View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Warwick Research Archives Portal Repository

THE UNIVERSITY OF

WARWICK

Original citation:

Papaefstathiou, E., Kerbyson, D. J., Nudd, G. R., Atherton, T. J. and Harper, J. S. (1997)
An introduction to the layered characterisation for high performance systems. University
of Warwick. Department of Computer Science. (Department of Computer Science
Research Report). (Unpublished) CS-RR-335

Permanent WRAP url:
http://wrap.warwick.ac.uk/61021

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:

The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

warwickpublicationswrap

————— L ——————————

highlight your research

http://wrap.warwick.ac.uk/

https://core.ac.uk/display/29189434?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/61021
mailto:publications@warwick.ac.uk

An Introduction to the Layered Characterisation
for High Performance Systerms

E. Papaefstathiou D.J. Kerbyson G.R. Nudd
T.J. Atherton J.S. Harper

December 3, 1997

Abstract

A toolset for performance analysis of parallel systems, PAG presented in
this report. In this toolset expert knowledge about theqrerfince evaluation tech-
niques is not required as a prerequisite for the user. ldsteteclarative approach
to the performance study is taken by describing the appdicét a way that is both
intuitive to the user, but can also be used to obtain perfoo@aesults. The under-
lying performance related characterisation models anid &valuation processes
are hidden from the user. This document describes the $jperose language,
and the evaluation system, that form the core of the PACE#bolAmongst the
aims of the toolset is the support of characterisation moelesability, ease of
experimentation, provide different levels of predictioctaracy, and support of
different levels of characterisation model abstraction.

1 Introduction

Performance evaluation is an active area of interest especially within théepaya
tems community. A large number of performance tools have been develppsdist
the system developer, the application programmer, and the tuningt ¢asedect the
most efficient combination of hardware and parallelisation strategy [612113].
However, the use of performance tools typically require an advance kdge/lof per-
formance related issues, which is usually not commonly understoodpdipese of
the characterisation work at Warwick is the development of prediction, aalg¢sas
of, methodologies and tools that will allow non performance specidbstsxdertake
performance studies. PACE is a set of tools aimed to assist the usensleaake
performance studies. In this document a special purpose language anduatienal
system is presented that form the core of the PACE performance toolset.

The notion of performance tools for theest of us” is the central driving force
behind Warwick’s characterisation work. In order to achieve this goalisie of the
performance methodology must focus his/her effort on the aspects pétfemance
study that does not require performance related speciality. The user ofmparfce
tools usually knows the application but does not have any knowletifeeerfor-
mance methodologies. The characterisation toolset presented here requiusgith
to describe the application that is under investigation in a way thattls intuitive

*Version 1.70

to the user but can also be used in the performance study. The perfornatated r
characterisations and their evaluation process, are hidden from the user.
The characterisation methodology provides the following features:

Characterisation Model Reusability Allows the definition of the control flow of the
application and the computation/communication pattern in a hardwarednédep
dent way.

Easy Experimentation Allows easy experimentation with different hardware plat-
forms and parallelisation strategies.

Different Levels of Prediction Accuracy Supports differentlevels of characterisation
from high level parametric characterisation (e.g. measuring floating ppart
ations), providing moderate accuracy, to low level instruction levatatterisa-
tion, providing high accuracy of predictions.

Different Levels of Model Abstraction Can be used in different stages of software
development cycle and different type of software development projegsthe
porting of serial code or developing parallel software from scratch).

The PACE toolset is based on a characterisation framework [7, 8, 9, 1k T
framework is a layered approach that separates out the hardware and sofstamessy
through the use of a parallelisation template, figure 1. This modufapaph leads to
readily re-usable models which can be interchanged in experimentatiomdtance
the performance predictions across parallelisation techniques can be congaaed f
particular application on a particular hardware. The layers used are detailed belo

e an application layer, which describes the application in terms of a sequence of
sub-tasks using control flow graphs. Each node of the graph can be a salquen
processing node, a user defined parallel sub-task, or a parallel processng gen
(from a library).

e an application sub-task layer, which describes the sequential part of every su
task within an application that can be executed in parallel. The result of the
evaluation of these models is fed to the parallel template layer.

e a parallel template layer, that describes the computation-communicatienpatt
and other hardware resource usage.

e a hardware layer, which is responsible for characterising the commumieatttb
computation abilities of the system.

The PACE toolset contains a number of separate programs integratedaoatar
mon graphical user interface. The organisation of these components ia ghdig-
ure 2. The main components of this toolset are:

¢ A set of special purpose language scripts suitable for the descridtiperimr-
mance aspects of parallel systems.

¢ Arun-time system that contains an evaluation engine.
e A compiler that translates the scripts into object code.

e A set of interface tools which allow the extraction of control flow/rasetinfor-
mation from application source code.

Application Domain

Application Layer

Sub-Task Layer -

Hardware Layer

Figure 1: The Layered Characterisation Framework

o A further set of graphical interface tools that allow the user to define aspkcts
the performance study and visualise the outputs.

The PACE run-time system is responsible to perform basic maintegecations
such as the loading of PACE compiler output, the evaluation of moaiedsthe storage
of the results. The run-time system also includes the evaluatiomettigat is used to
combine and evaluate the models of the performance study. The usketile to ex-
amine the results through a visualisation module and experimenthégtperformance
parameters. A number of pre-defined performance analysis studies will bielguato
such as scalability and bottleneck analysis.

An automated procedure is provided to extract from the user’s applidatocon-
trol flow and resource requirements from the user’s application. Axditly the re-
source usage of each node of the control flow graphs is identified in tdrenfigh
level language, or instruction level operations. The resource usagenation is com-
bined with the control flow information and converted to PACE languagets.

The user will be able to edit his/lher own PACE language scripts andgrsphical
interface to design the computation/communication pattern of the paaddi@fithm
used, and the control flow of an application that has not yet been developed thef
development of PACE scripts have been concluded for a performance sRIBACE
compiler will translate the scripts to object code.

The scope of this document is to present the PACE language, the rarsystem,
and the evaluation engine.

In the next section the main entities (objects) of the PACE languagataneiiced.
There are four types of PACE objects (related to the layered framewoskgapplica-
tion, the subtask, the parallel template, and the hardware objects. Theentires
and the rules govern their interfacing are also explained. In Section 8tledns of
the PACE compiler and run-time system are described. In Section 4 a dédaidphge

Application
| Workbench |
v v v

¥ Q
Resource Control Flow . Parametric
Analysis Extraction Text Editor GUI """ | visualisation

 FPYPOTPR SPPPRTP P e

| CHIPS Language Scripts

__l_._.__ Run-Time System
v
CHIPS Evai‘uation
Compiler Engine

Scope of Document

Figure 2: PACE Tool Organisation

description is presented. The language is presented in BNF format anehtia@tics
of it's constructs are explained. In Section 5 an example is given foiqiieg the
performance of a parallel sorting kernel. Finally in Section 6 a summargaananber
of extensions that will be included in future versions of the languerg described.

2 Objects and Object Interfacing

A program written in the PACE language includes a number of objects. Hijebtds
one of the following types: application, subtask, parallel templatehandivare. These
are used to describe the performance aspects of the respective system camganen
object is comprised of:

Internal Structure The internal structure is defined by the programmer and is hidden
from the other objects. This structure contains various types of puoesdhat
describe the control flow of the application, the form of any regressiodels,
and computation-communication structures.

