

Original citation:

Papaefstathiou, E., Kerbyson, D. J., Nudd, G. R., Atherton, T. J. and Harper, J. S. (1997) An introduction to the layered characterisation for high performance systems. University of Warwick. Department of Computer Science. (Department of Computer Science Research Report). (Unpublished) CS-RR-335

Permanent WRAP url:

http://wrap.warwick.ac.uk/61021

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-forprofit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

A note on versions:

The version presented in WRAP is the published version or, version of record, and may be cited as it appears here.For more information, please contact the WRAP Team at: <u>publications@warwick.ac.uk</u>

warwickpublicationswrap

highlight your research

http://wrap.warwick.ac.uk/

An Introduction to the Layered Characterisation for High Performance Systems*

E. Papaefstathiou D.J. Kerbyson G.R. Nudd T.J. Atherton J.S. Harper

December 3, 1997

Abstract

A toolset for performance analysis of parallel systems, PACE, is presented in this report. In this toolset expert knowledge about the performance evaluation techniques is not required as a prerequisite for the user. Instead a declarative approach to the performance study is taken by describing the application in a way that is both intuitive to the user, but can also be used to obtain performance results. The underlying performance related characterisation models and their evaluation processes are hidden from the user. This document describes the special purpose language, and the evaluation system, that form the core of the PACE toolset. Amongst the aims of the toolset is the support of characterisation model reusability, ease of experimentation, provide different levels of prediction accuracy, and support of different levels of characterisation.

1 Introduction

Performance evaluation is an active area of interest especially within the parallel systems community. A large number of performance tools have been developed to assist the system developer, the application programmer, and the tuning expert to select the most efficient combination of hardware and parallelisation strategy [6, 11, 12, 13]. However, the use of performance tools typically require an advance knowledge of performance related issues, which is usually not commonly understood. The purpose of the characterisation work at Warwick is the development of prediction, and analysis of, methodologies and tools that will allow non performance specialists to undertake performance studies. PACE is a set of tools aimed to assist the users to undertake performance studies. In this document a special purpose language and an evaluation system is presented that form the core of the PACE performance toolset.

The notion of performance tools for the "*rest of us*" is the central driving force behind Warwick's characterisation work. In order to achieve this goal, the user of the performance methodology must focus his/her effort on the aspects of the performance study that does not require performance related speciality. The user of performance tools usually knows the application but does not have any knowledge of the performance methodologies. The characterisation toolset presented here requires the user to describe the application that is under investigation in a way that is both intuitive

^{*}Version 1.70

to the user but can also be used in the performance study. The performance related characterisations and their evaluation process, are hidden from the user. The characterisation methodology provides the following features:

Characterisation Model Reusability Allows the definition of the control flow of the application and the computation/communication pattern in a hardware independent way.

- **Easy Experimentation** Allows easy experimentation with different hardware platforms and parallelisation strategies.
- **Different Levels of Prediction Accuracy** Supports different levels of characterisation from high level parametric characterisation (e.g. measuring floating point operations), providing moderate accuracy, to low level instruction level characterisation, providing high accuracy of predictions.
- **Different Levels of Model Abstraction** Can be used in different stages of software development cycle and different type of software development projects (e.g. the porting of serial code or developing parallel software from scratch).

The PACE toolset is based on a characterisation framework [7, 8, 9, 14]. This framework is a layered approach that separates out the hardware and software systems through the use of a parallelisation template, figure 1. This modular approach leads to readily re-usable models which can be interchanged in experimentation. For instance the performance predictions across parallelisation techniques can be compared for a particular application on a particular hardware. The layers used are detailed below:

- an application layer, which describes the application in terms of a sequence of sub-tasks using control flow graphs. Each node of the graph can be a sequential processing node, a user defined parallel sub-task, or a parallel processing generic (from a library).
- an application sub-task layer, which describes the sequential part of every subtask within an application that can be executed in parallel. The result of the evaluation of these models is fed to the parallel template layer.
- a parallel template layer, that describes the computation-communication pattern and other hardware resource usage.
- a hardware layer, which is responsible for characterising the communication and computation abilities of the system.

The PACE toolset contains a number of separate programs integrated under a common graphical user interface. The organisation of these components is shown in figure 2. The main components of this toolset are:

- A set of special purpose language scripts suitable for the description of performance aspects of parallel systems.
- A run-time system that contains an evaluation engine.
- A compiler that translates the scripts into object code.
- A set of interface tools which allow the extraction of control flow/resource information from application source code.

Figure 1: The Layered Characterisation Framework

• A further set of graphical interface tools that allow the user to define aspects of the performance study and visualise the outputs.

The PACE run-time system is responsible to perform basic maintenance operations such as the loading of PACE compiler output, the evaluation of models, and the storage of the results. The run-time system also includes the evaluation engine that is used to combine and evaluate the models of the performance study. The user will be able to examine the results through a visualisation module and experiment with the performance parameters. A number of pre-defined performance analysis studies will be provided such as scalability and bottleneck analysis.

An automated procedure is provided to extract from the user's application the control flow and resource requirements from the user's application. Additionally the resource usage of each node of the control flow graphs is identified in terms of a high level language, or instruction level operations. The resource usage information is combined with the control flow information and converted to PACE language scripts.

The user will be able to edit his/her own PACE language scripts and use a graphical interface to design the computation/communication pattern of the parallel algorithm used, and the control flow of an application that has not yet been developed. After the development of PACE scripts have been concluded for a performance study the PACE compiler will translate the scripts to object code.

The scope of this document is to present the PACE language, the run-time system, and the evaluation engine.

In the next section the main entities (objects) of the PACE language are introduced. There are four types of PACE objects (related to the layered framework): the application, the subtask, the parallel template, and the hardware objects. The main features and the rules govern their interfacing are also explained. In Section 3 the functions of the PACE compiler and run-time system are described. In Section 4 a detailed language

Figure 2: PACE Tool Organisation

description is presented. The language is presented in BNF format and the semantics of it's constructs are explained. In Section 5 an example is given for predicting the performance of a parallel sorting kernel. Finally in Section 6 a summary and a number of extensions that will be included in future versions of the language are described.

2 Objects and Object Interfacing

A program written in the PACE language includes a number of objects. Each object is one of the following types: application, subtask, parallel template, and hardware. These are used to describe the performance aspects of the respective system components. An object is comprised of:

- **Internal Structure** The internal structure is defined by the programmer and is hidden from the other objects. This structure contains various types of procedures that describe the control flow of the application, the form of any regression models, and computation-communication structures.
- **Options** The objects, depending on their type, have a number of pre-defined options that determine the default behaviour of the object. The default values of these options can be set in the object, and can be modified by other objects. For example an option might include the default hardware or parallelisation strategy (parallel template) that will be called by a subtask.
- **Interface** Objects include an interface that can be used by other objects to modify their behaviour. This interface is explicitly defined by the programmer. The interface includes the external variables that can be modified outside of the object scope. The interface might include data dependent, hardware dependent, and other variable types.

