
http://wrap.warwick.ac.uk/

Original citation:
Papaefstathiou, E., Kerbyson, D. J., Nudd, G. R., Atherton, T. J. and Harper, J. S. (1997)
An introduction to the layered characterisation for high performance systems. University
of Warwick. Department of Computer Science. (Department of Computer Science
Research Report). (Unpublished) CS-RR-335

Permanent WRAP url:
http://wrap.warwick.ac.uk/61021

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/29189434?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/61021
mailto:publications@warwick.ac.uk

An Introduction to the Layered Characterisation
for High Performance Systems�

E. Papaefstathiou D.J. Kerbyson G.R. Nudd
T.J. Atherton J.S. Harper

December 3, 1997

Abstract

A toolset for performance analysis of parallel systems, PACE, is presented in
this report. In this toolset expert knowledge about the performance evaluation tech-
niques is not required as a prerequisite for the user. Instead a declarative approach
to the performance study is taken by describing the application in a way that is both
intuitive to the user, but can also be used to obtain performance results. The under-
lying performance related characterisation models and their evaluation processes
are hidden from the user. This document describes the special purpose language,
and the evaluation system, that form the core of the PACE toolset. Amongst the
aims of the toolset is the support of characterisation modelreusability, ease of
experimentation, provide different levels of prediction accuracy, and support of
different levels of characterisation model abstraction.

1 Introduction

Performance evaluation is an active area of interest especially within the parallel sys-
tems community. A large number of performance tools have been developed to assist
the system developer, the application programmer, and the tuning expert to select the
most efficient combination of hardware and parallelisation strategy [6, 11, 12, 13].
However, the use of performance tools typically require an advance knowledge of per-
formance related issues, which is usually not commonly understood. Thepurpose of
the characterisation work at Warwick is the development of prediction, and analysis
of, methodologies and tools that will allow non performance specialiststo undertake
performance studies. PACE is a set of tools aimed to assist the users to undertake
performance studies. In this document a special purpose language and an evaluation
system is presented that form the core of the PACE performance toolset.

The notion of performance tools for the“rest of us” is the central driving force
behind Warwick’s characterisation work. In order to achieve this goal, theuser of the
performance methodology must focus his/her effort on the aspects of theperformance
study that does not require performance related speciality. The user of performance
tools usually knows the application but does not have any knowledge of the perfor-
mance methodologies. The characterisation toolset presented here requires the user
to describe the application that is under investigation in a way that is both intuitive�Version 1.70

1

to the user but can also be used in the performance study. The performance related
characterisations and their evaluation process, are hidden from the user.

The characterisation methodology provides the following features:

Characterisation Model Reusability Allows the definition of the control flow of the
application and the computation/communication pattern in a hardware indepen-
dent way.

Easy Experimentation Allows easy experimentation with different hardware plat-
forms and parallelisation strategies.

Different Levels of Prediction Accuracy Supports different levels of characterisation
from high level parametric characterisation (e.g. measuring floating pointoper-
ations), providing moderate accuracy, to low level instruction level characterisa-
tion, providing high accuracy of predictions.

Different Levels of Model Abstraction Can be used in different stages of software
development cycle and different type of software development projects (e.g. the
porting of serial code or developing parallel software from scratch).

The PACE toolset is based on a characterisation framework [7, 8, 9, 14]. This
framework is a layered approach that separates out the hardware and software systems
through the use of a parallelisation template, figure 1. This modular approach leads to
readily re-usable models which can be interchanged in experimentation. For instance
the performance predictions across parallelisation techniques can be compared for a
particular application on a particular hardware. The layers used are detailed below:� an application layer, which describes the application in terms of a sequence of

sub-tasks using control flow graphs. Each node of the graph can be a sequential
processing node, a user defined parallel sub-task, or a parallel processing generic
(from a library).� an application sub-task layer, which describes the sequential part of every sub-
task within an application that can be executed in parallel. The result of the
evaluation of these models is fed to the parallel template layer.� a parallel template layer, that describes the computation-communication pattern
and other hardware resource usage.� a hardware layer, which is responsible for characterising the communication and
computation abilities of the system.

The PACE toolset contains a number of separate programs integrated undera com-
mon graphical user interface. The organisation of these components is shown in fig-
ure 2. The main components of this toolset are:� A set of special purpose language scripts suitable for the description of perfor-

mance aspects of parallel systems.� A run-time system that contains an evaluation engine.� A compiler that translates the scripts into object code.� A set of interface tools which allow the extraction of control flow/resource infor-
mation from application source code.

2

Application Layer

Sub-Task Layer

Parallelisation Templates

Hardware Layer

Application Domain

Figure 1: The Layered Characterisation Framework� A further set of graphical interface tools that allow the user to define aspectsof
the performance study and visualise the outputs.

The PACE run-time system is responsible to perform basic maintenanceoperations
such as the loading of PACE compiler output, the evaluation of models,and the storage
of the results. The run-time system also includes the evaluation engine that is used to
combine and evaluate the models of the performance study. The user willbe able to ex-
amine the results through a visualisation module and experiment with the performance
parameters. A number of pre-defined performance analysis studies will be provided
such as scalability and bottleneck analysis.

An automated procedure is provided to extract from the user’s applicationthe con-
trol flow and resource requirements from the user’s application. Additionally the re-
source usage of each node of the control flow graphs is identified in terms of a high
level language, or instruction level operations. The resource usage information is com-
bined with the control flow information and converted to PACE language scripts.

The user will be able to edit his/her own PACE language scripts and use agraphical
interface to design the computation/communication pattern of the parallelalgorithm
used, and the control flow of an application that has not yet been developed. After the
development of PACE scripts have been concluded for a performance study the PACE
compiler will translate the scripts to object code.

The scope of this document is to present the PACE language, the run-time system,
and the evaluation engine.

In the next section the main entities (objects) of the PACE language are introduced.
There are four types of PACE objects (related to the layered framework): the applica-
tion, the subtask, the parallel template, and the hardware objects. The main features
and the rules govern their interfacing are also explained. In Section 3 the functions of
the PACE compiler and run-time system are described. In Section 4 a detailedlanguage

3

Resource
Analysis

Control Flow
Extraction

Text Editor GUI
Parametric

Visualisation
...

Application
Source Code

USER

CHIPS Language Scripts

CHIPS
Compiler

Evaluation
Engine

Run-Time System

Scope of Document

Workbench

Figure 2: PACE Tool Organisation

description is presented. The language is presented in BNF format and the semantics
of it’s constructs are explained. In Section 5 an example is given for predicting the
performance of a parallel sorting kernel. Finally in Section 6 a summary anda number
of extensions that will be included in future versions of the language are described.

2 Objects and Object Interfacing

A program written in the PACE language includes a number of objects. Each object is
one of the following types: application, subtask, parallel template, andhardware. These
are used to describe the performance aspects of the respective system components. An
object is comprised of:

Internal Structure The internal structure is defined by the programmer and is hidden
from the other objects. This structure contains various types of procedures that
describe the control flow of the application, the form of any regression models,
and computation-communication structures.