Options The objects, depending on their type, have a number of pre-defined @ption
that determine the default behaviour of the object. The default valudwesét
options can be set in the object, and can be modified by other objects. For ex-
ample an option might include the default hardware or parallelisatiamesty
(parallel template) that will be called by a subtask.

Interface Obijects include an interface that can be used by other objects to modify
their behaviour. This interface is explicitly defined by the programnigdre
interface includes the external variables that can be modified outsideadfjdnet
scope. The interface might include data dependent, hardware dependent, and
other variable types.

Application Application

r/w —
Subtask Subtask Subtask W Write
r/w||r T /W w r Read
Interface
Template Template Template Operations

r

Hardware Hardware

Application Subtask Template
Object Interface Obiject Interface Object Interface

Hardware

Figure 3: Object Interfacing

Objects of a certain type can only read from, and write to, certain other ojpjpes t
as shown in figure 3. An object can read an external variable of other objeytd onl

it is in a lower level of the layered approach hierarchy. Further rules thagrgdhis
relationship are described below:

Application Type Object A PACE program includes only one object of the applica-
tion type. This is the object that is called automatically from the roretsystem
of the PACE run-time system (i.e. the entry point of a PACE prograihe
external interface of the application object can be used by the user, thiteeigh
PACE run-time system, to manipulate parameters of the performange(stad
change the size of the problem). The application object can modify teenekt
variables of subtask and hardware objects and also use entire subtask. objects
For example, a parallel sort application object can use constituent gquieksbr
bitonic sort subtask objects but only modify the processor cordtgur of the
underlying hardware platform, without directly calling it.

Subtask Type Object A PACE program might include many subtasks. The interface
of a subtask object can be modified by the application object. A subtask can
modify the external variables and use template objects. For examplédheb
sort is an object of the subtask type that can be used by the applicatint,dbj
can modify the external variables and use the bitonic parallel templagetobj

Parallel Template Type Object A program might include many parallel template ob-
jects. Their interface can be manipulated by subtask objects. The parallel tem-
plate can not modify the interface of any other object type. The parallel &enpl
object describes the computation-communication patterns and the udeeof ot
hardware resources.

The definition of hardware objects is not supported directly by theEPR@Gguage.
The hardware objects must be developed using other analytical or siomutabls.
The characteristics and the parameters of a hardware object must be defineddn a har

ware symbol file. This file is included into the user-defined objects thathardware
parameters.

The PACE environment provides some special purpose objects thatxteneled
semantic features. These include a template with the rampéor sometimeasync)
that covers the case of the execution of a subtask on a single CPU. Alsbjeut
calledhardware will contain a common interface to all hardware platform parameters
(e.g. number of processors). This will allow the reference to the hasdalgjects
independently of the type of the parallel system in use. Finally a specialisdte
objectEval, which contains parameters related to the status of the PACE run-time
system and evaluation engine. An object can query the status of PACE bynixgmi
theEval object.

For each object type a detailed description is given in the following papg:

2.1 Application Object

A PACE program contains one application object. The object acts as the entyp
the performance study, and includes an interface that can be used by therogghth
the PACE run-time system to modify parameters of the performancyg &gl data
dependent parameters, hardware platforms to be used). Additionally plieadion
object combines the subtask objects using either control flow graphgoution pro-
cedures. An application object includes the following parts (figure 4):

Include Statements Declares the subtask, parallel template, and hardware objects that
will be used by the application object.

External Variable Definitions Defines the external variables that will be the interface
between the application object and the user through the PACE run-tstensy

Link Statements The purpose of the link statement is to modify external variables and
options of the subtask objects and the hardware objects being used.

Options Sets the default options of the application object. These options casde al
modified by the user through the PACE run-time system.

Procedures The procedures describe the relationships of the subtasks in orderto p
dict the performance of any serial parts of the application. This reldtipresin
either be described as control flow grapbféain) or execution statementsxeg.
Control flow graphs are defined in terms of graph components, where as execu-
tion statements are more flexible allowing complex relationshipe expressed.
The application object must include an execution procedure named This
procedure is the entry point to the program.

2.2 Subtask Objects

The subtask objects represent parts of an application that are parallelisbdmminare
platform using a specific parallelisation strategy. The subtask ohijeatsapplication
are combined by the single application object.

A subtask object includes the evaluation of the sequential parts of taégbaro-
gram. It also includes the mapping of these sequential parts of the afgpiioato the
computation-communication pattern described in the parallel template object

A subtask object can use more than one parallel template object in the case when a
part of the application uses more than one parallelisation strategimssSfe@tures gives
the flexibility for easy experimentation and selection of the apprappatallelisation

application identifier {

Include [¢—(Object1

Statement [€——

External 4_’%
Var. Def.
User

Link |—>(Object D

Statement [(object 2

Option
Statement

—— cflow proc
Procedures —
— 5 [=

} exec proc

Figure 4: Application Object Structure

strategy for a hardware platform. During an execution of a PACE praginly one
template might be evaluated for each subtask.

The subtask object has the same structure as the application object (asishow
figure 4). The role of thenit procedure in a subtask object is to specify the execution
time of the serial part of the subtask when linked into the parallel tatepiThe pres-
ence of theinit function is optional in the subtask objects. Anit function might
not be required when the serial parts of the subtask are constant and carcifiedp
directly in the link statement.

Execution Time

v ParTmp Obj]
Application AN

Figure 5: The Evaluation Process of a Subtask Object

Figure 5 shows the sequence of steps performed during the evaluitiersabtask
object. The application object initially uses a subtask object. ittie: procedure of
the object is the entry point. Thimit procedure might call other procedures of the
object to evaluate the serial parts of the application. These parameterskarktt the

currently active parallel template object that was specified byfhd on command
in the subtask object or in the application object. Finally, the currardlfel template
object is called and evaluated. The results of the parallel template objechtvalis
the execution time of the subtasks which is returned to the applicaltigat.

2.3 Parallel Template Objects

The parallel template object describes the computation-communicatiompatigal-
lows access to the hardware devices of a system. The syntax of the parafiteem
objects is similar to the application and subtask objects with the exceptithe state-
mentlink and the existence of additional statements for exec procedures.

The parallel template objects do not manipulate the interface of any oftiiee o
objects so there is no need for the existence ofitivk statement. The computation-
communication pattern is expressed in terms of stages and steps. A stagenis a
plete phase of the parallel algorithm and might include many compusatiot com-
munications. In many cases a parallel template might have many stages afithe s
computation-communication pattern. The number of stages in a parallditenof-
ject is defined using the optiarstage. The evaluation procedure is shown in figure 6.

The parallel template object provides an interface to the resources in thesmnard
object. When evaluated this allows the application object to specify hardesoarce
usage. The serial execution time can be calculated in any object with the usevof cfl
procedures. This indirectly involves the hardware models for a sibBld. However,
all the other resources including the system inter-connection netwmbkt/output de-
vices, etc., are accessed through the parallel template objects. This is dibeschip-
ing the steps in a stage. Each step corresponds to an access to one or moagehardw
resources, e.g. for computation the CPU, for inter-processor commionitia¢ com-
munication network, and for retrieval of data hard disks.

* nstage

Subtask
Obj

Tx, Applica}tion
Obj

SRS
e 1 Partmp Obyj!

