by Lemma 4.16, the former probability is at most 14n�22. Thus,E[X] � O(1) + E[XjG]. Then E[XjG] = Pt0 E[XjGt0] Pr[Gt0 jG], where Gt0 is theevent that the good state just before step t has clock t0 < T . Let At0 be the eventthat a message p0 is born in step t0 of the P protocol. Let B be the event that, priorto that step t0 (in the P protocol), no message has waited more than n7 steps, andat step t0 no message in the bu�er has waited more than n7=2 steps. Let Y be therandom variable denoting the number of steps required to transmit p0 (in P). ThenE[XjGt0] � E[Y jAt0 ^B]. (It would be equal except that in our protocol, it is possibleto be transferred to the queue before it is successfully sent from the bu�er.) So byLemma 4.1, E[XjGt0] � E[Y jAt0 ^ B] � E[Y jAt0]=Pr[BjAt0]. Then by Lemma 3.2,E[XjGt0] � 2E[Y jAt0] � O(1), 8t0 < T . Thus E[XjG] = O(1). 2The remaining results in Subsection 4.3 show that the probability of a messageentering a queue is low, the probability of a queue being very full is low, and the rateat which the messages are sent from the queue is high enough that the expected timeany given message spends in the queue is low. (Note that most messages will spendno time in the queue.)Lemma 4.18 Suppose that the protocol is run with an allowed sequence of userstart/stop times. The probability that there is a t0 in [t; : : : ; t + n32] such that thesystem is in a starting state just before step t0 is at least 1� 6Wn4e�n=10, given anysystem state just before step t.Proof: Divide the interval of n32 steps into subintervals of n31=4 steps each. Sinceat most n users can start or stop during the interval, and those that start continuefor the remainder of the interval, there must be a subinterval in which no users startor stop. The result follows from Lemma 4.13. 2Lemma 4.19 Suppose that the protocol is run with a given allowed sequence of userstart/stop times in which no user starts or stops between steps t � T and t + n7=2.Given any system state just before step t � T , suppose that a message R arrives atuser P at step t. The probability that R enters the queue is at most 16n�22.Proof: Let X be the event that R enters the queue. Let G be the event that justbefore step t the state is good and has clock less than T . Then by Lemma 4.16 andLemma 4.13, Pr[X] � 1Pr[G] + Pr[XjG] � 14n�22 + 6Wn4e�n=10 + Pr[XjG]. Note33

that Pr[XjG] = Pt0 Pr[XjGt0] Pr[Gt0 jG], where Gt0 is the event that the good statejust before step t has clock t0. Consider the following experiment (the correspondingintuition and analysis are presented after its description; so the reader is asked to�rst skip to the end of the description and then study the description as needed):

34

i 0Do foreverIf i = t0Add a message R to user PSimulate a step of the protocol (except for the arbitrary synchronizations)If some message has been in a bu�er more than n7=2 stepsFAIL1If some user with jLj � n2=2 has no success in the last n2=2 elements of LFAIL1ElseSimulate a step of the protocol (except for the arbitrary synchronizations)If (i < t0) and some message has waited more than n7 stepsFAIL1If (i > t0) and some message has waited more than n7 stepsFAIL3If some user with jLj � n2 has no success in the last n2 elements of LFAIL1i = i+ 1If (i � t0 + n7=2)If message Q has been sent, SUCCEEDElse FAIL2This experiment models the system beginning at a start state, and going fort0+n7=2 � T +n7=2 steps, but assumes that there are no arbitrary synchronizations,and that there is a message R generated at P at clock t0. The experiment fails at stepi = t0 if the system enters a state which is not good at that point. It fails at a stepi < t0 or t0 < i < t0+ n7=2 if the system does a non-arbitrary synchronization at thatpoint. It fails at step i = t0 + n7=2 if the message R has not been sent successfully.Let A be the event that FAIL1 occurs, B be the event that FAIL2 occurs, C be theevent that FAIL3 occurs, and S be the event that the experiment does not fail duringsteps 1; : : : ; t0. The probability that R is still in the bu�er after step t+ n7=2 + 1, orthe real system synchronizes before step t + n7=2 + 1, conditioned on the fact thatthe state just before step t is good and has clock t0 and on the fact that message Ris generated at P at step t0, is at most the sum of (1) Pr[C j S], (2) Pr[A j S], (3)Pr[B j S], and (4) the probability that there is an arbitrary synchronization duringsteps t; : : : ; t + n7=2 � 1. Probability (4) is at most n(n7=2)(n�30) = n�22=2. Nownote that Pr[A j S] � Pr[A]=Pr[S]. By the proof of Lemma 4.15 (using Lemma 3.2),Pr[S] � 1� [n40(ne�n=9) + n�60] � 12and Pr[A] � n40(ne�n=9) + n�60:Thus Pr[A j S] � 3n�60.Note also that Pr[B j S] � Pr[B]=Pr[S]. By Lemma 3.2, Pr[B] � n�60. (Thiscan only be decreased by a queue step causing a synchronization.) Then Pr[B j S] �2n�60. 35