Options The objects, depending on their type, have a number of pre-defined options
that determine the default behaviour of the object. The default values of these
options can be set in the object, and can be modified by other objects. For ex-
ample an option might include the default hardware or parallelisation strategy
(parallel template) that will be called by a subtask.

Interface Objects include an interface that can be used by other objects to modify
their behaviour. This interface is explicitly defined by the programmer. The
interface includes the external variables that can be modified outside of theobject
scope. The interface might include data dependent, hardware dependent, and
other variable types.

4

Template

Subtask

Hardware

Template

Subtask

Application

Hardware

Template

Application

Hardware

Subtask

Application

User User User

Application
Object Interface

Subtask
Object Interface

Template
Object Interface

Write

Read

Interface
Operations

w

w

r/w

r/w r

w

r/w

r

w

r

r

Figure 3: Object Interfacing

Objects of a certain type can only read from, and write to, certain other object types
as shown in figure 3. An object can read an external variable of other objects only if
it is in a lower level of the layered approach hierarchy. Further rules that govern this
relationship are described below:

Application Type Object A PACE program includes only one object of the applica-
tion type. This is the object that is called automatically from the run-time system
of the PACE run-time system (i.e. the entry point of a PACE program). The
external interface of the application object can be used by the user, throughthe
PACE run-time system, to manipulate parameters of the performance study (e.g.
change the size of the problem). The application object can modify the external
variables of subtask and hardware objects and also use entire subtask objects.
For example, a parallel sort application object can use constituent quicksort and
bitonic sort subtask objects but only modify the processor configuration of the
underlying hardware platform, without directly calling it.

Subtask Type Object A PACE program might include many subtasks. The interface
of a subtask object can be modified by the application object. A subtask can
modify the external variables and use template objects. For example the bitonic
sort is an object of the subtask type that can be used by the application object, it
can modify the external variables and use the bitonic parallel template object.

Parallel Template Type Object A program might include many parallel template ob-
jects. Their interface can be manipulated by subtask objects. The parallel tem-
plate can not modify the interface of any other object type. The parallel template
object describes the computation-communication patterns and the use of other
hardware resources.

The definition of hardware objects is not supported directly by the PACE language.
The hardware objects must be developed using other analytical or simulation tools.
The characteristics and the parameters of a hardware object must be defined in a hard-
ware symbol file. This file is included into the user-defined objects that use hardware
parameters.

5

The PACE environment provides some special purpose objects that have extended
semantic features. These include a template with the nameseq (or sometimesasync)
that covers the case of the execution of a subtask on a single CPU. Also anobject
calledhardware will contain a common interface to all hardware platform parameters
(e.g. number of processors). This will allow the reference to the hardware objects
independently of the type of the parallel system in use. Finally a special case is the
objectEval, which contains parameters related to the status of the PACE run-time
system and evaluation engine. An object can query the status of PACE by examining
theEval object.

For each object type a detailed description is given in the following paragraphs:

2.1 Application Object

A PACE program contains one application object. The object acts as the entry point of
the performance study, and includes an interface that can be used by the user through
the PACE run-time system to modify parameters of the performance study (e.g. data
dependent parameters, hardware platforms to be used). Additionally the application
object combines the subtask objects using either control flow graphs or execution pro-
cedures. An application object includes the following parts (figure 4):

Include Statements Declares the subtask, parallel template, and hardware objects that
will be used by the application object.

External Variable Definitions Defines the external variables that will be the interface
between the application object and the user through the PACE run-time system.

Link Statements The purpose of the link statement is to modify external variables and
options of the subtask objects and the hardware objects being used.

Options Sets the default options of the application object. These options can be also
modified by the user through the PACE run-time system.

Procedures The procedures describe the relationships of the subtasks in order to pre-
dict the performance of any serial parts of the application. This relationship can
either be described as control flow graphs (cflow) or execution statements (exec).
Control flow graphs are defined in terms of graph components, where as execu-
tion statements are more flexible allowing complex relationships to be expressed.
The application object must include an execution procedure namedinit. This
procedure is the entry point to the program.

2.2 Subtask Objects

The subtask objects represent parts of an application that are parallelised on ahardware
platform using a specific parallelisation strategy. The subtask objectsin an application
are combined by the single application object.

A subtask object includes the evaluation of the sequential parts of the parallel pro-
gram. It also includes the mapping of these sequential parts of the application onto the
computation-communication pattern described in the parallel template object.

A subtask object can use more than one parallel template object in the case when a
part of the application uses more than one parallelisation strategies. This features gives
the flexibility for easy experimentation and selection of the appropriate parallelisation

6

Include
Statement

application identifier {

Object 1

Object 2

Link
Statement

Object 1

Object 2

External
Var. Def.

User

Option
Statement

Procedures

}

cflow proc

exec proc

Figure 4: Application Object Structure

strategy for a hardware platform. During an execution of a PACE program only one
template might be evaluated for each subtask.

The subtask object has the same structure as the application object (as shown in
figure 4). The role of theinit procedure in a subtask object is to specify the execution
time of the serial part of the subtask when linked into the parallel template. The pres-
ence of theinit function is optional in the subtask objects. Aninit function might
not be required when the serial parts of the subtask are constant and can be specified
directly in the link statement.

Application
Obj

Proc1

Init Map

Proc n...

Subtask Obj

ParTmp Obj 1

ParTmp Obj 2

Execution Time

Figure 5: The Evaluation Process of a Subtask Object

Figure 5 shows the sequence of steps performed during the evaluation of the subtask
object. The application object initially uses a subtask object. Theinit procedure of
the object is the entry point. Theinit procedure might call other procedures of the
object to evaluate the serial parts of the application. These parameters are linked to the

7

currently active parallel template object that was specified by theoption command
in the subtask object or in the application object. Finally, the current parallel template
object is called and evaluated. The results of the parallel template object evaluation is
the execution time of the subtasks which is returned to the applicationobject.

2.3 Parallel Template Objects

The parallel template object describes the computation-communication pattern and al-
lows access to the hardware devices of a system. The syntax of the parallel template
objects is similar to the application and subtask objects with the exception of the state-
mentlink and the existence of additional statements for exec procedures.

The parallel template objects do not manipulate the interface of any of the other
objects so there is no need for the existence of thelink statement. The computation-
communication pattern is expressed in terms of stages and steps. A stage is acom-
plete phase of the parallel algorithm and might include many computations and com-
munications. In many cases a parallel template might have many stages of the same
computation-communication pattern. The number of stages in a parallel template ob-
ject is defined using the optionnstage. The evaluation procedure is shown in figure 6.

The parallel template object provides an interface to the resources in the hardware
object. When evaluated this allows the application object to specify hardwareresource
usage. The serial execution time can be calculated in any object with the use of cflow
procedures. This indirectly involves the hardware models for a singleCPU. However,
all the other resources including the system inter-connection network, input/output de-
vices, etc., are accessed through the parallel template objects. This is done bydescrib-
ing the steps in a stage. Each step corresponds to an access to one or more hardware
resources, e.g. for computation the CPU, for inter-processor communication the com-
munication network, and for retrieval of data hard disks.