Figure 3: Object Interfacing

Objects of a certain type can only read from, and write to, certain other object types as shown in figure 3. An object can read an external variable of other objects only if it is in a lower level of the layered approach hierarchy. Further rules that govern this relationship are described below:

- Application Type Object A PACE program includes only one object of the application type. This is the object that is called automatically from the run-time system of the PACE run-time system (i.e. the entry point of a PACE program). The external interface of the application object can be used by the user, through the PACE run-time system, to manipulate parameters of the performance study (e.g. change the size of the problem). The application object can modify the external variables of subtask and hardware objects and also use entire subtask objects. For example, a parallel sort application object can use constituent quicksort and bitonic sort subtask objects but only modify the processor configuration of the underlying hardware platform, without directly calling it.
- **Subtask Type Object** A PACE program might include many subtasks. The interface of a subtask object can be modified by the application object. A subtask can modify the external variables and use template objects. For example the bitonic sort is an object of the subtask type that can be used by the application object, it can modify the external variables and use the bitonic parallel template object.
- **Parallel Template Type Object** A program might include many parallel template objects. Their interface can be manipulated by subtask objects. The parallel template can not modify the interface of any other object type. The parallel template object describes the computation-communication patterns and the use of other hardware resources.

The definition of hardware objects is not supported directly by the PACE language. The hardware objects must be developed using other analytical or simulation tools. The characteristics and the parameters of a hardware object must be defined in a hardware symbol file. This file is included into the user-defined objects that use hardware parameters. The PACE environment provides some special purpose objects that have extended semantic features. These include a template with the name seq (or sometimes async) that covers the case of the execution of a subtask on a single CPU. Also an object called hardware will contain a common interface to all hardware platform parameters (e.g. number of processors). This will allow the reference to the hardware objects independently of the type of the parallel system in use. Finally a special case is the object Eval, which contains parameters related to the status of the PACE run-time system and evaluation engine. An object can query the status of PACE by examining the Eval object.

For each object type a detailed description is given in the following paragraphs:

2.1 Application Object

A PACE program contains one application object. The object acts as the entry point of the performance study, and includes an interface that can be used by the user through the PACE run-time system to modify parameters of the performance study (e.g. data dependent parameters, hardware platforms to be used). Additionally the application object combines the subtask objects using either control flow graphs or execution procedures. An application object includes the following parts (figure 4):

- **Include Statements** Declares the subtask, parallel template, and hardware objects that will be used by the application object.
- **External Variable Definitions** Defines the external variables that will be the interface between the application object and the user through the PACE run-time system.
- Link Statements The purpose of the link statement is to modify external variables and options of the subtask objects and the hardware objects being used.
- **Options** Sets the default options of the application object. These options can be also modified by the user through the PACE run-time system.
- Procedures The procedures describe the relationships of the subtasks in order to predict the performance of any serial parts of the application. This relationship can either be described as control flow graphs (*cflow*) or execution statements (*exec*). Control flow graphs are defined in terms of graph components, where as execution statements are more flexible allowing complex relationships to be expressed. The application object must include an execution procedure named init. This procedure is the entry point to the program.

2.2 Subtask Objects

The subtask objects represent parts of an application that are parallelised on a hardware platform using a specific parallelisation strategy. The subtask objects in an application are combined by the single application object.

A subtask object includes the evaluation of the sequential parts of the parallel program. It also includes the mapping of these sequential parts of the application onto the computation-communication pattern described in the parallel template object.

A subtask object can use more than one parallel template object in the case when a part of the application uses more than one parallelisation strategies. This features gives the flexibility for easy experimentation and selection of the appropriate parallelisation

Figure 4: Application Object Structure

strategy for a hardware platform. During an execution of a PACE program only one template might be evaluated for each subtask.

The subtask object has the same structure as the application object (as shown in figure 4). The role of the init procedure in a subtask object is to specify the execution time of the serial part of the subtask when linked into the parallel template. The presence of the init function is optional in the subtask objects. An init function might not be required when the serial parts of the subtask are constant and can be specified directly in the link statement.

Figure 5: The Evaluation Process of a Subtask Object

Figure 5 shows the sequence of steps performed during the evaluation of the subtask object. The application object initially uses a subtask object. The init procedure of the object is the entry point. The init procedure might call other procedures of the object to evaluate the serial parts of the application. These parameters are linked to the

currently active parallel template object that was specified by the option command in the subtask object or in the application object. Finally, the current parallel template object is called and evaluated. The results of the parallel template object evaluation is the execution time of the subtasks which is returned to the application object.

2.3 Parallel Template Objects

The parallel template object describes the computation-communication pattern and allows access to the hardware devices of a system. The syntax of the parallel template objects is similar to the application and subtask objects with the exception of the statement link and the existence of additional statements for exec procedures.

The parallel template objects do not manipulate the interface of any of the other objects so there is no need for the existence of the link statement. The computation-communication pattern is expressed in terms of stages and steps. A stage is a complete phase of the parallel algorithm and might include many computations and communications. In many cases a parallel template might have many stages of the same computation-communication pattern. The number of stages in a parallel template object is defined using the option nstage. The evaluation procedure is shown in figure 6.

The parallel template object provides an interface to the resources in the hardware object. When evaluated this allows the application object to specify hardware resource usage. The serial execution time can be calculated in any object with the use of cflow procedures. This indirectly involves the hardware models for a single CPU. However, all the other resources including the system inter-connection network, input/output devices, etc., are accessed through the parallel template objects. This is done by describing the steps in a stage. Each step corresponds to an access to one or more hardware resources, e.g. for computation the CPU, for inter-processor communication the communication network, and for retrieval of data hard disks.

Figure 6: Parallel Template Evaluation Procedure

Individual steps are defined in exec procedures using the command step (which is only applicable to parallel template objects). This command defines the hardware resource that will be used and any necessary parameters. Optionally, the set of processors that the step occurs on can be defined by using the on clause of the step statement. By evaluating each step, the PACE run-time system calls the appropriate hardware model and returns the execution time for the step. The configuration of each device is done with the command confdev. For example, the inter-processor communication network device accepts three configuration parameters. These are: the size of a message, the source processor, and the destination processor. This configuration can be repeated many times during the same step in order to describe a complete communication pattern.

3 The Run-Time Environment

The run-time system provides the tools needed to produce performance predictions from a set of PACE scripts representing a single modelled application. Each PACE object must be entered into a separate file; the name of the file should be the name of the object with an *.la* suffix appended to it. For example, an object called async would have a PACE script called *async.la*. Once all of the PACE objects in the model have been defined they are compiled using the PACE compiler and then linked together to form a single executable program. This program can then be executed to evaluate the model and give predictions of its performance.

3.1 The Compiler

Each PACE object is compiled into a standard linkable object file. Due to the way in which objects link to each other it is necessary to compile the parallel template objects before the subtask objects, and the subtask objects before the application object.

The shell command *chip3s* is used to compile each PACE program, for example, the following command compiles a PACE script called *foo.la* into a linker object called *foo.o*,

\$ chip3s foo.la -o foo.o

The other compiler options available can be listed by giving the -help option to the compiler. Once all of the PACE objects have been compiled, the *chip3sld* command is used to link them into a single program. For example to link the compiled object files *app.o*, *sub.o* and *tmp.o* into a single model called app the following command would be used.

\$ chip3sld -o app app.o sub.o tmp.o

This creates an executable program, called *app*, that contains the performance objects making up the overall model. The program also contains the evaluation engine needed to produce performance predictions about the modelled application.

3.2 The Evaluation Engine

The evaluation engine evaluates the compiled PACE objects, combining the results to produce detailed predictions of the performance of the whole application. Each time the program is executed the models are evaluated and a set of predictions produced for the current problem configuration (i.e. the set of application parameters).

