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Predicting the Cache Miss Ratio ofLoop-Nested Array References�John S. Harpery Darren J. Kerbyson Graham R. NuddDecember 1, 1997AbstractThe time a program takes to execute can be massively a�ected bythe e�ciency with which it utilizes cache memory. Moreover the cache-miss behavior of a program can be highly unpredictable, in that smallchanges to input parameters can cause large changes in the number ofmisses. In this paper we present novel analytical models of the cachebehavior of programs consisting mainly of array operations inside nestedloops, for direct-mapped caches. The models are used to predict the miss-ratios of three example loop nests; the results are shown to be largelywithin ten percent of simulated values. A signi�cant advantage is thatthe calculation time is proportional to the number of array references inthe program, typically several orders of magnitude faster than traditionalcache simulation methods.1 IntroductionIt is widely recognized that the cache behavior of a program can be one of themost important factors a�ecting its performance. As the gulf between processorand memory speed widens, this factor is becoming more and more relevant toall but the most trivial of programs. In the �eld of scienti�c computation wherelarge data arrays are commonly manipulated, and high performance is especiallydesirable, making e�cient use of cache memory is a natural way to increase aprogram's performance. Optimizing cache performance in an ad hoc mannercan yield some success (for example trying to access memory sequentially), butdue to the number of parameters and the complicated nature of the processesinvolved, it is not possible to detect more subtle e�ects. It has also been shownthat cache behavior can be very unstable, with small program changes oftenleading to large di�erences in execution time [2, 13, 8].Evaluating cache performance has traditionally been restricted to simula-tion and pro�ling. Simulating the memory reference behavior of a programrequires that the e�ect of every single memory access be emulated one by one.�Research report CS-RR-336; Dept. of Computer Science, University of Warwick, CoventryCV4 7AL, UK.yjohn@dcs.warwick.ac.uk 1



Pro�ling a program usually requires some level of hardware support, and al-lows memory access statistics to be recorded while the program is executing.Both of these methods give accurate results, the drawback being that evalua-tion takes at least as long as the execution time of the program being examined.Generally the situation will be signi�cantly worse than this, with conventionaltrace-driven simulators many times slower than the program's execution time,and more recent simulation techniques still signi�cantly slower [14].This level of evaluation speed is acceptable for some applications, but whenthe number of possible scenarios to be evaluated increases, or results are re-quired quickly, simulation or pro�ling may simply be too slow to be useful. Asan example of just how long comprehensive simulation can take, Gee et al. re-ported that 40 months of CPU time were required to simulate the ten SPEC92benchmarks [6]. Another problem with simulation is that results produced willgive little explanation of why a program incurs a particular miss-ratio on a par-ticular cache con�guration|the type of information valuable when optimizinga program. These combined problems suggest that an alternative to simulationwould be useful.There have been several attempts at analytically modeling cache behavior.One technique has been to analyze memory access traces, deriving a model ofcache behavior. Agarwal et al. presented an analytical model that used pa-rameters acquired from a trace, together with parameters describing the cache,to predict the miss-rate of several reasonably large reference traces [1]. Theirmethod allows the general trends in cache behavior to be predicted, but lacksthe �ne-detail needed to detect the unstable nature of cache interference oftenobserved [2, 13, 8].Analytical models have also been used in compilers that attempt to opti-mize cache use, for example Wolf and Lam [15], Fahringer [4], and McKinleyet al. [9]. These systems use analytical cache models to guide the selection ofsource code transformations. The models have often been designed speci�callyfor this purpose, not with more general use in mind. As a result some inaccu-racy may be tolerated, when it has no e�ect on which code transformations areselected.The cache performance of speci�c types of algorithm has also been thesubject of analytical modeling, with the performance of blocked algorithmsa common subject. Lam and Wolf examined how blocked algorithms utilizethe cache [8], giving guidelines for selecting the blocking factor. Coleman andMcKinley described another method of selecting the block size, with the empha-sis placed on minimizing interference of all types [3]. Fricker et al. also lookedat blocking, examining in detail the interference occurring in a \matrix-vectormultiply" kernel [5]. They stressed the need to consider parameters such as ar-ray base address in order to detect all types of interference, and that interferencemust be modeled precisely for sub-optimal performance to be avoided.It is evident that all of these methods lack either the generality needed tomodel all types of algorithms, or the accuracy in all situations (not just overgeneral trends) that is needed. An attempt at addressing these problems wasmade by Temam et al. [12, 13]. They outlined a model of interference in direct-2



mapped caches that can be applied to a wide range of numerical loop nestings.From the level of interference predicted they generated an estimate of the totalnumber of cache misses incurred. Although their methods work well whenapplied to some types of loop nesting they are incapable of modeling certaintypes of simple loop nesting without introducing signi�cant approximations.1In this paper we present novel analytical models for predicting the direct-mapped cache miss behavior of a wide range of program fragments. The methodcombines some of the methods of Temam et al. for evaluating reuse and inter-ference with new techniques that remove some of the restrictions on the typesof code fragments that may be modeled accurately. We also provide experimen-tal data from an implementation of the models, showing that accuracy withinten per cent of simulated values can generally be expected, calculated orders ofmagnitude faster than by simulation. The low cost of prediction creates newuses for cache modeling, for example, on the y optimization of data layoutto minimize cache misses; this has an important advantage over compile-timeoptimization in that the target cache con�guration need not be known untilrun-time.In the next section we formally de�ne the problem. In Section 4 we describethe initial steps needed to prepare for the actual evaluation, including how eachreference's reuse source is identi�ed. Sections 5 and 6 show how the number ofmisses due to either self reuse or group reuse are evaluated. Several examplecode fragments are examined in Section 7, showing the type of problems thatthe model can address, and the accuracy that can be achieved; these results arediscussed in Section 8. Finally, in Section 9 we summarise the work and presentour conclusions. Appendix A lists the symbols and notation used throughoutthe paper.2 Classi�cation of Cache BehaviorA commonly used classi�cation of cache misses is due to Hill [7], in which threetypes are given. Compulsory misses occur the �rst time a data element isreferenced, capacity misses occur when the size of the cache is insu�cient tohold the entire working set of the program, and conict misses occur when twoelements of the working set map to the same cache line. Sugumar further sub-divided this last category into mapping misses and replacement misses [11].These classi�cations describe the e�ects occurring, when modeling analyt-ically it is helpful to concentrate on the causes of cache behavior. We achievethis by considering both capacity and conict misses as a single category: inter-ference misses, and modeling the level of interference on each array reference.In this classi�cation a compulsory miss occurs the �rst time a data element isaccessed, followed by interference misses each time the element is subsequentlyaccessed but for some reason is no longer resident in the cache.1For example, when an array is not accessed sequentially.
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DO j1 = 0, N1 - 1DO j2 = 0, N2 - 1DO j3 = 0, N3 - 1A(j3; j1) = B(j3; j1) + C(j3) + C(j3 + 1)ENDDOENDDOENDDO Figure 1: Example loop nestClassi�cation of interference. Data reuse is created by avoiding inter-ference misses; two types of reuse can be identi�ed, self-dependence reusedue to an array reference repeatedly accessing the same elements, and group-dependence reuse where a reference accesses data recently accessed by another.For example, consider the loop nesting shown in Figure 1. Reference A(j3; j1)exhibits self-dependence reuse|loop variable j2 is unused therefore iterationsof the middle loop access the same elements of matrix A as the previous itera-tion. On the other hand, reference C(j3) shows group-dependence reuse, it willaccess the element of array C that reference C(j3 + 1) accessed on the previousiteration of loop j3.The type of reuse achieved by each reference is found by identifying thatreference's reuse dependence. This is the reference that most recently accesseddata elements subsequently accessed by the reference in question. The \most-recently" metric is measured in iterations of the innermost loop, and is termedthe reuse distance of the dependence. Having grouped all references into thesetwo fundamental types the interference a�ecting each can be classi�ed.For a self dependent reference there are two main types of interference. Selfinterference, in which the reference itself prevents reuse, occurring when morethan one data element maps to the same cache location, and cross interference,where other references access data that interferes. For evaluation purposes crossinterference can be further subdivided into internal and external forms. In-ternal cross interference occurs between references with similar access patterns,and external between those with dissimilar access patterns. Group dependentreferences also su�er from cross interference, in both internal and external forms,but self-interference does not occur.To illustrate these de�nitions again consider reference A(j3; j1) in Figure 1.Cross interference on the reuse of A(j3; j1) can be caused by any of the otherreferences, i.e., B(j3; j1), C(j3), or C(j3 + 1). Since reference B(j3; j1) accessesmemory in exactly the same pattern as A(j3; j1), it could cause internal cross-interference. The other two references, C(j3) and C(j3+ 1), access memory in adi�erent pattern to A(j3; j1) and therefore can only be sources of external crossinterference.The �nal piece of our classi�cation structure is to split all interference e�ectsinto two subtypes, temporal and spatial interference. Temporal interferenceoccurs where reuse of individual data elements is disrupted, spatial interferencewhen the reuse of data elements mapping to the same cache line is disrupted.4