Subtask
Obj

Proc1

Init

Proc n...
Partmp Obj

Hardware
Obj

map

* nstage

Application
Obj

Tx

Figure 6: Parallel Template Evaluation Procedure

Individual steps are defined in exec procedures using the commandstep (which is
only applicable to parallel template objects). This command defines the hardware re-
source that will be used and any necessary parameters. Optionally, the set of processors
that the step occurs on can be defined by using theon clause of thestep statement. By
evaluating each step, the PACE run-time system calls the appropriate hardware model
and returns the execution time for the step. The configuration of each device is done
with the commandconfdev . For example, the inter-processor communication net-
work device accepts three configuration parameters. These are: the size of a message,

8

the source processor, and the destination processor. This configuration can be repeated
many times during the same step in order to describe a complete communication pat-
tern.

3 The Run-Time Environment

The run-time system provides the tools needed to produce performance predictions
from a set of PACE scripts representing a single modelled application. Each PACE
object must be entered into a separate file; the name of the file should be the name of
the object with an.la suffix appended to it. For example, an object calledasync would
have a PACE script calledasync.la. Once all of the PACE objects in the model have
been defined they are compiled using the PACE compiler and then linked together to
form a single executable program. This program can then be executed to evaluate the
model and give predictions of its performance.

3.1 The Compiler

Each PACE object is compiled into a standard linkable object file. Due to theway in
which objects link to each other it is necessary to compile the parallel templateobjects
before the subtask obects, and the subtask objects before the applicationobject.

The shell commandchip3sis used to compile each PACE program, for example,
the following command compiles a PACE script calledfoo.la into a linker object called
foo.o, $ chip3s foo.la -o foo.o

The other compiler options available can be listed by giving the -help option to the
compiler. Once all of the PACE objects have been compiled, thechip3sldcommand is
used to link them into a single program. For example to link the compiled object files
app.o, sub.oandtmp.ointo a single model called app the following command would
be used. $ chip3sld -o app app.o sub.o tmp.o

This creates an executable program, calledapp, that contains the performance ob-
jects making up the overall model. The program also contains the evaluation engine
needed to produce performance predictions about the modelled application.

3.2 The Evaluation Engine

The evaluation engine evaluates the compiled PACE objects, combining the results to
produce detailed predictions of the performance of the whole application. Each time
the program is executed the models are evaluated and a set of predictions produced for
the current problem configuration (i.e. the set of application parameters).

The external application parameters may be modified to control the behaviour of
the model. Running the model with the -list-vars command-line option produces a list
of the parameters available with that model, and their standard values. To change the
value of a parameter its name and new value must be given as a command-line option
to the model, they should be separated by an equals sign, with no spaces between them.
For example, the following command evaluates a model calledapp, changing the value
of its Nproc parameter to 16.

9

$ app Nproc=16
When a model is evaluated it outputs the performance predictions it computed to

the standard output stream. By default, only the overall time taken is printed, preceded
by the textTx =. For example,$ app Nproc=16Tx = 1.44154e+07

However, each evaluation produces much more detailed predictions than this.Us-
ing different command-line options when evaluating a model, it is possible to access
these other predictions.-proc-table Output a table listing predictions for each processor.-list-segs List each CFLOW procedure and the time that it is predicted to take.-list-compat List the communication pattern of the model.-trace Output PICL format trace information into a file ending in.trf

There are also a number of debugging options available, these are useful for finding
errors in the PACE programs and for examining how the evaluation engine actually
works. Use the-? option to the executable model to find out exactly what types of
debugging information is available (look at the-debug option).

4 Language Description

This section presents the syntax and the semantics of the PACE language. The descrip-
tion includes:� The definition of the object types, the role of each object and a road-map to the

structure of the object (section 4.1).� The object header is described in detail (section 4.2). The statements includedin
the object header include the interface definition, the setting of parametersof the
objects that will be used by the current object and setting of the configuration of
the object.� The control flow procedure syntax is described in section 4.3. These procedure
describe the control flow of a part of an application in terms of a graph notation.� The statement of execution procedures are presented in section 4.4.� The data representation and manipulation statements are described in section 4.5.

The syntax of the language is described in BNF form. The non-terminal symbols
are presented initalics and the terminal symbols inbold. A special symbol� is used to
denote an empty terminal symbol or the end of a syntax recursion.

10

4.1 Object Definition

applicationdef ! application identifierf
include lst
vardef lst
link stm
option stm
proc lstg

subtaskdef ! subtask identifierf
include lst
vardef lst
link stm
option stm
proc lstg

partmpdef ! partmp identifierf
include lst
vardef lst
option stm
proc lstg

There are four types of objects representing each layer of the layered approach
methodology. Three of them can be defined the PACE language. The user can define,
in each performance study, one application object and a number of subtask and parallel
template objects.

The purpose of the application object is to provide an entry point forthe perfor-
mance study, to include the interface that can be used in the run-time system by the
user, and finally to combine the subtask objects of the performance studyusing control
flow and execution procedures.

The subtask object represents a part of the application that has been parallelised
with a specific parallelisation method. The subtask includes the evaluation of the serial
parts of the parallel task and the linking of these serial parts onto a parallel template.
The subtask might link with more than one parallel templates in cases wherethe sub-
task needs to use different parallel algorithms for different hardware platforms or when
an experimentation is required to determine the most efficient parallel algorithm. How-
ever, during an evaluation of the performance study only one parallel template is used
per subtask.

The parallel template object describes the computation-communication pattern of
a parallel algorithm. The parallel template might link with one or morehardware plat-
forms. It includes statements to describe the computation communicationpattern and
to map this to the various communication topologies supported by thehardware object.
The syntax of parallel template objects is similar to the other objects. Exceptions are
the absence of thelink statement and the existence of some additional statements in
exec procedures. Thelink statement is not used because parallel template objects do
not modify the interface of any other type of objects. The additional statements in the

11

execprocedures are used to represent the stages and steps of the parallel algorithmand
the use of the hardware devices.

The PACE language does not support the definition of hardware objects from within
the language syntax. The hardware objects must be defined using the C programming
language. The interface of the hardware object must be defined in order for the applica-
tion, subtask, and parallel templates objects to read and modify hardware parameters.

4.2 Object Header

includelst ! includestm
or include lst includestm
or �

includestm ! include identifier;

vardef lst ! vardefstm
or vardef lst vardefstm
or �

vardefstm ! var type: var lst ;

var lst ! var opt
or var lst , var opt

var opt ! assignmentstm
or identifier

type ! numeric
or vector
or string

link stm ! link f link bodyg
or �

link body ! link opt
or link body linkopt

link opt ! identifier: assignmentlst

option stm ! option f option bodyg
option body ! assignmentlst

or option body assignmentlst

procedurelst ! proceduredef
or procedurelst proceduredef
or �

proceduredef ! proc cflow
or proc exec

12

Theincludestatement is required to declare the use of other objects (for reading or
modifying their parameters). The PACE compiler reads the symbol file ofthe object
used as parameter in theincludecommand. The symbol file contains the type of the
object and the external variables of the object.