Hardware
Obj

Figure 6: Parallel Template Evaluation Procedure

Individual steps are defined in exec procedures using the comstapdwhich is
only applicable to parallel template objects). This command defines the &arde+
source that will be used and any necessary parameters. Optionally, the setasfqors
that the step occurs on can be defined by usingihdause of thestep statement. By
evaluating each step, the PACE run-time system calls the appropriatedranhodel
and returns the execution time for the step. The configuration of eadtedsewdone
with the command:onfdev . For example, the inter-processor communication net-
work device accepts three configuration parameters. These are: the size ohgeness

the source processor, and the destination processor. This configuatide repeated
many times during the same step in order to describe a complete commumigati
tern.

3 The Run-Time Environment

The run-time system provides the tools needed to produce performeedietipns
from a set of PACE scripts representing a single modelled applicatiach PACE
object must be entered into a separate file; the name of the file should barte of
the object with anla suffix appended to it. For example, an object calegnc would
have a PACE script calledsync.la Once all of the PACE objects in the model have
been defined they are compiled using the PACE compiler and then linked ¢ogeth
form a single executable program. This program can then be executeduateviile
model and give predictions of its performance.

3.1 The Compiler

Each PACE object is compiled into a standard linkable object file. Due ta#yein
which objects link to each other it is necessary to compile the parallel tengtipets
before the subtask obects, and the subtask objects before the applatg¢ion

The shell commandhip3sis used to compile each PACE program, for example,
the following command compiles a PACE script calfed.lainto a linker object called
foo.q

$ chip3s foo.la -o foo.o

The other compiler options available can be listed by giving the -hgtipo to the
compiler. Once all of the PACE objects have been compiledchifE8sldcommand is
used to link them into a single program. For example to link the dladpbject files
app.q sub.oandtmp.ointo a single model called app the following command would
be used.

$ chip3sld -o app app.o sub.o tmp.o

This creates an executable program, cadlpg, that contains the performance ob-
jects making up the overall model. The program also contains the evaliatigine
needed to produce performance predictions about the modelled application.

3.2 The Evaluation Engine

The evaluation engine evaluates the compiled PACE objects, combir@ngghlts to
produce detailed predictions of the performance of the whole applicaiianoh time
the program is executed the models are evaluated and a set of predictidnsgutdor
the current problem configuration (i.e. the set of application parameters).

The external application parameters may be modified to control the behafiou
the model. Running the model with the -list-vars command-lin@ogtroduces a list
of the parameters available with that model, and their standard values. Tgectien
value of a parameter its name and new value must be given as a commanditine op
to the model, they should be separated by an equals sign, with no spacesitem.
For example, the following command evaluates a model calpgrdchanging the value
of its Nproc parameter to 16.

$ app Nproc=16

When a model is evaluated it outputs the performance predictions it dechfu
the standard output stream. By default, only the overall time takerntegdr preceded
by the textTx =. For example,

$ app Nproc=16
Tx = 1.44154e+07

However, each evaluation produces much more detailed predictions thablshis.
ing different command-line options when evaluating a model, it isipesto access
these other predictions.

-proc-table Output a table listing predictions for each processor.
-list-segs List each CFLOW procedure and the time that it is predicted to take.
-list-compat Listthe communication pattern of the model.

-trace Output PICL format trace information into a file endingirf

There are also a number of debugging options available, these are osdifuling
errors in the PACE programs and for examining how the evaluatiomeragtually
works. Use the-7 option to the executable model to find out exactly what types of
debugging information is available (look at théebug option).

4 Language Description

This section presents the syntax and the semantics of the PACE languagkesthip-
tion includes:

¢ The definition of the object types, the role of each object and a road-map to t
structure of the object (section 4.1).

e The object header is described in detail (section 4.2). The statements inzrluded
the object header include the interface definition, the setting of paranoétaes
objects that will be used by the current object and setting of the configoiait
the object.

e The control flow procedure syntax is described in section 4.3. These preced
describe the control flow of a part of an application in terms of a grapétioot

e The statement of execution procedures are presented in section 4.4.

e The data representation and manipulation statements are described in séction 4

The syntax of the language is described in BNF form. The non-termynabsls
are presented italics and the terminal symbols imold. A special symbot is used to
denote an empty terminal symbol or the end of a syntax recursion.

10

4.1 Object Definition

applicationdef =~ — application identifier{
includelst
vardeflst
link_stm
optionstm
proc.|st

}

subtaskdef — subtaskidentifier {
includelst
vardetlst
link_stm
optionstm
proc_lst

}

partmpdef — partmp identifier{
includelst
vardeflst
optionstm
proc_lst

There are four types of objects representing each layer of the layered approach
methodology. Three of them can be defined the PACE language. The user can define,
in each performance study, one application object and a number of subtaskraliel p
template objects.

The purpose of the application object is to provide an entry pointferperfor-
mance study, to include the interface that can be used in the run-tiresrszy the
user, and finally to combine the subtask objects of the performancewssirdycontrol
flow and execution procedures.

The subtask object represents a part of the application that has been padllelis
with a specific parallelisation method. The subtask includes the evatuzitthe serial
parts of the parallel task and the linking of these serial parts onto deddeahplate.

The subtask might link with more than one parallel templates in cases wWieeseb-
task needs to use different parallel algorithms for different hardwar®piag or when
an experimentation is required to determine the most efficient parallelthligoHow-
ever, during an evaluation of the performance study only one parallplaens used
per subtask.

The parallel template object describes the computation-communicatiompatter
a parallel algorithm. The parallel template might link with one or nmraedware plat-
forms. It includes statements to describe the computation communiqeitern and
to map this to the various communication topologies supported byatdware object.

The syntax of parallel template objects is similar to the other objectseffiions are
the absence of thiink statement and the existence of some additional statements in
exec procedures. THmk statement is not used because parallel template objects do
not modify the interface of any other type of objects. The additioréstents in the

11

execprocedures are used to represent the stages and steps of the parallel algodithm
the use of the hardware devices.

The PACE language does not support the definition of hardware objentsfithin
the language syntax. The hardware objects must be defined using thgr@émmnoing
language. The interface of the hardware object must be defined in ordes fpplica-
tion, subtask, and parallel templates objects to read and modify hardwaregparam

4.2 Object Header

includelst — includestm
or includelst includestm
or ¢
includestm — include identifier;
vardeflst — vardefstm
or vardetlst vardefstm
or ¢
vardefstm — var type: varlst;
var_|st — var_opt
or varlst, varopt
var_opt — assignmenstm
or identifier
type — numeric
or vector
or string
link_stm — link { link_body}
or ¢
link_body — link_opt
or link_body linkopt
link_opt — identifier: assignmentst
option.stm — option { optionbody}
optionbody — assignmentst
or optionbody assignmenst
procedurelst — proceduredef
or procedurelst proceduredef
or e
proceduredef — proc_cflow
or proc.exec

12

Theincludestatement is required to declare the use of other objects (for reading or
modifying their parameters). The PACE compiler reads the symbol fitaeobbject
used as parameter in tiecludecommand. The symbol file contains the type of the
object and the external variables of the object.

Thevardefstatements define the variables before their use. These parameters might
be interface variables accessed by other objects, global to the object by hjdobeb
objects, and locals to procedures. Mag statement declares the variables that will be
used.

