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Predicting the Cache Miss Ratio of
Loop-Nested Array References*

John S. Harper!  Darren J. Kerbyson Graham R. Nudd

December 1, 1997

Abstract

The time a program takes to execute can be massively affected by
the efficiency with which it utilizes cache memory. Moreover the cache-
miss behavior of a program can be highly unpredictable, in that small
changes to input parameters can cause large changes in the number of
misses. In this paper we present novel analytical models of the cache
behavior of programs consisting mainly of array operations inside nested
loops, for direct-mapped caches. The models are used to predict the miss-
ratios of three example loop nests; the results are shown to be largely
within ten percent of simulated values. A significant advantage is that
the calculation time is proportional to the number of array references in
the program, typically several orders of magnitude faster than traditional
cache simulation methods.

1 Introduction

It is widely recognized that the cache behavior of a program can be one of the
most important factors affecting its performance. As the gulf between processor
and memory speed widens, this factor is becoming more and more relevant to
all but the most trivial of programs. In the field of scientific computation where
large data arrays are commonly manipulated, and high performance is especially
desirable, making efficient use of cache memory is a natural way to increase a
program’s performance. Optimizing cache performance in an ad hoc manner
can yield some success (for example trying to access memory sequentially), but
due to the number of parameters and the complicated nature of the processes
involved, it is not possible to detect more subtle effects. It has also been shown
that cache behavior can be very unstable, with small program changes often
leading to large differences in execution time [2, 13, 8].

Evaluating cache performance has traditionally been restricted to simula-
tion and profiling. Simulating the memory reference behavior of a program
requires that the effect of every single memory access be emulated one by one.

*Research report CS-RR-336; Dept. of Computer Science, University of Warwick, Coventry
CV4 7AL, UK.
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Profiling a program usually requires some level of hardware support, and al-
lows memory access statistics to be recorded while the program is executing.
Both of these methods give accurate results, the drawback being that evalua-
tion takes at least as long as the execution time of the program being examined.
Generally the situation will be significantly worse than this, with conventional
trace-driven simulators many times slower than the program’s execution time,
and more recent simulation techniques still significantly slower [14].

This level of evaluation speed is acceptable for some applications, but when
the number of possible scenarios to be evaluated increases, or results are re-
quired quickly, simulation or profiling may simply be too slow to be useful. As
an example of just how long comprehensive simulation can take, Gee et al. re-
ported that 40 months of CPU time were required to simulate the ten SPEC92
benchmarks [6]. Another problem with simulation is that results produced will
give little explanation of why a program incurs a particular miss-ratio on a par-
ticular cache configuration—the type of information valuable when optimizing
a program. These combined problems suggest that an alternative to simulation
would be useful.

There have been several attempts at analytically modeling cache behavior.
One technique has been to analyze memory access traces, deriving a model of
cache behavior. Agarwal et al. presented an analytical model that used pa-
rameters acquired from a trace, together with parameters describing the cache,
to predict the miss-rate of several reasonably large reference traces [1]. Their
method allows the general trends in cache behavior to be predicted, but lacks
the fine-detail needed to detect the unstable nature of cache interference often
observed [2, 13, 8].

Analytical models have also been used in compilers that attempt to opti-
mize cache use, for example Wolf and Lam [15], Fahringer [4], and McKinley
et al. [9]. These systems use analytical cache models to guide the selection of
source code transformations. The models have often been designed specifically
for this purpose, not with more general use in mind. As a result some inaccu-
racy may be tolerated, when it has no effect on which code transformations are
selected.

The cache performance of specific types of algorithm has also been the
subject of analytical modeling, with the performance of blocked algorithms
a common subject. Lam and Wolf examined how blocked algorithms utilize
the cache [8], giving guidelines for selecting the blocking factor. Coleman and
McKinley described another method of selecting the block size, with the empha-
sis placed on minimizing interference of all types [3]. Fricker et al. also looked
at blocking, examining in detail the interference occurring in a “matrix-vector
multiply” kernel [5]. They stressed the need to consider parameters such as ar-
ray base address in order to detect all types of interference, and that interference
must be modeled precisely for sub-optimal performance to be avoided.

It is evident that all of these methods lack either the generality needed to
model all types of algorithms, or the accuracy in all situations (not just over
general trends) that is needed. An attempt at addressing these problems was
made by Temam et al. [12, 13]. They outlined a model of interference in direct-



mapped caches that can be applied to a wide range of numerical loop nestings.
From the level of interference predicted they generated an estimate of the total
number of cache misses incurred. Although their methods work well when
applied to some types of loop nesting they are incapable of modeling certain
types of simple loop nesting without introducing significant approximations.!

In this paper we present novel analytical models for predicting the direct-
mapped cache miss behavior of a wide range of program fragments. The method
combines some of the methods of Temam et al. for evaluating reuse and inter-
ference with new techniques that remove some of the restrictions on the types
of code fragments that may be modeled accurately. We also provide experimen-
tal data from an implementation of the models, showing that accuracy within
ten per cent of simulated values can generally be expected, calculated orders of
magnitude faster than by simulation. The low cost of prediction creates new
uses for cache modeling, for example, on the fly optimization of data layout
to minimize cache misses; this has an important advantage over compile-time
optimization in that the target cache configuration need not be known until
run-time.

In the next section we formally define the problem. In Section 4 we describe
the initial steps needed to prepare for the actual evaluation, including how each
reference’s reuse source is identified. Sections 5 and 6 show how the number of
misses due to either self reuse or group reuse are evaluated. Several example
code fragments are examined in Section 7, showing the type of problems that
the model can address, and the accuracy that can be achieved; these results are
discussed in Section 8. Finally, in Section 9 we summarise the work and present
our conclusions. Appendix A lists the symbols and notation used throughout
the paper.

2 Classification of Cache Behavior

A commonly used classification of cache misses is due to Hill [7], in which three
types are given. Compulsory misses occur the first time a data element is
referenced, capacity misses occur when the size of the cache is insufficient to
hold the entire working set of the program, and confiict misses occur when two
elements of the working set map to the same cache line. Sugumar further sub-
divided this last category into mapping misses and replacement misses [11].

These classifications describe the effects occurring, when modeling analyt-
ically it is helpful to concentrate on the causes of cache behavior. We achieve
this by considering both capacity and conflict misses as a single category: inter-
ference misses, and modeling the level of interference on each array reference.
In this classification a compulsory miss occurs the first time a data element is
accessed, followed by interference misses each time the element is subsequently
accessed but for some reason is no longer resident in the cache.

1For example, when an array is not accessed sequentially.



D0 j; =0, Ny -1
D0 j» =0, N2 - 1
DO j3 = 0, Ny -1
Aljs,i1) = B(j3, 1) + C(G3) + C(iz+ 1)
ENDDO
ENDDO
ENDDO

Figure 1: Example loop nest

Classification of interference. Data reuse is created by avoiding inter-
ference misses; two types of reuse can be identified, self-dependence reuse
due to an array reference repeatedly accessing the same elements, and group-
dependence reuse where a reference accesses data recently accessed by another.
For example, consider the loop nesting shown in Figure 1. Reference A(js,j1)
exhibits self-dependence reuse—loop variable j» is unused therefore iterations
of the middle loop access the same elements of matrix A as the previous itera-
tion. On the other hand, reference C(j3) shows group-dependence reuse, it will
access the element of array C that reference C(j3 + 1) accessed on the previous
iteration of loop j3.

The type of reuse achieved by each reference is found by identifying that
reference’s reuse dependence. This is the reference that most recently accessed
data elements subsequently accessed by the reference in question. The “most-
recently” metric is measured in iterations of the innermost loop, and is termed
the reuse distance of the dependence. Having grouped all references into these
two fundamental types the interference affecting each can be classified.

For a self dependent reference there are two main types of interference. Self
interference, in which the reference itself prevents reuse, occurring when more
than one data element maps to the same cache location, and cross interference,
where other references access data that interferes. For evaluation purposes cross
interference can be further subdivided into internal and ezternal forms. In-
ternal cross interference occurs between references with similar access patterns,
and external between those with dissimilar access patterns. Group dependent
references also suffer from cross interference, in both internal and external forms,
but self-interference does not occur.

To illustrate these definitions again consider reference A(js,jq1) in Figure 1.
Cross interference on the reuse of A(j3,j1) can be caused by any of the other
references, i.e., B(j3,j1), C(j3), or C(j3 + 1). Since reference B(j3,j1) accesses
memory in exactly the same pattern as A(j3,j1), it could cause internal cross-
interference. The other two references, C(j3) and C(j3 + 1), access memory in a
different pattern to A(j3,j1) and therefore can only be sources of external cross
interference.

