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Failure of Interpolation in Combined Modal LogicsMaarten Marx Carlos ArecesDepartment of Computing Department of Computer ScienceImperial College The University of WarwickLondon CoventryUnited Kingdom United Kingdome-mail: mm28@doc.ic.ac.uk e-mail: careces@dcs.warwick.ac.ukOctober 14, 1997AbstractWe investigate transfer of interpolation in such combinations of modal logic whichlead to interaction of the modalities. Combining logics by taking products oftenblocks transfer of interpolation. The same holds for combinations by taking unions,a generalisation of Humberstone's inaccessibility logic. Viewing �rst order logic as aproduct of modal logics, we derive a strong counterexample for failure of interpolationin the �nite variable fragments of �rst order logic. We provide a simple conditionstated only in terms of frames and bisimulations which implies failure of interpolation.It's use is exempli�ed in a wide range of cases.In 1957, W. Craig proved the interpolation theorem for �rst order logic [Cra57]. Comer[Com69] showed that the property fails for all �nite variable fragments except the one-variable fragment. The n-variable fragment of �rst order logic {for short Ln{ contains all�rst order formulas using just n variables and containing only predicate symbols of aritynot higher than n (we assume the language has only variables as terms.) Here we will showthat the axiom which makes the quanti�ers commute can be seen as the reason for thisfailure.Since Craig's paper interpolation has become one of the standard properties that oneinvestigates when designing a logic, though it hasn't received the status of a completenessor a decidability theorem. One of the main reasons why a logic should have interpolationis because of \modular theory building". As we will see below interpolation in modallogic is equivalent to the following property (which is the semantical version of Robinson'sconsistency lemma)Marx is supported by UK EPSRC grant No. GR/K54946. Areces is supported by British Council grantNo. ARG0100049. 1



If two theories T1; T2 both have a model, and they don't contradict eachother on the common language (i.e., there is no formula � built up from atomsoccurring both in T1 and in T2 such that T1 j= � and T2 j= :�), then T1 [ T2has a model.The property is not only intuitively valid for scienti�c reasoning, it also has practical (andcomputational) consequences. In practice it shows up in the incremental design, speci�ca-tion and development of software, and has received quite some attention in that community(cf., e.g., [MS84, Ren89].) Below we will give a more technical reason why interpolationis desirable: it can help in showing that irreexivity style rules in an unorthodox axiomsystem are conservative over the orthodox part.In this paper we look at interpolation in combined modal logics (and we will see that�rst order logic is just an instance of such a combination.)Combined modal logics [Gab97] are systems that are built up from simpler and familiarsystems in very diverse ways. They are poly-modal logics with some \additional structure"or requirements set over their classes of frames. One of the most interesting questions inthe �eld of combining logics is that of transfer theorems: under which conditions does ametalogical property |like �nite axiomatisability, decidability or interpolation| transferto the combined system. We will show that interpolation usually does not transfer inproducts of modal logics [GS97]. (Compare this with combining through �bering, wherewe often have transfer of interpolation [Mar95].) We obtain our mentioned result for �rstorder logic by considering Ln as a product of modal logics. We will also show failure inHumberstone's logic of inaccessibility (a combination of a modal logic with its complementmodality) [Hum83] and several generalisations of this logic. Often, combined modal logicsare proposed in an e�ort to capture some class of frames that the familiar modal systemscannot