Finally, Pr[C j S] = 0, since all messages at step t0 have waited for at most n7=2steps, and the experiment stops at step t0 + n7=2.Thus, Pr[XjG] � n�22, which completes the proof. 2Lemma 4.20 Let j be an integer in [0; : : : ; 14]. Suppose that no user starts or stopsduring steps t; : : : ; t + n14+j � 1. If the system is in a starting state just beforestep t then the probability that the system enters a synchronizing state during stepst; : : : ; t+ n14+j � 1 is at most 2n�15+j.Proof: The probability that an arbitrary synchronization occurs during stepst; : : : ; t + n14+j � 1 is at most n � n�30 � n14+j = n�15+j . Following the proof ofLemma 4.15, we see that the probability that a non-arbitrary synchronization occursduring these steps is at most n�60+n15+je�n=9. (The probability that a message waitsin a bu�er more than n7 steps is at most n�60 by Lemma 3.1 and the probability thatsome user gets n2 failures on L is at most n14+j � n � e�n=9.) 2Lemma 4.21 Suppose that no user starts or stops during the interval [t; : : : ; t+n33�1]. If the system is in a starting state just before step t then the probability that eithersome step in the interval is an out-of-sync step or that the system is in a startingstate just before more than n7 steps in the interval is at most 3Wn11e�n=10.Proof: If the system is in a starting state x times, where x > n7, then at leastx�n7=2 of these must be followed by fewer than 2n26 steps before the next synchro-nization phase. By Lemma 4.20, the probability of fewer than 2n26 steps occurringbetween a starting state and the next synchronization phases is at most 2n�2. Thus,the probability of this happening after at least x� n7=2 of the x starting states is atmost 2x(2n�2)x�n7=2 which is at most 2�n7=2.If the system is in a starting state just before at most n7 steps in the interval, thenthe only time that the system could have an out-of-sync step during the interval isduring at most n7� 1 subintervals which start with a synchronizing state and end ina starting state. By the proof of Lemma 4.6, the probability that a given subintervalcontains an out-of-sync step is at most 2Wn4e�n=10. Thus, the probability that anout-of-sync step occurs in the interval is at most n7(2Wn4e�n=10). 2Lemma 4.22 Suppose that the protocol is run with a given allowed sequence of userstart/stop times after step t, and a given system state just before step t. Divide theinterval starting at step t into blocks of n4 steps. The probability that the interval hasmore than 27n11 blocks containing non-normal steps is at most 7Wn12e�n=10.Proof: Let S contain the �rst step of the interval and each step during the intervalin which a user starts or stops. Then jSj � 2n+1. Let S0 contain S plus for each steps 2 S, all steps after s until the system returns to a normal state. By Lemma 4.12,with probability at least 1 � (2n + 1)(3Wn4e�n=10), S0 can be covered by 2n + 1sequences of at most n8 steps each. Then the set S0 partitions the other steps in theinterval into at most 2n + 1 subintervals, such that the state is normal just beforeeach subinterval, and no users start or stop during any subinterval. We perform thefollowing analysis for each of these subintervals.36