The final piece of our classification structure is to split all interference effects
into two subtypes, temporal and spatial interference. Temporal interference
occurs where reuse of individual data elements is disrupted, spatial interference
when the reuse of data elements mapping to the same cache line is disrupted.
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Figure 2: Interference hierarchy

Generally spatial interference is found to be reasonably low, but in certain cases
it can account for very large variations in program behavior. For example in
the matrix-multiply example in Section 7 the massive fluctuations in miss-ratio
are caused almost solely by spatial interference on one of the references.

Figure 2 shows the full interference hierarchy. For each array reference being
examined the relevant nodes of the tree are evaluated, giving the total number
of interference misses for that reference.

3 Problem Description

Given a set of nested loops containing array references, whose index expressions
depend on the loop variables, the problem is to predict the cache miss-ratio of
the program fragment. Each reference is examined in turn to find the number
of cache misses it causes. The description of the problem can be split into
three parts, the structure of the cache, the arrays being accessed, and the loop
nestings to be evaluated.

Definition 1. Two parameters give the form of any direct-mapped cache:
the number of elements in the cache, C, and the number of elements in
each line of the cache, L. Both are defined in bytes.

Definition 2. Fach array is given by three parameters, the first being its
base address, the position in memory of its first element. The other param-
eters are the sizes of each dimension, and the size of each data element £.

The arrays must be discrete, no array may share memory locations with
any other array.

In general, all arrays declared in Fortran will meet this restriction, some care
may have to be taken when using the C language to avoid pointer aliasing.

For the model to evaluate a set of nested loops, they must follow a certain
structure. Firstly, each loop must be normalized,

Definition 3. The number of iterations of each loop must be constant, and
each loop variable must start at zero and count upwards in steps of one.

This is less of a constraint than it seems since any loop whose boundaries are
constant, and which counts upwards, can be translated to this normal form.



In fact the implementation of the model mentioned in Section 7 performs this
normalization automatically.

Each level of loop nesting is numbered, the outermost labeled as level 1, the
innermost as level n. The number of iterations of a loop at level i is labeled N;
and the loop variable j;. How this relates to the normal Fortran loop structure
is shown in Figure 3.

DO ji1 =0, N7 -1
D0 j, =0, N> - 1
DO j3 =0, N3 - 1

ENDDO
ENDDO
ENDDO

Figure 3: Loop layout

Definition 4. FEach array reference must be of the form:

X(oﬂjy] + 61) Ly (ijym + Bm.))

where X is the name of the array, m is the number of dimensions it has,
and oy, Pk, and vy are constants (with 1 <y < n).

In practice most programs contain only references that follow this form, but it
does exclude the modeling of one important type of algorithm, those using a
blocked structure. This limitation will be removed in the near future.

Without loss of generality it is assumed that arrays are arranged in memory
as in the Fortran language, with the leftmost dimension a contiguous memory
region.

Reiterating, the total number of loops is 1, and the total number of dimen-
sions of an array being considered is m. For the loop at level 1, its loop variable
is called j; and its total number of iterations is A;. For a reference R, v (R) is
the loop whose variable is referred to by dimension k of the reference. It follows
that j.,, (r) is the loop variable associated with this loop.

4 Preliminaries

Given a loop nesting as defined in the previous section, the model performs
a number of preliminary actions before it attempts evaluation. Firstly each
reference is translated into a secondary form that makes modeling its effects
easier, then all references are divided into classes, discarding references which
are redundant. Finally the reuse source of each reference is identified.

4.1 Linear Forms

The form of an array reference as defined in Section 3 is based on the individual
dimensions in the array being accessed. When modeling a reference’s behavior



it is useful to use a notation based on loop variables. For example, the array
reference X (j1,j3) is equivalent to Xo +j1 + Mj3, where X, is the base address
of array X, and M its leading dimension. Such an expression is a linear form,
the general form being,

B+ Aij1+ ...+ Anjn, (1)

where B and all A, are constants. The base address of the array and the i
values combine to form B. The 4 values are derived from the loop multipliers
ay and the dimensions of the array. Expanding the following equivalence al-
lows each constant in a reference’s linear form to be found (where the function
dim (X, 1) gives the number of elements in dimension i of array X),

X(“ljwq + [-)’1» ceey ocmjym + Bm)
m k—1
=Xy + Z ((H dim(X,i)) (kajyk + Bk) 5)()
k=1 i=1

The size of the elements being referred to is also included when calculating B
and A,. Therefore evaluating a linear form for a particular set of values of j;
gives the actual memory location of the element being referred to.

4.2 Translation Groups

When considering cross interference it is important that redundant interfer-
ence is not included; when two references both interfere with a potentially
reusable data element, only a single miss occurs. To solve this problem all ar-
ray references in the loop being considered are grouped into separate classes, or
translation groups. The interference caused by each group of references is then
considered as a whole. Since each group accesses the cache in different patterns,
redundant interference is kept to a minimum.

Two references are in translation if their reference patterns are identical,
and always a constant distance apart in the cache. For this to be true both
references must share the same values of A; for i < n, only their B values may
differ. This can be formalized for two references R and R/,

inTranslation(R,R’) = (Vi:1 < n) (A;(R) = A;(R")).

This definition is used to sort all references in a loop nest into separate transla-
tion groups. As few groups as possible are formed, such that each reference in
the group is in translation with all others members of the group. For example,
the four references shown in Figure 1 are sorted into two translation groups,
{A(i3,31),B(j3,i1)}, and {C(j3), C(jz + 1)}

Some of the references in a loop nesting are discarded before the evaluation
starts. When two references in the same translation group always access the
same cache lines only the misses due to one of them is evaluated. This removes
redundant cache misses and simplifies the calculations involved. The assump-
tion is made that there will be no interference misses in a single iteration of the



innermost loop, an assumption also made by McKinley et al. [9] and supported
by Lam et al. [8].

This pruning of the references is straightforward to achieve. For each trans-
lation group the B parameter of each reference is used to detect whether it is
close enough to another reference to be discarded. For two references R and R’
if |[B(R) — B(R')| < £ then one of them is discarded.

4.3 Self Or Group Dependence?

The source of any temporal reuse achieved by each reference must be identified
before the number of cache misses can be evaluated. As noted in Section 2, for
any reference R there is a single reference R in the same loop nesting on which it
depends for reuse. This reference R is the source of all temporal reuse exploited
by R, and is called R’s reuse dependence.

There are two types of reuse dependence: a self dependence in which R
reuses data elements that it has previously accessed itself, or a group depen-
dence in which R reuses elements that a different reference has accessed. In the
case of a self dependence R = ﬁ, while for a group dependence R # R.

Example. Looking again at the example in Figure 1, the reference A(j3,j1)
exhibits a self dependence, each iteration of loop 2 references exactly the same
elements as every other iteration of the loop. As an example of group depen-
dence there is the reference C(j3), each data element that it uses was accessed
by reference C(j3 + 1) on the previous iteration of loop 3. Interestingly, C(j3)
also has the possibility of a self dependence, with reuse able to occur on the
outer two loops.

The possibility of multiple dependences complicates the task of finding ﬁ;
only one dependence is actually exploited, the one that referenced the data
most recently. The length of time between a data element being accessed by a
reference, and it subsequently being reused by R, is called the reuse distance
of the dependence. It is measured in iterations of the innermost loop. Finding
the dependence with the smallest reuse distance finds the actual source of reuse.
For example, reference C(j3) has a reuse distance of one iteration of loop 3, and
A(j3,j1) a reuse distance of N3 iterations of loop 3.

Calculating the reuse distance of a self dependence is trivial, simply multiply
the sizes of the loops inside the level at which reuse occurs (defined as loop 1,
see Section 5). The reuse distance of a group dependence is more complicated
and is found by adding the reuse distance for each dimension of the array being
accessed. Given that both R and R’ refer to the same array, and that they are
in the same translation group, the reuse distance between them dist(R,R’) is
given by,

T ™M if R=R/;
l<i<n
dist(R,R’) =
> [T M| xdiste(RR) | if R#R,
1<k<m Yr(R)<i<n



00 if 8k (R,R") < 0 or 8 (R,R") > Ny, (r);
distk(R,R') = Nyk(R) if 81 (R,R’) =0 and R < RI;
5k(R,R’) otherwise,
Sk (R,R") = Bi(R") — B (R). (2)

The function disty calculates the reuse distance for dimension k of the ref-
erences, in terms of the loop variable referenced by this dimension (j,,). It
recognizes three different situations, dependent on dy, the distance between the
references in dimension k,?