The external application parameters may be modified to control the behaviour of the model. Running the model with the -list-vars command-line option produces a list of the parameters available with that model, and their standard values. To change the value of a parameter its name and new value must be given as a command-line option to the model, they should be separated by an equals sign, with no spaces between them. For example, the following command evaluates a model called *app*, changing the value of its Nproc parameter to 16.

\$ app Nproc=16

When a model is evaluated it outputs the performance predictions it computed to the standard output stream. By default, only the overall time taken is printed, preceded by the text Tx =. For example,

\$ app Nproc=16
Tx = 1.44154e+07

However, each evaluation produces much more detailed predictions than this. Using different command-line options when evaluating a model, it is possible to access these other predictions.

-proc-table Output a table listing predictions for each processor.

-list-segs List each CFLOW procedure and the time that it is predicted to take.

-list-compat List the communication pattern of the model.

-trace Output PICL format trace information into a file ending in .trf

There are also a number of debugging options available, these are useful for finding errors in the PACE programs and for examining how the evaluation engine actually works. Use the -? option to the executable model to find out exactly what types of debugging information is available (look at the -debug option).

4 Language Description

This section presents the syntax and the semantics of the PACE language. The description includes:

- The definition of the object types, the role of each object and a road-map to the structure of the object (section 4.1).
- The object header is described in detail (section 4.2). The statements included in the object header include the interface definition, the setting of parameters of the objects that will be used by the current object and setting of the configuration of the object.
- The control flow procedure syntax is described in section 4.3. These procedure describe the control flow of a part of an application in terms of a graph notation.
- The statement of execution procedures are presented in section 4.4.
- The data representation and manipulation statements are described in section 4.5.

The syntax of the language is described in BNF form. The non-terminal symbols are presented in *italics* and the terminal symbols in **bold**. A special symbol ϵ is used to denote an empty terminal symbol or the end of a syntax recursion.

4.1 **Object Definition**

application_def	\rightarrow	application identifier {
		include_lst
		vardef 1st
		link stm
		option_stm
		proc_lst
		}
subtask_def	\rightarrow	<pre>subtask identifier {</pre>
		include_lst
		vardef_lst
		link_stm
		option stm
		proc lst
		$proc _si$
		}
partmp_def	\rightarrow	<pre>partmp identifier {</pre>
		include_lst
		vardef_lst
		option stm
		nroe let
		proc <u>u</u> si
		}

There are four types of objects representing each layer of the layered approach methodology. Three of them can be defined the PACE language. The user can define, in each performance study, one application object and a number of subtask and parallel template objects.

The purpose of the application object is to provide an entry point for the performance study, to include the interface that can be used in the run-time system by the user, and finally to combine the subtask objects of the performance study using control flow and execution procedures.

The subtask object represents a part of the application that has been parallelised with a specific parallelisation method. The subtask includes the evaluation of the serial parts of the parallel task and the linking of these serial parts onto a parallel template. The subtask might link with more than one parallel templates in cases where the subtask needs to use different parallel algorithms for different hardware platforms or when an experimentation is required to determine the most efficient parallel algorithm. However, during an evaluation of the performance study only one parallel template is used per subtask.

The parallel template object describes the computation-communication pattern of a parallel algorithm. The parallel template might link with one or more hardware platforms. It includes statements to describe the computation communication pattern and to map this to the various communication topologies supported by the hardware object. The syntax of parallel template objects is similar to the other objects. Exceptions are the absence of the *link* statement and the existence of some additional statements in exce procedures. The *link* statement is not used because parallel template objects do not modify the interface of any other type of objects. The additional statements in the

exec procedures are used to represent the stages and steps of the parallel algorithm and the use of the hardware devices.

The PACE language does not support the definition of hardware objects from within the language syntax. The hardware objects must be defined using the C programming language. The interface of the hardware object must be defined in order for the application, subtask, and parallel templates objects to read and modify hardware parameters.

4.2 Object Header

include_1st	\rightarrow or or	include_stm include_lst include_stm e
include_stm	\rightarrow	include identifier;
varde <u>f_</u> lst	\rightarrow	vardef_stm
	or	vardef_lst vardef_stm
	or	ϵ
vardef_stm	\rightarrow	<pre>var type : var_lst ;</pre>
var_lst	\rightarrow	var_opt
	or	var_lst, var_opt
var opt	\rightarrow	assignment stm
	or	identifier
	01	uenngier
type	\rightarrow	numeric
	or	vector
	or	string
link stm	\rightarrow	link { link body }
	or	ε
link bady		link opt
unk_Doay	\rightarrow	link_opi
	or	ипк_доау ипк_орі
link_opt	\rightarrow	identifier : assignment_lst
option_stm	\rightarrow	option { <i>option_body</i> }
option_body	\rightarrow	assignment_lst
	or	option_body assignment_lst
procedure_lst	\rightarrow	procedure_def
	or	procedure_lst procedure_def
	or	ϵ
procedure_def	\rightarrow	proc_cflow
	or	proc_exec
		•

The *include* statement is required to declare the use of other objects (for reading or modifying their parameters). The PACE compiler reads the symbol file of the object used as parameter in the *include* command. The symbol file contains the type of the object and the external variables of the object.

The *vardef* statements define the variables before their use. These parameters might be interface variables accessed by other objects, global to the object by hidden by other objects, and locals to procedures. The *var* statement declares the variables that will be used.

The *link* statement allows an object to modify the interface parameters and options of other objects. This is the method supported by PACE for inter-object communication. The objects that their parameters will be modified should be defined with the *include* statement prior to the *link* statement. The parameters that will be modified must have been defined in the *vardef* statements of the objects.

There are a number of rules concerning the type of the objects that can be manipulated. The application object can modify subtask and hardware objects, the subtask object can modify template and hardware objects, and finally the parallel template is not allowed to modify any objects.

The *option* statement allow the setting of the objects configuration. Each object depending on each type have a number of pre-defined options such as the default hardware platform, the setting of the debugging mode etc. These options can be also modified by other objects with the *link* statement. The available options are:

- hrduse A string value, valid in application or subtask objects. It controls hardware model selection and *must* be defined somewhere.
- nstage A numeric option that can be set in parallel templates. It sets the number of times the stage is repeated.
- ptmuse A string option that can be used in subtask objects to select the parallel template to be used.

There are two types of procedures supported: the *cflow* and the *exec* procedures. The *cflow* procedures represent the control flow of a piece of software. The compiler evaluates the *cflow* procedures using a graph evaluation algorithm. The output of the *cflow* procedures is an expression that predicts the execution time of the software that the *cflow* procedure represents. The *exec* procedure includes execution statements for looping, branching, etc. which can be run in a similar fashion to a general purpose language code. Execution procedures are included in the PACE language to enable non control flow evaluations to take place.