PSfrag replacements referenceself dependent group dependentself interference cross interference externalinternal temporaltemporaltemporal spatialspatialspatialFigure 2: Interference hierarchyGenerally spatial interference is found to be reasonably low, but in certain casesit can account for very large variations in program behavior. For example inthe matrix-multiply example in Section 7 the massive uctuations in miss-ratioare caused almost solely by spatial interference on one of the references.Figure 2 shows the full interference hierarchy. For each array reference beingexamined the relevant nodes of the tree are evaluated, giving the total numberof interference misses for that reference.3 Problem DescriptionGiven a set of nested loops containing array references, whose index expressionsdepend on the loop variables, the problem is to predict the cache miss-ratio ofthe program fragment. Each reference is examined in turn to �nd the numberof cache misses it causes. The description of the problem can be split intothree parts, the structure of the cache, the arrays being accessed, and the loopnestings to be evaluated.De�nition 1. Two parameters give the form of any direct-mapped cache:the number of elements in the cache, C, and the number of elements ineach line of the cache, L. Both are de�ned in bytes.De�nition 2. Each array is given by three parameters, the �rst being itsbase address, the position in memory of its �rst element. The other param-eters are the sizes of each dimension, and the size of each data element E.The arrays must be discrete, no array may share memory locations withany other array.In general, all arrays declared in Fortran will meet this restriction, some caremay have to be taken when using the C language to avoid pointer aliasing.For the model to evaluate a set of nested loops, they must follow a certainstructure. Firstly, each loop must be normalized,De�nition 3. The number of iterations of each loop must be constant, andeach loop variable must start at zero and count upwards in steps of one.This is less of a constraint than it seems since any loop whose boundaries areconstant, and which counts upwards, can be translated to this normal form.5



In fact the implementation of the model mentioned in Section 7 performs thisnormalization automatically.Each level of loop nesting is numbered, the outermost labeled as level 1, theinnermost as level n. The number of iterations of a loop at level i is labeled Niand the loop variable ji. How this relates to the normal Fortran loop structureis shown in Figure 3. DO j1 = 0, N1 - 1DO j2 = 0, N2 - 1DO j3 = 0, N3 - 1� � �ENDDOENDDOENDDOFigure 3: Loop layoutDe�nition 4. Each array reference must be of the form:X (�1j1 + �1; : : : ; �mjm + �m) ;where X is the name of the array, m is the number of dimensions it has,and �k, �k, and k are constants (with 1 � k � n).In practice most programs contain only references that follow this form, but itdoes exclude the modeling of one important type of algorithm, those using ablocked structure. This limitation will be removed in the near future.Without loss of generality it is assumed that arrays are arranged in memoryas in the Fortran language, with the leftmost dimension a contiguous memoryregion.Reiterating, the total number of loops is n, and the total number of dimen-sions of an array being considered is m. For the loop at level i, its loop variableis called ji and its total number of iterations is Ni. For a reference R, k(R) isthe loop whose variable is referred to by dimension k of the reference. It followsthat jk(R) is the loop variable associated with this loop.4 PreliminariesGiven a loop nesting as de�ned in the previous section, the model performsa number of preliminary actions before it attempts evaluation. Firstly eachreference is translated into a secondary form that makes modeling its e�ectseasier, then all references are divided into classes, discarding references whichare redundant. Finally the reuse source of each reference is identi�ed.4.1 Linear FormsThe form of an array reference as de�ned in Section 3 is based on the individualdimensions in the array being accessed. When modeling a reference's behavior6



it is useful to use a notation based on loop variables. For example, the arrayreference X (j1; j3) is equivalent to X0 + j1 +Mj3, where X0 is the base addressof array X, and M its leading dimension. Such an expression is a linear form,the general form being, B +A1j1 + : : :+Anjn; (1)where B and all Ax are constants. The base address of the array and the �kvalues combine to form B. The Ax values are derived from the loop multipliers�k and the dimensions of the array. Expanding the following equivalence al-lows each constant in a reference's linear form to be found (where the functiondim (X; i) gives the number of elements in dimension i of array X),X (�1j1 + �1; : : : ; �mjm + �m)� X0 + mXk=1  k-1Yi=1 dim (X; i)! (�kjk + �k) EX!The size of the elements being referred to is also included when calculating Band Ax. Therefore evaluating a linear form for a particular set of values of jigives the actual memory location of the element being referred to.4.2 Translation GroupsWhen considering cross interference it is important that redundant interfer-ence is not included; when two references both interfere with a potentiallyreusable data element, only a single miss occurs. To solve this problem all ar-ray references in the loop being considered are grouped into separate classes, ortranslation groups. The interference caused by each group of references is thenconsidered as a whole. Since each group accesses the cache in di�erent patterns,redundant interference is kept to a minimum.Two references are in translation if their reference patterns are identical,and always a constant distance apart in the cache. For this to be true bothreferences must share the same values of Ai for i � n, only their B values maydi�er. This can be formalized for two references R and R 0,inTranslation(R; R 0) = (8i : i � n) (Ai(R) = Ai(R 0)) :This de�nition is used to sort all references in a loop nest into separate transla-tion groups. As few groups as possible are formed, such that each reference inthe group is in translation with all others members of the group. For example,the four references shown in Figure 1 are sorted into two translation groups,fA(j3; j1); B(j3; j1)g, and fC(j3); C(j3 + 1)g.Some of the references in a loop nesting are discarded before the evaluationstarts. When two references in the same translation group always access thesame cache lines only the misses due to one of them is evaluated. This removesredundant cache misses and simpli�es the calculations involved. The assump-tion is made that there will be no interference misses in a single iteration of the7



innermost loop, an assumption also made by McKinley et al. [9] and supportedby Lam et al. [8].This pruning of the references is straightforward to achieve. For each trans-lation group the B parameter of each reference is used to detect whether it isclose enough to another reference to be discarded. For two references R and R 0if jB(R) - B(R 0)j < L then one of them is discarded.4.3 Self Or Group Dependence?The source of any temporal reuse achieved by each reference must be identi�edbefore the number of cache misses can be evaluated. As noted in Section 2, forany reference R there is a single reference ~R in the same loop nesting on which itdepends for reuse. This reference ~R is the source of all temporal reuse exploitedby R, and is called R's reuse dependence.There are two types of reuse dependence: a self dependence in which Rreuses data elements that it has previously accessed itself, or a group depen-dence in which R reuses elements that a di�erent reference has accessed. In thecase of a self dependence R = ~R, while for a group dependence R 6= ~R.Example. Looking again at the example in Figure 1, the reference A(j3; j1)exhibits a self dependence, each iteration of loop 2 references exactly the sameelements as every other iteration of the loop. As an example of group depen-dence there is the reference C(j3), each data element that it uses was accessedby reference C(j3 + 1) on the previous iteration of loop 3. Interestingly, C(j3)also has the possibility of a self dependence, with reuse able to occur on theouter two loops.The possibility of multiple dependences complicates the task of �nding ~R;only one dependence is actually exploited, the one that referenced the datamost recently. The length of time between a data element being accessed by areference, and it subsequently being reused by R, is called the reuse distanceof the dependence. It is measured in iterations of the innermost loop. Findingthe dependence with the smallest reuse distance �nds the actual source of reuse.For example, reference C(j3) has a reuse distance of one iteration of loop 3, andA(j3; j1) a reuse distance of N3 iterations of loop 3.Calculating the reuse distance of a self dependence is trivial, simply multiplythe sizes of the loops inside the level at which reuse occurs (de�ned as loop l,see Section 5). The reuse distance of a group dependence is more complicatedand is found by adding the reuse distance for each dimension of the array beingaccessed. Given that both R and R 0 refer to the same array, and that they arein the same translation group, the reuse distance between them dist(R; R 0) isgiven by,dist(R; R 0) = 8>>>><>>>>: Yl<i�nNi if R = R 0;X1�k�m0@0@ Yk(R)<i�nNi1A� distk(R; R 0)1A if R 6= R,8