Case 1: the distance between the references is either negative or greater than
the size of the loop. In either case the dependence R’ can’t be exploited,
hence the reuse distance is infinite,

Case 2: the distance is zero, but the reference for which a dependence is being
sought, R, occurs before R’ in the loop body (this is what the R < R’
notation means). Here there is the possibility for reuse, but not until the
next complete set of iterations of loop vy,

Case 3: reuse occurs within this loop, the distance is simply the distance be-
tween the two references in this dimension, 51 (R,R’).

When finding a reference’s reuse dependence only those references with
which it is in translation are examined. Whichever has the smallest reuse dis-
tance is taken as the source of any temporal reuse. This leads to a definition of
R as follows, given that G is the translation group that R and R belong to,

(3R : G)(VR': G)(dist(R,R) < dist(R,R")).

This means that in the example case of reference C(j3) above, the dependence
chosen is the group dependence with a reuse distance of one iteration, rather
than the self dependence which has reuse distance A/3.

4.4 The Evaluation Procedure

After creating each translation group and identifying the reuse dependence of
each reference in these groups, the model is then used to evaluate the number
of cache misses for each reference in all translation groups.

Step 1: Sort the list of references in the loop nesting into translation groups,
as described by Section 4.2.

Step 2: For each reference R in each translation group, find its reuse depen-
dence R. The definition of R was given in Section 4.3.

Step 3: For each translation group G, for each reference R € G, calculate the
number of cache misses sustained by R given that it is dependent on R for
any temporal reuse achieved.

2Since group dependence is only considered among references in the same translation
group, only the By parts of the index expressions need be looked at.



Of this procedure Step 3 is the most complex, and the bulk of the paper
is devoted to the techniques used. These techniques are split into two sections:
Section 5 describes how self dependence reuse is modeled, Section 6 examines
group dependence reuse.

5 Self Dependence Reuse

An array reference can achieve some level of temporal self reuse only if one of
the loop variables, ji, is not included in the reference. This means that any
iteration of loop i references exactly the same elements of the array as any
other iteration. For example, reference A(j3,j1) in Figure 1 does not include
loop variable j,, meaning that reuse occurs on loop 2.

The loop variable j; not being included in a reference is equivalent to the
coefficient A; of the reference being zero. This gives the innermost loop on
which reuse occurs for a particular reference, defined as loop 1,

l=max {i|i<n, 4 =0}, (3)

If none of A; are zero then no temporal self reuse occurs, and by convention
L = 0; in this case it is still possible that some degree of spatial reuse may
be achieved (see Section 5.1.2). If temporal reuse does occur, the Theoretical
Reuse Set (abbreviated as TRS) of the reference is next identified. For a
reference R, its TRS contains all array elements that R could possibly reuse,
assuming that the size of the cache is unbounded. Since reuse occurs on loop 1,
its TRS contains all elements accessed by the loops inside level 1. This is given
by,

TRS1(R) = {R} (0 < ji < M)

However, the model does not need to expand a reference’s TRS, only to calculate
the number of array elements that it contains, defined as,

ITRSIR)| = [T M (5)

l<i<n

l<i<n (4)

The notation ||TRS{(R)|| stands for the size of the TRS of reference R, defined
on loop L.

The size of a reference’s TRS allows the number of compulsory misses of that
reference to be found. For the first iteration of the reuse loop 1, no temporal
reuse can occur since the TRS has not previously been accessed. For reference R
the number of temporal compulsory misses is given by,

[T i | x ITRS (R, (6)

1<i<t

No spatial effects are included in this expression, these are given later (see
Section 5.1.2). Also note that if no reuse occurs (i.e.,, 1 = 0) the reuse set
contains all accessed elements, and therefore the number of compulsory misses
is the total number of references in all loops.

10



Example. Identifying the TRS of reference A(j3,j1), and its size, is straightfor-
ward. The loop on which reuse occurs was identified above as loop 2, therefore,

TRSz(A()3)]1)) :{A(O)]1))A(])]1)))A(N3 - ])j1)})
ITRS2(A(i3,i1))l| = N3,

A TRS is defined without regard for the physical structure of the cache, as
such there is no guarantee that any of its elements will actually be reused. The
rest of this section is devoted to evaluating the number of cache misses for a
self dependent reference, given that temporal reuse occurs on loop 1.

5.1 Self-Interference

This section shows how self-interference is evaluated, the effect occurring when
a reference obstructs its own reuse. The calculation is split into two halves,
the first dealing with temporal reuse, the second with spatial reuse. These are
later combined with the effects of compulsory misses to give the number of self
interference and compulsory misses for a single reference.

5.1.1 Temporal Self-Interference

Temporal self-interference occurs when more than one element of the TRS maps
to the same cache location. When this happens none of the elements mapping
to the location can be reused since they continually overwrite each other. To
model this phenomenon it is necessary to map the TRS into the cache removing
any elements that occupy the same cache location. This forms another set, the
Actual Reuse Set, or ARS, containing only those elements in the cache that are
reused with a particular cache size. Subtracting the size of this set from the size
of the associated TRS gives the number of temporal misses on each iteration of
the reuse loop. For a reference R, this is,

ITRS(R)[| = [[ARS(R)]]. (7)

The form of an ARS is usually very regular, allowing it to be characterized
by several parameters. The first parameter S is the average size of each region,
or interval, in the ARS. The second parameter ¢ is the average distance in
the cache from the start of one such interval to the start of the next. The
next parameter B is the average number of distinct cache lines in an interval of
size S%. Adding two final parameters, the position of the first interval ¢, and
the number of intervals in total N, allows an ARS to be defined as follows,

ARSI(R) = <S»G)B»N»¢>- (8)
Figure 4 shows these parameters in relation to the cache, the black rectangles
form the ARS. The actual number of elements contained by an ARS is then,

IARS(R)]| = ';—: (9)

31t is not always the case that B = S/L since the elements in an interval are not necessarily
continuous.

11



Figure 4: ARS parameters

It follows from this and from (7), that only two of the parameters, S and N,
are required to calculate the temporal self-interference on a reference. The
other parameters are required when evaluating the level of cross-interference
(see Section 5.2).

Finding the structure of a reference’s ARS is a two step process; first the
reference’s footprint in the array it accesses is found, then this footprint is
mapped to a particular cache size. The footprint is described by the size,
spacing and number of continuous memory regions accessed by a reference.
These values are given by St, ot and Nt, the “theoretical” values of S, o and N.
After being mapped into the cache these theoretical values lead to the five
parameters defining the ARS.

Finding St, o' and Nt. The first part of the procedure is relatively straight-
forward, the loops inside the reuse loop (i.e., loops L+ 1,...,1n) are sorted so
that the coefficients of the reference are in size order, from smallest to largest,
ignoring those that are zero. The ordered loops are numbered from one to p, so
that the loop at position p has the largest coefficient. This ordering is defined
by the values Ty ...Tp, such that,

0<Aqg, <o < Ay,

that is, Ty identifies the loop with the k'th smallest coefficient.

For each level k, from 1...p, a working value of S* is maintained, Sf. This
reflects the size of the continuous region on the loop referred to by level k. The
initial value S§ is the size of a single element, &.

st=1| [I M« )€

1<i<k

For each level k considered, if the coefficient of the loop is equal to the
current size of the continuous region, the size of the region is multiplied by the
number of iterations in the loop. On the other hand, if the current size doesn’t
match the next coefficient then the largest continuous region has been found
and the process is complete. The level at which this happens is labeled v,

L = max {k|]§k§p,ATk:S;‘<71}.

12



Once v is known it is possible to find the values of St, ot and Nt,

st =1, (10)
¢ A, fv<p;
o= Sy ifv>p.
Nt — Ny, fv<p;
1 ifv>p.

If all non-zero coefficients have been considered, i.e., v = p, then only one con-
tinuous region exists, and the definitions of ot and Nt are altered accordingly.

It should be noted that if more than one unused coefficient exists, i.e. when
v < p — 1, the footprint will be inaccurate. Temam et al. [13] have an approx-
imate method which could be used in these cases, but in practice they rarely

OCCI.II'4 .

Example. Consider the reference X(j2,j1). Assuming that for this array £ =1,
the linear form is simply Xo + N3j1 +j2. The smallest coefficient, Aj, is equal
to 1—the value of S§. This means that all \> iterations of loop 2 form a single
region containing N> elements, i.e. St = A,. The next (and final) coefficient,
A1, is N2, which is equal to S}. Thus, completely executing loop 1 adds N
copies of the current region, giving the total size of the continuous region St as
NINS.