Thelink statement allows an object to modify the interface parameters and options
of other objects. This is the method supported by PACE for intezatljommuni-
cation. The objects that their parameters will be modified should be defitiedhe
includestatement prior to think statement. The parameters that will be modified must
have been defined in thardefstatements of the objects.

There are a number of rules concerning the type of the objects that can b@ mani
ulated. The application object can modify subtask and hardware objectsjbtasis
object can modify template and hardware objects, and finally the parallel teniplat
not allowed to modify any objects.

Theoptionstatement allow the setting of the objects configuration. Each object de-
pending on each type have a number of pre-defined options such as thelusfdutire
platform, the setting of the debugging mode etc. These options casdenaldified
by other objects with thénk statement. The available options are:

hrduse A string value, valid in application or subtask objects. It controls ware
model selection anchustbe defined somewhere.

nstage A numeric option that can be set in parallel templates. It sets the number of
times the stage is repeated.

ptmuse A string option that can be used in subtask objects to select the parallel tem-
plate to be used.

There are two types of procedures supported:cflevand theexecprocedures.
The cflowprocedures represent the control flow of a piece of software. The compiler
evaluates theflowprocedures using a graph evaluation algorithm. The output of the
cflowprocedures is an expression that predicts the execution time of theasefthat
the cflowprocedure represents. Threcprocedure includes execution statements for
looping, branching, etc. which can be run in a similar fashion to a genarpbpe
language code. Execution procedures are included in the PACE language ®raabl
control flow evaluations to take place.

4.3 Control Flow Procedures

proc_cflow — proc cflow identifier argumentst { vardeflist cflowlst }
cflowIst — cflowstm

or cflowlst cflowstm

or e
cflow.stm — computestm

13

or loop.stm
or casestm
or call_stm
or {cflowlst}

computestm — computevector;
loop_stm — loop (vector, expressior) cflow.stm
call_stm — call call_typeopt identifier;
or call call_typeopt identifier(expressiorst) ;
call_type opt — cflow
or exec
or €
casestm — case (vector) { caselst }
caselst — caseopt
or caselst caseopt
caseopt — expression cflowlst
argumentist — argumentlst, argumentopt
or e
argumentopt — var identifierlst;

The compiler analyses the cflow procedures using a graph analysis algarithm
outputs the evaluation expression of the control flow graphs. Tbeedures return
the time required to execution the part of the application representeldebgontrol
flow description. The definition of the procedure includes an identliigris the name
of the procedure and an optional list of arguments that can be passed &arallgr.
Arguments are passed by value and can only be numbers.

An important aspect of the characterisation is the formation and use détueip-
tion of the system resources also known as resource models [10]. Theaeswodels
are coupled with information about the application tasks in terms ofuresausage
information, which are termed resource usage vectors. The resource raoslels-
bedded in the hardware object definitions and are invisible from the tk@arever,
the resource usage vectors are application specific and are defined by thethser in
control flow procedures. A resource usage vector is associated with each statexhent
represents the control flow of the application.

The cflow statements are:

computerepresents a processing part of the application. The argument of the state-
ment is a resource usage vector. This vector is evaluated through thetcurren
hardware object. The result of the evaluation is the execution timereebjfior
the processing stage.

loop includes two arguments. The first is an expression that defines the nafber
iterations, and the second is the resource usage vector that representspthe |

14

overhead per iteration. The main body of thep statement includes a list of the
control flow statements that will be repeated.

call is used to execute another procedure. This procedure might be either cgacor
procedure. The result returned from this procedure is added to thexetaiteon
time of the current control flow procedure.

case includes an argument which is the resource usage vector that representsrthe ov
head of this statement. The body of the statement includes a list of sigres
and corresponding control flow statements which might be evaluated. xfhe e
pressions represent the probability of the corresponding contvoltfide exe-

cuted.

4.4 Execution Procedures

proc_exec —

execlst —
or
or

execstm —
or
or
or
or

or
or
or
or
or
or
or
or
or
or
or
or

if_elseopt —
or

stepproc.Ist —
or
or
or

proc execidentifier argumentst { vardeflIst execlst }

execstm
execlst execstm
€

{ execlst }

assignmenstm;

if (condexpr) execstm if elseopt

while (condexpr) execstm

for (assignmenstm; condexpr; assignmenstm)
execstm

break ;

continue ;

print expressiorst ;

call call_typeopt identifier;

call call_typeopt identifier(expressiodst) ;
return ;

return expression

exit ;

dim identifier, expression

free identifier;

stepidentifier stepproc.Ist { execlst }
confdevexpressiorist ;

elseexecstm
€

on expression

on expression expression

on expression expression expression
€

The exec procedures include executed statements such as looping, braetthing,
In contrast to the control flow procedures the execution procedure stateanertrans-

15

lated directly to the corresponding statements in the target language. Bactroight
contain an exec procedutait that is the entry point of the object. This procedure is
called upon any reference to the object that includes it.

The PACE language supports tivhile statement for looping operations. It requires
an expression as an argument. This is the condition that as long asi# thé loop is
executed. Two related statements arelttemkand thecontinue These statements are
valid when executed inside a loop. Theeakstatement terminates the loop indepen-
dently of the condition of thevhile statement. Theontinuestatement causes the next
iteration of the enclosing loop to begin.

For conditional branching thi¢ elsestatement is supported, tkéseclause is op-
tional. There is also theall statement that is similar to the one used in the control flow
functions. However, only exec procedures are allowed to be called. Alsocagure
might be called implicitly while its name is used in an expressionhis tiype of call
bothcflowandexecprocedures can be used.

Thereturn statement determines the end of the execution of the current procedures
and thereturn of the execution of the procedure that has called the current executing
procedure. Ifreturnincludes an expression argument the results of the expression if
returned to the caller procedure. Thrit command terminates the execution of the
performance study and returns control to the PACE run-time system.

Thedim andfree statements provide dynamic vector allocation support. dihe
statement creates a data vector (not a resource usage vector). The first aliguhgent
name of the vector and the second the size of the vectorfrédstatement de-allocates
the vector. Additionally assignment apdnt statement are supported.

The stepand confdevstatements are applicable only in parallel template objects.
Each pattern might contain more than one stage and each stage more than one step
Each step corresponds to the use of one of the hardware resources dftéme.syhe
first argument in thastepcommand is the name of the device that will be used during
the step. The available devices of the current hardware platform are iisthe hard-
ware symbol file that is used with thecludestatement in the beginning of the object
definition. The devices that have been defined in this symbol file havypehrddev

The second argument of tiséepstatement is optional. It can be used to define the
set of processors affected by this step. It can have up to three numericassrpis,
the first being thefirst processor in the set, the second being the ¢tegtsgor, and the
third being the stride.The code body of thepstatement is to configure the device
specified in the current step.

A stepstatement must not include other embedsiegistatements. The configura-
tion of the device is performed with tleenfdewstatement. The arguments of this state-
ment is a list of expressions. The meaning of these arguments depehe device.

For example the devicgpuaccepts only one argument which is the execution time of
a processing stage. The devinpcom(inter-processor communication) accepts three
arguments the message size, the source, and the destination processasnfdav
statement in the case of tiippcomdevice can be used many times to describe a com-
plete communication pattern. Other hardware devices might include acceststage
device or communication between parallel systems across HiPPi networks etc.