represent. Our article shows that the gain in expressive power has a price: in manycases the Interpolation Property is lost.The article is organized as follows. In the next section we show failure of interpolationin �rst order logic with �nitely many variables. Section 2 presents di�erent InterpolationProperties that can be found in the literature and explores their interconnections. We willalso present a general proof-method for disproving interpolation which allows us to worksolely with models, and truth preserving constructions like zigzag-morphisms. We thenapply this method in the following sections to combinations of modal logics and see howcertain types of combinations block transfer of interpolation.Modal logic. Amodal similarity type S is a pair hO; �i with O a set of logical connectivesand � : O 7! ! a function assigning to each symbol in O a �nite rank or arity. We callML(KS ) a modal logic of type S = hO; �i, if ML(KS ) is a tuple hLS ;KS ;Si in which,� LS is the smallest set containing countably many propositional variables, and whichis closed under the Boolean connectives and the connectives in O.� KS is a class of frames of the form hW;R3i32O, in which W is a non-empty set, andeach R3 is a subset of W �3+1. We use calligraphic capitals F to denote frames and2



their corresponding Roman F for their domains.� S is the usual truth{relation from modal logic between models over frames in K,worlds and formulas. For the modal connectives it is de�ned asM; x  3('1; : : : ; '�3) i� (9x1 : : : x�3) : R3xx1 : : : x�3 &M; x1  '1 & : : :&M; x�3  '�3If the similarity type S is clear from the context, we usually omit it. A formula ' is truein a model M (notation: M j= ') if it holds in every world in M. A formula ' is said tobe valid in ML(K) (notation: j=K ') if it is true in every model over every frame in K.We will often equate ML(K) with its set of valid formulas.1 First order logicWe will show that interpolation fails very badly in �rst order logic with two variables. Forevery �nite n, we create L2 formulas ';  such that validity of ' j=  can be proved usingonly a minimum of resources from the derivation system, and there is no interpolant for' j=  in Ln. This strengthens a similar result of Hajnal Andr�eka (unpublished), who usedjust the complete derivation system of L2. Our result shows that the axiom making thequanti�ers commute causes failure of interpolation in the �nite variable fragments.We de�ne a {highly incomplete{ derivation system for Ln as follows. Let `2 denote thederivation system consisting of these axioms schemas and rules:Ax1 Every propositional tautology is an axiom scheme.Ax2 i 8vi('!  )! (8vi'! 8vi ) for i 2 f0; 1g:Ax3 8v18v0'! 8v08v1':MP From ' and '!  infer  .UG i From ' infer 8vi', for i 2 f0; 1g.Clearly `2 is sound for �rst order logic, but hopelessly incomplete. Trivial validities like8v0(v0 = v0) and 9v09v0'$ 9v0' cannot be proven in `2.Theorem 1.1 For every n, there exist L2 formulas ';  such that1. ' `2  , and2. for every Ln formula � in the common language of ' and  , either ' 6j= � or � 6j=  .These formulas can be algorithmically obtained, and have size polynomial in n. Either 'and  are in disjoint languages, but both contain the equality symbol, or they are equality-free, but the common language contains one binary predicate.Proof. Fix an n. Let 8kvi abbreviate k many 8vi. Since all our atomic formulas willbe of the form R(v0; v1), we might as well forget about the variables, and we write atomicformulas as lowercase variables p; q etc. We propose the following formulas,3