Since all coefficients have been used there is only one interval, ot = A7 N>,
and Nt = 1. This is reassuring since it is self-evident that accessing all elements
of an array (a matrix in this case) means that the continuous region will simply
be the array itself.

Mapping S, ot and N! into the cache. After identifying the array foot-
print of the reuse set, the three theoretical values are known. The final step
in creating the ARS is to map these three parameters into the physical layout
of the cache. After removing the elements that collide whatever is left may be
reused.

The method of mapping the footprint into the cache uses a recursive pro-
cedure presented by Temam et al. [13]. It progressively subdivides the area
of the cache that it is examining so that each area has a structure similar to
all other areas. This structure results from the Nt intervals mapping into the
cache. Depending on the size of the cache, the intervals may wrap around the
end of the cache, possibly overwriting previous intervals.

At each level of recursion k, areas of size 0 are mapped into a single area of
size Oy _1, illustrated in Figure 5 for part of the cache. The following recurrence
relation defines the sequence of oy values, representing how the array footprint
intervals map into a cache of size C,

oo =C, 0 ZO't, Ox = Ox_1 — Ox_2 mod O}_1, for k > 0. (11)

4This problem stems from the S, o representation used, which is unable to model footprints
whose continuous regions are separated by more than one value of ot.
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Figure 5: Example of mapping array footprint intervals into the cache.

Each area is continually subdivided until a level s where either all Nt of the
footprint intervals have been mapped into the cache, or overlapping occurs
between intervals, that is,

s = min {k {@J >Nt or &< St} , (12)
Ok
0k = min(oy, Okx—1 — Ok). (13)

The &y expression is used due to the “circular” nature of caches; oy is the
distance moving forwards in the cache, from one interval to the next. There
may be a closer interval in the other direction, possibly overlapping with the
interval being considered.

Once the subdivision process has stopped at level s, the values of op, 051
and o are used to find the ARS parameters S, o, B and N. These are then
used to evaluate the actual size of the footprint using (9). At level s, the cache
has been divided into 0y/0s_1 areas, each of size 05 7. Within each area there
are a certain number of intervals, each of which is G4 cache locations from the
next. The number of intervals within any one area will be one of two values,
either ng, or ng + 1, this is due to the number of intervals Nt not usually being
exactly divisible by the number of areas. The number of areas of each type and
the value of ng are found using,

Nt
ng = \‘WJ , and (14)
r=|N'—ng (00/0s—1)]. (15)

This means that there are r areas, of size 07, containing ng + 1 intervals
of size St, and (0p/0s_1 — 7) areas containing ng intervals. At this point the
values of N, o0, and ¢ can be found,

Os ifS:];
G_{Us1 ifs 1. (16)
Ns ifs=1;
N:{LGO/GSH ifs#£1. (17)
¢ =B modC(C. (18)

The two cases are necessary to handle the situation where all intervals map into
the cache without overflowing, i.e. when s = 1.
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The only parameters left to find are S, the average size of each interval, and B,
the average number of cache lines in each interval. From (9) it follows that S
is the total size of the ARS divided by the number of intervals it contains, N.
Since N is given by (17) above, it is only necessary to calculate the total size
of the ARS. This calculation is split into two parts, one finds the total size of
the areas containing ng intervals, the other of those areas with ng + 1 intervals.
The whole equation for S is as follows,

s min (oo, fi{ns) x (Go/cr?\lq —7)+fi{ng +1) x71) (19)

where f(x) gives the amount of data that can be reused in an area of size 051,
given that there are x intervals of size S in the area, each s from the next.
This function is defined as,

f(x) if fi(x) < os-1;
lx) = { (fr(x) — 2 (f(x) — 00_1))* i £(X) > 01, (20)
£(x) = xSt if x=1o0r & > St
)= 25, + (x—2)" (St —255)"  otherwise,
filx) =S*+ (x — 1" 5. (21)

The condition in f./(x) detects overlapping between the intervals within a sin-
gle area, if overlapping does occur then it is only possible to reuse 26, cache
locations. Alternatively if there is no overlapping then xS elements may be
reused (i.e., all of them). The condition in the definition of f(x) checks whether
the footprint overlaps with the intervals in the next area; in which case the
overlapping locations are removed. The function fi(x) gives the “extent” of the
footprint in the area being considered, this is the distance from the start of the
first interval to the end of the last one.

The final parameter of the ARS, B, is calculated from the value of S and its
theoretical value St defined in (10). Each interval of size S contains on average
S/S" intervals of size S*, while each theoretical interval of size St inhabits [S*/ L]

whole cache lines. Therefore,
St1'S
B=|—=| =. 22
EE 22)
5.1.2 Spatial Self-Interference

The previous section showed how the number of temporal misses suffered by a
TRS is evaluated, assuming that each element not in the ARS generates a single
cache miss per access. However, since the cache accesses memory in units of
lines, not elements, the effects of spatial reuse must also be included to give the
actual number of cache misses.

The best use of the cache is generally achieved when the elements of an array
are accessed sequentially. This occurs when the coefficient of the innermost loop,
A, is the size of a single element. Since elements from the same cache line are
being accessed on successive iterations of the innermost loop the probability
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of the line being overwritten is extremely small. This means that each line
referenced will usually only generate a single cache miss. In this case the actual
number of misses is found by dividing the number of temporal misses by the
number of elements held in each cache line.

Example. Consider reference X(j2,j1) in Figure 6. This reference uses the
variable of the innermost loop, j2, to index the innermost dimension of the
array. Due to the innermost dimension being stored in contiguous memory
locations the array is traversed sequentially, therefore N> /(L£/Ex) cache misses
are needed to load each row of the array into the cache.

DO j; =0, N7 -1
D0 j> =0, N2 - 1
X(2,j1) = Y(j1,j2)
ENDDO
ENDDO

Figure 6: Spatial reuse example

For a reference R, some level of spatial reuse can occur only when one or
more of its coefficients A; is less than the size of a cache line. This gives the
innermost loop on which spatial reuse occurs, lpat, as,

lipat =max {i [0 < Ay < L}.

When this is not the innermost loop (i.e. lspat < M) then the reuse distance
of the spatial reuse (defined as the number of iterations of loop n between a
cache line being accessed twice by R) is larger than when the reuse occurs on
the innermost loop. It follows that the possibility of the spatial reuse being
subject to interference is also greater. When this interference is caused by R
itself it is called spatial self-interference.

If lspat is undefined, due to none of the reference’s A; values being less than
the size of a cache line, there is no possibility of spatial reuse occurring and the
actual number of cache misses is the same as the number of temporal misses.

Example. For reference Y (j1,j2) in Figure 6, spatial reuse occurs on loop 1°.
An iteration of loop 1 may reference the same cache lines accessed by the previ-
ous iteration. However, between a cache line being accessed twice, V> — 1 other
elements are also referenced (since spatial reuse doesn't occur on the innermost
loop). If any of these elements map to a line already being used self-interference
will occur.

To find the actual number of cache misses sustained, the number of tempo-
ral misses is multiplied by a factor Mgp,t. This factor encapsulates all spatial
self-interference effects of the reference being considered. It is formed by com-
bining the compulsory spatial miss-ratio Cspat With the probability of spatial
self-interference Pgp,t,

Mspat = max (Cspatv Pspat) . (23)

5 Assuming that the width of each column of array Y is greater than L.
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This is the maximum of the two terms; if there is no possibility of interference
then the number of temporal misses is multiplied by the compulsory miss-ratio.
If the probability of interference outweighs the compulsory miss-ratio then this
probability gives the actual number of cache misses.

The compulsory spatial miss-ratio is defined as the reference’s smallest non-
zero coefficient divided by the size of each cache line. The smallest coefficient
is the same as the minimum access stride of the reference; dividing this by the
line size gives the ratio of compulsory misses to accesses. The minimum stride
of a reference is given by,

stride =min {A4; |1 <i<n, A; #0}. (24)

If the stride is greater than the line size then no two referenced elements oc-
cupy the same cache line, and therefore every access generates a cache miss—a
compulsory miss-ratio of 1.

min (stride, £
o - Binlstide.) -

When the minimum stride is equal to the size of an element £ the compulsory
miss-ratio is equal to the lower bound £ /L, as in the first example in this section.

Example. Reference X(j,,j1) in Figure 6 gives N7 N> temporal misses (it has
no temporal reuse). Since X(j2,j1) = Xo +dim (X, 1)Exj1 + Exj2 it follows from
(24) and (25) that,

min (€x,dim (X, 1)Ex, L) Ex
Cspa\t = I = f

Assuming that Pspay = 0, then Mgpar = Cspat by (23), and the actual number
of cache misses due to reference X(j2,j1) is Mgpat N1N2, or N7 N2EX/L.