4.5 Data Representation and Manipulation

assignmenstm — identifier= expression
or identifier= vectorconst
or identifier= string_const

16

expressiorst — expressioropt
or expressiorst, expressioropt

expressiormpt — expression
or string.cost
or e

expression — expression expression
or expression-expression
or expressiorf expression
or expressiort expression
or —expression
or +expression
or (expression
or variable
or identifier(expressiorst)
or identifier()
or number

condexpr — expression> expression
or expression>= expression
or expression< expression
or expression<= expression
or expression== expression
or expression = expression

variable — identifier
or identifier[expressior
or identifier. identifier

vector — vectorconst
or identifier

vectorconst — <isidentifier, expressiodst >
or <0>

string_const — " string_char”

The language supports three data types: numeric, one dimensionalsyectidr
strings. These can be represented either as constants or variables. Variagles mu
be declared before used, by tlar statement. The scope of the variable might be
externally visible to other objects, external in the object but hiddem fother objects,
and finally local to a procedure. The attributes of the variable is again detawith
thevar statement.

A vector can be of type data or resource usage. This attribute is defined as the
first parameter in the vector definition using tlkestatement. If the argument in the
is statement islatathe vector is handled as data, otherwise it is handled as a resource
usage vector. In this case the type of the resource usage is defined antifeerdhat
follows theis statement. Dynamically allocated data vectors are supported with the
dim andfree statements. The vector type cannot change during the variable’s life time.

17

PACE provides a dynamic approach for defining the type of vectors. ke u
has the ability to define additional vector types by specifying the tfpaevector
and the elements that can be included. This definition is done by an addlttoh the
vector definition toolihkrsug, that converts the user definition to a vector specification
file that is used by the PACE compiler during the compilation stageribiites of
a vector type are the number of elements of the vector. A vector can have either a
fixed or variable number of elements. Each element can be a number, a symbol, or a
combination of both. An example definition of tdatavectors in the tool follows:

(* Array numeric vector *)
def data {
args variable;
type numeric;

}

An example definition of a resource usage vector for floating point dpaestan
be defined as follows:

(* Floating point operation resource usage vector *)
def flop {
args variable;
type combination;
{ add, sub, mul, cmp, div, sqr, exp, sin, other }

}

The flop vector has a variable number of elements but its element might be an
expression that includes numeric values and/or symbols. The symtgotiefined as
the type of floating point operation (add, subtraction, etc.).

The expressions can only include numeric values. The expressioparstipe+,
—, X, + arithmetic operations, unary, the call of cflow, exec, or pre-define mathe-
matical procedure, the reference to any numeric variable.

A variable can be an identifier referring to a local to the object variable, an element
of a data vector, and an external to the object variable. In this case the segpe m
be defined first and then, separated with a dot, the name of the parameteremust b
identified. The string constants and variables can be only used for quifdses.

4.6 Miscellaneous

assignmentst — assignment
or assignmentst, assignment
or e

vector — identifier
or vectorconst

identifier, string_.charandnumberare defined in the lexical analyser.

18

5 Characterising a Sorting Kernel

An example of using the PACE language to develop a characterisatiorrrparfoe
model is shown below. The application under consideration is a sdeéingel based
on the Batcher’s bitonic sort. The kernel developed for a transputediRarsytec
SuperCluster. The are a number of phases for the execution of this:kernel

Data Load A number of data elements are stored on the hard disk of the host work-
station. Part of the data is loaded into the memory of each transputer.

Serial Sorting The data elements in the local memory of each processor are initially
sorted using a serial sorting algorithm, which in this case is quitkso

Merging The sorted data elements on each processor are merged with the bitonic al-
gorithm in order to create a overall sort list.

Data Store The sorted array is stored onto the hard disk of the host workstation

In this example, only the merging part of the sort is considered. A@ERrogram
consists of: an application objettemsortthat combines the serial sort with the merge
procedures; the serial subtask objgebrt (that is not presented here); the subtask
objectmergethat uses the bitonic parallelisation strategy; and the parallel template
objectbitonic. The example illustrates the use and interfaces between objects of all
types. Itis not intended to provide the results of a performance stk source code
of the application object is described first.

5.1 Application Object

1 (*
2 * memsort.la - Parallel memory sorting
3 %)

4 application memsort {

5 include gsort; (x Qsort subtask *)

6 include merge; (* Merge subtask *)

7 include hardware; (* Hardware parameters *)

8 include parsytec; (* Parsytec hardware model *)
9 (* Interface and global variables *)

10 var numeric:

11 Nelem = 262144, (x # of elements %)
12 Nsize = 4, (¥ size of element *)
13 Nproc = 16; (* # of procs *)

14 (* Linking to other objects *)

15 link {

16 hardware:

17 Nproc = Nproc;

18 gsort:

19 Nelem = Nelem / Nproc,

19

20 ModelCh = 2;

21 merge:

22 Nelem = Nelem,

23 Nsize = Nsize;

24 }

25 (* Options *)

26 option {

27 hrduse = "parsytec";
28 }

29 (* Entry point procedure *)
30 proc exec init {

31 call gsort;

32 call merge;

33 }

34 }

The application objeciiemsort, begins with its name definition in line 4, followed
by the object header (lines 5-28), and finally the main body (lines 29-34)

Initially the objects used are defined in lines 5-8 with ihelude statement (the
memsort object uses the subtask objegtort andmerge and the generic hardware
object).

The definition of the parameters that can be modified by the user throeigADE
run time system follows in lines 9-13. These are the number of elerteehtssorted
(Nelem), the size of each elements in byt@s{ze), and the number of processors
(Nproc). The modification of parameters in the other objects being used is specified
in lines 14—24 (using thénk statement). Initially (lines 16—17) the hardware object
parametelNproc is set to the number of processors. It should be noted that the pa-
rameterNproc has the same name in both the application and the hardware objects.
However, there is no scope conflict since the parameter on the left of tigaasnt
belongs to the hardware object and the parameter on the right belongsdppglica-
tion object. Similarly the parameters are set for the gsort and the matpesk objects
(lines 18-23).

Only one option is set in this example, theduseoption specifies that this appli-
cation must use the object calledrsytec to provide the hardware characterisation
(lines 25-28).

The last part of the object is thevit execution procedure. This is the entry point
of the object (and the performance study as a whole). In this case, it calisdlrt
andmerge objects.

5.2 Subtask Object fierge)

1 (*
2 * merge.la - Parallel merge (bitonic) sort
3 %)

4 subtask merge {

5 include bitonic; (* Bitonic parallel template *)

20

6 include hardware; (* Generic hardware object *)

7 (* Interface *)

8 var numeric:

9 Nelem = 4096, (* Elements to be sorted *)
10 Nsize = 4, (* Size (bytes) of each element *)
11 dtpp, (* Data per processor *)

12 Pmrg; (* Prob. to exit merge loop *)
13 (* Linking to other objects *)

14 link {

15 bitonic:

16 Ndata = dtpp,

17 Clen = Nsize,

18 Tx = Txsort();

19 b

20 (* Options *)

21 option {

22 ptmuse = "bitonic";

23 }

24 (* Entry point procedure *)

25 proc exec init {

26 var numeric: Pmrg0 = 0.639, Pmrgl = 0.793;
27 dtpp = Nelem / hardware.Nproc;

28 (* Linear regression model for merge prob. *)
29 Pmrg = Pmrg0 + Pmrgl / hardware.Nproc;

30 }

31 (* Main seg for merge function *)

32 proc cflow Txsort {

33 var vector:

34 start = <is clc, 3*IASG>,

35 merge = <is icc, 169, 20>,

36 tlcp = <is ct, 6.03>,

37 otcp = <is clc, FOR, IASG, ICMP, 2*IADD,
38 4xVIDX, 2*FASG>;

39 compute start;

40 loop (<0>, 2*dtpp*Pmrg)

41 compute merge;

42 loop (<0>, 2*dtpp*(1-Pmrg))

43 compute tlcp;

44 loop (<0>, dtpp)

45 compute otcp;

46 }

47 }

21

The source code of theerge object begins with the subtask name definition (line
4) and continues with the object header (lines 5-23), and the procethuesand
Txsort (lines 24—-46). The execution time for the merging is calculated by theao
flow procedurexsort.