distk(R; R 0) = 8<:1 if �k(R; R 0) < 0 or �k(R; R 0) � Nk(R);Nk(R) if �k(R; R 0) = 0 and R � R 0;�k(R; R 0) otherwise,�k(R; R 0) = �k(R 0) - �k(R): (2)The function distk calculates the reuse distance for dimension k of the ref-erences, in terms of the loop variable referenced by this dimension (jk). Itrecognizes three di�erent situations, dependent on �k, the distance between thereferences in dimension k,2Case 1: the distance between the references is either negative or greater thanthe size of the loop. In either case the dependence R 0 can't be exploited,hence the reuse distance is in�nite,Case 2: the distance is zero, but the reference for which a dependence is beingsought, R, occurs before R 0 in the loop body (this is what the R � R 0notation means). Here there is the possibility for reuse, but not until thenext complete set of iterations of loop k,Case 3: reuse occurs within this loop, the distance is simply the distance be-tween the two references in this dimension, �k(R; R 0).When �nding a reference's reuse dependence only those references withwhich it is in translation are examined. Whichever has the smallest reuse dis-tance is taken as the source of any temporal reuse. This leads to a de�nition of~R as follows, given that G is the translation group that R and ~R belong to,(9~R : G)(8R 0 : G)(dist(R;~R) � dist(R; R 0)):This means that in the example case of reference C(j3) above, the dependencechosen is the group dependence with a reuse distance of one iteration, ratherthan the self dependence which has reuse distance N3.4.4 The Evaluation ProcedureAfter creating each translation group and identifying the reuse dependence ofeach reference in these groups, the model is then used to evaluate the numberof cache misses for each reference in all translation groups.Step 1: Sort the list of references in the loop nesting into translation groups,as described by Section 4.2.Step 2: For each reference R in each translation group, �nd its reuse depen-dence ~R. The de�nition of ~R was given in Section 4.3.Step 3: For each translation group G, for each reference R 2 G, calculate thenumber of cache misses sustained by R given that it is dependent on ~R forany temporal reuse achieved.2Since group dependence is only considered among references in the same translationgroup, only the �k parts of the index expressions need be looked at.9



Of this procedure Step 3 is the most complex, and the bulk of the paperis devoted to the techniques used. These techniques are split into two sections:Section 5 describes how self dependence reuse is modeled, Section 6 examinesgroup dependence reuse.5 Self Dependence ReuseAn array reference can achieve some level of temporal self reuse only if one ofthe loop variables, ji, is not included in the reference. This means that anyiteration of loop i references exactly the same elements of the array as anyother iteration. For example, reference A(j3; j1) in Figure 1 does not includeloop variable j2, meaning that reuse occurs on loop 2.The loop variable ji not being included in a reference is equivalent to thecoe�cient Ai of the reference being zero. This gives the innermost loop onwhich reuse occurs for a particular reference, de�ned as loop l,l = max fi j i � n; Ai = 0 g ; (3)If none of Ai are zero then no temporal self reuse occurs, and by conventionl = 0; in this case it is still possible that some degree of spatial reuse maybe achieved (see Section 5.1.2). If temporal reuse does occur, the TheoreticalReuse Set (abbreviated as TRS) of the reference is next identi�ed. For areference R, its TRS contains all array elements that R could possibly reuse,assuming that the size of the cache is unbounded. Since reuse occurs on loop l,its TRS contains all elements accessed by the loops inside level l. This is givenby, TRSl(R) = fRg (0 � ji < Ni)l<i�n ; (4)However, the model does not need to expand a reference's TRS, only to calculatethe number of array elements that it contains, de�ned as,kTRSl(R)k = Yl<i�nNi: (5)The notation kTRSl(R)k stands for the size of the TRS of reference R, de�nedon loop l.The size of a reference's TRS allows the number of compulsory misses of thatreference to be found. For the �rst iteration of the reuse loop l, no temporalreuse can occur since the TRS has not previously been accessed. For reference Rthe number of temporal compulsory misses is given by,0@ Y1�i<lNi1A� kTRSl(R)k; (6)No spatial e�ects are included in this expression, these are given later (seeSection 5.1.2). Also note that if no reuse occurs (i.e., l = 0) the reuse setcontains all accessed elements, and therefore the number of compulsory missesis the total number of references in all loops.10



Example. Identifying the TRS of referenceA(j3; j1), and its size, is straightfor-ward. The loop on which reuse occurs was identi�ed above as loop 2, therefore,TRS2(A(j3; j1)) = fA(0; j1); A(1; j1); : : : ; A(N3 - 1; j1)g ;kTRS2(A(j3; j1))k = N3:A TRS is de�ned without regard for the physical structure of the cache, assuch there is no guarantee that any of its elements will actually be reused. Therest of this section is devoted to evaluating the number of cache misses for aself dependent reference, given that temporal reuse occurs on loop l.5.1 Self-InterferenceThis section shows how self-interference is evaluated, the e�ect occurring whena reference obstructs its own reuse. The calculation is split into two halves,the �rst dealing with temporal reuse, the second with spatial reuse. These arelater combined with the e�ects of compulsory misses to give the number of selfinterference and compulsory misses for a single reference.5.1.1 Temporal Self-InterferenceTemporal self-interference occurs when more than one element of the TRS mapsto the same cache location. When this happens none of the elements mappingto the location can be reused since they continually overwrite each other. Tomodel this phenomenon it is necessary to map the TRS into the cache removingany elements that occupy the same cache location. This forms another set, theActual Reuse Set, or ARS, containing only those elements in the cache that arereused with a particular cache size. Subtracting the size of this set from the sizeof the associated TRS gives the number of temporal misses on each iteration ofthe reuse loop. For a reference R, this is,kTRSl(R)k - kARSl(R)k: (7)The form of an ARS is usually very regular, allowing it to be characterizedby several parameters. The �rst parameter S is the average size of each region,or interval, in the ARS. The second parameter � is the average distance inthe cache from the start of one such interval to the start of the next. Thenext parameter B is the average number of distinct cache lines in an interval ofsize S3. Adding two �nal parameters, the position of the �rst interval �, andthe number of intervals in total N, allows an ARS to be de�ned as follows,ARSl(R) = hS; �; B;N;�i : (8)Figure 4 shows these parameters in relation to the cache, the black rectanglesform the ARS. The actual number of elements contained by an ARS is then,kARSl(R)k = NSER : (9)3It is not always the case that B = S=L since the elements in an interval are not necessarilycontinuous. 11
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� CS N1 2 . . .Figure 4: ARS parametersIt follows from this and from (7), that only two of the parameters, S and N,are required to calculate the temporal self-interference on a reference. Theother parameters are required when evaluating the level of cross-interference(see Section 5.2).Finding the structure of a reference's ARS is a two step process; �rst thereference's footprint in the array it accesses is found, then this footprint ismapped to a particular cache size. The footprint is described by the size,spacing and number of continuous memory regions accessed by a reference.These values are given by St, �t and Nt, the \theoretical" values of S, � and N.After being mapped into the cache these theoretical values lead to the �veparameters de�ning the ARS.Finding St, �t and Nt. The �rst part of the procedure is relatively straight-forward, the loops inside the reuse loop (i.e., loops l + 1; : : : ; n) are sorted sothat the coe�cients of the reference are in size order, from smallest to largest,ignoring those that are zero. The ordered loops are numbered from one to p, sothat the loop at position p has the largest coe�cient. This ordering is de�nedby the values �1 : : : �p, such that,0 < A�1 � : : : � A�p ;that is, �k identi�es the loop with the k'th smallest coe�cient.For each level k, from 1 : : : p, a working value of St is maintained, Stk. Thisreects the size of the continuous region on the loop referred to by level k. Theinitial value St0 is the size of a single element, E .Stk = 0@ Y1�i�kN�k1AEFor each level k considered, if the coe�cient of the loop is equal to thecurrent size of the continuous region, the size of the region is multiplied by thenumber of iterations in the loop. On the other hand, if the current size doesn'tmatch the next coe�cient then the largest continuous region has been foundand the process is complete. The level at which this happens is labeled �,� = max �k �� 1 � k � p; A�k = Stk-1 	 :12