Finding Pgp.¢ of a reference. The probability of spatial interference occur-
ring for a particular reference depends almost completely on a single parameter:
the layout of the data elements accessed by the reference between each iteration
of the spatial reuse loop. If these elements map into the cache such that more
than one element occupies a particular cache line, interference occurs.

One special case is easily identifiable, when the reference contains no in-
stances of the loop variables ji,_,, 11, ..., jn. In this case no other elements are
accessed by the reference between using two elements in the same cache line.
Therefore no spatial self-interference occurs and Pgpap = 0.

The other case, when one or more of these loop variables is used, is harder to
classify. The method used is in some ways similar to the method of calculating
temporal self-interference in that they both use the same recursive subdivision
of the cache to detect interference, (11) and (12) (see Section 5.1.1). After
subdividing the cache, the resulting oy values are used to find the level of
spatial interference.

As in the temporal reuse calculation, the first step is to identify the initial
data layout, specified by the same parameters as for temporal reuse, St, ot and
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Figure 7: Example of spatial reuse from Y (2j1,j2)

N' (see Page 13). In this case the objective is to characterize the layout of the
array elements referenced by a single iteration of the spatial reuse loop.

In the majority of cases there will only be a single non-zero coefficient refer-
ring to the loops lspat + 1 through n; this allows the layout to be characterized
exactly; ot
referenced by one iteration of the reuse loop. Since interference between cache
lines is being examined, St is always an integer number of lines, the number of
lines needed to hold one data element. This gives the three parameters needed
to map the spatial characteristics of a reference into the cache®:

is the value of this coefficient and Nt is the number of elements

o' = min {A'L “—spat <idnm, Al#o})

N = T M

lgpat <i<n
A;#0

-eff].

Example. To illustrate the problem consider Figure 7. This shows how the
array reference Y(2j1,j2) maps into the cache, and highlights the elements that
may interfere with the spatial reuse of elements Y(4,0) and Y(6,0) (i.e. j1 =2
and j; = 3.) For example if any of Y(4,1),...,Y(4,N>) map to the same cache
line as Y (4,0) spatial reuse of this element is prevented.

Here ot, defined as the distance between each element accessed by a single
iteration of loop lspat, is the width of the matrix. Counting the number of
blocks for a single value of j1 gives Nt, the number of elements accessed by each
iteration of loop lspat. In this case Nt equals the number of rows in the matrix.

The level of spatial interference Pgpat is found by using the cache subdivision
process defined by (11) and (12) to map the layout of the elements accessed by a
single iteration of loop lspat into the cache. The amount of overlapping between
these elements leads to Pypat. When mapping ot, N, and S* into the cache the

8When there is more than one non-zero coefficient inside the reuse loop the definitions of
ot, Nt, and S' may be inaccurate. This happens very rarely; never with two-dimensional
matrices, seldom with higher-order matrices. We aim to address this in the future.
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subdivision process again has initial values of 0y = C and o7 = ot. Due to St
being greater than or equal to the size of a cache line, the subdivision will not
stop until either all Nt elements have been used, or overlapping between cache
lines occurs, (12).

After stopping at level s the cache has been divided into a number of areas
of size 0s_1. The number of elements in each area is again given by (14), and
the number of areas of each type by (15). For each type of area the degree of
spatial reuse is calculated, this is the number of elements in the area that can
be reused divided by the total number. Combining these values, weighted to
the number of areas with n, elements and the number with ng + 1, gives Pgp,t,

1 if (Vi:i> lopat) (Ai =0);
fyng) L00/0e1] 1) X ns

+fyngs + 1)

Pspat = 1 — (26)

Nt .
rx (e +1) otherwise.

Nt

with v defined in (15) and ng in (14); |00/0s—1] is the number of areas the
cache has been divided into. The value of Py, allows the total number of
misses due to spatial interference to be predicted using (23).

The function fs(x) calculates the degree of spatial reuse for an area of size 051
containing x elements, each a distance G5 from the surrounding elements.

Deriving fy(x). This is a ratio; the number of cache locations in an area in
which an element can be the sole occupier of a cache line divided by the number
of cache locations in which interference occurs.

Two special cases of total or zero reuse can be identified immediately. If
there is only one element in the area (i.e. x = 1), or the distance between
two elements is as large as a cache line (i.e. & > L) there is no possibility
of interference and total spatial reuse occurs: fs(x) = 1. Conversely, when the
distance between each element is zero (i.e. &5 = 0) interference occurs between
all elements in the area and no spatial reuse is possible: fi(x) = 0.

The cases left, more than one element in the area, with a distance between
them of less than a cache line but greater than zero, can be divided into two
sub-problems. Both are tackled by calculating the number of positions in a
cache line that an element could occur, and subsequently be reused.

Elements at either end of an area. Examples of this case are shown in Fig-
ure 8. Bach diagram depicts the second black element attempting to reuse
the first. The white elements are those that are referenced between ac-
cessing the two black elements, if any of the white elements are in the
same cache line as either of the black elements the reuse is prevented.

As can be seen the number of positions that allow an element to be
reused depends on whether the distance between successive elements in
the area, oy, is negative or positive”. When it is positive the number of

7Actually o5 is never less than zero. When (0s_1 — 05) < 0 it is useful to think of o as
being negative. This is related to the definition of &s in (13).
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Figure 9: Reuse of elements in the middle of an area.

reusable positions is smallest, since the elements loaded between referenc-
ing the two black elements are moving towards the reused elements. The

number of reusable positions for an element on the edge of an area is given

by,
Gs — stride if 05 = Gy;
= 2
Pe {65 if oy # 6. (27)
where the stride is defined in (24).

The ratio of reusable positions occurring at the edge of an area is found by
dividing p. by the size of a line, and multiplying by 2/x, i.e. (2/x)(pe/L).

Elements in the middle of an area. This case is depicted in Figure 9, using
the same conventions as in Figure 8. Each area contains (x —2)" elements
that are not on the edge of the area; each has a neighbor on either side, G,
locations away. As before, when oy is positive the number of reusable
positions is greatest, py, is defined as the number of reusable positions,

Pm = { (285 —stride] — L) if 0, = &s; (28)

((26¢ + stride) — £)" if o # 5.
The size of a cache line is subtracted from the distance between the nearest

two elements that could interfere with the reuse. This gives the number
of positions in which neither white element can interfere.
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Using pm to form a ratio, weighted to the proportion of elements in the
middle of the area, gives the actual reuse ratio, for this class of elements,

Le. ((x—=2)"/x)(pm/L).

These definitions are correct when the distance between the first and last
elements in the area (x3s) is smaller than the size of the area, 0s_1. When
this is not the case the elements in one area may interfere with those in an-
other. A factor to detect this and scale the reuse ratio by the level of inter-area
interference is as follows,

(29)

. x0g — 2 (Xfrs — 051 )
overlap = min | 1, .

xGs
This is the full extent of the elements in the area (x3s) with the number of
non-reusable locations subtracted.

Combining the two special cases of total and zero reuse, with the expressions
for the two element types and (29) gives the full definition of f4(x):

1 if x=1or |os| > L;

fs(x) — 0 if 6'5 = 0; (30)

2 —2)*
Pe + ();L‘ ) "o x overlap otherwise.

5.1.3 Combining Temporal and Spatial Effects

The previous sections have shown how to separately calculate the number of
misses incurred due to temporal and spatial interferences, (7) and (23), and due
to compulsory misses, (6). Naturally, the idea is to combine these into a single
value, giving the actual number of self-interference misses for any self-dependent
reference. In fact it would be useful to develop two versions, one that includes
compulsory misses and one that doesn’t. Excluding compulsory misses is the
most straightforward, for a reference R,

self interference misses = Mgpat X H Ni | x (JJTRSt(R)]| — ||ARSt(R)]]) .
1<i<t

If compulsory misses are included the definition becomes slightly more com-
plex, this is because the first iteration of the reuse loop is handled by the
compulsory miss calculation. It follows that there are no interference misses on
this iteration of loop L.

self interference and compulsory misses

= [ Mapat x | [ M| x [ITRS((R)]]

1<i<l

+ Mspat X H Ni. X (Nl - ]) X (HTRSI(R)” - ||ARS1.(R)||)
1<i<l

If no temporal reuse occurs (i.e. 1 = 0) then only compulsory effects are in-
cluded, and the second term of the expression is ignored.
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5.2 Cross-Interference

When there is more than one reference in a loop nesting, as there almost always
will be, the other references will also interfere with any reuse occurring. This is
called cross interference. It is modeled by comparing the ARS of the reference
being considered with the Actual Interference Set (or AIS) of each transla-
tion group. The AIS contains all cache locations referenced by a translation
group; any intersection between an AIS and the ARS represents possible cross-
interference between that translation group and the reference. Sections 5.2.1
and 5.2.2 show how the definition of an ARS in Section 5.1.1 is adapted to form
the basis of the AIS.