Initially the use of thebitonic parallel template object and the generic hardware
object (lines 5-6) are declared. The interface parameters are defined in lines 7-12
These are: the number of elements to be sorted dm), the size of each element
(Nsize), and the probabilitiy for the merge software execution graph inTokeort
procedureEmrg0). The parameters for the objetistonic andseq are set in lines
13-19. For the bitonic object the number of elemenda€a), the size of each element
(Clen), and the execution time required for each memgyg ére set.

Theinit procedure (lines 24-30) calculates the parameltepp (data elements
per processor) arithrg (the probability for the merge loop to be finished in Th&ort
control flow graph). The control flow procedufesort (lines 31-46) evaluates the
graph shown in figure 7. The resource usage of the graph nodes is defilieesi
34-38. These are vectors and include different types of resource usageation.
The parameterstart andotcp are high level language resource usage vectors, the
parameterclcp is execution time, and the parameterrge is an instruction level
resource usage vector. The control flow graph is described in lines 39+hésEom-
putestatement accepts one argument which is a resource usage vector widlepthe
statements first argument is a resource usage vector representing theddogeaa per
iteration, and the second argument defines the number of repetitions.chsal the
loop overhead has been considered zero.

start
2*dtpp*Pmrg

merge
2*dtpp*(1-Pmrg)
ticp

dtpp

Jrefbof-oL

copy

Figure 7: Control Flow Graph for Merge

5.3 Parallel Template pitonic)
1 (*

22

2 * bitonic.la: Bitonic parallel template
3 %)

4 partmp bitonic {

5 include hardware; (* Parsytec object hardware *)
6 include Eval; (* Chips system parameters *)
7 (* Interface *)

8 var mpruv:

9 Tx = 0; (* Execution time *)
10 var numeric:

11 Ndata = 1024, (* Number of data *)
12 Clen = 4, (x Size of elements *)
13 dtpp, (* Data per processor *)
14 Comseq; (* Value of GetDest x)
15 (* Options *)

16 option {

17 nstage = Log(2, hardware.Nproc), seval
18 X

19 proc exec GetDest

20 var phase, src;

21 {

22 var numeric: group, dist, dest;

23 group = Power(2, Eval.nstage + 1);

24 dist = Power(2, phase - 1);

25 if(Mod(src, dist * 2) < dist)

26 dest = src + dist;

27 else

28 dest = src - dist;

29 if (Mod(src, group) >= group / 2) {

30 if (dest < src)

31 Comseq = 0;

32 else

33 Comseq = 1;

34 } else {

35 if (dest < src)

36 Comseq = 1;

37 else

38 Comseq = 0;

39 }

40 return dest;

41 }

42 (* Evaluation of each stage *)

23

43 proc exec EvalStage {

44 var numeric:

45 phase, ptrg, psrc;

46 phase = Eval.nstage;

47

48 while (phase > 0) {

49 step inpcom {

50 psrc = 0;

51 while (psrc < hardware.Nproc) {
52 ptrg = GetDest(phase, psrc);
53 if (Comseq == 0)

54 confdev psrc+l, ptrg+l, dtpp;
55 psrc = psrc + 1;

56 X

57 X

58 (* And then processing time *)

59 step cpu {

60 confdev Tx;

61 X

62 step inpcom {

63 psrc = 0;

64 while (psrc < hardware.Nproc) {
65 ptrg = GetDest(phase, psrc);
66 if (Comseq == 1)

67 confdev psrc+l, ptrg+l, dtpp;
68 psrc = psrc + 1;

69 }

70 }

71 phase = phase - 1;

72 }

73 }

74 (* Entry point *)

75 proc exec init {

76 dtpp = Round(Clen * Ndata);

77 (* Evaluation of stage *)

78 call EvalStage;

79 }

80 }

The name of the parallel template objedtonic is defined in line 4. The header
of the object (lines 5-18) contains the definition of other objects whiehused, the
declaration of the interface parameters, and the setting of the optiohe objects.
The parallel template uses the generic hardware object and the special pbjErte
Eval that includes parameters related to the status of the PACE run-time évaluat
system. The only option set is the the number of stages of the pargieitam

24

The execution proceduGetDest (lines 19-41) determine the source and target
processors for a specific stage and phase of the algorithm. The prodedaited
by EvalStage before defining each communication configuration. The procedures
accepts two arguments, the current phase and the source processor andstthetur
destination processor.

The execution procedufigvalStage is defined in lines 42—73. It describes the
computation-communication pattern of thétonic template for each stage of the
parallel algorithm. The algorithm has a number of communication and ciatiqu
steps in each stage. The communication steps are described in lines 49-57and 62
70. Thewhile loop determines the number of communication steps (which depends
on the current stage of the algorithm). The parameters of each communistgjon
are calculated in thevhile loop, and set in lines 54 and 67 with thenfdewstatement.

The first argument of this statement is the size of the communicatiersebond is
the source processor, and the third is the destination processonend8-61 the
computation step is defined. Thenfdevstatement in line 60 determines the time
required for this computation phase.

The procedurenit is executed for each stage (lines 74—79). It determines the
number of data strored in the local memory of each processor and calls thei@xecut
proceduré&valStage.

6 Summary and Future Extensions

A performance language and a run-time environment have been presentea tioat d
require a user to have expertise in the relevant performance evaluaibiodologies.
The user, with the performance language, can describe the software aratdhelip
sation strategies in a way that is both intuitive and more impostaath be used in the
performance study.

A number of future extensions will be incorporated into future iegrs of the PACE
language. These include:

Bottleneck Analysis The operations and use of hardware resources can be analysed
by ranking them in order of time costs. By doing this, the predontinksses
of operations can be identified as bottlenecks in the overall performance of th
system. Such an analysis can be incorporated as a future extension tde PA
toolset. This is being investigated within the PEPS project [3].

Overlapping Computation-Communication One of the features of modern parallel
systems is the ability to overlap the computation and the communicstages
of an algorithm. This is a feature that is not currently supported b@EAnd
requires extensions in the syntax of the parallel template and extertsidhe
hardware models to support asynchronous communication.

Multi-threaded Processing The parallel template currently assumes that all proces-
sors perform the same computation [1, 5]. However there are severa<iafss
algorithms that require the use of different computations assigngwbtgs of
processors. This feature will be supported extending the PACE éyegand the
evaluation engine to allow the creation of trees of computation-commigricat
patterns and use of barriers to synchronise them.

25

Language Syntax Extensions for Different TopologieOne of the issues that effect
the re-usability of the parallel template objects is the mapping of thenoo
nication pattern onto the network topology. This currently can be aetliby
the explicit use of different user procedures to handle communicatioerpat
for different inter-connection network topologies. A support o$ ieature from
within the syntax of the language will enforce the re-usability & grarallel
template objects.