Thevardefstatements define the variables before their use. These parameters might
be interface variables accessed by other objects, global to the object by hidden by other
objects, and locals to procedures. Thevar statement declares the variables that will be
used.

Thelink statement allows an object to modify the interface parameters and options
of other objects. This is the method supported by PACE for inter-object communi-
cation. The objects that their parameters will be modified should be defined with the
includestatement prior to thelink statement. The parameters that will be modified must
have been defined in thevardefstatements of the objects.

There are a number of rules concerning the type of the objects that can be manip-
ulated. The application object can modify subtask and hardware objects, the subtask
object can modify template and hardware objects, and finally the parallel template is
not allowed to modify any objects.

Theoptionstatement allow the setting of the objects configuration. Each object de-
pending on each type have a number of pre-defined options such as the defaulthardware
platform, the setting of the debugging mode etc. These options can be also modified
by other objects with thelink statement. The available options are:hrduse A string value, valid in application or subtask objects. It controls hardware

model selection andmustbe defined somewhere.nstage A numeric option that can be set in parallel templates. It sets the number of
times the stage is repeated.ptmuse A string option that can be used in subtask objects to select the parallel tem-
plate to be used.

There are two types of procedures supported: thecflowand theexecprocedures.
Thecflowprocedures represent the control flow of a piece of software. The compiler
evaluates thecflowprocedures using a graph evaluation algorithm. The output of the
cflowprocedures is an expression that predicts the execution time of the software that
thecflowprocedure represents. Theexecprocedure includes execution statements for
looping, branching, etc. which can be run in a similar fashion to a general purpose
language code. Execution procedures are included in the PACE language to enable non
control flow evaluations to take place.

4.3 Control Flow Procedures

proc cflow ! proc cflow identifier argumentlst f vardef lst cflow lst g
cflow lst ! cflow stm

or cflow lst cflowstm
or �

cflow stm ! computestm

13

or loop stm
or casestm
or call stm
or f cflow lst g

computestm ! computevector;

loop stm ! loop (vector, expression) cflow stm
call stm ! call call typeopt identifier;

or call call typeopt identifier(expressionlst) ;

call typeopt ! cflow
or exec
or �

casestm ! case (vector) f caselst g
caselst ! caseopt

or caselst caseopt

caseopt ! expression: cflow lst

argumentlst ! argumentlst , argumentopt
or �

argumentopt ! var identifier lst ;

The compiler analyses the cflow procedures using a graph analysis algorithmand
outputs the evaluation expression of the control flow graphs. The procedures return
the time required to execution the part of the application represented by the control
flow description. The definition of the procedure includes an identifier that is the name
of the procedure and an optional list of arguments that can be passed from the caller.
Arguments are passed by value and can only be numbers.

An important aspect of the characterisation is the formation and use of thedescrip-
tion of the system resources also known as resource models [10]. The resource models
are coupled with information about the application tasks in terms of resource usage
information, which are termed resource usage vectors. The resource modelsare em-
bedded in the hardware object definitions and are invisible from the user. However,
the resource usage vectors are application specific and are defined by the user inthe
control flow procedures. A resource usage vector is associated with each statementthat
represents the control flow of the application.

The cflow statements are:

computerepresents a processing part of the application. The argument of the state-
ment is a resource usage vector. This vector is evaluated through the current
hardware object. The result of the evaluation is the execution time required for
the processing stage.

loop includes two arguments. The first is an expression that defines the numberof
iterations, and the second is the resource usage vector that represents the loop

14

overhead per iteration. The main body of theloopstatement includes a list of the
control flow statements that will be repeated.

call is used to execute another procedure. This procedure might be either cflow orexec
procedure. The result returned from this procedure is added to the total execution
time of the current control flow procedure.

case includes an argument which is the resource usage vector that represents the over-
head of this statement. The body of the statement includes a list of expressions
and corresponding control flow statements which might be evaluated. The ex-
pressions represent the probability of the corresponding control flow to be exe-
cuted.

4.4 Execution Procedures

proc exec ! proc execidentifier argumentlst f vardef lst execlst g
execlst ! execstm

or execlst execstm
or �

execstm ! f execlst g
or assignmentstm;
or if (condexpr) execstm if elseopt
or while (condexpr) execstm
or for (assignmentstm; condexpr; assignmentstm)

execstm
or break ;
or continue ;
or print expressionlst ;
or call call typeopt identifier;
or call call typeopt identifier(expressionlst) ;
or return ;
or return expression;
or exit ;
or dim identifier, expression;
or free identifier;
or step identifier stepproc lst f execlst g
or confdevexpressionlst ;

if elseopt ! elseexecstm
or �

stepproc lst ! on expression
or on expression, expression
or on expression, expression, expression
or �

The exec procedures include executed statements such as looping, branching,etc.
In contrast to the control flow procedures the execution procedure statements are trans-

15

lated directly to the corresponding statements in the target language. Each object might
contain an exec procedureinit that is the entry point of the object. This procedure is
called upon any reference to the object that includes it.

The PACE language supports thewhilestatement for looping operations. It requires
an expression as an argument. This is the condition that as long as it is true the loop is
executed. Two related statements are thebreakand thecontinue. These statements are
valid when executed inside a loop. Thebreakstatement terminates the loop indepen-
dently of the condition of thewhile statement. Thecontinuestatement causes the next
iteration of the enclosing loop to begin.

For conditional branching theif elsestatement is supported, theelseclause is op-
tional. There is also thecall statement that is similar to the one used in the control flow
functions. However, only exec procedures are allowed to be called. Also a procedure
might be called implicitly while its name is used in an expression. In this type of call
bothcflowandexecprocedures can be used.

Thereturnstatement determines the end of the execution of the current procedures
and thereturn of the execution of the procedure that has called the current executing
procedure. Ifreturn includes an expression argument the results of the expression if
returned to the caller procedure. Theexit command terminates the execution of the
performance study and returns control to the PACE run-time system.

Thedim andfree statements provide dynamic vector allocation support. Thedim
statement creates a data vector (not a resource usage vector). The first argumentis the
name of the vector and the second the size of the vector. Thefreestatement de-allocates
the vector. Additionally assignment andprint statement are supported.

The stepandconfdevstatements are applicable only in parallel template objects.
Each pattern might contain more than one stage and each stage more than one step.
Each step corresponds to the use of one of the hardware resources of the system. The
first argument in thestepcommand is the name of the device that will be used during
the step. The available devices of the current hardware platform are listed in the hard-
ware symbol file that is used with theincludestatement in the beginning of the object
definition. The devices that have been defined in this symbol file have the typehrddev.

The second argument of thestepstatement is optional. It can be used to define the
set of processors affected by this step. It can have up to three numerical expressions,
the first being thefirst processor in the set, the second being the last processor, and the
third being the stride.The code body of thestepstatement is to configure the device
specified in the current step.