By Lemma 4.6, once the system enters a synchronizing state, with probability atleast 1�2Wn4e�n=10 it will be in a starting state within 13n7 steps. Once the systemis in a starting state, by Lemma 4.21 with probability at least 1 � 3Wn11e�n=10, itwill enter a synchronizing state at most n7 + 1 times, and each synchronizing phasewill last at most 13n7 steps.In total, the probability of not performing as stated above is at most(2n+ 1)(3Wn4e�n=10 + 2Wn4e�n=10 + 3Wn11e�n=10) � 7Wn12e�n=10:Finally, the set S0 can intersect at most (2n+1)((n8=n4)+1) blocks of size n4. Then,in each of the 2n+1 subintervals of steps between those of S0, there are at most n7+2synchronizing phases, each of which can intersect at most ((13n7=n4) + 1) blocks ofsize n4. Altogether, at most 27n11 blocks of size n4 will contain non-normal steps. 2Corollary 4.23 Let x be an integer in the range 0 � x � n29 � 54n11. Suppose thatthe protocol is run with a given allowed sequence of user start/stop times after stept, and a given system state just before step t. Focus on a particular non-empty queueat step t. The probability that the queue remains non-empty for the next xn4+54n15steps but fewer than x messages are delivered from it during this period is at most7Wn12e�n=10.Proof: Divide the next xn4 + 54n15 � n33 steps into blocks of size n4. ByLemma 4.22, with probability at least 1�7Wn12e�n=10, at most 54n11 of these blockswill either contain a non-normal step, or precede a block which contains a non-normalstep. The corollary follows by noting that if block i contains all normal steps and nosynchronization is started in block i + 1, then a message must have been sent fromthe queue during block i. 2Lemma 4.24 Suppose that the protocol is run with a given allowed sequence of userstart/stop times after step t, and a given system state just before step t. Then theprobability that the interval starting at t is light for a given user is at least 1 �8Wn12e�n=10.Proof: As in the proof of Lemma 4.22, with probability at least 1� 7Wn12e�n=10,the non-normal steps could be covered by at most (2n+1)+(2n+1)(n7+2) subintervalsof at most n8 steps each, and each of the subintervals would contribute at most n8+n7messages to the queue (including the at most n7 that could be transferred from theuser's bu�er). If this were the case, at most 3n16 messages would be placed in thequeue during the interval. 2Lemma 4.25 Suppose that the protocol is run with a given allowed sequence ofuser start/stop times after step t, and a given system state just before step t. Theprobability that the interval starting at t is productive for a given user is at least1� 7Wn12e�n=10.Proof: Follows from Corollary 4.23. 237

Lemma 4.26 Suppose that the protocol is run with a given allowed sequence of userstart/stop times before step t. The probability that more than n17 + j(n33 + n7)messages are in a queue just before step t is at most e�jn=30 for j � 1 and at moste�n=30 for j = 0.Proof: For every non-negative integer j, we will refer to the interval [t � (j +1)n33+1; : : : ; t� jn33] as \interval j". Choose k such that the queue was empty justbefore some step in interval k, but was not empty just before any steps in intervals 0to (k � 1). We say that interval j is \bad" if it is not both productive and light forthe user. The size of the queue increases by at most n33 + n7 during any interval. Ifinterval k is not bad, then the queue size increases by at most n17 during interval k.If interval j is not bad for j < k, then the queue size decreases by at least n29=2�n17during interval k. Thus, if b of intervals 0 to k are bad, then the size of the queuejust before step t is at most(k + 1)(n33 + n7)� (k + 1� b)(n33 + n7 + n29=2� n17) + n17:This quantity is at most n17 + i(n33 + n7) unless b > i=2 + k=(8n4). Thus, theprobability that the queue has more than n17 + i(n33 + n7) messages just beforestep t is at most the probability that, for some non-negative integer k, more than(i=2)+(k=(8n4)) of intervals 0 to k are bad. By Lemmas 4.24 and 4.25, the probabilitythat a given interval is bad is at most 16Wn12e�n=10. Let X = 16Wn12e�n=10. Then,for i � 1, the failure probability is at mostXk�0 kb(i=2) + (k=(8n4))c + 1!Xb(i=2)+(k=(8n4))c+1� Xk�0(16en4X)b(i=2)+(k=(8n4))c+1� Xk�0(16en4X)(i=2)+(k=(8n4))� (16en4X)i=2Xk�0(16en4X)k=(8n4)� (16en4X)i=28n4Xk�0(16en4X)k� 2(8n4)(16en4X)i=2 � e�in=30:For i = 0, this probability is at mostXk�0 kbk=(8n4)c+ 1!Xbk=(8n4)c+1 � Xk�0(16en4X)bk=(8n4)c+1� (16en4X)Xk�0(16en4X)bk=(8n4)c� 2(8n4)(16en4X) � e�n=30: 238