4.3 Control Flow Procedures

proc_cflow	\rightarrow	<pre>proc cflow identifier argument_lst { vardef_lst cflow_lst }</pre>
cflow_lst	\rightarrow or	cflow_stm cflow_lst_cflow_stm
	or	e e
cflow_stm	\rightarrow	compute_stm

	or	loop_stm
	or	case_stm
	or	call_stm
	or	{ cflow_lst }
compute_stm	\rightarrow	compute vector;
loop_stm	\rightarrow	loop (vector, expression) cflow_stm
call_stm	\rightarrow	call call_type_opt identifier ;
	or	call call_type_opt identifier (expression_lst) ;
call_type_opt	\rightarrow	cflow
	or	exec
	or	ϵ
case_stm	\rightarrow	case (vector) { case_lst }
case_lst	\rightarrow	case_opt
	or	case_lst case_opt
case_opt	\rightarrow	expression : cflow_lst
argument_lst	\rightarrow	argument_lst, argument_opt
-	or	ϵ
argument_opt	\rightarrow	var identifier_lst ;

The compiler analyses the cflow procedures using a graph analysis algorithm and outputs the evaluation expression of the control flow graphs. The procedures return the time required to execution the part of the application represented by the control flow description. The definition of the procedure includes an identifier that is the name of the procedure and an optional list of arguments that can be passed from the caller. Arguments are passed by value and can only be numbers.

An important aspect of the characterisation is the formation and use of the description of the system resources also known as resource models [10]. The resource models are coupled with information about the application tasks in terms of resource usage information, which are termed resource usage vectors. The resource models are embedded in the hardware object definitions and are invisible from the user. However, the resource usage vectors are application specific and are defined by the user in the control flow procedures. A resource usage vector is associated with each statement that represents the control flow of the application.

The cflow statements are:

- *compute* represents a processing part of the application. The argument of the statement is a resource usage vector. This vector is evaluated through the current hardware object. The result of the evaluation is the execution time required for the processing stage.
- *loop* includes two arguments. The first is an expression that defines the number of iterations, and the second is the resource usage vector that represents the loop

overhead per iteration. The main body of the *loop* statement includes a list of the control flow statements that will be repeated.

- *call* is used to execute another procedure. This procedure might be either cflow or exec procedure. The result returned from this procedure is added to the total execution time of the current control flow procedure.
- *case* includes an argument which is the resource usage vector that represents the overhead of this statement. The body of the statement includes a list of expressions and corresponding control flow statements which might be evaluated. The expressions represent the probability of the corresponding control flow to be executed.

4.4 Execution Procedures

proc_exec	\rightarrow	proc exec <i>identifier argument_lst</i> { <i>vardef_lst exec_lst</i> }
exec_lst	\rightarrow	exec_stm
	or	exec_lst exec_stm
	or	ϵ
exec_stm	\rightarrow	{ <i>exec_lst</i> }
	or	assignment_stm;
	or	if (cond_expr) exec_stm if_else_opt
	or	while (cond_expr) exec_stm
	or	<pre>for (assignment_stm ; cond_expr ; assignment_stm)</pre>
		exec_stm
	or	break ;
	or	continue ;
	or	<pre>print expression_lst ;</pre>
	or	call call_type_opt identifier ;
	or	call call_type_opt identifier (expression_lst) ;
	or	return ;
	or	return expression;
	or	exit;
	or	dim identifier, expression;
	or	free identifier ;
	or	step identifier step_proc_lst { exec_lst }
	or	confdev expression_lst;
if_else_opt	\rightarrow	else exec_stm
	or	ϵ
step_proc_lst	\rightarrow	on expression
	or	on expression, expression
	or	on expression, expression, expression
	or	ϵ

The exec procedures include executed statements such as looping, branching, etc. In contrast to the control flow procedures the execution procedure statements are translated directly to the corresponding statements in the target language. Each object might contain an exec procedure init that is the entry point of the object. This procedure is called upon any reference to the object that includes it.

The PACE language supports the *while* statement for looping operations. It requires an expression as an argument. This is the condition that as long as it is true the loop is executed. Two related statements are the *break* and the *continue*. These statements are valid when executed inside a loop. The *break* statement terminates the loop independently of the condition of the *while* statement. The *continue* statement causes the next iteration of the enclosing loop to begin.

For conditional branching the *if else* statement is supported, the *else* clause is optional. There is also the *call* statement that is similar to the one used in the control flow functions. However, only exec procedures are allowed to be called. Also a procedure might be called implicitly while its name is used in an expression. In this type of call both *cflow* and *exec* procedures can be used.

The *return* statement determines the end of the execution of the current procedures and the *return* of the execution of the procedure that has called the current executing procedure. If *return* includes an expression argument the results of the expression if returned to the caller procedure. The *exit* command terminates the execution of the performance study and returns control to the PACE run-time system.

The *dim* and *free* statements provide dynamic vector allocation support. The *dim* statement creates a data vector (not a resource usage vector). The first argument is the name of the vector and the second the size of the vector. The *free* statement de-allocates the vector. Additionally assignment and *print* statement are supported.

The *step* and *confdev* statements are applicable only in parallel template objects. Each pattern might contain more than one stage and each stage more than one step. Each step corresponds to the use of one of the hardware resources of the system. The first argument in the *step* command is the name of the device that will be used during the step. The available devices of the current hardware platform are listed in the hardware symbol file that is used with the *include* statement in the step hrddev.

The second argument of the *step* statement is optional. It can be used to define the set of processors affected by this step. It can have up to three numerical expressions, the first being thefirst processor in the set, the second being the last processor, and the third being the stride. The code body of the *step* statement is to configure the device specified in the current step.

A *step* statement must not include other embedded *step* statements. The configuration of the device is performed with the *confdev* statement. The arguments of this statement is a list of expressions. The meaning of these arguments depend on the device. For example the device *cpu* accepts only one argument which is the execution time of a processing stage. The device *inpcom* (inter-processor communication) accepts three arguments the message size, the source, and the destination processors. The *confdev* statement in the case of the *inpcom* device can be used many times to describe a complete communication pattern. Other hardware devices might include access to a storage device or communication between parallel systems across HiPPi networks etc.

4.5 Data Representation and Manipulation

assignment_stm	\rightarrow	<i>identifier</i> = <i>expression</i>
	or	identifier = vector_const
	or	<i>identifier</i> = <i>string_const</i>

expression_lst	\rightarrow	expression_opt
	or	expression_lst , expression_opt
expression_opt	\rightarrow	expression
	or	string_cost
	or	ϵ
expression	\rightarrow	expression + expression
	or	expression – expression
	or	expression * expression
	or	expression / expression
	or	– expression
	or	+ expression
	or	(expression)
	or	variable
	or	identifier (expression_lst)
	or	identifier ()
	or	number
cond_expr	\rightarrow	expression > expression
	or	expression >= expression
	or	expression < expression
	or	expression <= expression
	or	expression == expression
	or	expression ! = expression
variable	\rightarrow	identifier
	or	identifier [expression]
	or	identifier . identifier
vector	\rightarrow	vector_const
	or	identifier
vector_const	\rightarrow	$<$ is identifier , expression_lst $>$
	or	<0>
string_const	\rightarrow	" string_char "

The language supports three data types: numeric, one dimensional vectors, and strings. These can be represented either as constants or variables. Variables must be declared before used, by the *var* statement. The scope of the variable might be externally visible to other objects, external in the object but hidden from other objects, and finally local to a procedure. The attributes of the variable is again determined with the *var* statement.

A vector can be of type data or resource usage. This attribute is defined as the first parameter in the vector definition using the *is* statement. If the argument in the *is* statement is *data* the vector is handled as data, otherwise it is handled as a resource usage vector. In this case the type of the resource usage is defined as the identifier that follows the *is* statement. Dynamically allocated data vectors are supported with the *dim* and *free* statements. The vector type cannot change during the variable's life time.