The cache misses caused by temporal cross-interference can be divided into
two separate types,

Internal cross-interferences: this type of interference occurs between refer-
ences in the same translation group. Since the distance between the two
references is constant it is fairly straightforward to predict the level of
interference.

External cross-interferences: interference that occurs between references in
different translation groups. This is a more complex phenomenon since
the reuse and interference sets are constantly changing in relation to one
another. The model developed uses an approximate method that gives
reasonably accurate results.

By calculating the number of cache misses due to cross-interference for a self-
dependent reference and adding them to the number of self-interference misses
(see Section 5.1.3) the total number of cache misses by the reference is found.
For a reference R each translation group G is studied in turn. If R is a member
of group G then internal cross-interference is assumed, otherwise external inter-
ference is evaluated. Section 5.2.3 gives the method used to calculate the level
of internal interference, while Section 5.2.4 examines external interference.

Cross-interference can also disrupt the spatial reuse of a reference, especially
if the spatial reuse distance is relatively large (see Section 5.1.2). Section 5.2.5
shows how the cache misses due to this effect are also included.

5.2.1 Interference sets

An AIS is very similar to an ARS, the only conceptual difference being that
when creating an AIS any array elements that map to the same cache locations
are not removed, as they are with an ARS. Although overlapping elements can’t
be reused, they can still interfere with other elements that could otherwise be
reused.

The definition of a reference’s AIS contains exactly the same parameters as
in the definition of an ARS,

AIS{(R') = (S,0,B,N, d)
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For a reference R, whose ARS is defined on loop 1, the interference sets compared
with this ARS are also defined on loop 1. If an ARS and an AIS were defined
on different loops they would not be comparable.

When computing the parameters of an AIS, the same recursive subdivision
method is used, (given by (11), see Section 5.1.1). The B, N, 0 and ¢ parameters
are calculated in exactly the same way. The definition of S is changed, however,
to meet the condition stated above of retaining those elements with identical
cache locations. Instead of using the function £, to find the size of each interval,
a function f; is used that calculates the size without removing any overlapped
elements,

min (O'o,fi(ns) X ({GGS]J 71‘) +filns +1) x r)
fi(x) =fi(x) — (x — 1)* (& *Stl)\i-

The function f; calculates the extent of the x intervals in the area, minus the
gaps between each interval. This gives the total size of the area’s footprint
with overlapped cache locations being counted once. When calculating B the
definition of S given above is used, not the definition for an ARS, (19).

Comparing the data layout represented by each AIS with that of each ARS
allows cross interference to be detected. Wherever the two sets of cache locations
intersect there is the possibility of interference.

5.2.2 AIS of a Translation Group

Most redundant cross interference is ignored by using each translation group as
the cause of interference instead of each individual reference. References that
are in translation, and therefore moving through the cache at a constant rate,
are treated as a single cause of interference. For a reference with reuse on loop 1,
each translation group forms a single interference set, which is also defined on
loop 1, by combining the individual interference sets of all the references in the
group. If the notation AIS](G) represents the combined AIS of a translation
group G, then conceptually,

AIST(G) = AIS{(G1) UAIS{(G2)U ... U AISl(G#G),

where G; is the 1’th reference in that group and there are #G references in the
group in total. The representation of an actual interference set, (S, o, B, N, ¢},
is too restrictive to accurately model the whole interference set of a translation
group. To overcome this problem the combined interference set is represented
as a vector of interference sets, each describing a separate continuous part of
the cache.

The algorithm used to combine several interference sets is quite involved.
The underlying idea is to split each interference set into as few parts as possi-
ble, so that each part models an area of the cache with a structure that can be
described using the five parameters (S, 0,B,N, ). For example, consider Fig-
ure 10 in which two interference sets are being combined. One starts at cache
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Figure 10: Example translation group interference set

position 100 and finishes at position 1100, while the other starts at position
500 and ends at 1200. The combined set has three parts, the first and last are
portions of the original sets, and the middle part is made by combining the
internal structure (i.e., the S and ¢ parameters) of the two original sets.

5.2.3 Internal Cross-Interference

Internal cross-interference on a reference is caused by its own translation group.
Since the distance between references in the same translation group is constant,
the translation group’s interference set (excluding the reference itself) can be
compared with the reference’s reuse set very easily. The number of misses
follows from the intersection between the two sets. Each interval in the two
sets must be considered separately; the size of the intersection between two
intervals, X and Y, is given by,

X Y]] = min (([[Y[]—8x,v) ", [[Y]])

31
+min ((||IX|| + 8x,y = C)*, [IY]]), ey

where ||X|| is the size of interval X and dx v is the distance between the two
intervals in the cache. This distance is defined as the number of cache locations
traversed when moving forwards from X to Y. If ¢x is the position in the cache
of interval X, then,

5 _{¢X¢Y if dx — py >0;
XY TUCH (bx — dy) if dx — by 2 0.

The number of misses due to internal interference between two intervals is

(32)

calculated by applying the degree of spatial reuse achieved by the reference to
the size of the intersection between the two intervals. The spatial reuse of a
reference is identified in Section 5.1.2, with Myp,; defined in (23).

As each interference and reuse set is composed of more than one interval the
total number of internal misses due to a single interference set is found from the
cumulative intersection between all combinations of intervals in the two sets.
The interference set of a translation group is a vector of actual interference sets,
so the total number of internal misses on a reference R from the translation
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group G, such that R € G, is as follows,

internal interference misses

- Mspat X H M.

1<i<t

#AISY (G) #ARS| (R) #AIS? (

(R); N AIS?(G ).
o Z Z Z j - i Kl

The notation #X stands for the number of elements in set X, either the number
of actual interference sets in the translation group, or the number of intervals
in an interference or reuse set (the parameter N). Also, ARS{(R); refers to the
j'th interval in the reuse set of R; similarly, AIST(G)i k is the k’th interval in
the j’th part of translation group G’s interference set.

Due to the model’s representation of reuse and interference sets, the size of
all intervals in a particular set is the same. Since interference between between
the two sets is being considered, which happens when two cache lines collide,
not two cache elements, the size of each interval is defined using the B parameter
of the set from (22),

||AR81 || = ARSl( )) X ﬁ,
||A]:Sl i,k” = AISI( )1) X ﬁ,

where B(X) refers to the B parameter of X, an ARS or AIS. Recall that pa-
rameter B represents the average number of cache lines in each interval (see
Section 5.1.1).

5.2.4 External Cross-Interference

When evaluating interference from a translation group which the reuse refer-
ence doesn’t belong to, there is no constant distance  between the reuse and
interference sets. As a consequence, the size of the intersection between the sets
is not constant and the number of misses sustained is more difficult to evaluate.
Since an accurate method of calculating external cross-interferences would be
quite complex, an approximate method is used that gives good results in the
majority of cases.

The approximation made is to assume that the distance between two inter-
vals in the reuse and interference sets is a random variable, ranging from 0 to
C — 1. This gives the number of misses on an iteration of loop 1 for any two
intervals, X and Y, as,

c—1
1
IIXﬂYII—E< > IIXﬂYH)-

6X,Y:0
Due to the definition of the intersection operator in (31), the above expression

can be shown to be equivalent to the following, which is much faster to evaluate,

XNl
.

XNyl =
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with ||X|| and ||Y|| defined using B(X) and B(Y) in the same way as for internal
cross-interference.

The approximation made above, of 6 varying between zero and the size of
the cache is valid when the arrays being accessed by the reference and the
translation group are large in relation to the size of the cache. However, if they
are significantly smaller than the size of the cache it is possible for all arrays to
map to distinct cache locations. If this happens then there is no chance of cross-
interference occurring; in this case the assumption made about the distribution
of § is not valid.

To overcome this problem an owverlap ratio, the function f,(R, G), is intro-
duced. This is defined by the size of the overlap in the cache between the array
accessed by reference R and those by translation group G,

#G
1 .
fo(R, G) = R X min IR, > IRNGI |- (33)
i=1
G;#R

Note that although the same intersection operation is used as in (31), in this
case the operands are arrays, not intervals in the cache. The same definition
of & is used, but the sizes of the arrays, ||R|| and ||Gi||, are defined slightly
differently, to give the size of the array in the cache, rounded up to the next

cache line,
IR|| = min (c,c P#?&D :

Where #R is the size of the array referenced by R, in elements. The size of G;
is defined similarly.