Lemma 4.27 Suppose that the protocol is run with a given allowed sequence of userstart/stop times after step t+ n32. Suppose that no users start or stop during steps[t � T; : : : ; t + n32] and that the system state just before step t � T is given. Theprobability that an out-of-sync step occurs before a starting step after t is at most4Wn11e�n=10.Proof: By Lemma 4.13, the probability of not having a start state just before anystep in the subinterval [t�T; : : : ; t�T=2] is at most 6Wn4e�n=10. Then by (the proofof) Lemma 4.21, the probability of having an out-of-synch step before step t+ n32 isat most 3Wn11e�n=10. Finally, by Lemma 4.13, the probability of not having a startstate in the subinterval [t; : : : ; t + T=2] is at most 6Wn4e�n=10. The lemma followsby summing the failure probabilities. 2Lemma 4.28 Suppose that the protocol is run with a given allowed sequence of userstart/stop times after step t, and a given system state just before step t in which queueQ contains at least x messages. Then the expected time until at least x messages havebeen sent from Q is O(xn4 + n15).Proof: Our �rst case is when x � n29=2. Let A be the event that at least xmessages are sent in steps t; : : : ; t + xn4 + 54n15 � 1. We refer to the interval [t +xn4 + 54n15 + (k � 1)n33; : : : ; t+ xn4 + 54n15 + kn33 � 1] as \interval k". Let Ck bethe event that interval k is productive. Let Ex be the expected time to send the xmessages. Using Corollary 4.23 and Lemma 4.25,Ex � (xn4 + 54n15) + n33 Pr[A] +Xk>1n33 Pr[^1�i�k�1Ci]� xn4 + 54n15 +Xk�1n33(7Wn12e�n=10)k= O(xn4 + n15):Our second and last case is when x > n29=2. Let r = d2x=n29e. Note that afterr productive intervals, at least x messages will be sent. Let Dk be the event thatintervals 1 to k do not contain at least r productive intervals, but that intervals 1 to(k + 1) do contain r productive intervals.Ex � Xk�r(k + 1)n33 Pr[Dk]� n33(2r + Xk�2r(k + 1)Pr[Dk])� n33(2r + Xk�2r(k + 1) kk � r!(7Wn12e�n=10)k�r)� n33(2r + Xk�2r(k + 1)2k(7Wn12e�n=10)k�r)= O(n33r) = O(xn4): 239

Theorem 4.29 Suppose that the protocol is run with a f�ig1�i�n-dominated arrivaldistribution, a given allowed sequence of user start/stop times in which no users startor stop during steps [t � n33; : : : ; t + n33]. Suppose that a message is generated atstep t. The expected time that the message spends in the queue is O(1).Proof: Let I` be the interval [t� `n33+1; : : : ; t� (`� 1)n33]. Let A0 be the eventthat the size of the queue is at most n17�1 just before step t�n33+1, and, for i � 1,let Ai be the event that the size of the queue just before step t � n33 + 1 is in therange [n17+ (i� 1)(n33 +n7); n17 + i(n33 +n7)� 1]. Let B the event that interval I1is light. Let C be the event that the message enters the queue. Let t0 be the randomvariable denoting the smallest integer such that t0 � t and the state of the system justbefore step t0 is a starting state. Let t00 be the random variable denoting the smallestinteger such that t00 � t and step t00 is out-of-sync. Let F be the event that t0 < t00.Let X be the random variable denoting the amount of time that the message spendsin the queue. All probabilities in this proof will be conditioned on the state of thefact that no users start or stop during steps [t� n33; : : : ; t+ n33].We start by bounding Pi�1 E[X j Ai ^ C] Pr[Ai ^ C]. By Lemma 4.26, Pr[Ai] �e�(maxfi�1;1g)n=30 so Pr[Ai ^ C] � e�(maxfi�1;1g)n=30. By Lemma 4.28,E[X j Ai ^ C] � E[t0 � t j Ai ^ C] + O(n4(n17 + (i+ 1)(n33 + n7))):(Since Ai holds, there are at most n17 + i(n33 + n7) messages in the queue beforeinterval I1 and at most n33 + n7 get added during interval I1.) By Lemma 4.18,E[t0 � t j Ai ^ C] is at most Pj�1 n32(6Wn4e�n=10)j�1 = O(n32). Thus, E[X jAi ^C] = (i+ 1)O(n37). Thus,Xi�1 E[X j Ai ^ C] Pr[Ai ^ C] �Xi�1 e�(maxfi�1;1g)n=30(i+ 1)O(n37) = O(1):We now bound E[X j A0 ^ B ^ C] Pr[A0 ^ B ^ C]. By Lemma 4.24, Pr[B] �8Wn12e�n=10, so Pr[A0 ^ B ^ C] � 8Wn12e�n=10. As above, E[X j A0 ^ B ^ C] =O(n37), soE[X j A0 ^B ^C] Pr[A0 ^B ^ C] � (8Wn12e�n=10)O(n37) = O(1):Next, we bound E[X j A0^F ^C] Pr[A0^F ^C]. By Lemma 4.27, the probabilityof F is at most 4Wn11e�n=10, so Pr[A0 ^ F ^ C] � 4Wn11e�n=10. As above, E[X jA0^F ^C] is at most E[t0�t j A0^F ^C]+O(n37). Since C occurs, the system is in asynchronization state just before some state in [t; : : : ; t+n7]. Since F occurs, there isan out-of-sync step in [t; : : : ; t+ 14n7]. By Lemma 4.18, the expected time from thisout-of-sync step until a starting state occurs is at most Pj�1 n32(6Wn4e�n=10)j�1 =O(n32). Thus, E[t0� t j A0^F ^C] = O(n32) and E[X j A0^F ^C] = O(n37). Thus,E[X j A0 ^ F ^C] Pr[A0 ^ F ^ C] � (4Wn11e�n=10)O(n37) = O(1):Finally, we bound E[X j A0 ^ B ^ F ^ C] Pr[A0 ^ B ^ F ^ C]. By Lemma 4.19,the probability of C is at most 16n�22, so Pr[A0 ^ B ^ F ^ C] � 16n�22. We nowwish to bound E[X j A0 ^ B ^ F ^ C]. Since A0 and B hold, the size of the queue40