PACE provides a dynamic approach for defining the type of vectors. The user has the ability to define additional vector types by specifying the type of the vector and the elements that can be included. This definition is done by an additional tool, the vector definition tool (*mkrsus*), that converts the user definition to a vector specification file that is used by the PACE compiler during the compilation stage. Attributes of a vector type are the number of elements of the vector. A vector can have either a fixed or variable number of elements. Each element can be a number, a symbol, or a combination of both. An example definition of the *data* vectors in the tool follows:

```
(* Array numeric vector *)
def data {
          args variable;
          type numeric;
}
```

An example definition of a resource usage vector for floating point operations can be defined as follows:

```
(* Floating point operation resource usage vector *)
def flop {
    args variable;
    type combination;
    { add, sub, mul, cmp, div, sqr, exp, sin, other }
}
```

The *flop* vector has a variable number of elements but its element might be an expression that includes numeric values and/or symbols. The symbols are defined as the type of floating point operation (add, subtraction, etc.).

The expressions can only include numeric values. The expressions support the +, -, \times , \div arithmetic operations, unary -, the call of cflow, exec, or pre-define mathematical procedure, the reference to any numeric variable.

A variable can be an identifier referring to a local to the object variable, an element of a data vector, and an external to the object variable. In this case the scope must be defined first and then, separated with a dot, the name of the parameter must be identified. The string constants and variables can be only used for output purposes.

4.6 Miscellaneous

assignment_lst	\rightarrow	assignment
	or	assignment_lst , assignment
	or	ϵ
vector	\rightarrow	identifier
	or	vector_const

identifier, string_char and number are defined in the lexical analyser.

5 Characterising a Sorting Kernel

An example of using the PACE language to develop a characterisation performance model is shown below. The application under consideration is a sorting kernel based on the Batcher's bitonic sort. The kernel developed for a transputer based Parsytec SuperCluster. The are a number of phases for the execution of this kernel:

- **Data Load** A number of data elements are stored on the hard disk of the host workstation. Part of the data is loaded into the memory of each transputer.
- **Serial Sorting** The data elements in the local memory of each processor are initially sorted using a serial sorting algorithm, which in this case is quicksort.
- **Merging** The sorted data elements on each processor are merged with the bitonic algorithm in order to create a overall sort list.

Data Store The sorted array is stored onto the hard disk of the host workstation.

In this example, only the merging part of the sort is considered. The PACE program consists of: an application object *memsort*, that combines the serial sort with the merge procedures; the serial subtask object *qsort* (that is not presented here); the subtask object *merge* that uses the bitonic parallelisation strategy; and the parallel template object *bitonic*. The example illustrates the use and interfaces between objects of all types. It is not intended to provide the results of a performance study. The source code of the application object is described first.

5.1 Application Object

```
1 (*
 2 * memsort.la - Parallel memory sorting
 3 *)
 4 application memsort {
5
                            (* Qsort subtask *)
       include qsort;
 6
       include merge;
                            (* Merge subtask *)
 7
       include hardware;
                           (* Hardware parameters *)
 8
       include parsytec;
                           (* Parsytec hardware model *)
9
       (* Interface and global variables *)
10
       var numeric:
           Nelem = 262144,
                                    (* # of elements *)
11
                                    (* size of element *)
12
           Nsize = 4,
13
           Nproc = 16;
                                    (* # of procs *)
14
       (* Linking to other objects *)
15
       link {
16
       hardware:
17
           Nproc = Nproc;
18
       qsort:
           Nelem = Nelem / Nproc,
19
```

```
20
            ModelCh = 2;
21
       merge:
22
            Nelem = Nelem,
23
            Nsize = Nsize;
24
       }
       (* Options *)
25
26
       option {
27
            hrduse = "parsytec";
       }
28
29
       (* Entry point procedure *)
30
       proc exec init {
31
            call qsort;
32
            call merge;
33
       }
34 }
```

The application object, memsort, begins with its name definition in line 4, followed by the object header (lines 5–28), and finally the main body (lines 29–34).

Initially the objects used are defined in lines 5–8 with the *include* statement (the memsort object uses the subtask objects qsort and merge and the generic hardware object).

The definition of the parameters that can be modified by the user through the PACE run time system follows in lines 9–13. These are the number of elements to be sorted (Nelem), the size of each elements in bytes (Nsize), and the number of processors (Nproc). The modification of parameters in the other objects being used is specified in lines 14–24 (using the *link* statement). Initially (lines 16–17) the hardware object parameter Nproc is set to the number of processors. It should be noted that the parameter *Nproc* has the same name in both the application and the hardware objects. However, there is no scope conflict since the parameter on the left of the assignment belongs to the hardware object and the parameter on the right belongs to the application object. Similarly the parameters are set for the qsort and the merge subtask objects (lines 18–23).

Only one option is set in this example, the *hrduse* option specifies that this application must use the object called parsytec to provide the hardware characterisation (lines 25–28).

The last part of the object is the init execution procedure. This is the entry point of the object (and the performance study as a whole). In this case, it calls the qsort and merge objects.

5.2 Subtask Object (merge)

```
1 (*
2 * merge.la - Parallel merge (bitonic) sort
3 *)
4 subtask merge {
5 include bitonic; (* Bitonic parallel template *)
```

```
6
       include hardware;
                            (* Generic hardware object *)
 7
       (* Interface *)
 8
       var numeric:
 9
           Nelem = 4096,
                            (* Elements to be sorted *)
10
           Nsize = 4,
                            (* Size (bytes) of each element *)
                            (* Data per processor *)
11
           dtpp,
                            (* Prob. to exit merge loop *)
12
           Pmrg;
13
       (* Linking to other objects *)
       link {
14
15
       bitonic:
16
           Ndata = dtpp,
17
           Clen = Nsize,
18
           Тx
                 = Txsort();
       }
19
20
       (* Options *)
21
       option {
22
           ptmuse = "bitonic";
23
       }
24
       (* Entry point procedure *)
25
       proc exec init {
26
           var numeric: Pmrg0 = 0.639, Pmrg1 = 0.793;
27
           dtpp = Nelem / hardware.Nproc;
28
           (* Linear regression model for merge prob. *)
29
           Pmrg = Pmrg0 + Pmrg1 / hardware.Nproc;
30
       }
31
       (* Main seg for merge function *)
32
       proc cflow Txsort {
33
           var vector:
34
               start = <is clc, 3*IASG>,
35
               merge = <is icc, 169, 20>,
               tlcp = \langle is ct, 6.03 \rangle,
36
37
               otcp = <is clc, FOR, IASG, ICMP, 2*IADD,
                         4*VIDX, 2*FASG>;
38
39
           compute start;
40
           loop (<0>, 2*dtpp*Pmrg)
41
               compute merge;
42
           loop (<0>, 2*dtpp*(1-Pmrg))
43
               compute tlcp;
44
           loop (<0>, dtpp)
45
               compute otcp;
46
       }
47 }
```

The source code of the merge object begins with the subtask name definition (line 4) and continues with the object header (lines 5–23), and the procedures init and Txsort (lines 24–46). The execution time for the merging is calculated by the control flow procedure Txsort.

Initially the use of the bitonic parallel template object and the generic hardware object (lines 5–6) are declared. The interface parameters are defined in lines 7–12. These are: the number of elements to be sorted (Nelem), the size of each element (Nsize), and the probability for the merge software execution graph in the Txsort procedure (PmrgO). The parameters for the objects bitonic and seq are set in lines 13–19. For the bitonic object the number of elements (Ndata), the size of each element (Clen), and the execution time required for each merge (Tx) are set.