Given the value of f4(R,G), the overall number of misses due to external
cross-interference between the reference R, and the translation group G (with
R ¢ G), can be evaluated.

Similarly to when finding internal cross-interferences, the average value of
the intersection, in lines, is summed over all combinations of intervals to give
the total number of misses for each interference set in the translation group.
In fact, since the size of the intervals in a single reuse or interference set is
constant, the two inner sums can be replaced by multiplications,

external interference misses

= Mspat X fo(R» G) X H M.

1<i<l
#ATS? (G) —

x Yy <#ARS1(R)X#AIS{(G)iHARSl(RhSRAlsl(G)l'1|l>
i=1

5.2.5 Spatial Cross-Interference

The spatial reuse of a reference can also be victim to cross-interference if another
reference overwrites a cache line before it has been fully reused. The chance
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of a reference’s spatial reuse being obstructed increases with its spatial reuse
distance. A probabilistic method is used to model this effect.

Given a reference R, whose spatial reuse occurs on loop lspar (see Sec-
tion 5.1.2), the probability Pg, that accessing any single cache element will
push an element of R out of the cache, is given by,

Pr = B(AIS,,.,(R)) x N(AIS,,,, (R)) X g

where B and N refer to two of the parameters of the interference set of R defined
on the spatial reuse loop lgpat.

The average number of elements that could be reused, but are pushed out
of the cache before they can be, is then Pr multiplied by the number of cache
lines the interfering reference uses on loop lspat. This gives the total number
of misses due to spatial cross- interference as PgxkBN, where B and N refer to
parameters of the interference set from the reference causing the interference
on R.

As with external cross-interference this assumes that the arrays are large in
comparison to the cache, scaling the number of misses by the array’s overlap
ratio will correct the result.

Naturally, this has to be repeated for each part of the translation group’s in-
terference set, so that the total number of misses due to spatial cross-interference
on R, from the translation group G, is given by,

spatial cross-interference misses

= (] *Pspat) X fo(RaG) X H M.

1<i<lopat

#AIS_ . (G)

X (Pe x BIAIST,,,, (G):) x N(AIS],, (G):))
i=1
The expression is multiplied by 1 — Pgpat to remove the spatial interference
caused by the reference itself, which has already been included in the total
number of misses, (23).

6 Group Dependences

The number of cache misses due to group dependence reuse, as identified in Sec-
tion 4.3, is also evaluated. Group dependence reuse occurs when a reference R,
accesses data that a different reference ﬁ, has recently used. As an example of
this phenomenon consider Figure 11. Here the reference Y(j2) has two possible
reuse dependencies: one to itself, and one to the reference Y(j, + 1) which will
have accessed the same element in the previous iteration of loop j». The group
dependence has the smallest reuse distance so this is where reuse occurs for
Y(j2).

When evaluating group reuse the method used is quite different from that
used for self dependences, although similar terms are used to describe what is
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D0 j; =0, My - 1
D0 j, = 0, N> - 2
X(32) = Y(G2) + Y(G2+ 1)
ENDDO
ENDDO

Figure 11: Group reuse example

happening. The reuse loop, lg, is simply defined as the loop on which the group
reuse occurs, and the theoretical reuse set of R is defined as the elements refer-
enced by R that are subsequently referenced by R. This is somewhat different
to in a self dependence where the TRS is defined only for loop 1 and the loops
contained by it; here the set is defined over all loops. The group reuse loop 1,4
is given by,

g = max {i(R) |1<i<m, Bu(R) £ Bu(R) ]

where m is the number of dimensions in the array accessed by R and R. Evalu-
ating the size of the TRS is also rather different, it is calculated in three parts:
the loops inside the reuse loop, the reuse loop itself, and the loops containing
the reuse loop,

ITRS(R,R)|| = [T M| xsize,RR) x [ ] M (34)
1<i<lg—1 lg<i<n
o RR N1 -1 if 5,,(R,R) = 0 and R < R;
sizer (R, R) = Ny, 1 % (J\/'Lg félg(R,ﬁ)) otherwise.

In actual fact, the middle portion of the calculation, the number of iterations
achieving reuse, represented by size (R, FR) handles both loops 1z and 1z — 1.
This is to allow the first case of the expression, where both references refer to
the same element, but R occurs before ﬁ, and therefore can't reuse the data
until the next iteration of loop 1 — 1.

The definition of 1 (R, ﬁ) is the same as in (2). Note that ;, is a convenient
notation meaning the difference between R and R in the dimension referring to

loop variable ji_, lg is a loop, not an array dimension!

6.1 Compulsory Misses

The iterations of loop l; that don’t reuse any of the elements previously ac-
cessed by R generate a number of compulsory misses. These are evaluated by
subtracting the size of the theoretical reuse set from the total number of times
the reference is executed, and applying the degree of spatial reuse attained by
the reference (see Section 5.1.2). For a reference R,

group compulsory misses = Mgpat X H Ni | — ITRS(R,R)||
1<i<n
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6.2 Internal Interference

The cross-interference disrupting a group dependence is also evaluated. Again,
it is split into internal and external forms. For group reuse, internal interference
behaves in a markedly different manner from in a self dependence. Since any
references causing internal interference are, by definition, in the same translation
group, they are accessing the cache in exactly the same pattern, except at a
different position in the cache. For each reference the starting position of the
pattern is equal to 5 mod C.

If the starting position of any of the other references in the translation
group (apart from R and l_i) is between the starting points of R and ﬁ, then
self interference occurs. The other reference will overwrite any data elements
loaded by R before R can access them. It follows that because the references are
all “moving” at the same rate, internal interference can only take two forms,
none, or total; meaning that if interference does occur it overwrites all elements
in the reuse set.

For a reference R with a group dependence I_i, interference from a reference R’
in the same translation group, is detected using the following definition, assum-
ing $(R) = B(R) mod C,

haslnt(R‘ﬁ)R/)_{¢(R)<¢(R') and  ¢(R) > §(R') if $(R) < $(R);
G(R) > $(R") and ¢(R) < $(R") if $(R) > ¢(R).

An extra clause is added to detect when R and R’ reference the same part of
a single array. If internal interference does occur then the number of misses
caused is simply the size of the reuse set multiplied by the spatial interference
ratio, that is,

group internal misses = Mgpat X ||TRS(R,ﬁ)||,

but only when hasInt(R, ﬁ, R’) is true.

6.3 External Interference

As with self-dependence reuse, external interference of group reuse is evaluated
using an approximate model. In fact the model used is very similar to that used
with self-dependences (see Section 5.2.4). Group interference can only occur in
the period between an element first being loaded and it being reused—related to
the reuse distance of the dependence. When modeling the interference occurring
in this period only the iterations of the reuse loop corresponding to the reuse
distance of the loop are included in the AIS.

This is defined as the following expression, where AIS*

lg,51,(R,R)
sents the actual interference set of the translation group G. But with the iter-

ations of loop 1 restricted to 61g(R,ﬁ). This is achieved by letting J\/'Lg equal

(G) repre-

01,(R, ﬁ) while computing the interference set. The actual number of misses is
then,

group external misses = Mgpat X ||TRS(R,§) N AIS{ 5L (R.F) (G)|| x fo(R, G).
8> g »
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As with self reuse, the overlap ratio f,(R, G), from (33), and Mgpat from (23),
are used to scale the result to reflect the size of the overlap, and the spatial
reuse achieved.

To complete the evaluation of a group dependent reference, spatial cross
interference is also included; it is calculated in exactly the same way as with
self dependence reuse (see Section 5.2.5).

7 Example Results

This section presents experimental results obtained using the techniques de-
scribed in the previous section. The models have been implemented in C,
driven by a front-end that accepts descriptions of loop nestings in a simple lan-
guage. Three code fragments are examined here, each for a range of problem
sizes and cache configurations; the fragments were chosen for their contrasting
characteristics. Fach example manipulates matrices of double precision values,
arranged in a single contiguous block of memory.

1. A matrix-multiply. It consists of three nested loops, containing four array
references in total. Each reference allows temporal reuse to occur within
one of the loops. The Fortran code is shown in Figure 12(a).

2. A two dimensional Jacobi loop, from [2], originally part of an applica-
tion that computes permeability in porous media using a finite difference
method. This kernel exhibits large amounts of group dependence reuse.
The matrices IVX and IVY contain 32-bit integers. See Figure 12(c).