A stepstatement must not include other embeddedstepstatements. The configura-
tion of the device is performed with theconfdevstatement. The arguments of this state-
ment is a list of expressions. The meaning of these arguments depend on the device.
For example the devicecpuaccepts only one argument which is the execution time of
a processing stage. The deviceinpcom(inter-processor communication) accepts three
arguments the message size, the source, and the destination processors. The confdev
statement in the case of theinpcomdevice can be used many times to describe a com-
plete communication pattern. Other hardware devices might include access to astorage
device or communication between parallel systems across HiPPi networks etc.

4.5 Data Representation and Manipulation

assignmentstm ! identifier= expression
or identifier= vectorconst
or identifier= string const

16

expressionlst ! expressionopt
or expressionlst , expressionopt

expressionopt ! expression
or string cost
or �

expression ! expression+ expression
or expression– expression
or expression* expression
or expression/ expression
or – expression
or + expression
or (expression)
or variable
or identifier(expressionlst)
or identifier()
or number

condexpr ! expression> expression
or expression>= expression
or expression< expression
or expression<= expression
or expression== expression
or expression! = expression

variable ! identifier
or identifier[expression]
or identifier. identifier

vector ! vectorconst
or identifier

vectorconst ! <is identifier, expressionlst>
or <0>

string const ! ” string char ”

The language supports three data types: numeric, one dimensional vectors, and
strings. These can be represented either as constants or variables. Variables must
be declared before used, by thevar statement. The scope of the variable might be
externally visible to other objects, external in the object but hidden from other objects,
and finally local to a procedure. The attributes of the variable is again determined with
thevar statement.

A vector can be of type data or resource usage. This attribute is defined as the
first parameter in the vector definition using theis statement. If the argument in the
is statement isdata the vector is handled as data, otherwise it is handled as a resource
usage vector. In this case the type of the resource usage is defined as the identifier that
follows the is statement. Dynamically allocated data vectors are supported with the
dimandfreestatements. The vector type cannot change during the variable’s life time.

17

PACE provides a dynamic approach for defining the type of vectors. The user
has the ability to define additional vector types by specifying the type of the vector
and the elements that can be included. This definition is done by an additional tool, the
vector definition tool (mkrsus), that converts the user definition to a vector specification
file that is used by the PACE compiler during the compilation stage. Attributes of
a vector type are the number of elements of the vector. A vector can have either a
fixed or variable number of elements. Each element can be a number, a symbol, or a
combination of both. An example definition of thedatavectors in the tool follows:(* Array numeric vector *)def data {args variable;type numeric;}

An example definition of a resource usage vector for floating point operations can
be defined as follows:(* Floating point operation resource usage vector *)def flop {args variable;type combination;{ add, sub, mul, cmp, div, sqr, exp, sin, other }}

The flop vector has a variable number of elements but its element might be an
expression that includes numeric values and/or symbols. The symbolsare defined as
the type of floating point operation (add, subtraction, etc.).

The expressions can only include numeric values. The expressions support the+,�, �, � arithmetic operations, unary�, the call of cflow, exec, or pre-define mathe-
matical procedure, the reference to any numeric variable.

A variable can be an identifier referring to a local to the object variable, an element
of a data vector, and an external to the object variable. In this case the scope must
be defined first and then, separated with a dot, the name of the parameter must be
identified. The string constants and variables can be only used for outputpurposes.

4.6 Miscellaneous

assignmentlst ! assignment
or assignmentlst , assignment
or �

vector ! identifier
or vectorconst

identifier, string charandnumberare defined in the lexical analyser.

18

5 Characterising a Sorting Kernel

An example of using the PACE language to develop a characterisation performance
model is shown below. The application under consideration is a sortingkernel based
on the Batcher’s bitonic sort. The kernel developed for a transputer based Parsytec
SuperCluster. The are a number of phases for the execution of this kernel:

Data Load A number of data elements are stored on the hard disk of the host work-
station. Part of the data is loaded into the memory of each transputer.

Serial Sorting The data elements in the local memory of each processor are initially
sorted using a serial sorting algorithm, which in this case is quicksort.

Merging The sorted data elements on each processor are merged with the bitonic al-
gorithm in order to create a overall sort list.

Data Store The sorted array is stored onto the hard disk of the host workstation.

In this example, only the merging part of the sort is considered. The PACE program
consists of: an application objectmemsort, that combines the serial sort with the merge
procedures; the serial subtask objectqsort (that is not presented here); the subtask
objectmergethat uses the bitonic parallelisation strategy; and the parallel template
objectbitonic. The example illustrates the use and interfaces between objects of all
types. It is not intended to provide the results of a performance study. The source code
of the application object is described first.

5.1 Application Object1 (*2 * memsort.la - Parallel memory sorting3 *)4 application memsort {5 include qsort; (* Qsort subtask *)6 include merge; (* Merge subtask *)7 include hardware; (* Hardware parameters *)8 include parsytec; (* Parsytec hardware model *)9 (* Interface and global variables *)10 var numeric:11 Nelem = 262144, (* # of elements *)12 Nsize = 4, (* size of element *)13 Nproc = 16; (* # of procs *)14 (* Linking to other objects *)15 link {16 hardware:17 Nproc = Nproc;18 qsort:19 Nelem = Nelem / Nproc,
19

20 ModelCh = 2;21 merge:22 Nelem = Nelem,23 Nsize = Nsize;24 }25 (* Options *)26 option {27 hrduse = "parsytec";28 }29 (* Entry point procedure *)30 proc exec init {31 call qsort;32 call merge;33 }34 }
The application object,memsort, begins with its name definition in line 4, followed

by the object header (lines 5–28), and finally the main body (lines 29–34).
Initially the objects used are defined in lines 5–8 with theincludestatement (thememsort object uses the subtask objectsqsort andmerge and the generic hardware

object).
The definition of the parameters that can be modified by the user through the PACE

run time system follows in lines 9–13. These are the number of elementsto be sorted
(Nelem), the size of each elements in bytes (Nsize), and the number of processors
(Nproc). The modification of parameters in the other objects being used is specified
in lines 14–24 (using thelink statement). Initially (lines 16–17) the hardware object
parameterNproc is set to the number of processors. It should be noted that the pa-
rameterNproc has the same name in both the application and the hardware objects.
However, there is no scope conflict since the parameter on the left of the assignment
belongs to the hardware object and the parameter on the right belongs to the applica-
tion object. Similarly the parameters are set for the qsort and the merge subtask objects
(lines 18–23).

Only one option is set in this example, thehrduseoption specifies that this appli-
cation must use the object calledparsytec to provide the hardware characterisation
(lines 25–28).

The last part of the object is theinit execution procedure. This is the entry point
of the object (and the performance study as a whole). In this case, it calls the qsort
andmerge objects.