Once � is known it is possible to �nd the values of St, �t and Nt,St = St�; (10)�t = �A��+1 if � < p;Stp if � � p.Nt = �N��+1 if � < p;1 if � � p.If all non-zero coe�cients have been considered, i.e., � = p, then only one con-tinuous region exists, and the de�nitions of �t and Nt are altered accordingly.It should be noted that if more than one unused coe�cient exists, i.e. when� < p - 1, the footprint will be inaccurate. Temam et al. [13] have an approx-imate method which could be used in these cases, but in practice they rarelyoccur4.Example. Consider the reference X(j2; j1). Assuming that for this array E = 1,the linear form is simply X0 +N2j1 + j2. The smallest coe�cient, A2, is equalto 1|the value of St0. This means that all N2 iterations of loop 2 form a singleregion containing N2 elements, i.e. St1 = N2. The next (and �nal) coe�cient,A1, is N2, which is equal to St1. Thus, completely executing loop 1 adds N1copies of the current region, giving the total size of the continuous region St asN1N2.Since all coe�cients have been used there is only one interval, �t = N1N2,and Nt = 1. This is reassuring since it is self-evident that accessing all elementsof an array (a matrix in this case) means that the continuous region will simplybe the array itself.Mapping St, �t and Nt into the cache. After identifying the array foot-print of the reuse set, the three theoretical values are known. The �nal stepin creating the ARS is to map these three parameters into the physical layoutof the cache. After removing the elements that collide whatever is left may bereused.The method of mapping the footprint into the cache uses a recursive pro-cedure presented by Temam et al. [13]. It progressively subdivides the areaof the cache that it is examining so that each area has a structure similar toall other areas. This structure results from the Nt intervals mapping into thecache. Depending on the size of the cache, the intervals may wrap around theend of the cache, possibly overwriting previous intervals.At each level of recursion k, areas of size �k are mapped into a single area ofsize �k-1, illustrated in Figure 5 for part of the cache. The following recurrencerelation de�nes the sequence of �k values, representing how the array footprintintervals map into a cache of size C,�0 = C; �1 = �t; �k = �k-1 - �k-2 mod �k-1; for k � 0. (11)4This problem stems from the S; � representation used, which is unable to model footprintswhose continuous regions are separated by more than one value of �t.13



PSfragreplacements �k �k-1
�k+1St

cache
time

footprint interval reusable cache data non-reusable cache dataFigure 5: Example of mapping array footprint intervals into the cache.Each area is continually subdivided until a level s where either all Nt of thefootprint intervals have been mapped into the cache, or overlapping occursbetween intervals, that is,s = min �k ���� ��0�k� � Nt or ~�k < St ; (12)~�k = min(�k; �k-1 - �k): (13)The ~�k expression is used due to the \circular" nature of caches; �k is thedistance moving forwards in the cache, from one interval to the next. Theremay be a closer interval in the other direction, possibly overlapping with theinterval being considered.Once the subdivision process has stopped at level s, the values of �0, �s-1and �s are used to �nd the ARS parameters S, �, B and N. These are thenused to evaluate the actual size of the footprint using (9). At level s, the cachehas been divided into �0=�s-1 areas, each of size �s-1. Within each area thereare a certain number of intervals, each of which is ~�s cache locations from thenext. The number of intervals within any one area will be one of two values,either ns, or ns+ 1, this is due to the number of intervals Nt not usually beingexactly divisible by the number of areas. The number of areas of each type andthe value of ns are found using,ns = � Nt�0=�s-1 � ; and (14)r = �Nt - ns (�0=�s-1)� : (15)This means that there are r areas, of size �s-1, containing ns + 1 intervalsof size St, and (�0=�s-1 - r) areas containing ns intervals. At this point thevalues of N, �, and � can be found,� = ��s if s = 1;�s-1 if s 6= 1. (16)N = �ns if s = 1;b�0=�s- 1c if s 6= 1. (17)� = B mod C: (18)The two cases are necessary to handle the situation where all intervals map intothe cache without overowing, i.e. when s = 1.14



The only parameters left to �nd are S, the average size of each interval, and B,the average number of cache lines in each interval. From (9) it follows that Sis the total size of the ARS divided by the number of intervals it contains, N.Since N is given by (17) above, it is only necessary to calculate the total sizeof the ARS. This calculation is split into two parts, one �nds the total size ofthe areas containing ns intervals, the other of those areas with ns+ 1 intervals.The whole equation for S is as follows,S = min (�0; fr(ns)� (�0=�s-1 - r) + fr(ns + 1)� r)N (19)where fr(x) gives the amount of data that can be reused in an area of size �s-1,given that there are x intervals of size S in the area, each ~�s from the next.This function is de�ned as,fr(x) = � fr 0(x) if fl(x) < �s-1;(fr 0(x) - 2 (fl(x) - �s-1))+ if fl(x) � �s-1, (20)fr 0(x) = � xSt if x = 1 or ~�s � St;2~�s + (x- 2)+ (St - 2~�s)+ otherwise,fl(x) = St + (x- 1)+ ~�s: (21)The condition in fr 0(x) detects overlapping between the intervals within a sin-gle area, if overlapping does occur then it is only possible to reuse 2~�s cachelocations. Alternatively if there is no overlapping then xSt elements may bereused (i.e., all of them). The condition in the de�nition of fr(x) checks whetherthe footprint overlaps with the intervals in the next area; in which case theoverlapping locations are removed. The function fl(x) gives the \extent" of thefootprint in the area being considered, this is the distance from the start of the�rst interval to the end of the last one.The �nal parameter of the ARS, B, is calculated from the value of S and itstheoretical value St de�ned in (10). Each interval of size S contains on averageS=St intervals of size St, while each theoretical interval of size St inhabits dSt=Lewhole cache lines. Therefore, B = �StL � SSt : (22)5.1.2 Spatial Self-InterferenceThe previous section showed how the number of temporal misses su�ered by aTRS is evaluated, assuming that each element not in the ARS generates a singlecache miss per access. However, since the cache accesses memory in units oflines, not elements, the e�ects of spatial reuse must also be included to give theactual number of cache misses.The best use of the cache is generally achieved when the elements of an arrayare accessed sequentially. This occurs when the coe�cient of the innermost loop,An, is the size of a single element. Since elements from the same cache line arebeing accessed on successive iterations of the innermost loop the probability15



of the line being overwritten is extremely small. This means that each linereferenced will usually only generate a single cache miss. In this case the actualnumber of misses is found by dividing the number of temporal misses by thenumber of elements held in each cache line.Example. Consider reference X(j2; j1) in Figure 6. This reference uses thevariable of the innermost loop, j2, to index the innermost dimension of thearray. Due to the innermost dimension being stored in contiguous memorylocations the array is traversed sequentially, therefore N2=(L=EX) cache missesare needed to load each row of the array into the cache.DO j1 = 0, N1 - 1DO j2 = 0, N2 - 1X(j2; j1) = Y(j1; j2)ENDDOENDDOFigure 6: Spatial reuse exampleFor a reference R, some level of spatial reuse can occur only when one ormore of its coe�cients Ai is less than the size of a cache line. This gives theinnermost loop on which spatial reuse occurs, lspat, as,lspat = max fi j 0 < Ai < L g :When this is not the innermost loop (i.e. lspat < n) then the reuse distanceof the spatial reuse (de�ned as the number of iterations of loop n between acache line being accessed twice by R) is larger than when the reuse occurs onthe innermost loop. It follows that the possibility of the spatial reuse beingsubject to interference is also greater. When this interference is caused by Ritself it is called spatial self-interference.If lspat is unde�ned, due to none of the reference's Ai values being less thanthe size of a cache line, there is no possibility of spatial reuse occurring and theactual number of cache misses is the same as the number of temporal misses.Example. For reference Y(j1; j2) in Figure 6, spatial reuse occurs on loop 15.An iteration of loop 1 may reference the same cache lines accessed by the previ-ous iteration. However, between a cache line being accessed twice, N2-1 otherelements are also referenced (since spatial reuse doesn't occur on the innermostloop). If any of these elements map to a line already being used self-interferencewill occur.To �nd the actual number of cache misses sustained, the number of tempo-ral misses is multiplied by a factor Mspat. This factor encapsulates all spatialself-interference e�ects of the reference being considered. It is formed by com-bining the compulsory spatial miss-ratio Cspat with the probability of spatialself-interference Pspat, Mspat = max (Cspat; Pspat) : (23)5Assuming that the width of each column of array Y is greater than L.16