A1 (d$ Wfpi j 0 � i � ng):A2 (pi ! :pj) 0 � i; j � n; i 6= j:A3 (pi ! Vf8kv0(d! pi) j k � ng) 0 � i � n:A4 (pi ! Vf8kv1(d! pi) j k � ng) 0 � i � n:A5 9v19v0(p0 ^ 9v19v0(p1 ^ 9v19v0(p2 : : :9v19v0pn)) : : :):C1 Vk�n+1 8kv18kv0(d$ Wfqi j 0 � i < ng):C2 Wk�n+1 9kv19kv0(Wi<n[qi ^Wf9kv1(:d ^ 9kv0qi) j 1 � k � ng]):Clearly these formulas can be algorithmically obtained from n and their size is linear inn. The predicate d can stand for the equality statement v0 = v1, or alternatively it can beseen as an arbitrary formula D(v0; v1).Let A abbreviate A1 ^ : : : ^ A5. We claim that A `2 (C1! C2) (1)There is no interpolant for A j= (C1! C2) in Ln. (2)Before we look at the proof, let us see the intuition behind the formula and its validity in�rst order logic. In classical �rst order logic, 8kvi' is equivalent to just 8vi'. WheneverA is true on a model, the predicate d is partitioned in the n + 1 pi-predicates. A5 tellsus that all the pi occur, so the domain of any model satisfying A should contain at leastn+ 1 elements. The intended interpretation of d is v0 = v1. Then A3 and A4 are triviallytrue. With that interpretation of d, the formula C1! C2 says that if d is partitioned in nqi-atoms (C1), then \there must be two di�erent elements having the same qi-value" (C2.)We have to use the more lengthy formulations of our formulas, because we want to useas little from the �rst order proof system as possible.We �rst prove (1). Instead of a derivation using the axioms, we give a semantic proof usingthe fact that `2 completely axiomatises a normal modal logic. If we read 8vi as a modalbox operator [i], then `2 axiomatises the bimodal logic over the class of frames (W;R0; R1),where the following law holds8xyz((xR0y ^ yR1z)! 9y(xR1y ^ yR0z)); (3)this by virtue of (the Sahlqvist) axiom Ax3 . We will show that in this semantics, the valid-ity of (1) must hold. Now our way of writing binary predicates P (v0; v1) as (propositional)variables p comes in handy, because the formulas involved are in the appropriate modallanguage. Suppose to the contrary that (1) fails. So we �nd a model M = hW;R0; R1; viand a world w 2 W such that M j= A and M; w  C1 ^ :C2. By A5 there are n + 1worlds wi such that for some x, wR1xR0w1 and for all i there exists an x, wiR1xR0wi+1,and M; wi  pi. By A1; A2, they are all d-worlds and all di�erent. Moreover since (3)holds in this model, we havefor all i 6= j such that i+ k = j, there is an x such that wiRk1xRk0wj, (4)where xRky stands for a k-long R-path. We claim that all the intermediate x in (4) make:d true. Suppose to the contrary that for one such x, M; x  d. Then by A4, also4



M; x  pi, and by A3, also M; wj  pi. But M; wj  pj, and i 6= j. So this is impossibleby A2.Because M; w  C1, and there is one q-variable less than there are pi ^ d-worlds, theremust be two wi making the same q-atom true. But then, by (4), we can go from a qi-worldto a qi-world, via a :d world. This is just what C2 says and that is false at w. Our desiredcontradiction. This proves (1).Let MA = hf0; : : : ; ng; Ii be the �rst order model where I(d) = f(x; y) j x = yg andI(pi) = f(i; i)g, and MC = hf0; : : : ; n�1g; Ii where d is also interpreted as the equality,and I(qi) = f(i; i)g. It is easy to see thatMA j= A andMC j= C1^:C2. Let � be any Ln-sentence constructed from the atom d which is true inMA. Because inMA d is interpretedas the equality, � is equivalent to a pure (i.e., containing only = as atomic symbols) Lnsentence. But then also MC j= �, because pure Ln formulas cannot distinguish betweenmodels of size at least n, and also in MC d is interpreted as the equality. But then � cannot be an interpolant. This proves (2), whence the theorem. qedThe last theorem shows that by just looking at the number of variables in ' !  , wecannot predict how many variables are needed for the interpolant. Our counterexampleshowed 2 variable formulas of length polynomial in n, which didn't have an interpolantin n variables. Is there some way of predicting the number of variables needed for aninterpolant as a function of some combination of the parameters, number of variables in'!  , number of relation symbols in '!  , and the length of '!  ?2 Kinds of InterpolationFor �rst order logic we �nd the following de�nitions of interpolation in the literature. LetIP (') be the set of atomic symbols occurring in ' (propositional variables in modal logic,relation symbols in �rst order logic.)AIP A logic L has the Arrow Interpolation Property (AIP) if, whenever j=L '!  , thereexists a formula � such that j=L '! �, j=L � !  and IP (�) � IP (') \ IP ( ).TIP A logic L has the Turnstile Interpolation Property (TIP) if, whenever ' j=L  , thereexists a formula � such that ' j=L �, � j=L  and IP (�) � IP (') \ IP ( ).SIP A logic L has the Splitting Interpolation Property (SIP) if, whenever '0 ^ '1 j=L  ,there exists a formula � such that '0 j=L �, '1 ^ � j=L  and IP (�) � IP ('0) \(IP ('1) [ IP ( )).For �rst order logic they are all equivalent but in general this is not the case (as we seebelow this depends on both compactness and the availability of a deduction theorem, cf.also [Cze82].) The meaning of TIP and SIP in modal logic depends on the way we de�nethe consequence relation ' j=  . There are two options: a local and a global one (cf. e.g.,[van83] or [MV97] for a discussion of their relative merits.) Let K be a class of frames, and�;  (set of) ML(K)-formulas. 5



j=loc. The local consequence relation � j=loc  holds i� for every F 2 K, for every valuationv, for every world w in F , hF ; vi; w  � implies hF ; vi; w   .j=glo. The global consequence relation � j=glo  holds i� for every F 2 K, for every valuationv, hF ; vi j= � implies hF ; vi j=  .The global relation is the one familiar from �rst order logic, but it is always de�ned for �a set of sentences (if they are formulas, the universal closure is considered.) If we view theworld w as an assignment, then for sentences as premises, the two notions are equivalent.Indeed, when � is a set of formulas {and they are treated as formulas{ the local de�nitionbecomes the more interesting (cf., the de�nition just before Proposition 2.3.6 in [CK73].)In modal logic, the di�erent interpolation properties are related as follows.Proposition 2.1 (i) With the local consequence relation, AIP, TIP and SIP are all equiv-alent.(ii) If j=loc is compact, then AIP implies TIP, and TIP and SIP are equivalent.For this reason, we will only use TIP and SIP de�ned using the global consequence relation.As compactness is a common notion in modal logic (e.g., every modal logic of an elementaryclass of frames is compact), AIP and TIP are often referred to as the strong and weakinterpolation property, respectively. We note that the splitting interpolation version is theone used in connection with modularisation of programs [MS84, Ren89]. In the rest of thearticle j= refers always to the global consequence relation.Proof. For (i), use the fact that with the local relation the deduction theorem ' j=loc  i� j= '!  holds. We prove (ii) for the uni-modal case only. The proof extends easily toany modal similarity type. For (ii) we use that we can switch from the global to the localperspective by ' j=glo  i� f2n' j n < !g j=loc  ([van83]: Lemma 2.33.)(AIP implies TIP). Assume ' j=glo  . This holds i� f2n' j n < !g j=loc  , i� (bycompactness) 2m�' j=loc  for some m, where 2m�' = '^2'^22'^ : : : ^2m'. I� {bythe deduction theorem{ j= 2m�' !  . But then, by AIP, there is an interpolant � suchthat j= 2m�'! � and j= � !  . Whence ' j=glo � and � j=glo  .(SIP is equivalent to TIP). The direction from SIP to TIP is trivial. For the otherdirection, assume '0 ^ '1 j=glo  . As above we obtain, 2m�'0 ^ 2k�'1 j=loc  . Then bythe deduction theorem, 2m�'0 j=loc 2k�'!  . Whence, 2m�'0 j=glo 2k�'!  . By TIP,we �nd an interpolant � such that 2m�'0 j=glo � and � j= 2k�' !  . Whence, '0 j=glo �and '1 ^ � j=glo  . qedIn the absence of the notion of a sentence, Robinson's consistency property is rather hardto formulate globally. The local version isRCP A logic L has the Robinson consistency property if whenever �1;�2 are both satis�-able and there is no � such that IP (�) � IP (�1)\IP (�2) and �1 j=loc � and �2 j=loc :�,then also �1 [ �2 is satis�able. 6