3. A “Stencil” operation, from [10]. This kernel shows group dependence
reuse, but sometimes doesn’t access memory sequentially. See Figure 12(b).

For each code fragment the predicted miss ratios are plotted against the matrix
size in Figures 13, 14, and 15. The “differences from simulation” shown are
calculated by subtracting the miss ratio obtained by standard simulation tech-

8 The cache parameters used—8, 16, and 32 kilobyte capacities, each

niques
with 32 and 64 bytes per line—were chosen to be illustrative rather than to
represent any particular system, although several processors have primary data
caches matching these parameters, e.g. SUN UltraSPARC. Table 1 shows the
average errors for each experiment, as percentages of the simulated values. Also
shown, in Table 2, are the range of times taken to evaluate each problem on a

147MHz SUN ULTRA-1 workstation, for a single cache configuration.

8 Discussion

When examining the results several general effects are evident. Firstly, the un-
derlying trend of the miss-ratio decreases as the cache and line size are increased;

8A locally written cache simulator was used that accepts loop descriptions in the same
form that the analytical model uses. It was validated by comparing its results with Hill’s
Dinero III trace-driven simulator [7].
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DO I =0, N-1
DO J = 0, N-1
Z(J, I) = 0.0
DO K = 0, N-1
zJ, 1) = Zz(J, I)
+ X(K, I) * Y(J, K)
ENDDO
ENDDO
ENDDO

(a) Matrix multiply

DO I =0, N-1
DO J = 0, N-1
AT, I) = A(J, I+1)
+ B(J, I) + B(J+1, I)
+ C(I, J) + C(I+1, J)
ENDDO
ENDDO

(b) Stencil

DO J =1, N-1
DO I 1, N-1

VEN(I,J) = (cO * VXO0(I,J) + dty2 * (VXO(I-1,J) + VXO(I+1,J))
+ dtx2 * (VX0(I,J+1) + VX0(I,J-1))
- dtx * (PO(I,J) - PO(I,J-1)) - c1) * IVX(I,J)

VYN(I,J) = (cO * VYO(I,J) + dty2 * (VYO(I-1,J) + VYO(I+1,J))
+ dtx2 * (VYO(I,J+1) + VYO(I,J-1))
- dty * (PO(I-1,J) - PO(I,J)) - c2) * IVY(I,J)

ENDDO
ENDDO

05

0.4

03

02

0.1

05

04

03

0.2

01

(c) 2D Jacobi

Figure 12: Example kernels
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Figure 13: Matrix multiply results
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Figure 15: Stencil results

% Error

Experiment L | C=8192]C =16384 | C = 32768
Matrix multiply | 32 8.39 6.75 5.18
64 | 142 12.3 10.3
2D Jacobi 32| 411 1.91 1.39
64 | 864 4.37 2.73
Stencil 32| 835 6.30 3.76
64 | 8.48 7.64 5.81

Table 1: Average errors
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Analytical Model Simulation
Experiment Min. Max. Mean Min. | Max. | Mean

Matrix mult. | 0.00115 | 0.00135 | 0.00156 | 0.00780 | 25.1 7.14
2D Jacobi 0.00149 | 0.00262 | 0.00201 | 0.0206 | 4.20 1.54
Stencil 0.00069 | 0.000879 | 0.000821 | 0.00122 | 0.207 | 0.0768

Table 2: Calculation times for C = 16384, £ = 32 experiments (seconds.)

this is expected since increasing the capacity will help temporal locality, while
increasing the line size benefits spatial locality. Perhaps slightly more interest-
ing is that interference also decreases as the capacity is increased, but increases
with the line size. This follows from the total number of cache lines, C/L, being
related to the level of interference. The results also show that interference is
significant, with over a factor of 5 difference in miss-ratio witnessed between
similar experiments, but with the width and height of the matrices increased
by one element.

Looking at the matrix multiply results in Figure 13 shows that there are
generally three stages in each plot. Initially, for small problem sizes, all three
matrices fit in the cache and the miss-ratio is very low. After a certain point
the matrices are large enough that they can’t all fit in the cache and the miss-
ratio starts to increase, followed by a period in which the underlying miss-ratio
increases quite slowly (largely as a result of increased cross interference), with
points at which spatial interference on reference Y (], K) massively increases the
miss-ratio.

The results shown for the Jacobi example, in Figure 14, are very different
to those of the matrix multiply. Ignoring the largest peaks for the moment, two
almost constant underlying trends can be seen, one for small problem sizes, one
for larger values of N. As the problem size increases, so does the interference,
and the miss-ratio gradually moves from the lower trend to the upper, until
the miss-ratio is almost constant again. This effect is largely due to increasing
internal cross interference on the group dependence reuse. The large peaks in the
results are caused by “ping-pong” interference, that occurs when two reference
with similar access patterns always access the same cache line, preventing all
reuse by these references.®

The stencil results show a combination of the effects already mentioned;
substantial self interference can disrupt the spatial reuse of references C(I,])
and C(I + 1,]), since they use the innermost loop to traverse the columns of
the matrix. The gradual increase in underlying miss-ratio is similar to the
Jacobi kernel, and is largely from interference on the group dependence reuse.

The average errors, given in Table 1, support the validity of the models. For
each experiment the average error when compared with simulation is less than
fifteen per cent, and in all but three of the eighteen experiments the error is
less than ten per cent. It is also encouraging that the models detect the worst

9Models for this type of interference have not been described in the paper, although rudi-
mentary models are included in the implementation. As can be seen in the Jacobi data these
models are not always entirely accurate.
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cases very well, which is important for optimization purposes.

One of the motivations for this work was to minimize the time taken when
evaluating a program fragment. As expected the analytical model is much
quicker to compute than a simulation, typically several orders of magnitude,
even with the smallest problem sizes. As the total number of array accesses
grows the gulf widens: simulation time increasing proportionally to the number
of accesses, the time needed to evaluate the analytical model staying mostly
constant.

9 Conclusions

A hierarchical method of classifying cache interference has been presented, for
both self and group dependent reuse of data. Analytical techniques of modeling
each category of interference have been developed for array references in loop
nestings and direct-mapped cache architectures. It has been shown that these
techniques will give accurate results, comparable with those found by simula-
tion, and that they can be implemented such that predictions can be made at
a much faster rate than with simulation. More importantly, the prediction rate
has been shown to be proportional to the number of array references in the pro-
gram, rather than to the actual number of memory accesses as in a simulation.

It is envisaged that the benefits of the models—accuracy and speed of
prediction—will allow their use in a wide range of situations, including those
that are impractical with more traditional techniques. An important example
of such a use will be run-time optimization of programs, using analytical models
of the cache behavior of algorithms to drive the optimization process.

Areas that will be addressed in future work will include such optimization
strategies, as well as extensions to the model itself. The extensions under con-
sideration include modeling set-associative caches, and increasing the accuracy
when modeling certain types of problems. It is also intended to use the tech-
niques as part of a general purpose performance modeling system.
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A Notation and Symbols

Notation Meaning

x mod y remainder, i.e. x —y|x/y|

Xo base address of array X

TRS; theoretical reuse set on loop |

ARS; actual reuse set on loop 1

TIS, theoretical interference set on loop 1
AIS, actual interference set on loop 1
AISy AIS of a translation group

[1X]| cumulative size of set X in the cache
Xny intersection between X and Y

#X number of elements in set X

{x |P(x)} set of all x such that P(x)

xT positive part of x, i.e. max(x,0)

X mean value of x

R <R’ R occurs before R’ in the loop nest
R reuse dependence of R

Symbol Usage

C size of the cache

L size of each cache line

& size of each array element

n depth of the loop nesting

m number of dimensions in an array
Ny number of iterations of loop i

ji loop variable of loop i

Xk multiplier of dimension k of a reference
B additive part in dimension k of a reference
Yk loop referred to by dimension k of a reference
v variable referred to by dimension k
B constant term of a linear form

Ai coefficient of loop variable j;

R, R’ References

G A translation group

1 loop on which reuse occurs

S average size of intervals in the cache
B number of cache lines in an interval
o average distance between intervals

O value of o at level k of the subdivision
N number of intervals

) position in the cache of the first interval
S final subdivision level

G absolute value of oy in relation to ox_1
T number of left over intervals
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Symbol
Ng
Mspat
Pspat
Cspa\t
Pr

Usage

number of intervals in each area
spatial interference factor

probability of spatial self-interference
spatial compulsory miss-ratio
probability of spatial interference on R
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