Library of Generics Warwick’s characterisation work includes the examination of a
range of application areas in order to identify the computational coret@ised
generics) which are common across several applications [2]. Ten generics have
been selected, including curve fitting, fast fourier transform, matrikiptica-
tion, etc., and have been further characterised [4]. A model library of generics
will be developed for the PACE language, which can be used as subtask compo-
nents in future application studies.

The PACE language, by providing characterisation model reusabilityysib@sy
experimentation, supports different levels of accuracy of predictamsdifferent lev-
els of model abstraction to assist the system developer, the applicatigrapimer,
and the performance expert. It can be used to perform a wide range ofrparfoe
studies. The main concept of PACE is the development of a performaridetdioe
“rest of us” that will allow the users to perform performance studies.

References

[1] E. F. Gehringer, D. P. Siewiorek, and Z. Segdtarallel Processing: The Cm*
Experience Digital Press, 1988.

[2] Parallel Systems Group. Characterisation of processing needs. FiratR&pl,
ESPRIT 6962 — Performance Evaluation of Parallel Systems (PEPS), 1993

[3] Parallel Systems Group. Analysis of bottlenecks. Interim Repord JIESPRIT
6962 — Performance Evaluation of Parallel Systems (PEPS), 1994.

[4] Parallel Systems Group. Parallelisation of generics. Interim Refn&,[ESPRIT
6962 — Performance Evaluation of Parallel Systems (PEPS), 1994.

[5] L. H. Jamieson, D. Gannon, and R. J. (Eds.) Dougl@baracterizing Parallel
Algorithms MIT Press, 1987.

[6] B. P. Miller, M. Clark, J. Hollingsworth, S. Kierstead, S. Sniiand T. Torewski.
IPS-2: The second generation of parallel program measurement syHER.
Trans. Parallel and Distributed Systenmig2):206—217, 1990.

[7] G. R. Nudd, E. P. Papaefstathiou, Y. Papay, T. J. Atherton, C. atk€] D. J.
Kerbyson, A. F. Stratton, R. F. Ziani, J., and Zemerly. A layered appraattiet
characterisation of parallel systems for performance predictiorRrdn. of the
Performance Evaluation of Parallel Systems Workshop (PEPS 28)es 26—34,
Coventry, U.K., November 1993.

[8] E. P. Papaefstathiou. Characterising parallel systems focusing igatwskity.
PEPS Bulletin, No. 2, November 1993.

26

[9] E. P. Papaefstathiou, D. J. Kerbyson, and G. R. Nudd. A layered apptoach
parallel software performance prediction: A case studyPioc. International
Conference Massively Parallel Processiglft, Holland, June 1994.

[10] E. P. Papaefstathiou, D. J. Kerbyson, G. R. Nudd, and T. J. Athei©ompar-
isons of resource models within a parallel system characterisation frantkewo
submitted to Parallel Computind.994.

[11] M. Parashar, S. Hariri, and G. C. Fox. An interpretive frameworkapplication
performance prediction. Technical Report SCCS-479, Syracuse UniyelSity
1993.

[12] D. Pease et al. PAWS: A performance evaluation tool for parallel canmgput
systemslEEE Computerpages 18-29, January 1991.

[13] D. A. Reed, R. Aydt, T. M. Madhyastha, R. J. Nose, K. A. Shields, Bnt\V.
Schwartz. An overview of PABLO performance analysis environment. Technical
report, University of lllinois, USA, 1992.

[14] M. J. Zemerly, J. Papay, and G. R. Nudd. Characterisation based legttlanal-
ysis of parallel systems. IRroc. of Workshop on Performance Evaluation and
Benchmarking of Parallel Systentoventry, U.K., December 1994.

27

A YACC Grammar

hi
/*
* Project : CHIPS Compiler
* File : chips.y
* Purpose : Compiler Parser Specification

* $Id: chips.y.tex,v 1.1 1997/12/01 17:02:56 john Exp $
*/

ht
%union {
char*x string; /* String token value */
float number; /% Number token value */
}

%token APPLICATION SUBTASK PARTMP INCLUDE VAR LINK OPTION PROC
%token CFLOW COMPUTE LOOP CALL CASE

%token EXEC IF ELSE WHILE FOR BREAK CONTINUE PRINT

%token RETURN EXIT DIM FREE STEP CONFDEV

%token NUMERIC VECTOR STRING MPRUV IS

%token GTE LSE EQL NEQ

%token ON

%token <string> IDENTIFIER STRCONST

%token <number> NUMBER

%nonassoc LOWER_THAN_ELSE
%nonassoc ELSE

Yleft EQL NEQ

%left ’<’ >’ GTE LSE
%left Y4 I

%1eft)% ;/;
%nonassoc UMINUS UPLUS
%nonassoc EXPLST

ot
/*
* Program definition
*/
program: sbt_obj
| apl_obj
| ptm_obj
/*
* Object definition
*/
apl_obj: apl_hd obj_body

28

sbt_obj: subtask_hd obj_body
ptm_obj: partmp_hd obj_body

obj_body: ’{? include_sec vardef_stm link_stm
option_stm procedure_lst ’}’

subtask_hd: SUBTASK IDENTIFIER
apl_hd: APPLICATION IDENTIFIER
partmp_hd: PARTMP IDENTIFIER

/*

* Object Header

*/

/* Include statement */

include_sec: include_1lst

’

include_lst: /* Empty */
| include_lst include_stm

b

include_stm: INCLUDE IDENTIFIER ’;’
| INCLUDE error ’;’

b

/* Link statement */
link_stm: /* Empty */
| link_hd link_body ’}’

b

link_hd: LINK ’{’

link_body: link_opt
| link_body link_opt
link_opt: link_hd assignment_1lst ’;’
| link_hd error ’;’

b

29

link_hd: IDENTIFIER ’:°
| error ’:’

’

/* Option statement */
option_stm: /* Empty */
| option_hd assignment_lst opt_semi ’}’

’

option_hd: OPTION ’{’

b

/* A do-nothing optional semi-colon for option stmts */
opt_semi: /* Empty */
I &

b

)

/*
* Procedure definitions
*/
procedure_lst: /* Empty */
| procedure_lst proc_cflow
| procedure_lst proc_exec

’

/*
* Execution Procedures
*/
proc_exec: exec_hd argument_lst ’{’ vardef_stm exec_lst ’}’
exec_hd: PROC EXEC IDENTIFIER
exec_lst: /* Empty */
| exec_lst exec_stm
exec_stm: assignment_stm

| return_hd ’;’

| return_hd expression ’;’
| call_stm

| EXIT ’;°

| dim_stm

| FREE IDENTIFIER ’;°

| print_stm

| while_stm

| for_stm

| CONTINUE ’;°?