This is the maximum of the two terms; if there is no possibility of interferencethen the number of temporal misses is multiplied by the compulsory miss-ratio.If the probability of interference outweighs the compulsory miss-ratio then thisprobability gives the actual number of cache misses.The compulsory spatial miss-ratio is de�ned as the reference's smallest non-zero coe�cient divided by the size of each cache line. The smallest coe�cientis the same as the minimum access stride of the reference; dividing this by theline size gives the ratio of compulsory misses to accesses. The minimum strideof a reference is given by,stride = min fAi j 1 � i � n; Ai 6= 0 g : (24)If the stride is greater than the line size then no two referenced elements oc-cupy the same cache line, and therefore every access generates a cache miss|acompulsory miss-ratio of 1. Cspat = min (stride;L)L (25)When the minimum stride is equal to the size of an element E the compulsorymiss-ratio is equal to the lower bound E=L, as in the �rst example in this section.Example. Reference X(j2; j1) in Figure 6 gives N1N2 temporal misses (it hasno temporal reuse). Since X(j2; j1) � X0 +dim (X; 1)EXj1+EXj2 it follows from(24) and (25) that, Cspat = min (EX;dim (X; 1)EX;L)L = EXL :Assuming that Pspat = 0, then Mspat = Cspat by (23), and the actual numberof cache misses due to reference X(j2; j1) is MspatN1N2, or N1N2EX=L.Finding Pspat of a reference. The probability of spatial interference occur-ring for a particular reference depends almost completely on a single parameter:the layout of the data elements accessed by the reference between each iterationof the spatial reuse loop. If these elements map into the cache such that morethan one element occupies a particular cache line, interference occurs.One special case is easily identi�able, when the reference contains no in-stances of the loop variables jlspat+1; : : : ; jn. In this case no other elements areaccessed by the reference between using two elements in the same cache line.Therefore no spatial self-interference occurs and Pspat = 0.The other case, when one or more of these loop variables is used, is harder toclassify. The method used is in some ways similar to the method of calculatingtemporal self-interference in that they both use the same recursive subdivisionof the cache to detect interference, (11) and (12) (see Section 5.1.1). Aftersubdividing the cache, the resulting �k values are used to �nd the level ofspatial interference.As in the temporal reuse calculation, the �rst step is to identify the initialdata layout, speci�ed by the same parameters as for temporal reuse, St, �t and17
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subdivision process again has initial values of �0 = C and �1 = �t. Due to Stbeing greater than or equal to the size of a cache line, the subdivision will notstop until either all Nt elements have been used, or overlapping between cachelines occurs, (12).After stopping at level s the cache has been divided into a number of areasof size �s-1. The number of elements in each area is again given by (14), andthe number of areas of each type by (15). For each type of area the degree ofspatial reuse is calculated, this is the number of elements in the area that canbe reused divided by the total number. Combining these values, weighted tothe number of areas with ns elements and the number with ns + 1, gives Pspat,Pspat = 1-8>>><>>>: 1 if (8i : i > lspat) (Ai = 0);fs(ns) (b�0=�s-1c - r)� nsNt+ fs(ns + 1)r� (ns + 1)Nt otherwise. (26)with r de�ned in (15) and ns in (14); b�0=�s-1c is the number of areas thecache has been divided into. The value of Pspat allows the total number ofmisses due to spatial interference to be predicted using (23).The function fs(x) calculates the degree of spatial reuse for an area of size �s-1containing x elements, each a distance ~�s from the surrounding elements.Deriving fs(x). This is a ratio; the number of cache locations in an area inwhich an element can be the sole occupier of a cache line divided by the numberof cache locations in which interference occurs.Two special cases of total or zero reuse can be identi�ed immediately. Ifthere is only one element in the area (i.e. x = 1), or the distance betweentwo elements is as large as a cache line (i.e. ~�s � L) there is no possibilityof interference and total spatial reuse occurs: fs(x) = 1. Conversely, when thedistance between each element is zero (i.e. ~�s = 0) interference occurs betweenall elements in the area and no spatial reuse is possible: fs(x) = 0.The cases left, more than one element in the area, with a distance betweenthem of less than a cache line but greater than zero, can be divided into twosub-problems. Both are tackled by calculating the number of positions in acache line that an element could occur, and subsequently be reused.Elements at either end of an area. Examples of this case are shown in Fig-ure 8. Each diagram depicts the second black element attempting to reusethe �rst. The white elements are those that are referenced between ac-cessing the two black elements, if any of the white elements are in thesame cache line as either of the black elements the reuse is prevented.As can be seen the number of positions that allow an element to bereused depends on whether the distance between successive elements inthe area, �s, is negative or positive7. When it is positive the number of7Actually �s is never less than zero. When (�s-1 - �s) < �s it is useful to think of �s asbeing negative. This is related to the de�nition of ~�s in (13).19
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Using pm to form a ratio, weighted to the proportion of elements in themiddle of the area, gives the actual reuse ratio, for this class of elements,i.e. ((x - 2)+=x)(pm=L).These de�nitions are correct when the distance between the �rst and lastelements in the area (x~�s) is smaller than the size of the area, �s-1. Whenthis is not the case the elements in one area may interfere with those in an-other. A factor to detect this and scale the reuse ratio by the level of inter-areainterference is as follows,overlap = min�1; x~�s - 2 (x~�s - �s-1)x~�s � : (29)This is the full extent of the elements in the area (x~�s) with the number ofnon-reusable locations subtracted.Combining the two special cases of total and zero reuse, with the expressionsfor the two element types and (29) gives the full de�nition of fs(x):fs(x) = 8><>: 1 if x = 1 or j�sj � L;0 if ~�s = 0;2pe + (x- 2)+pmxL � overlap otherwise. (30)5.1.3 Combining Temporal and Spatial E�ectsThe previous sections have shown how to separately calculate the number ofmisses incurred due to temporal and spatial interferences, (7) and (23), and dueto compulsory misses, (6). Naturally, the idea is to combine these into a singlevalue, giving the actual number of self-interference misses for any self-dependentreference. In fact it would be useful to develop two versions, one that includescompulsory misses and one that doesn't. Excluding compulsory misses is themost straightforward, for a reference R,self interference misses =Mspat �0@ Y1�i�lNi1A� (kTRSl(R)k- kARSl(R)k) :If compulsory misses are included the de�nition becomes slightly more com-plex, this is because the �rst iteration of the reuse loop is handled by thecompulsory miss calculation. It follows that there are no interference misses onthis iteration of loop l.self interference and compulsory misses= 0@Mspat �0@ Y1�i<lNi1A� kTRSl(R)k1A+0@Mspat �0@ Y1�i<lNi1A� (Nl - 1)� (kTRSl(R)k- kARSl(R)k)1A :If no temporal reuse occurs (i.e. l = 0) then only compulsory e�ects are in-cluded, and the second term of the expression is ignored.21



5.2 Cross-InterferenceWhen there is more than one reference in a loop nesting, as there almost alwayswill be, the other references will also interfere with any reuse occurring. This iscalled cross interference. It is modeled by comparing the ARS of the referencebeing considered with the Actual Interference Set (or AIS) of each transla-tion group. The AIS contains all cache locations referenced by a translationgroup; any intersection between an AIS and the ARS represents possible cross-interference between that translation group and the reference. Sections 5.2.1and 5.2.2 show how the de�nition of an ARS in Section 5.1.1 is adapted to formthe basis of the AIS.The cache misses caused by temporal cross-interference can be divided intotwo separate types,Internal cross-interferences: this type of interference occurs between refer-ences in the same translation group. Since the distance between the tworeferences is constant it is fairly straightforward to predict the level ofinterference.External cross-interferences: interference that occurs between references indi�erent translation groups. This is a more complex phenomenon sincethe reuse and interference sets are constantly changing in relation to oneanother. The model developed uses an approximate method that givesreasonably accurate results.By calculating the number of cache misses due to cross-interference for a self-dependent reference and adding them to the number of self-interference misses(see Section 5.1.3) the total number of cache misses by the reference is found.For a reference R each translation group G is studied in turn. If R is a memberof group G then internal cross-interference is assumed, otherwise external inter-ference is evaluated. Section 5.2.3 gives the method used to calculate the levelof internal interference, while Section 5.2.4 examines external interference.Cross-interference can also disrupt the spatial reuse of a reference, especiallyif the spatial reuse distance is relatively large (see Section 5.1.2). Section 5.2.5shows how the cache misses due to this e�ect are also included.5.2.1 Interference setsAn AIS is very similar to an ARS, the only conceptual di�erence being thatwhen creating an AIS any array elements that map to the same cache locationsare not removed, as they are with an ARS. Although overlapping elements can'tbe reused, they can still interfere with other elements that could otherwise bereused.The de�nition of a reference's AIS contains exactly the same parameters asin the de�nition of an ARS,AISl(R 0) = hS; �; B;N;�i22