5.2 Subtask Object (merge)1 (*2 * merge.la - Parallel merge (bitonic) sort3 *)4 subtask merge {5 include bitonic; (* Bitonic parallel template *)
20

6 include hardware; (* Generic hardware object *)7 (* Interface *)8 var numeric:9 Nelem = 4096, (* Elements to be sorted *)10 Nsize = 4, (* Size (bytes) of each element *)11 dtpp, (* Data per processor *)12 Pmrg; (* Prob. to exit merge loop *)13 (* Linking to other objects *)14 link {15 bitonic:16 Ndata = dtpp,17 Clen = Nsize,18 Tx = Txsort();19 }20 (* Options *)21 option {22 ptmuse = "bitonic";23 }24 (* Entry point procedure *)25 proc exec init {26 var numeric: Pmrg0 = 0.639, Pmrg1 = 0.793;27 dtpp = Nelem / hardware.Nproc;28 (* Linear regression model for merge prob. *)29 Pmrg = Pmrg0 + Pmrg1 / hardware.Nproc;30 }31 (* Main seg for merge function *)32 proc cflow Txsort {33 var vector:34 start = <is clc, 3*IASG>,35 merge = <is icc, 169, 20>,36 tlcp = <is ct, 6.03>,37 otcp = <is clc, FOR, IASG, ICMP, 2*IADD,38 4*VIDX, 2*FASG>;39 compute start;40 loop (<0>, 2*dtpp*Pmrg)41 compute merge;42 loop (<0>, 2*dtpp*(1-Pmrg))43 compute tlcp;44 loop (<0>, dtpp)45 compute otcp;46 }47 }
21

The source code of themerge object begins with the subtask name definition (line
4) and continues with the object header (lines 5–23), and the proceduresinit andTxsort (lines 24–46). The execution time for the merging is calculated by the control
flow procedureTxsort.

Initially the use of thebitonic parallel template object and the generic hardware
object (lines 5–6) are declared. The interface parameters are defined in lines 7–12.
These are: the number of elements to be sorted (Nelem), the size of each element
(Nsize), and the probabilitiy for the merge software execution graph in theTxsort
procedure (Pmrg0). The parameters for the objectsbitonic andseq are set in lines
13–19. For the bitonic object the number of elements (Ndata), the size of each element
(Clen), and the execution time required for each merge (Tx) are set.

Theinit procedure (lines 24–30) calculates the parametersdtpp (data elements
per processor) andPmrg (the probability for the merge loop to be finished in theTxsort
control flow graph). The control flow procedureTxsort (lines 31–46) evaluates the
graph shown in figure 7. The resource usage of the graph nodes is defined in lines
34–38. These are vectors and include different types of resource usage information.
The parametersstart andotcp are high level language resource usage vectors, the
parametertlcp is execution time, and the parametermerge is an instruction level
resource usage vector. The control flow graph is described in lines 39–45.Thecom-
putestatement accepts one argument which is a resource usage vector while theloop
statements first argument is a resource usage vector representing the loop overhead per
iteration, and the second argument defines the number of repetitions. In allcases the
loop overhead has been considered zero.

start

merge

tlcp

copy

2*dtpp*Pmrg

2*dtpp*(1-Pmrg)

dtpp

Figure 7: Control Flow Graph for Merge

5.3 Parallel Template (bitonic)1 (*
22

2 * bitonic.la: Bitonic parallel template3 *)4 partmp bitonic {5 include hardware; (* Parsytec object hardware *)6 include Eval; (* Chips system parameters *)7 (* Interface *)8 var mpruv:9 Tx = 0; (* Execution time *)10 var numeric:11 Ndata = 1024, (* Number of data *)12 Clen = 4, (* Size of elements *)13 dtpp, (* Data per processor *)14 Comseq; (* Value of GetDest *)15 (* Options *)16 option {17 nstage = Log(2, hardware.Nproc), seval = 1;18 }19 proc exec GetDest20 var phase, src;21 {22 var numeric: group, dist, dest;23 group = Power(2, Eval.nstage + 1);24 dist = Power(2, phase - 1);25 if(Mod(src, dist * 2) < dist)26 dest = src + dist;27 else28 dest = src - dist;29 if (Mod(src, group) >= group / 2) {30 if (dest < src)31 Comseq = 0;32 else33 Comseq = 1;34 } else {35 if (dest < src)36 Comseq = 1;37 else38 Comseq = 0;39 }40 return dest;41 }42 (* Evaluation of each stage *)
23

43 proc exec EvalStage {44 var numeric:45 phase, ptrg, psrc;46 phase = Eval.nstage;4748 while (phase > 0) {49 step inpcom {50 psrc = 0;51 while (psrc < hardware.Nproc) {52 ptrg = GetDest(phase, psrc);53 if (Comseq == 0)54 confdev psrc+1, ptrg+1, dtpp;55 psrc = psrc + 1;56 }57 }58 (* And then processing time *)59 step cpu {60 confdev Tx;61 }62 step inpcom {63 psrc = 0;64 while (psrc < hardware.Nproc) {65 ptrg = GetDest(phase, psrc);66 if (Comseq == 1)67 confdev psrc+1, ptrg+1, dtpp;68 psrc = psrc + 1;69 }70 }71 phase = phase - 1;72 }73 }74 (* Entry point *)75 proc exec init {76 dtpp = Round(Clen * Ndata);77 (* Evaluation of stage *)78 call EvalStage;79 }80 }
The name of the parallel template objectbitonic is defined in line 4. The header

of the object (lines 5–18) contains the definition of other objects whichare used, the
declaration of the interface parameters, and the setting of the options of the objects.
The parallel template uses the generic hardware object and the special purposeobjectEval that includes parameters related to the status of the PACE run-time evaluation
system. The only option set is the the number of stages of the parallel algorithm

24

The execution procedureGetDest (lines 19–41) determine the source and target
processors for a specific stage and phase of the algorithm. The procedureis called
by EvalStage before defining each communication configuration. The procedures
accepts two arguments, the current phase and the source processor and it returns the
destination processor.

The execution procedureEvalStage is defined in lines 42–73. It describes the
computation-communication pattern of thebitonic template for each stage of the
parallel algorithm. The algorithm has a number of communication and computation
steps in each stage. The communication steps are described in lines 49–57 and 62–
70. Thewhile loop determines the number of communication steps (which depends
on the current stage of the algorithm). The parameters of each communicationstep
are calculated in thewhile loop, and set in lines 54 and 67 with theconfdevstatement.
The first argument of this statement is the size of the communication, the second is
the source processor, and the third is the destination processor. In lines 58–61 the
computation step is defined. Theconfdevstatement in line 60 determines the time
required for this computation phase.

The procedureinit is executed for each stage (lines 74–79). It determines the
number of data strored in the local memory of each processor and calls the execution
procedureEvalStage.

6 Summary and Future Extensions

A performance language and a run-time environment have been presented that do not
require a user to have expertise in the relevant performance evaluationmethodologies.
The user, with the performance language, can describe the software and the paralleli-
sation strategies in a way that is both intuitive and more importantly can be used in the
performance study.

A number of future extensions will be incorporated into future versions of the PACE
language. These include:

Bottleneck Analysis The operations and use of hardware resources can be analysed
by ranking them in order of time costs. By doing this, the predominant classes
of operations can be identified as bottlenecks in the overall performance of the
system. Such an analysis can be incorporated as a future extension to the PACE
toolset. This is being investigated within the PEPS project [3].