The init procedure (lines 24–30) calculates the parameters dtpp (data elements per processor) and Pmrg (the probability for the merge loop to be finished in the Txsort control flow graph). The control flow procedure *Txsort* (lines 31–46) evaluates the graph shown in figure 7. The resource usage of the graph nodes is defined in lines 34–38. These are vectors and include different types of resource usage information. The parameters start and otcp are high level language resource usage vectors, the parameter tlcp is execution time, and the parameter merge is an instruction level resource usage vector. The control flow graph is described in lines 39–45. The *compute* statement accepts one argument which is a resource usage vector while the *loop* statements first argument is a resource usage vector representing the loop overhead per iteration, and the second argument defines the number of repetitions. In all cases the loop overhead has been considered zero.

Figure 7: Control Flow Graph for Merge

5.3 Parallel Template (bitonic)

1 (*

```
2 * bitonic.la: Bitonic parallel template
 3 *)
 4 partmp bitonic {
                            (* Parsytec object hardware *)
 5
       include hardware;
                            (* Chips system parameters *)
 6
       include Eval;
       (* Interface *)
 7
 8
       var mpruv:
                            (* Execution time *)
 9
           Τx
               = 0;
10
       var numeric:
11
           Ndata = 1024,
                            (* Number of data *)
12
           Clen = 4,
                            (* Size of elements *)
13
           dtpp,
                            (* Data per processor *)
                            (* Value of GetDest *)
14
           Comseq;
15
       (* Options *)
16
       option {
17
           nstage = Log(2, hardware.Nproc), seval = 1;
18
       }
19
       proc exec GetDest
20
           var phase, src;
21
       {
22
           var numeric: group, dist, dest;
23
           group = Power(2, Eval.nstage + 1);
           dist = Power(2, phase - 1);
24
25
           if( Mod(src, dist * 2) < dist )</pre>
26
               dest = src + dist;
27
           else
28
               dest = src - dist;
29
           if (Mod(src, group) >= group / 2) {
30
               if (dest < src)
31
                   Comseq = 0;
32
               else
33
                   Comseq = 1;
34
           } else {
35
               if (dest < src)
36
                   Comseq = 1;
37
               else
38
                   Comseq = 0;
39
           }
40
           return dest;
41
       }
42
       (* Evaluation of each stage *)
```

```
43
       proc exec EvalStage {
44
           var numeric:
45
                phase, ptrg, psrc;
46
           phase = Eval.nstage;
47
48
           while (phase > 0) {
49
                step inpcom {
50
                    psrc = 0;
51
                    while (psrc < hardware.Nproc) {</pre>
52
                         ptrg = GetDest(phase, psrc);
53
                         if (Comseq == 0)
54
                             confdev psrc+1, ptrg+1, dtpp;
55
                         psrc = psrc + 1;
56
                    }
57
                }
                (* And then processing time *)
58
59
                step cpu {
60
                    confdev Tx;
61
                }
                step inpcom {
62
63
                    psrc = 0;
64
                    while (psrc < hardware.Nproc) {</pre>
65
                         ptrg = GetDest(phase, psrc);
66
                         if (Comseq == 1)
                             confdev psrc+1, ptrg+1, dtpp;
67
68
                         psrc = psrc + 1;
                    }
69
                }
70
71
                phase = phase - 1;
           }
72
       }
73
74
       (* Entry point *)
75
       proc exec init {
76
           dtpp = Round(Clen * Ndata);
77
            (* Evaluation of stage *)
78
           call EvalStage;
       }
79
80 }
```

The name of the parallel template object bitonic is defined in line 4. The header of the object (lines 5–18) contains the definition of other objects which are used, the declaration of the interface parameters, and the setting of the options of the objects. The parallel template uses the generic hardware object and the special purpose object Eval that includes parameters related to the status of the PACE run-time evaluation system. The only option set is the the number of stages of the parallel algorithm The execution procedure GetDest (lines 19–41) determine the source and target processors for a specific stage and phase of the algorithm. The procedure is called by EvalStage before defining each communication configuration. The procedures accepts two arguments, the current phase and the source processor and it returns the destination processor.

The execution procedure EvalStage is defined in lines 42–73. It describes the computation-communication pattern of the bitonic template for each stage of the parallel algorithm. The algorithm has a number of communication and computation steps in each stage. The communication steps are described in lines 49–57 and 62–70. The *while* loop determines the number of communication steps (which depends on the current stage of the algorithm). The parameters of each communication step are calculated in the *while* loop, and set in lines 54 and 67 with the *confdev* statement. The first argument of this statement is the size of the communication, the second is the source processor, and the third is the destination processor. In lines 58–61 the computation step is defined. The *confdev* statement in line 60 determines the time required for this computation phase.

The procedure init is executed for each stage (lines 74–79). It determines the number of data strored in the local memory of each processor and calls the execution procedure EvalStage.

6 Summary and Future Extensions

A performance language and a run-time environment have been presented that do not require a user to have expertise in the relevant performance evaluation methodologies. The user, with the performance language, can describe the software and the parallelisation strategies in a way that is both intuitive and more importantly can be used in the performance study.

A number of future extensions will be incorporated into future versions of the PACE language. These include:

- **Bottleneck Analysis** The operations and use of hardware resources can be analysed by ranking them in order of time costs. By doing this, the predominant classes of operations can be identified as bottlenecks in the overall performance of the system. Such an analysis can be incorporated as a future extension to the PACE toolset. This is being investigated within the PEPS project [3].
- **Overlapping Computation-Communication** One of the features of modern parallel systems is the ability to overlap the computation and the communication stages of an algorithm. This is a feature that is not currently supported by PACE and requires extensions in the syntax of the parallel template and extensions to the hardware models to support asynchronous communication.
- **Multi-threaded Processing** The parallel template currently assumes that all processors perform the same computation [1, 5]. However there are several classes of algorithms that require the use of different computations assigned to groups of processors. This feature will be supported extending the PACE language and the evaluation engine to allow the creation of trees of computation-communication patterns and use of barriers to synchronise them.

- Language Syntax Extensions for Different Topologies One of the issues that effect the re-usability of the parallel template objects is the mapping of the communication pattern onto the network topology. This currently can be achieved by the explicit use of different user procedures to handle communication patterns for different inter-connection network topologies. A support of this feature from within the syntax of the language will enforce the re-usability of the parallel template objects.
- Library of Generics Warwick's characterisation work includes the examination of a range of application areas in order to identify the computational core (also termed generics) which are common across several applications [2]. Ten generics have been selected, including curve fitting, fast fourier transform, matrix multiplication, etc., and have been further characterised [4]. A model library of generics will be developed for the PACE language, which can be used as subtask components in future application studies.

The PACE language, by providing characterisation model reusability, allows easy experimentation, supports different levels of accuracy of predictions, and different levels of model abstraction to assist the system developer, the application programmer, and the performance expert. It can be used to perform a wide range of performance studies. The main concept of PACE is the development of a performance tool for the *"rest of us"* that will allow the users to perform performance studies.