For a reference R, whose ARS is de�ned on loop l, the interference sets comparedwith this ARS are also de�ned on loop l. If an ARS and an AIS were de�nedon di�erent loops they would not be comparable.When computing the parameters of an AIS, the same recursive subdivisionmethod is used, (given by (11), see Section 5.1.1). The B, N, � and � parametersare calculated in exactly the same way. The de�nition of S is changed, however,to meet the condition stated above of retaining those elements with identicalcache locations. Instead of using the function fr to �nd the size of each interval,a function fi is used that calculates the size without removing any overlappedelements, S = min��0; fi(ns)� �j �0�s-1k - r�+ fi(ns + 1)� r�N ;fi(x) = fl(x) - (x- 1)+(~�s - St)+:The function fi calculates the extent of the x intervals in the area, minus thegaps between each interval. This gives the total size of the area's footprintwith overlapped cache locations being counted once. When calculating B thede�nition of S given above is used, not the de�nition for an ARS, (19).Comparing the data layout represented by each AIS with that of each ARSallows cross interference to be detected. Wherever the two sets of cache locationsintersect there is the possibility of interference.5.2.2 AIS of a Translation GroupMost redundant cross interference is ignored by using each translation group asthe cause of interference instead of each individual reference. References thatare in translation, and therefore moving through the cache at a constant rate,are treated as a single cause of interference. For a reference with reuse on loop l,each translation group forms a single interference set, which is also de�ned onloop l, by combining the individual interference sets of all the references in thegroup. If the notation AIS�l (G) represents the combined AIS of a translationgroup G, then conceptually,AIS�l (G) = AISl(G1) [ AISl(G2) [ : : : [AISl(G#G);where Gi is the i'th reference in that group and there are #G references in thegroup in total. The representation of an actual interference set, hS; �; B;N;�i,is too restrictive to accurately model the whole interference set of a translationgroup. To overcome this problem the combined interference set is representedas a vector of interference sets, each describing a separate continuous part ofthe cache.The algorithm used to combine several interference sets is quite involved.The underlying idea is to split each interference set into as few parts as possi-ble, so that each part models an area of the cache with a structure that can bedescribed using the �ve parameters hS; �; B;N;�i. For example, consider Fig-ure 10 in which two interference sets are being combined. One starts at cache23
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100 1100500 1200Figure 10: Example translation group interference setposition 100 and �nishes at position 1100, while the other starts at position500 and ends at 1200. The combined set has three parts, the �rst and last areportions of the original sets, and the middle part is made by combining theinternal structure (i.e., the S and � parameters) of the two original sets.5.2.3 Internal Cross-InterferenceInternal cross-interference on a reference is caused by its own translation group.Since the distance between references in the same translation group is constant,the translation group's interference set (excluding the reference itself) can becompared with the reference's reuse set very easily. The number of missesfollows from the intersection between the two sets. Each interval in the twosets must be considered separately; the size of the intersection between twointervals, X and Y, is given by,kX \ Yk= min �(kYk- �X;Y)+; kYk�+min �(kXk+ �X;Y - C)+; kYk� ; (31)where kXk is the size of interval X and �X;Y is the distance between the twointervals in the cache. This distance is de�ned as the number of cache locationstraversed when moving forwards from X to Y. If �X is the position in the cacheof interval X, then,�X;Y = ��X -�Y if �X - �Y � 0;C + (�X -�Y) if �X - �Y 6� 0. (32)The number of misses due to internal interference between two intervals iscalculated by applying the degree of spatial reuse achieved by the reference tothe size of the intersection between the two intervals. The spatial reuse of areference is identi�ed in Section 5.1.2, with Mspat de�ned in (23).As each interference and reuse set is composed of more than one interval thetotal number of internal misses due to a single interference set is found from thecumulative intersection between all combinations of intervals in the two sets.The interference set of a translation group is a vector of actual interference sets,so the total number of internal misses on a reference R from the translation
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group G, such that R 2 G, is as follows,internal interference misses=Mspat �0@ Y1�i�lNi1A�0@#AIS�l(G)Xi=1 #ARSl(R)Xj=1 #AIS�l (G)iXk=1 kARSl(R)j \AIS�l (G)i;kkER 1AThe notation #X stands for the number of elements in set X, either the numberof actual interference sets in the translation group, or the number of intervalsin an interference or reuse set (the parameter N). Also, ARSl(R)j refers to thej'th interval in the reuse set of R; similarly, AIS�l (G)i;k is the k'th interval inthe j'th part of translation group G's interference set.Due to the model's representation of reuse and interference sets, the size ofall intervals in a particular set is the same. Since interference between betweenthe two sets is being considered, which happens when two cache lines collide,not two cache elements, the size of each interval is de�ned using the B parameterof the set from (22), kARSl(R)jk � B(ARSl(R))�L;kAIS�l (G)i;kk � B(AIS�l (G)i)�L;where B(X) refers to the B parameter of X, an ARS or AIS. Recall that pa-rameter B represents the average number of cache lines in each interval (seeSection 5.1.1).5.2.4 External Cross-InterferenceWhen evaluating interference from a translation group which the reuse refer-ence doesn't belong to, there is no constant distance � between the reuse andinterference sets. As a consequence, the size of the intersection between the setsis not constant and the number of misses sustained is more di�cult to evaluate.Since an accurate method of calculating external cross-interferences would bequite complex, an approximate method is used that gives good results in themajority of cases.The approximation made is to assume that the distance between two inter-vals in the reuse and interference sets is a random variable, ranging from 0 toC - 1. This gives the number of misses on an iteration of loop l for any twointervals, X and Y, as, kX \ Yk= 1C  C-1X�X;Y=0 kX \ Yk! :Due to the de�nition of the intersection operator in (31), the above expressioncan be shown to be equivalent to the following, which is much faster to evaluate,kX \ Yk= kXkkYkC :25



with kXk and kYk de�ned using B(X) and B(Y) in the same way as for internalcross-interference.The approximation made above, of � varying between zero and the size ofthe cache is valid when the arrays being accessed by the reference and thetranslation group are large in relation to the size of the cache. However, if theyare signi�cantly smaller than the size of the cache it is possible for all arrays tomap to distinct cache locations. If this happens then there is no chance of cross-interference occurring; in this case the assumption made about the distributionof � is not valid.To overcome this problem an overlap ratio, the function fo(R;G), is intro-duced. This is de�ned by the size of the overlap in the cache between the arrayaccessed by reference R and those by translation group G,fo(R;G) = 1kRk �min0B@kRk; #GXi=1Gi 6=R kR \Gik1CA : (33)Note that although the same intersection operation is used as in (31), in thiscase the operands are arrays, not intervals in the cache. The same de�nitionof � is used, but the sizes of the arrays, kRk and kGik, are de�ned slightlydi�erently, to give the size of the array in the cache, rounded up to the nextcache line, kRk = min�C;L� (#R)ERL �� :Where #R is the size of the array referenced by R, in elements. The size of Giis de�ned similarly.Given the value of fo(R;G), the overall number of misses due to externalcross-interference between the reference R, and the translation group G (withR 62 G), can be evaluated.Similarly to when �nding internal cross-interferences, the average value ofthe intersection, in lines, is summed over all combinations of intervals to givethe total number of misses for each interference set in the translation group.In fact, since the size of the intervals in a single reuse or interference set isconstant, the two inner sums can be replaced by multiplications,external interference misses=Mspat � fo(R;G)�0@ Y1�i�lNi1A� #AIS�l (G)Xi=1  #ARSl(R)�#AIS�l (G)i kARSl(R)1 \ AIS�l (G)i;1kER !5.2.5 Spatial Cross-InterferenceThe spatial reuse of a reference can also be victim to cross-interference if anotherreference overwrites a cache line before it has been fully reused. The chance26