30

BREAK ’;?
if_stm
step_stm
confdev_stm
error ’;°’
error ’}’

/* Assignment Statement */

assignment_stm:

b

assignment_opt:

>
string_assign:

>
numassign:

>
numassign_hd:

’

vctassign_hd:

b

vctassignel_hd:

b

vctasgel_hd:

’

assignment_lst:

’

assignment_opt ’;’

string_assign

numassign

vctassign_hd vector_const
vctassignel_hd expression

IDENTIFIER ’=’ STRCONST

numassign_hd expression

IDENTIFIER ’=’

IDENTIFIER ’=’

vctasgel_hd expression ’]’ ’=’

IDENTIFIER ’ [’

assignment_opt
assignment_lst ’,’ assignment_opt
error ’,’ assignment_opt

/% Dim statement */

dim_stm:

dim_hd:

dim_hd expression ’;’

DIM IDENTIFIER ’,°

/* Print statement */

31

print_stm: print_hd print_1st ’;’

b

print_hd: PRINT

’

print_lst: /* NULL */
| print_1lst ’,’ expression
| print_1st ’,’ STRCONST
I STRCONST
| expression

b

/* While statement */

while_stm: while_hd while_cnd exec_compound
while_hd: WHILE °(°

>
while_cnd: expr_cnd ’)’

b

/* For statement */
for_stm: for_hd ’(’ for_pre ’;’ for_cnd ’;’
for_post ’)’ exec_compound

for_hd: FOR

for_pre: numassign
for_cnd:‘ expr_cnd
for_post: numassign

b

/* Conditional statement */
if_stm: if_hd ’(’ if_cnd ’)’ exec_compound
%prec LOWER_THAN_ELSE
| if_hd ’(’ if_cnd ’)’ exec_compound
if_else exec_compound

if_hd: IF

32

if_cnd: expr_cnd

if_else: ELSE

/* Parallel template statements */

step_stmf step_hd step_mid exec_lst ’}’
step_hd: STEP IDENTIFIER
>
step_mid: step_mid_hd expression_lst ’{’
I {
step_mid_hd: ON
>
confdev_stm: confdev_hd cdev_arg_lst ’;’
>

confdev_hd: CONFDEV

’

cdev_arg_lst: expression Y%prec EXPLST
| cdev_arg_lst ’,’ expression %prec EXPLST

b

/* Other exec definitions */

return_hd: RETURN
>
exec_compound: ’{’ exec_lst ’}’
| exec_stm
/*
* Control Flow Procedures
*/
proc_cflow: cflow_hd argument_lst ’{’ vardef_stm

cflow_1lst ’}’

cflow_hd: PROC CFLOW IDENTIFIER

’

cflow_lst: /* Empty */
| cflow_1lst cflow_stm

33

cflow_stm: compute_stm

| call_stm
| loop_stm
| case_hd ’(’ case_cost ’)’ ’{’ case_lst ’}’
| error ’;’
| error ’}’
loop_stm: loop_hd ’(’ loop_cost loop_cnt ’)’ cflow_compound
>
loop_hd: LOOP
loop_cost: vector ’,’
>
loop_cnt: expression
compute_stm: compute_hd vector ’;’
>
compute_hd: COMPUTE
call_stm: callproc_hd ’;’

| callproc_hd ’(’ expression_lst ’)’ 73’

’

callproc_hd: CALL CFLOW IDENTIFIER
I CALL EXEC IDENTIFIER
I CALL SUBTASK IDENTIFIER
I CALL IDENTIFIER

’

case_hd: CASE
H
case_cost: vector
H
case_lst: case_opt

| case_lst case_opt

’

case_opt: case_pro cflow_1lst

b

34

case_pro: expression ’:’

b

cflow_compound: ’{’ cflow_lst ’}’
| cflow_stm

b

/*
* Variable and Argument Definition
*/
argument_lst: VAR identifier_1st ’;’
I

| VAR error ’;’

’

vardef_lst: /* Empty */
| vardef_lst vardef_opt

b

vardef_opt: VAR vartype ’:’ var_lst ’;’
;
vardef_stm: vardef_lst
var_lst: var_opt
| var_lst ’,’ var_opt
| error ’,’ var_opt
;
var_opt: IDENTIFIER

| assignment_opt

/*
* Data Presentation & Manipulation
*/
vartype: NUMERIC
| VECTOR
I STRING
| MPRUV

’

expression_lst: expression jprec EXPLST

| expression_lst ’,’ expression Jprec EXPLST
H
expression: expression ’+’ expression
expression ’-’ expression

35

expression ’*’ expression
expression ’/’ expression

’-? expression }prec UMINUS
>+’ expression Y%prec UPLUS
>(’ expression)’

variable

expproc_hd expression_lst ’)°
expproc_hd ’)’

NUMBER

/* Conditional expression */
expr_cnd: expression cnd_op expression

’

cnd_op: ’>?
rL)
GTE
LSE
EQL
NEQ

variable: IDENTIFIER
| vctidx_hd expression ’]’
| IDENTIFIER ’.’ IDENTIFIER

’

vctidx_hd: IDENTIFIER [’
expproc_hd: IDENTIFIER ’ (°
vector: vector_const
| IDENTIFIER
vector_const: vector_hd const_1lst ’>’
| ’<? NUMBER ’>?
vector_hd: ’<? IS IDENTIFIER ’,’

b

/% List of constants / RSUS id’s */
const_1lst: const
| const_lst ’,’ const

b

36

const: NUMBER
| const_id_mult IDENTIFIER

const_id_mult: /* Empty */

| NUMBER %’

3

/%

* Miscellaneous Definitions
*/

identifier_1lst: IDENTIFIER
| identifier_1st ’,’ IDENTIFIER
| error ’,’ IDENTIFIER

’

hh

37

B Lexical Analyser

hi
/*
* Project : CHIPS Compiler
* File : chips.1
* Purpose : Compiler Lexical Analyser

* $Id: chips.l.tex,v 1.1 1997/12/01 17:02:53 john Exp $
*/

h}

%x COMMENT STRST

id [A-Za-z] [A-Za-z0-9‘] *

number ([0-9]1+| ([0-9]1*\. [0-9]+) ([eE] [-+]17[0-9]+)7)
ws [\t]l+

nl \n

%o

(k" BEGIN COMMENT;

<COMMENT>. 5

<COMMENT>\n ;

<COMMENT>"*)" BEGIN INITIAL;

\" BEGIN STRST;

<STRST>[~\"1* {
yylval.string = strdup(yytext);
return STRCONST;

}
<STRST>\" BEGIN INITIAL;
application { return APPLICATION; }
subtask { return SUBTASK; }
partmp { return PARTMP; }
include { return INCLUDE; }
var { return VAR; }
link { return LINK; }
option { return OPTION; }
forward { return FORWARD; }
proc { return PROC; }
cflow { return CFLOW; }
compute { return COMPUTE; }
loop { return LOOP; }
call { return CALL; }
case { return CASE; }
exec { return EXEC; }
if { return IF; }
else { return ELSE; }

38

while
for
break
continue
print
return
exit
dim
free
step
confdev
numeric
vector
string
mpruv
is

ll>=ll

{number}

{ws}

{id}

{nl}

hh

B N e T T N I e N e e e e N e e

-~

return WHILE; }
return FOR; }
return BREAK; }
return CONTINUE; }
return PRINT; }
return RETURN; }
return EXIT; }
return DIM; }
return FREE; }
return STEP; }
return CONFDEV; }
return NUMERIC; }
return VECTOR; }
return STRING; }
return MPRUV; }
return IS; }
return GTE; }
return LSE; }
return EQL; }
return NEQ; }
return ON; }

yylval.number = atof (yytext);
return NUMBER;

yylval.string = strdup(yytext);

return IDENTIFIER;

return yytext[0]; }

39