References

- [1] E. F. Gehringer, D. P. Siewiorek, and Z. Segall. *Parallel Processing: The Cm* Experience*. Digital Press, 1988.
- [2] Parallel Systems Group. Characterisation of processing needs. Final Report D5.1, ESPRIT 6962 Performance Evaluation of Parallel Systems (PEPS), 1993.
- [3] Parallel Systems Group. Analysis of bottlenecks. Interim Report D5.4, ESPRIT 6962 — Performance Evaluation of Parallel Systems (PEPS), 1994.
- [4] Parallel Systems Group. Parallelisation of generics. Interim Report D5.3, ESPRIT 6962 — Performance Evaluation of Parallel Systems (PEPS), 1994.
- [5] L. H. Jamieson, D. Gannon, and R. J. (Eds.) Douglas. *Characterizing Parallel Algorithms*. MIT Press, 1987.
- [6] B. P. Miller, M. Clark, J. Hollingsworth, S. Kierstead, S. S. Lim, and T. Torewski. IPS-2: The second generation of parallel program measurement system. *IEEE Trans. Parallel and Distributed Systems*, 1(2):206–217, 1990.
- [7] G. R. Nudd, E. P. Papaefstathiou, Y. Papay, T. J. Atherton, C. T. Clarke, D. J. Kerbyson, A. F. Stratton, R. F. Ziani, J., and Zemerly. A layered approach to the characterisation of parallel systems for performance prediction. In *Proc. of the Performance Evaluation of Parallel Systems Workshop (PEPS '93)*, pages 26–34, Coventry, U.K., November 1993.
- [8] E. P. Papaefstathiou. Characterising parallel systems focusing in re-usability. PEPS Bulletin, No. 2, November 1993.

- [9] E. P. Papaefstathiou, D. J. Kerbyson, and G. R. Nudd. A layered approach to parallel software performance prediction: A case study. In *Proc. International Conference Massively Parallel Processing*, Delft, Holland, June 1994.
- [10] E. P. Papaefstathiou, D. J. Kerbyson, G. R. Nudd, and T. J. Atherton. Comparisons of resource models within a parallel system characterisation framework. *submitted to Parallel Computing*, 1994.
- [11] M. Parashar, S. Hariri, and G. C. Fox. An interpretive framework for application performance prediction. Technical Report SCCS-479, Syracuse University, USA, 1993.
- [12] D. Pease et al. PAWS: A performance evaluation tool for parallel computing systems. *IEEE Computer*, pages 18–29, January 1991.
- [13] D. A. Reed, R. Aydt, T. M. Madhyastha, R. J. Nose, K. A. Shields, and B. W. Schwartz. An overview of PABLO performance analysis environment. Technical report, University of Illinois, USA, 1992.
- [14] M. J. Zemerly, J. Papay, and G. R. Nudd. Characterisation based bottleneck analysis of parallel systems. In Proc. of Workshop on Performance Evaluation and Benchmarking of Parallel Systems, Coventry, U.K., December 1994.

A YACC Grammar

```
%{
/*
* Project : CHIPS Compiler
* File : chips.y
* Purpose : Compiler Parser Specification
* $Id: chips.y.tex,v 1.1 1997/12/01 17:02:56 john Exp $
 */
%}
%union {
        char* string; /* String token value */
                               /* Number token value */
        float number;
}
%token APPLICATION SUBTASK PARTMP INCLUDE VAR LINK OPTION PROC
%token CFLOW COMPUTE LOOP CALL CASE
%token EXEC IF ELSE WHILE FOR BREAK CONTINUE PRINT
%token RETURN EXIT DIM FREE STEP CONFDEV
%token NUMERIC VECTOR STRING MPRUV IS
%token GTE LSE EQL NEQ
%token ON
%token <string> IDENTIFIER STRCONST
%token <number> NUMBER
%nonassoc LOWER_THAN_ELSE
%nonassoc ELSE
%left EQL NEQ
%left '<' '>' GTE LSE
%left '+' '-'
%left '*' '/'
%nonassoc UMINUS UPLUS
%nonassoc EXPLST
%%
        /*
         * Program definition
         */
                sbt_obj
program:
                apl_obj
        1
                ptm_obj
        ;
        /*
         * Object definition
         */
             apl_hd obj_body
apl_obj:
```

```
sbt_obj:
            subtask_hd obj_body
ptm_obj:
             partmp_hd obj_body
             '{' include_sec vardef_stm link_stm
obj_body:
              option_stm procedure_lst '}'
       ;
subtask_hd:
             SUBTASK IDENTIFIER
 ;
apl_hd:
           APPLICATION IDENTIFIER
    ;
partmp_hd: PARTMP IDENTIFIER
       ;
       /*
       * Object Header
       */
       /* Include statement */
include_sec: include_lst
   ;
include_lst: /* Empty */
     include_lst include_stm
       ;
include_stm: INCLUDE IDENTIFIER ';'
             INCLUDE error ';'
     ;
     /* Link statement */
link_stm: /* Empty */
             link_hd link_body '}'
     ;
link_hd: LINK '{'
   ;
          link_opt
link_body:
    link_body link_opt
      ;
link_opt: link_hd assignment_lst ';'
link_hd error '.'
             link_hd error ';'
    ;
```

```
link_hd:
              IDENTIFIER ':'
      error ':'
       ;
       /* Option statement */
option_stm: /* Empty */
              option_hd assignment_lst opt_semi '}'
       ;
              OPTION '{'
option_hd:
       ;
       /* A do-nothing optional semi-colon for option stmts */
opt_semi:
          /* Empty */
              ';'
       ;
       /*
        * Procedure definitions
        */
procedure_lst: /* Empty */
       procedure_lst proc_cflow
       procedure_lst proc_exec
       ;
       /*
        * Execution Procedures
        */
             exec_hd argument_lst '{' vardef_stm exec_lst '}'
proc_exec:
       ;
              PROC EXEC IDENTIFIER
exec_hd:
      ;
exec_lst:
              /* Empty */
      exec_lst exec_stm
       ;
exec_stm:
              assignment_stm
              return_hd ';'
       return_hd expression ';'
       call_stm
       EXIT ';'
       dim_stm
       FREE IDENTIFIER ';'
       print_stm
       while_stm
       for_stm
              CONTINUE ';'
```

```
BREAK ';'
        if_stm
        step_stm
       confdev_stm
       error ';'
        error '}'
        ;
        /* Assignment Statement */
assignment_stm: assignment_opt ';'
       ;
assignment_opt: string_assign

    numassign

    vctassign_hd vector_const

    vctassignel_hd expression

        :
string_assign: IDENTIFIER '=' STRCONST
       ;
numassign: numassign_hd expression
       ;
numassign_hd: IDENTIFIER '='
      ;
vctassign_hd: IDENTIFIER '='
     ;
vctassignel_hd: vctasgel_hd expression ']' '='
       ;
vctasgel_hd: IDENTIFIER '['
      ;
assignment_lst: assignment_opt
       assignment_lst ',' assignment_opt
               error ',' assignment_opt
        ;
       /* Dim statement */
dim_stm:
          dim_hd expression ';'
      ;
dim_hd:
           DIM IDENTIFIER ','
        ;
       /* Print statement */
```

```
print_stm: print_hd print_lst ';'
  ;
print_hd:
              PRINT
      ;
print_lst:
              /* NULL */
              print_lst ',' expression
print_lst ',' STRCONST
       1
               STRCONST
       expression
       ;
       /* While statement */
while_stm: while_hd while_cnd exec_compound
       ;
             WHILE '('
while_hd:
     ;
while_cnd: expr_cnd ')'
       ;
      /* For statement */
           for_hd '(' for_pre ';' for_cnd ';'
for_stm:
              for_post ')' exec_compound
      ;
              FOR
for_hd:
    ;
for_pre:
              numassign
      ;
for_cnd:
               expr_cnd
    ;
for_post:
              numassign
       ;
       /* Conditional statement */
              if_hd '(' if_cnd ')' exec_compound
if_stm:
               %prec LOWER_THAN_ELSE
              if_hd '(' if_cnd ')' exec_compound
       if_else exec_compound
      ;
if_hd:
              IF
      ;
```

```
if_cnd:
         expr_cnd
  ;
if_else: ELSE
      ;
     /* Parallel template statements */
             step_hd step_mid exec_lst '}'
step_stm:
      ;
step_hd:
             STEP IDENTIFIER
     ;
             step_mid_hd expression_lst '{'
step_mid:
    ·{'
      ;
step_mid_hd:
             ON
     ;
confdev_stm:
             confdev_hd cdev_arg_lst ';'
     ;
confdev_hd: CONFDEV
     ;
cdev_arg_lst: expression %prec EXPLST
     cdev_arg_lst ',' expression %prec EXPLST
       ;
      /* Other exec definitions */
return_hd: RETURN
      ;
exec_compound: '{' exec_lst '}'
             exec_stm
    ;
      /*
       * Control Flow Procedures
       */
            cflow_hd argument_lst '{' vardef_stm
proc_cflow:
             cflow_lst '}'
     ;
cflow_hd:
          PROC CFLOW IDENTIFIER
     ;
cflow_lst: /* Empty */
             cflow_lst cflow_stm
```