Overlapping Computation-Communication One of the features of modern parallel
systems is the ability to overlap the computation and the communicationstages
of an algorithm. This is a feature that is not currently supported by PACE and
requires extensions in the syntax of the parallel template and extensions to the
hardware models to support asynchronous communication.

Multi-threaded Processing The parallel template currently assumes that all proces-
sors perform the same computation [1, 5]. However there are several classes of
algorithms that require the use of different computations assigned togroups of
processors. This feature will be supported extending the PACE language and the
evaluation engine to allow the creation of trees of computation-communication
patterns and use of barriers to synchronise them.

25

Language Syntax Extensions for Different TopologiesOne of the issues that effect
the re-usability of the parallel template objects is the mapping of the commu-
nication pattern onto the network topology. This currently can be achieved by
the explicit use of different user procedures to handle communication patterns
for different inter-connection network topologies. A support of this feature from
within the syntax of the language will enforce the re-usability of the parallel
template objects.

Library of Generics Warwick’s characterisation work includes the examination of a
range of application areas in order to identify the computational core (alsotermed
generics) which are common across several applications [2]. Ten generics have
been selected, including curve fitting, fast fourier transform, matrix multiplica-
tion, etc., and have been further characterised [4]. A model library of generics
will be developed for the PACE language, which can be used as subtask compo-
nents in future application studies.

The PACE language, by providing characterisation model reusability, allows easy
experimentation, supports different levels of accuracy of predictions,and different lev-
els of model abstraction to assist the system developer, the application programmer,
and the performance expert. It can be used to perform a wide range of performance
studies. The main concept of PACE is the development of a performance tool for the
“rest of us” that will allow the users to perform performance studies.

References

[1] E. F. Gehringer, D. P. Siewiorek, and Z. Segall.Parallel Processing: The Cm*
Experience. Digital Press, 1988.

[2] Parallel Systems Group. Characterisation of processing needs. Final Report D5.1,
ESPRIT 6962 — Performance Evaluation of Parallel Systems (PEPS), 1993.

[3] Parallel Systems Group. Analysis of bottlenecks. Interim Report D5.4, ESPRIT
6962 — Performance Evaluation of Parallel Systems (PEPS), 1994.

[4] Parallel Systems Group. Parallelisation of generics. Interim Report D5.3, ESPRIT
6962 — Performance Evaluation of Parallel Systems (PEPS), 1994.

[5] L. H. Jamieson, D. Gannon, and R. J. (Eds.) Douglas.Characterizing Parallel
Algorithms. MIT Press, 1987.

[6] B. P. Miller, M. Clark, J. Hollingsworth, S. Kierstead, S. S. Lim, and T. Torewski.
IPS-2: The second generation of parallel program measurement system.IEEE
Trans. Parallel and Distributed Systems, 1(2):206–217, 1990.

[7] G. R. Nudd, E. P. Papaefstathiou, Y. Papay, T. J. Atherton, C. T. Clarke, D. J.
Kerbyson, A. F. Stratton, R. F. Ziani, J., and Zemerly. A layered approach to the
characterisation of parallel systems for performance prediction. InProc. of the
Performance Evaluation of Parallel Systems Workshop (PEPS ’93), pages 26–34,
Coventry, U.K., November 1993.

[8] E. P. Papaefstathiou. Characterising parallel systems focusing in re-usability.
PEPS Bulletin, No. 2, November 1993.

26

[9] E. P. Papaefstathiou, D. J. Kerbyson, and G. R. Nudd. A layered approachto
parallel software performance prediction: A case study. InProc. International
Conference Massively Parallel Processing, Delft, Holland, June 1994.

[10] E. P. Papaefstathiou, D. J. Kerbyson, G. R. Nudd, and T. J. Atherton. Compar-
isons of resource models within a parallel system characterisation framework.
submitted to Parallel Computing, 1994.

[11] M. Parashar, S. Hariri, and G. C. Fox. An interpretive framework for application
performance prediction. Technical Report SCCS-479, Syracuse University, USA,
1993.

[12] D. Pease et al. PAWS: A performance evaluation tool for parallel computing
systems.IEEE Computer, pages 18–29, January 1991.

[13] D. A. Reed, R. Aydt, T. M. Madhyastha, R. J. Nose, K. A. Shields, andB. W.
Schwartz. An overview of PABLO performance analysis environment. Technical
report, University of Illinois, USA, 1992.

[14] M. J. Zemerly, J. Papay, and G. R. Nudd. Characterisation based bottleneck anal-
ysis of parallel systems. InProc. of Workshop on Performance Evaluation and
Benchmarking of Parallel Systems, Coventry, U.K., December 1994.

27

A YACC Grammar%{/** Project : CHIPS Compiler* File : chips.y* Purpose : Compiler Parser Specification* $Id: chips.y.tex,v 1.1 1997/12/01 17:02:56 john Exp $*/%}%union {char* string; /* String token value */float number; /* Number token value */}%token APPLICATION SUBTASK PARTMP INCLUDE VAR LINK OPTION PROC%token CFLOW COMPUTE LOOP CALL CASE%token EXEC IF ELSE WHILE FOR BREAK CONTINUE PRINT%token RETURN EXIT DIM FREE STEP CONFDEV%token NUMERIC VECTOR STRING MPRUV IS%token GTE LSE EQL NEQ%token ON%token <string> IDENTIFIER STRCONST%token <number> NUMBER%nonassoc LOWER_THAN_ELSE%nonassoc ELSE%left EQL NEQ%left '<' '>' GTE LSE%left '+' '-'%left '*' '/'%nonassoc UMINUS UPLUS%nonassoc EXPLST%% /** Program definition*/program: sbt_obj| apl_obj| ptm_obj;/** Object definition*/apl_obj: apl_hd obj_body
28

sbt_obj: subtask_hd obj_bodyptm_obj: partmp_hd obj_bodyobj_body: '{' include_sec vardef_stm link_stmoption_stm procedure_lst '}';subtask_hd: SUBTASK IDENTIFIER;apl_hd: APPLICATION IDENTIFIER;partmp_hd: PARTMP IDENTIFIER;/** Object Header*//* Include statement */include_sec: include_lst;include_lst: /* Empty */| include_lst include_stm;include_stm: INCLUDE IDENTIFIER ';'| INCLUDE error ';';/* Link statement */link_stm: /* Empty */| link_hd link_body '}';link_hd: LINK '{';link_body: link_opt| link_body link_opt;link_opt: link_hd assignment_lst ';'| link_hd error ';';
29

link_hd: IDENTIFIER ':'| error ':';/* Option statement */option_stm: /* Empty */| option_hd assignment_lst opt_semi '}';option_hd: OPTION '{';/* A do-nothing optional semi-colon for option stmts */opt_semi: /* Empty */| ';';/** Procedure definitions*/procedure_lst: /* Empty */| procedure_lst proc_cflow| procedure_lst proc_exec;/** Execution Procedures*/proc_exec: exec_hd argument_lst '{' vardef_stm exec_lst '}';exec_hd: PROC EXEC IDENTIFIER;exec_lst: /* Empty */| exec_lst exec_stm;exec_stm: assignment_stm| return_hd ';'| return_hd expression ';'| call_stm| EXIT ';'| dim_stm| FREE IDENTIFIER ';'| print_stm| while_stm| for_stm| CONTINUE ';'
30