just before step t is at most 2n17. Suppose that t0 > t + 2n21 + 13n7. Then, sinceF holds, no step in t; : : : ; t + 2n21 + 13n7 is out-of-sync. Suppose �rst that no stepin t; : : : ; t+ 2n21 + 13n7 is out-of-sync and that the state is normal before each stepin t; : : : ; t + 2n21. Then all of the clocks will be the same, so at least 2n17 messageswill be sent from the queue during this period. Suppose second that no step int; : : : ; t+2n21+13n7 is out-of-sync, but that the state is not normal just before somestep in [t; : : : ; t + 2n21]. Then since no state in t; : : : ; t + 2n21 + 13n7 is out-of-sync,t0 � t + 2n21 + 13n7. Finally, suppose that t0 � t + 2n21 + 13n7. By Lemma 4.28,E[X j A0 ^B ^C ^ F] is at most t0 � t+O(n4 � 2n17) = O(n21). Thus,E[X j A0 ^B ^ F ^ C] Pr[A0 ^B ^ F ^ C] � 16n�22O(n21) = O(1): 2Observation 4.30 When the protocol is run, every message spends at most n7 stepsin the bu�er.Theorem 4.31 Suppose that the protocol is run with a f�ig1�i�n-dominated arrivaldistribution and a given allowed sequence of user start/stop times. Suppose that amessage is generated at step t. Then the expected time that the message spends in thequeue is O(n37).Proof: Let X be the random variable denoting the size of the queue just beforestep t. By Lemma 4.26, for i � 1, the probability that X > n17 + i(n33 + n7) is atmost e�in=30. Given a particular value of X, Lemma 4.28 shows that the expectedtime to send the message is O(Xn4 + n15). Thus, the overall expected time to sendthe message isO(n4(n17+n33+n7)+n15)+Xi�2O(n4(n17+ i(n33+n7))+n15)e�(i�1)n=30 = O(n37):24.4 Final ResultsFor v 2 [n], let Tv be the set of steps in which user v is running.Theorem 4.32 Suppose that the protocol is run with a f�ig1�i�n-Bernoulli arrivaldistribution and a given sequence of user start/stop times in which each user runs forat least 8n71 steps every time it starts. Then E[Wavg] = O(1).Proof: First note that the sequence of user start/stop times is allowed. Let R bethe set of steps within n33 steps of the time that a user starts or stops. Lemma 4.33proves that if the f�ig1�i�n-Bernoulli arrival distribution is conditioned on havingat most m messages arrive by time t, the resulting arrival distribution is f�ig1�i�n-dominated. Therefore, the system described in the statement of the theorem satis�esthe conditions of Lemma 4.34 with (from Theorem 4.17 and Theorem 4.29) C 0 = O(1)41

and (from Theorem 4.31 and Observation 4.30) C = O(n37). From the condition givenin the statement of this theorem, we can see thatS = maxv2V lim supt!1 jR \ Tv \ [t]jjTv \ [t]j � n�37:(The worst case for S is when a user runs for 8n71 + 6(n � 1)n33 + 2n33 steps, andthe other n� 1 users have [ending, starting, ending, starting] times[2in33; 2(n� 1)n33 + 2in33; 2(n� 1)n33 + 2in33 + 8n71; 4(n� 1)n33 + 2in33 + 8n71];for 1 � i � n � 1. Then jRj = 8(n � 1)n33 + 2n33, including the n33 steps justafter the user starts and the n33 steps just before the user stops.) The theorem thenfollows from Lemma 4.34. (Note that C and C 0 are actually functions of �, but � isa constant.) 2Lemma 4.33 Consider the distribution obtained from the f�ig1�i�n-Bernoulli ar-rivals distribution by adding the condition that at most m messages arrive by step t.The resulting arrival distribution is f�ig1�i�n-dominated.Proof: Let Av;t0 denote the probability that a message arrives at user v at time t0(under the f�ig1�i�n-Bernoulli arrivals distribution). Let E be any event concerningthe arrival of messages at steps other than t0 or at users other than v. Let C be theevent that at most m messages arrive during steps 1; : : : ; t. We wish to show thatPr[Av;t0 j C ^ E] � �v. If t0 > t then Pr[Av;t0 j C ^ E] = �v by the independence ofthe f�ig1�i�n-Bernoulli arrivals distribution, so suppose that t0 � t. Let E0 denotethe part of event E concerning arrivals at steps 1; : : : ; t. By the independence of thef�ig1�i�n-Bernoulli arrivals distribution, Pr[Av;t0 j C^E] = Pr[Av;t0 j C^E0]. Let Wbe the set containing every possible sequence of message arrivals during steps 1; : : : ; twith the arrival at user v and step t0 omitted. Let W 0 be the set of elements of Wwhich satisfy E0 and have fewer than m arrivals and let W 00 be the set of elementsof W which satisfy E0 and have exactly m arrivals.Pr[Av;t0 j C ^E0] = Xw2W Pr[Av;t0 j w ^ C ^E0] Pr[w j C ^E0]= Xw2W 0 Pr[Av;t0 j w ^C] Pr[w j C ^E0]+ Xw2W 00 Pr[Av;t0 j w ^C] Pr[w j C ^E0]= Xw2W 0 Pr[Av;t0 j w] Pr[w j C ^E0]= �v Xw2W 0Pr[w j C ^E0] � �v: 2Lemma 4.34 Suppose that, for every m and t, a protocol running on n users hasthe property: for all users v, if a message P is generated at user v at step t 2 R and42