;	
cflow_stm: ;	<pre>compute_stm call_stm loop_stm case_hd '(' case_cost ')' '{' case_lst '}' error ';' error '}'</pre>
loop_stm: ;	<pre>loop_hd '(' loop_cost loop_cnt ')' cflow_compound</pre>
loop_hd: ;	LOOP
loop_cost: ;	vector ','
loop_cnt: ;	expression
<pre>compute_stm: ;</pre>	<pre>compute_hd vector ';'</pre>
<pre>compute_hd: ;</pre>	COMPUTE
call_stm: ;	<pre>callproc_hd ';' callproc_hd '(' expression_lst ')' ';'</pre>
callproc_hd: ;	CALL CFLOW IDENTIFIER CALL EXEC IDENTIFIER CALL SUBTASK IDENTIFIER CALL IDENTIFIER
<pre>case_hd: ;</pre>	CASE
<pre>case_cost: ;</pre>	vector
case_lst: ;	case_opt case_lst case_opt
case_opt: ;	case_pro cflow_lst

```
case_pro: expression ':'
      ;
cflow_compound: '{' cflow_lst '}'
     cflow_stm
       ;
       /*
        * Variable and Argument Definition
        */
argument_lst: VAR identifier_lst ';'
       VAR error ';'
       ;
vardef_lst: /* Empty */
              vardef_lst vardef_opt
       1
       ;
vardef_opt: VAR vartype ':' var_lst ';'
       ;
vardef_stm: vardef_lst
      ;
           var_opt
var_lst ',' var_opt
error ',' var_opt
var_lst:
     1
       ;
           IDENTIFIER
var_opt:
       assignment_opt
       ;
       /*
       * Data Presentation & Manipulation
        */
vartype:
              NUMERIC
              VECTOR
       STRING
              MPRUV
       ;
expression_lst: expression %prec EXPLST
       expression_lst ',' expression %prec EXPLST
       ;
expression: expression '+' expression
expression '-' expression
              expression '-' expression
```

	expression '*' expression
	expression '/' expression
	'-' expression %prec UMINUS
	'+' expression %prec UPLUS
	'(' expression ')'
	variable
	<pre>expproc_hd expression_lst ')'</pre>
	<pre>expproc_hd ')'</pre>
	NUMBER
;	
/* Condi	itional expression */
expr_cnd:	expression cnd_op expression
;	
cnd op:	·>·
	'<'
	GTE
ĺ	LSE
	EQL
	NEQ
;	
variable:	IDENTIFIER
	<pre>vctidx_hd expression ']'</pre>
	IDENTIFIER '.' IDENTIFIER
;	
vetidy hd.	
· · · ·	
,	
expproc_hd:	IDENTIFIER '('
;	
vector:	vector_const
	IDENTIFIER
;	
vector const:	vector hd const lst 'N'
	<pre>vector_na const_ist / vector_na const_i</pre>
•	
,	
vector hd:	<pre>'<' IS IDENTIFIER ','</pre>
-;	,
,	
/* List	of constants / RSUS id's */
const_lst:	const
	const_lst ',' const
;	

Lexical Analyser B

```
%{
/*
* Project
               : CHIPS Compiler
* File
               : chips.l
            : Compiler Lexical Analyser
 * Purpose
 * $Id: chips.l.tex,v 1.1 1997/12/01 17:02:53 john Exp $
 */
%}
%x
        COMMENT STRST
        [A-Za-z][A-Za-z0-9']*
id
number ([0-9]+|([0-9]*\.[0-9]+)([eE][-+]?[0-9]+)?)
WS
        [ \t]+
nl
        \n
%%
"(*"
               BEGIN COMMENT;
<COMMENT>.
               ;
<COMMENT>\n
<COMMENT>"*)"
               BEGIN INITIAL;
\"
               BEGIN STRST;
<STRST>[^\"]*
               {
                        yylval.string = strdup(yytext);
                        return STRCONST;
                }
<STRST>\"
               BEGIN INITIAL;
               { return APPLICATION; }
application
               { return SUBTASK; }
subtask
               { return PARTMP; }
partmp
include
               { return INCLUDE; }
var
               { return VAR; }
link
               { return LINK; }
               { return OPTION; }
option
               { return FORWARD: }
forward
proc
               { return PROC; }
               { return CFLOW; }
cflow
               { return COMPUTE; }
compute
               { return LOOP; }
loop
               { return CALL; }
call
case
               { return CASE; }
exec
               { return EXEC; }
if
               { return IF; }
               { return ELSE; }
```

else

while	{ return	WHILE; }
for	{ return	FOR; }
break	{ return	BREAK; }
continue	{ return	CONTINUE; }
print	{ return	PRINT; }
return	{ return	RETURN; }
exit	{ return	EXIT; }
dim	{ return	DIM; }
free	{ return	FREE; }
step	{ return	STEP; }
confdev	{ return	CONFDEV; }
numeric	{ return	NUMERIC; }
vector	{ return	VECTOR; }
string	{ return	STRING; }
mpruv	{ return	MPRUV; }
is	{ return	IS; }
">="	{ return	GTE; }
"<="	{ return	LSE; }
"=="	{ return	EQL; }
"!="	{ return	NEQ; }
on	{ return	ON; }
{number}	ł	
		yylval.number = atof(yytext);
	1	return NUMBER;
	}	
()		
{ws}	;	
(: 1)	r	
{10}	t	
		yylval.string = strdup(yytext);
	ן ן	return IDENIIFIER;
	ſ	
<u>մա</u> յլ		
lπτl	,	
	{ roturn	wwtext[0]. }
•	ι τουμίμ	yy dead [0], J

%%