| BREAK ';'| if_stm| step_stm| confdev_stm| error ';'| error '}';/* Assignment Statement */assignment_stm: assignment_opt ';';assignment_opt: string_assign| numassign| vctassign_hd vector_const| vctassignel_hd expression;string_assign: IDENTIFIER '=' STRCONST;numassign: numassign_hd expression;numassign_hd: IDENTIFIER '=';vctassign_hd: IDENTIFIER '=';vctassignel_hd: vctasgel_hd expression ']' '=';vctasgel_hd: IDENTIFIER '[';assignment_lst: assignment_opt| assignment_lst ',' assignment_opt| error ',' assignment_opt;/* Dim statement */dim_stm: dim_hd expression ';';dim_hd: DIM IDENTIFIER ',';/* Print statement */
31

print_stm: print_hd print_lst ';';print_hd: PRINT;print_lst: /* NULL */| print_lst ',' expression| print_lst ',' STRCONST| STRCONST| expression;/* While statement */while_stm: while_hd while_cnd exec_compound;while_hd: WHILE '(';while_cnd: expr_cnd ')';/* For statement */for_stm: for_hd '(' for_pre ';' for_cnd ';'for_post ')' exec_compound;for_hd: FOR;for_pre: numassign;for_cnd: expr_cnd;for_post: numassign;/* Conditional statement */if_stm: if_hd '(' if_cnd ')' exec_compound%prec LOWER_THAN_ELSE| if_hd '(' if_cnd ')' exec_compoundif_else exec_compound;if_hd: IF;
32

if_cnd: expr_cnd;if_else: ELSE;/* Parallel template statements */step_stm: step_hd step_mid exec_lst '}';step_hd: STEP IDENTIFIER;step_mid: step_mid_hd expression_lst '{'| '{';step_mid_hd: ON;confdev_stm: confdev_hd cdev_arg_lst ';';confdev_hd: CONFDEV;cdev_arg_lst: expression %prec EXPLST| cdev_arg_lst ',' expression %prec EXPLST;/* Other exec definitions */return_hd: RETURN;exec_compound: '{' exec_lst '}'| exec_stm;/** Control Flow Procedures*/proc_cflow: cflow_hd argument_lst '{' vardef_stmcflow_lst '}';cflow_hd: PROC CFLOW IDENTIFIER;cflow_lst: /* Empty */| cflow_lst cflow_stm
33

;cflow_stm: compute_stm| call_stm| loop_stm| case_hd '(' case_cost ')' '{' case_lst '}'| error ';'| error '}';loop_stm: loop_hd '(' loop_cost loop_cnt ')' cflow_compound;loop_hd: LOOP;loop_cost: vector ',';loop_cnt: expression;compute_stm: compute_hd vector ';';compute_hd: COMPUTE;call_stm: callproc_hd ';'| callproc_hd '(' expression_lst ')' ';';callproc_hd: CALL CFLOW IDENTIFIER| CALL EXEC IDENTIFIER| CALL SUBTASK IDENTIFIER| CALL IDENTIFIER;case_hd: CASE;case_cost: vector;case_lst: case_opt| case_lst case_opt;case_opt: case_pro cflow_lst;
34

case_pro: expression ':';cflow_compound: '{' cflow_lst '}'| cflow_stm;/** Variable and Argument Definition*/argument_lst: VAR identifier_lst ';'|| VAR error ';';vardef_lst: /* Empty */| vardef_lst vardef_opt;vardef_opt: VAR vartype ':' var_lst ';';vardef_stm: vardef_lst;var_lst: var_opt| var_lst ',' var_opt| error ',' var_opt;var_opt: IDENTIFIER| assignment_opt;/** Data Presentation & Manipulation*/vartype: NUMERIC| VECTOR| STRING| MPRUV;expression_lst: expression %prec EXPLST| expression_lst ',' expression %prec EXPLST;expression: expression '+' expression| expression '-' expression
35

| expression '*' expression| expression '/' expression| '-' expression %prec UMINUS| '+' expression %prec UPLUS| '(' expression ')'| variable| expproc_hd expression_lst ')'| expproc_hd ')'| NUMBER;/* Conditional expression */expr_cnd: expression cnd_op expression;cnd_op: '>'| '<'| GTE| LSE| EQL| NEQ;variable: IDENTIFIER| vctidx_hd expression ']'| IDENTIFIER '.' IDENTIFIER;vctidx_hd: IDENTIFIER '[';expproc_hd: IDENTIFIER '(';vector: vector_const| IDENTIFIER;vector_const: vector_hd const_lst '>'| '<' NUMBER '>';vector_hd: '<' IS IDENTIFIER ',';/* List of constants / RSUS id's */const_lst: const| const_lst ',' const;
36

const: NUMBER| const_id_mult IDENTIFIER;const_id_mult: /* Empty */| NUMBER '*';/** Miscellaneous Definitions*/identifier_lst: IDENTIFIER| identifier_lst ',' IDENTIFIER| error ',' IDENTIFIER;%%

37

B Lexical Analyser%{/** Project : CHIPS Compiler* File : chips.l* Purpose : Compiler Lexical Analyser* $Id: chips.l.tex,v 1.1 1997/12/01 17:02:53 john Exp $*/%}%x COMMENT STRSTid [A-Za-z][A-Za-z0-9`]*number ([0-9]+|([0-9]*\.[0-9]+)([eE][-+]?[0-9]+)?)ws [\t]+nl \n%%"(*" BEGIN COMMENT;<COMMENT>. ;<COMMENT>\n ;<COMMENT>"*)" BEGIN INITIAL;\" BEGIN STRST;<STRST>[^\"]* { yylval.string = strdup(yytext);return STRCONST;}<STRST>\" BEGIN INITIAL;application { return APPLICATION; }subtask { return SUBTASK; }partmp { return PARTMP; }include { return INCLUDE; }var { return VAR; }link { return LINK; }option { return OPTION; }forward { return FORWARD; }proc { return PROC; }cflow { return CFLOW; }compute { return COMPUTE; }loop { return LOOP; }call { return CALL; }case { return CASE; }exec { return EXEC; }if { return IF; }else { return ELSE; }
38

while { return WHILE; }for { return FOR; }break { return BREAK; }continue { return CONTINUE; }print { return PRINT; }return { return RETURN; }exit { return EXIT; }dim { return DIM; }free { return FREE; }step { return STEP; }confdev { return CONFDEV; }numeric { return NUMERIC; }vector { return VECTOR; }string { return STRING; }mpruv { return MPRUV; }is { return IS; }">=" { return GTE; }"<=" { return LSE; }"==" { return EQL; }"!=" { return NEQ; }on { return ON; }{number} { yylval.number = atof(yytext);return NUMBER;}{ws} ;{id} { yylval.string = strdup(yytext);return IDENTIFIER;}{nl} ;. { return yytext[0]; }%%

39