is one of the �rst m messages generated, then the expected time before message P issent is at most C, and if a message P is generated at user v at step t 2 R and is oneof the �rst m messages generated, then the expected time before message P is sent isat most C 0. Then E[Wavg] � 2(SC + C 0), where S = maxv2V lim supt!1 jR\Tv\[t]jjTv\[t]j .Proof: Recall that � = Pv2V �v, that �v > 0 for all v 2 V and that Wavg =limm!1 1mPmi=1Wi, whereWi is the delay of the ith message generated in the system.E[Wavg] = E " limm!1 1m mXi=1Wi# � E "lim supm!1 1m mXi=1Wi# = lim supm!1 1m mXi=1E[Wi]:Now let Ai;v;t be the event that the ith message is generated at user v at step t.Then mXi=1 E[Wi] = mXi=1Xt�0 Xv2V E[Wi j Ai;v;t] Pr[Ai;v;t]= Xv2V Xt2Tv mXi=1E[Wi j Ai;v;t] Pr[Ai;v;t]:Let Bm;v;t be the event that one of the �rst m messages is generated at user v atstep t. Now, the properties of the protocol given in the lemma are equivalent to thefollowing: for any v 2 V , m and t 2 Tv,mXi=1E[Wi j Ai;v;t] Pr[Ai;v;t j Bm;v;t] � C; if t 2 R, andmXi=1E[Wi j Ai;v;t] Pr[Ai;v;t j Bm;v;t] � C 0; if t 2 R.Since, for i � m, Pr[Ai;v;t] = Pr[Ai;v;t ^Bm;v;t] = Pr[Ai;v;t j Bm;v;t] Pr[Bm;v;t],mXi=1E[Wi] = Xv2V Xt2Tv mXi=1 E[Wi j Ai;v;t] Pr[Ai;v;t]= Xv2V Xt2Tv mXi=1 E[Wi j Ai;v;t] Pr[Ai;v;t j Bm;v;t] Pr[Bm;v;t]= Xv2V Xt2Tv Pr[Bm;v;t] mXi=1E[Wi j Ai;v;t] Pr[Ai;v;t j Bm;v;t]� Xv2V 0@ Xt2R\Tv Pr[Bm;v;t]C + Xt2R\Tv Pr[Bm;v;t]C 01A :Let �t = Pv02V �v0 jTv0 \ [t]j, i.e. the expected number of messages generated in thesystem through time t. Note that Pr[Bm;v;t] � �v, and, for m < �t, Pr[Bm;v;t] ��v expf�(�t �m)2=(2�t)g, by a Cherno� bound. Then for any T � � Tv,Xt2T � Pr[Bm;v;t] � Xt2T �;�t<2m �v + Xt2T �;�t�2m �v expf�(�t �m)2=(2�t)g43