of a reference's spatial reuse being obstructed increases with its spatial reusedistance. A probabilistic method is used to model this e�ect.Given a reference R, whose spatial reuse occurs on loop lspat (see Sec-tion 5.1.2), the probability PR, that accessing any single cache element willpush an element of R out of the cache, is given by,PR = B(AISlspat(R))�N(AISlspat(R))� LCwhere B and N refer to two of the parameters of the interference set of R de�nedon the spatial reuse loop lspat.The average number of elements that could be reused, but are pushed outof the cache before they can be, is then PR multiplied by the number of cachelines the interfering reference uses on loop lspat. This gives the total numberof misses due to spatial cross- interference as PRBN, where B and N refer toparameters of the interference set from the reference causing the interferenceon R.As with external cross-interference this assumes that the arrays are large incomparison to the cache, scaling the number of misses by the array's overlapratio will correct the result.Naturally, this has to be repeated for each part of the translation group's in-terference set, so that the total number of misses due to spatial cross-interferenceon R, from the translation group G, is given by,spatial cross-interference misses= (1 - Pspat)� fo(R;G)�0@ Y1�i�lspatNi1A� #AIS�lspat(G)Xi=1 �PR � B(AIS�lspat(G)i)�N(AIS�lspat(G)i)�The expression is multiplied by 1 - Pspat to remove the spatial interferencecaused by the reference itself, which has already been included in the totalnumber of misses, (23).6 Group DependencesThe number of cache misses due to group dependence reuse, as identi�ed in Sec-tion 4.3, is also evaluated. Group dependence reuse occurs when a reference R,accesses data that a di�erent reference ~R, has recently used. As an example ofthis phenomenon consider Figure 11. Here the reference Y(j2) has two possiblereuse dependencies: one to itself, and one to the reference Y(j2+ 1) which willhave accessed the same element in the previous iteration of loop j2. The groupdependence has the smallest reuse distance so this is where reuse occurs forY(j2).When evaluating group reuse the method used is quite di�erent from thatused for self dependences, although similar terms are used to describe what is27



DO j1 = 0, N1 - 1DO j2 = 0, N2 - 2X(j2) = Y(j2) + Y(j2+ 1)ENDDOENDDOFigure 11: Group reuse examplehappening. The reuse loop, lg, is simply de�ned as the loop on which the groupreuse occurs, and the theoretical reuse set of R is de�ned as the elements refer-enced by ~R that are subsequently referenced by R. This is somewhat di�erentto in a self dependence where the TRS is de�ned only for loop l and the loopscontained by it; here the set is de�ned over all loops. The group reuse loop lgis given by, lg = max 
i(R) ��� 1 � i � m; �i(R) 6= �i(~R)�where m is the number of dimensions in the array accessed by R and ~R. Evalu-ating the size of the TRS is also rather di�erent, it is calculated in three parts:the loops inside the reuse loop, the reuse loop itself, and the loops containingthe reuse loop,kTRS(R;~R)k = 0@ Y1�i<lg-1Ni1A� sizelg(R;~R)�0@ Ylg<i�nNi1A (34)sizelg(R;~R) = �Nlg-1 - 1 if �lg(R;~R) = 0 and R � ~R;Nlg-1 � �Nlg - �lg(R;~R)� otherwise.In actual fact, the middle portion of the calculation, the number of iterationsachieving reuse, represented by sizelg(R;~(R) handles both loops lg and lg - 1.This is to allow the �rst case of the expression, where both references refer tothe same element, but R occurs before ~R, and therefore can't reuse the datauntil the next iteration of loop lg - 1.The de�nition of �lg(R;~R) is the same as in (2). Note that �lg is a convenientnotation meaning the di�erence between R and ~R in the dimension referring toloop variable jlg , lg is a loop, not an array dimension!6.1 Compulsory MissesThe iterations of loop lg that don't reuse any of the elements previously ac-cessed by ~R generate a number of compulsory misses. These are evaluated bysubtracting the size of the theoretical reuse set from the total number of timesthe reference is executed, and applying the degree of spatial reuse attained bythe reference (see Section 5.1.2). For a reference R,group compulsory misses =Mspat �0@0@ Y1�i�nNi1A- kTRS(R;~R)k1A :28



6.2 Internal InterferenceThe cross-interference disrupting a group dependence is also evaluated. Again,it is split into internal and external forms. For group reuse, internal interferencebehaves in a markedly di�erent manner from in a self dependence. Since anyreferences causing internal interference are, by de�nition, in the same translationgroup, they are accessing the cache in exactly the same pattern, except at adi�erent position in the cache. For each reference the starting position of thepattern is equal to B mod C.If the starting position of any of the other references in the translationgroup (apart from R and ~R) is between the starting points of R and ~R, thenself interference occurs. The other reference will overwrite any data elementsloaded by ~R before R can access them. It follows that because the references areall \moving" at the same rate, internal interference can only take two forms,none, or total; meaning that if interference does occur it overwrites all elementsin the reuse set.For a reference R with a group dependence ~R, interference from a reference R 0in the same translation group, is detected using the following de�nition, assum-ing �(R) = B(R) mod C,hasInt(R;~R; R 0) = ��(R) < �(R 0) and �(~R) > �(R 0) if �(R) � �(~R);�(R) > �(R 0) and �(~R) < �(R 0) if �(R) > �(~R).An extra clause is added to detect when R and R 0 reference the same part ofa single array. If internal interference does occur then the number of missescaused is simply the size of the reuse set multiplied by the spatial interferenceratio, that is, group internal misses =Mspat � kTRS(R;~R)k;but only when hasInt(R;~R; R 0) is true.6.3 External InterferenceAs with self-dependence reuse, external interference of group reuse is evaluatedusing an approximate model. In fact the model used is very similar to that usedwith self-dependences (see Section 5.2.4). Group interference can only occur inthe period between an element �rst being loaded and it being reused|related tothe reuse distance of the dependence. When modeling the interference occurringin this period only the iterations of the reuse loop corresponding to the reusedistance of the loop are included in the AIS.This is de�ned as the following expression, where AIS�lg;�lg(R;~R)(G) repre-sents the actual interference set of the translation group G. But with the iter-ations of loop lg restricted to �lg(R;~R). This is achieved by letting Nlg equal�lg(R;~R) while computing the interference set. The actual number of misses isthen,group external misses =Mspat � kTRS(R;~R) \ AIS�lg;�lg(R;~R)(G)k � fo(R;G):29



As with self reuse, the overlap ratio fo(R;G), from (33), and Mspat from (23),are used to scale the result to reect the size of the overlap, and the spatialreuse achieved.To complete the evaluation of a group dependent reference, spatial crossinterference is also included; it is calculated in exactly the same way as withself dependence reuse (see Section 5.2.5).7 Example ResultsThis section presents experimental results obtained using the techniques de-scribed in the previous section. The models have been implemented in C,driven by a front-end that accepts descriptions of loop nestings in a simple lan-guage. Three code fragments are examined here, each for a range of problemsizes and cache con�gurations; the fragments were chosen for their contrastingcharacteristics. Each example manipulates matrices of double precision values,arranged in a single contiguous block of memory.1. A matrix-multiply. It consists of three nested loops, containing four arrayreferences in total. Each reference allows temporal reuse to occur withinone of the loops. The Fortran code is shown in Figure 12(a).2. A two dimensional Jacobi loop, from [2], originally part of an applica-tion that computes permeability in porous media using a �nite di�erencemethod. This kernel exhibits large amounts of group dependence reuse.The matrices IVX and IVY contain 32-bit integers. See Figure 12(c).3. A \Stencil" operation, from [10]. This kernel shows group dependencereuse, but sometimes doesn't access memory sequentially. See Figure 12(b).For each code fragment the predicted miss ratios are plotted against the matrixsize in Figures 13, 14, and 15. The \di�erences from simulation" shown arecalculated by subtracting the miss ratio obtained by standard simulation tech-niques8. The cache parameters used|8, 16, and 32 kilobyte capacities, eachwith 32 and 64 bytes per line|were chosen to be illustrative rather than torepresent any particular system, although several processors have primary datacaches matching these parameters, e.g. SUN UltraSPARC. Table 1 shows theaverage errors for each experiment, as percentages of the simulated values. Alsoshown, in Table 2, are the range of times taken to evaluate each problem on a147MHz SUN ULTRA-1 workstation, for a single cache con�guration.8 DiscussionWhen examining the results several general e�ects are evident. Firstly, the un-derlying trend of the miss-ratio decreases as the cache and line size are increased;8A locally written cache simulator was used that accepts loop descriptions in the sameform that the analytical model uses. It was validated by comparing its results with Hill'sDinero III trace-driven simulator [7]. 30