� �vjT � \ ft : �t < 2mgj+ �v Xt2T �;�t�2m expf�(�t �m)=4g� �vjT � \ ft : �t < 2mgj+ �vXi�0 expf�(m+ i�v)=4g� �vjT � \ ft : �t < 2mgj+ �ve�m=4Xi�0(e��v=4)i� �vjT � \ ft : �t < 2mgj+O(1):Consequently,E[Wavg] � lim supm!1 1m mXi=1 E[Wi]� lim supm!1 1m Xv2V [C(�vjR \ Tv \ ft : �t < 2mgj+O(1))+C 0(�vjR \ Tv \ ft : �t < 2mgj+O(1))]� C(lim supm!1 1m Xv2V �vjR \ Tv \ ft : �t < 2mgj)+C 0(lim supm!1 1m Xv2V �vjR \ Tv \ ft : �t < 2mgj):We bound the factor multiplied by C as follows.lim supm!1 1m Xv2V (�vjR \ Tv \ ft : �t < 2mgj)= lim supm!1 Xv2V �vjTv \ ft : �t < 2mgjm � jR \ Tv \ ft : �t < 2mgjjTv \ ft : �t < 2mgj �� lim supm!1 �maxv2V jR \ Tv \ ft : �t < 2mgjjTv \ ft : �t < 2mgj �Xv2V �vjTv \ ft : �t < 2mgjm� �lim supm!1 maxv2V jR \ Tv \ ft : �t < 2mgjjTv \ ft : �t < 2mgj � lim supm!1 Xv2V �vjTv \ ft : �t < 2mgjm !� �maxv2V lim supm!1 jR \ Tv \ ft : �t < 2mgjjTv \ ft : �t < 2mgj ��lim supm!1 2mm �� maxv2V lim supt!1 jR \ Tv \ [t]jjTv \ [t]j � 2 = 2S:We bound the factor multiplied by C 0 as follows.lim supm!1 1m Xv2V (�vjR \ Tv \ ft : �t < 2mgj) � lim supm!1 Xv2V �vjTv \ ft : �t < 2mgjm� lim supm!1 2mm = 2: 244

5 Conclusions and Open ProblemsWe have given a protocol which achieves constant expected delay for each messagein the Synchronized In�nitely-Many Users Model with � < 1=e. We have also givena protocol which achieves constant expected average delay in the UnsynchronizedFinitely-Many Users Model for any f�ig1�i�n-Bernoulli message-arrivals distributionin which Pi �i < 1=e. Several open questions remain:� Can we get good delay versus arrival rate tradeo�s in our models? Are there�ne-tunings of the protocols or constants which ensure short delays for \small"values of �?� In the in�nitely-many senders models considered, is there a protocol which isstable in the sense of [13] for all � < 1? If not, then what is the supremumof the allowable values for �, and how can we design a stable protocol for allallowed values of �? We have shown protocols that guarantee stability forall � < 1=e. Here is a heuristic argument as to why this may indeed be alimit. Assume that we have a static system with some h users (messages),where even the value of h is known to all users. If all users follow the sameprotocol, the optimal probability of \success" (exactly one message attemptingthe channel) in one time step, is achieved if each message attempts using thechannel with probability 1=h: in this case, the success probability is h � (1=h) �(1�1=h)h�1 � 1=e. Thus, even if the users are given the additional informationon the exact number of messages, it may be that 1=e is the best probability ofsuccess possible. This seems to suggest that if the arrival rate � is more than1=e, then the system cannot be stable (since the average arrival rate will bemore than the average rate of departure). Is this intuition correct? What isa \minimal" assumption that will ensure a stable protocol for all � < 1? (Asdescribed in the introduction, some su�cient conditions are described in [20, 13]for certain models including �nitely-many users models.)� For which arrivals distributions are our protocols stable? We have shownthat our Unsynchronized Finitely-Many Users Model protocol is stable for anyf�ig1�i�n-Bernoulli message-arrivals distribution in whichPi �i < 1=e, that ourSynchronized Finitely-Many Users Model protocol is stable for any f�ig1�i�n-dominated arrivals distribution with Pi �i < 1=e, and that our SynchronizedIn�nitely-Many Users Model protocol is stable for Poisson arrivals with � < 1=e.We believe that our Synchronized In�nitely-Many Users Model protocol is alsostable for other input distributions.For example, suppose that the distribution of incoming messages to the systemhas substantially weaker random properties than the independent Poisson dis-tribution. Our protocol can still achieve E[Wave] = O(1). From the paragraphimmediately following the statement of Theorem 2.14, we see that pi(1) = O(qi)will su�ce to maintain the property that E[Wave] = O(1); the strong (doublyexponential) decay of pi(1) as i increases is unnecessary. In turn, by analyzingthe recurrences presented by Lemmas 2.12 and 2.13, we can show that rather45

than the strong bound of (18), it su�ces ifPr[u0 is t-bad] � k�3(2k2)�t: (23)We can then proceed to show that pi(1) = O(qi) by showing, via induction oni as above, that pi(t) � k�(i+3)(2k2)�t; the proof can then be concluded asbefore. The bound in (23) just decays singly exponentially in t, as opposed tothe doubly-exponential decay we had for Poisson arrivals. Thus, our approachwill work with message-arrival distributions that have substantially weaker tailproperties than independent Poisson.Acknowledgments. We thank Michael Kalantar for explaining the practical sideof this problem, Prabhakar Raghavan and Eli Upfal for sending us an early versionof their paper [21], and the participants of a seminar at Carnegie-Mellon University,whose questions and comments helped us clarify some points.References[1] N. Abramson. The ALOHA system. In N. Abramson and F. Kuo, editors,Computer-Communication Networks. Prentice Hall, Englewood Cli�s, New Jer-sey, 1973.[2] D. Aldous. Ultimate instability of exponential back-o� protocol for acknowl-edgment based transmission control of random access communication channels.IEEE Trans. on Information Theory, IT-33(2):219{223, 1987.[3] N. Alon, J. H. Spencer, and P. Erd}os. The Probabilistic Method. Wiley{Interscience Series, John Wiley & Sons, Inc., New York, 1992.[4] R. J. Anderson and G. L. Miller. Optical communication for pointer based algo-rithms. Technical Report CRI-88-14, Computer Science Department, Universityof Southern California, 1988.[5] B. Bollob�as. Martingales, Isoperimetric Inequalities and Random Graphs, inCombinatorics (eds A. Hajnal, L. Lov�asz, and V. T. S�os), Colloq. Math. Soc.J�anos Bolyai 52, pages 113{139, North Holland, 1988.[6] H. Cherno�. A measure of asymptotic e�ciency for tests of a hypothesis basedon the sum of observations. Annals of Mathematical Statistics, 23:493{509, 1952.[7] M. Dietzfelbinger and F. Meyer auf der Heide. Simple, e�cient shared memorysimulations. In Proc. ACM Symposium on Parallel Algorithms and Architectures,pages 110{119, 1993.[8] M. Ger�eb-Graus and T. Tsantilas. E�cient optical communication in parallelcomputers. In Proc. ACM Symposium on Parallel Algorithms and Architectures,pages 41{48, 1992.
46

[9] L. A. Goldberg, M. Jerrum, F. T. Leighton, and S. B. Rao. A doubly logarithmiccommunication algorithm for the completely connected optical communicationparallel computer. In Proc. ACM Symposium on Parallel Algorithms and Archi-tectures, pages 300{309, 1993.[10] L. A. Goldberg, Y. Matias and S. B. Rao. An Optical Simulation of SharedMemory. In Proc. ACM Symposium on Parallel Algorithms and Architectures,pages 257{267, 1994.[11] J. Goodman, A. G. Greenberg, N. Madras, and P. March. Stability of binary ex-ponential backo�. J. Assoc. Comput. Mach., 35(3):579{602, 1988. A preliminaryversion appeared in Proc. ACM Symposium on Theory of Computing, 1985.[12] A. G. Greenberg, P. Flajolet and R. E. Ladner. Estimating the multiplicities ofconicts to speed their resolution in multiple access channels. J. Assoc. Comput.Mach., 34(2):289{325, 1987.[13] J. H�astad, T. Leighton, and B. Rogo�. Analysis of backo� protocols for multipleaccess channels. SIAM J. on Computing, 25(4):740{774, 1996. A preliminaryversion appeared in Proc. ACM Symposium on Theory of Computing, 1987.[14] W. Hoe�ding. Probability inequalities for sums of bounded random variables.American Statistical Association Journal, 58:13{30, 1963.[15] Special issue of IEEE Trans. on Information Theory, IT-31, 1985.[16] F. P. Kelly. Stochastic models of computer communication systems. J. R. Statist.Soc. B, 47(3):379{395, 1985.[17] P. D. MacKenzie, C. G. Plaxton, and R. Rajaraman. On contention resolutionprotocols and associated probabilistic phenomena. In Proc. ACM Symposium onTheory of Computing, pages 153{162, 1994.[18] C. McDiarmid. On the method of bounded di�erences. In Surveys in Combina-torics, London Math. Soc. Lecture Notes Series 141, pages 148{188, CambridgeUniversity Press, 1989.[19] R. Metcalfe and D. Boggs. Distributed packet switching for local computernetworks. Comm. ACM, 19:395{404, 1976.[20] N. Pippenger. Bounds on the performance of protocols for a multiple accessbroadcast channel. IEEE Trans. on Information Theory, IT-27:145{151, 1981.[21] P. Raghavan and E. Upfal. Stochastic contention resolution with short delays.In Proc. ACM Symposium on Theory of Computing, pages 229{237, 1995.[22] B.S. Tsybakov and N. B. Likhanov, Upper Bound on the Capacity of a RandomMultiple-Access System, Problemy Peredachi Informatsii, 23(3) (1987) 64{78.[23] N. D. Vvedenskaya and M. S. Pinsker. Non-optimality of the part-and-try al-gorithm. In Abstracts of the International Workshop on Convolutional Codes,Multiuser Communication, Sochi, USSR, pages 141{148, 1983.47