DO I = 0, N-1DO J = 0, N-1Z(J, I) = 0.0DO K = 0, N-1Z(J, I) = Z(J, I)+ X(K, I) * Y(J, K)ENDDOENDDOENDDO (a) Matrix multiply
DO I = 0, N-1DO J = 0, N-1A(J, I) = A(J, I+1)+ B(J, I) + B(J+1, I)+ C(I, J) + C(I+1, J)ENDDOENDDO (b) StencilDO J = 1, N-1DO I = 1, N-1VXN(I,J) = (c0 * VXO(I,J) + dty2 * (VXO(I-1,J) + VXO(I+1,J))+ dtx2 * (VXO(I,J+1) + VXO(I,J-1))- dtx * (PO(I,J) - PO(I,J-1)) - c1) * IVX(I,J)VYN(I,J) = (c0 * VYO(I,J) + dty2 * (VYO(I-1,J) + VYO(I+1,J))+ dtx2 * (VYO(I,J+1) + VYO(I,J-1))- dty * (PO(I-1,J) - PO(I,J)) - c2) * IVY(I,J)ENDDOENDDO (c) 2D JacobiFigure 12: Example kernels
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Figure 13: Matrix multiply results31
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Figure 14: 2D Jacobi results
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Figure 15: Stencil results% ErrorExperiment L C = 8192 C = 16384 C = 32768Matrix multiply 32 8.39 6.75 5.1864 14.2 12.3 10.32D Jacobi 32 4.11 1.91 1.3964 8.64 4.37 2.73Stencil 32 8.35 6.30 3.7664 8.48 7.64 5.81Table 1: Average errors32



Analytical Model SimulationExperiment Min. Max. Mean Min. Max. MeanMatrix mult. 0.00115 0.00135 0.00156 0.00780 25.1 7.142D Jacobi 0.00149 0.00262 0.00201 0.0206 4.20 1.54Stencil 0.00069 0.000879 0.000821 0.00122 0.207 0.0768Table 2: Calculation times for C = 16384, L = 32 experiments (seconds.)this is expected since increasing the capacity will help temporal locality, whileincreasing the line size bene�ts spatial locality. Perhaps slightly more interest-ing is that interference also decreases as the capacity is increased, but increaseswith the line size. This follows from the total number of cache lines, C=L, beingrelated to the level of interference. The results also show that interference issigni�cant, with over a factor of 5 di�erence in miss-ratio witnessed betweensimilar experiments, but with the width and height of the matrices increasedby one element.Looking at the matrix multiply results in Figure 13 shows that there aregenerally three stages in each plot. Initially, for small problem sizes, all threematrices �t in the cache and the miss-ratio is very low. After a certain pointthe matrices are large enough that they can't all �t in the cache and the miss-ratio starts to increase, followed by a period in which the underlying miss-ratioincreases quite slowly (largely as a result of increased cross interference), withpoints at which spatial interference on reference Y(J; K) massively increases themiss-ratio.The results shown for the Jacobi example, in Figure 14, are very di�erentto those of the matrix multiply. Ignoring the largest peaks for the moment, twoalmost constant underlying trends can be seen, one for small problem sizes, onefor larger values of N. As the problem size increases, so does the interference,and the miss-ratio gradually moves from the lower trend to the upper, untilthe miss-ratio is almost constant again. This e�ect is largely due to increasinginternal cross interference on the group dependence reuse. The large peaks in theresults are caused by \ping-pong" interference, that occurs when two referencewith similar access patterns always access the same cache line, preventing allreuse by these references.9The stencil results show a combination of the e�ects already mentioned;substantial self interference can disrupt the spatial reuse of references C(I; J)and C(I + 1; J), since they use the innermost loop to traverse the columns ofthe matrix. The gradual increase in underlying miss-ratio is similar to theJacobi kernel, and is largely from interference on the group dependence reuse.The average errors, given in Table 1, support the validity of the models. Foreach experiment the average error when compared with simulation is less than�fteen per cent, and in all but three of the eighteen experiments the error isless than ten per cent. It is also encouraging that the models detect the worst9Models for this type of interference have not been described in the paper, although rudi-mentary models are included in the implementation. As can be seen in the Jacobi data thesemodels are not always entirely accurate. 33



cases very well, which is important for optimization purposes.One of the motivations for this work was to minimize the time taken whenevaluating a program fragment. As expected the analytical model is muchquicker to compute than a simulation, typically several orders of magnitude,even with the smallest problem sizes. As the total number of array accessesgrows the gulf widens: simulation time increasing proportionally to the numberof accesses, the time needed to evaluate the analytical model staying mostlyconstant.9 ConclusionsA hierarchical method of classifying cache interference has been presented, forboth self and group dependent reuse of data. Analytical techniques of modelingeach category of interference have been developed for array references in loopnestings and direct-mapped cache architectures. It has been shown that thesetechniques will give accurate results, comparable with those found by simula-tion, and that they can be implemented such that predictions can be made ata much faster rate than with simulation. More importantly, the prediction ratehas been shown to be proportional to the number of array references in the pro-gram, rather than to the actual number of memory accesses as in a simulation.It is envisaged that the bene�ts of the models|accuracy and speed ofprediction|will allow their use in a wide range of situations, including thosethat are impractical with more traditional techniques. An important exampleof such a use will be run-time optimization of programs, using analytical modelsof the cache behavior of algorithms to drive the optimization process.Areas that will be addressed in future work will include such optimizationstrategies, as well as extensions to the model itself. The extensions under con-sideration include modeling set-associative caches, and increasing the accuracywhen modeling certain types of problems. It is also intended to use the tech-niques as part of a general purpose performance modeling system.Acknowledgements. This work is funded in part by DARPA contract N66001-97-C-8530, awarded under the Performance Technology Initiative administeredby NOSC.References[1] Agarwal, A., Horowitz, M., and Hennessy, J. An analytical cachemodel. ACM Trans. Comput. Syst. 7, 2 (May 1989), 184{215.[2] Bodin, F., and Seznec, A. Skewed associativity improves program per-formance and enhances predictability. IEEE Trans. Comput. 46, 5 (May1997), 530{544.[3] Coleman, S., and McKinley, K. S. Tile size selection using cacheorganisation and data layout. In Proceedings of the SIGPLAN '95 Con-34
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A Notation and SymbolsNotation Meaningx mod y remainder, i.e. x- ybx=ycX0 base address of array XTRSl theoretical reuse set on loop lARSl actual reuse set on loop lTISl theoretical interference set on loop lAISl actual interference set on loop lAIS�l AIS of a translation groupkXk cumulative size of set X in the cacheX \ Y intersection between X and Y#X number of elements in set Xfx j P(x)g set of all x such that P(x)x+ positive part of x, i.e. max(x; 0)x mean value of xR � R 0 R occurs before R 0 in the loop nest~R reuse dependence of RSymbol UsageC size of the cacheL size of each cache lineE size of each array elementn depth of the loop nestingm number of dimensions in an arrayNi number of iterations of loop iji loop variable of loop i�k multiplier of dimension k of a reference�k additive part in dimension k of a referencek loop referred to by dimension k of a referencejk variable referred to by dimension kB constant term of a linear formAi coe�cient of loop variable jiR, R 0 ReferencesG A translation groupl loop on which reuse occursS average size of intervals in the cacheB number of cache lines in an interval� average distance between intervals�k value of � at level k of the subdivisionN number of intervals� position in the cache of the �rst intervals �nal subdivision level~�k absolute value of �k in relation to �k-1r number of left over intervals36



Symbol Usagens number of intervals in each areaMspat spatial interference factorPspat probability of spatial self-interferenceCspat spatial compulsory miss-ratioPR probability of spatial interference on R
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