It is a standard proof to show thatProposition 2.2 Assuming that the local consequence relation is compact, AIP and RCPare equivalent.Relevance property. The version of the interpolation property where there are no com-mon variables in the given formulas is sometimes called the relevance property. Again wehave three versions of this property corresponding to AIP, TIP and SIP. If in a modallogic 3> $ > and 3? $ ? is valid for all modalities, then the AIP relevance propertyis equivalent to the disjunction property for formulas ';  without common variables: ifj= ' _  , then j= ' or j=  . The relevance property {insigni�cant as it may look at �rstsight{ is a strong weapon for axiomatising \di�cult logics". We mean logics for whichit is not easy to �nd a �nite (Sahlqvist) axiomatisation, but there is a �nite axiomati-sation using irreexivity-style rules. The relevance property can help to decide whethersuch rules are really needed, viz Proposition 2.9.2 in [Ven92]. The result states that for alogic axiomatised using unorthodox rules, these rules are conservative (i.e., not needed) ifthe axiom system without these rules has the AIP relevance property, and the two axiomsystems derive precisely the same formulas built up from constants only.We will now provide some simple semantical conditions on frames that imply the failureof SIP. The proof is given for unary mono-modal logics (the similarity type S = fh igis assumed �xed throughout the proof) for notational convenience, but the result can beeasily extended to n-ary poly-modal logics. First we recall the notion of bisimulation andzigzag-morphism.Bisimulation. Let G and H be two frames of type S. Let B � G�H.1. We say that B is a bisimulation between G and H if for any operator hii 2 S thefollowing clauses (called forth and back) hold:if Bxx0 & RhiiG xy; then (9y0)(Byy0 & RhiiH x0y0)and similarly in the other direction,if Bxx0 & RhiiH x0y0; then (9y)(Byy0 & RhiiG xy):If Bxx0 holds we will call x and x0 bisimilar.2. If B is a total function f , then it is called a zigzag morphism. If f is also surjectivewe use notation G f� H, and call H the zigzag morphic image of G by f .Note that in this case, it is equivalent to say that f is a homomorphism that further-more satis�es the (zag) conditionif RhiiH f(x)y0; then (9y)(f(y) = y0 & RhiiG xy):7



3. The notions of bisimulation and zigzag morphism can also be de�ned for modelsMG = hG; vGi andMH = hH; vHi, relative to a given set of propositional variables Vby adding the following condition:if Bxx0 then for all pi 2 V;MG; x  pi i� MH; x0  pi:We will say in this case that B is a V -bisimulation or a V -zigzag morphism.Lemma 2.1 Let K be a class of frames.1. SIP fails in Modal-Th(K) if there are �nite frames G;H 2 K, a frame F and surjectivezigzag morphisms m;n such that G m� F n� H, F is generated by one point w, everym-pre-image of w in G generates G, and similar for H, and there is no frame J 2 Kwith commuting surjective zigzag morphisms g and h from J onto G and H (i.e.G g� J h� H and m � g = n � h.)Moreover, an explicit counterexample for SIP can be algorithmically constructed fromthe frames and functions G m� F n� H.2. If in addition, K is elementary, then also AIP and TIP fail.The proof relies on the fact that for any �nite frame F generated by a point there is analgorithmically constructible formula �F that characterises the frame up to bisimulation.The formulas that describe frames G and H together with a description of the zigzagmorphisms m and n, will play the role of formulas '0 and '1 in the de�nition of SIP ,while  is simply a negated propositional symbol that will be \standing" in a world inF . From G m� F n� H we will be able to prove that there is no splitting interpolant for'0 ^ '1;  , while the inexistence of a frame J implies '0 ^ '1 j=  .We start by proving that we are able to syntactically characterize �nite frames, up tobisimulation.Lemma 2.2 Let F = hF;Ri be a �nite frame generated by w1 and let jF j = n. LetM = hF ; vi be a model such that v(pi) = fwig for p1; : : : ; pn. De�ne �F as the conjunctionof the following formulasA1 = W pi;A2 = pi ! Vf:pj j i 6= jg;A3 = pi ! Vfhiipj j Rwiwjg;A4 = pi ! Vf:hiipj j :Rwiwjg:Let M0 = hF 0; v0i be any model such that1. M0 j= �F and2. M0; w0  p1 for some w0. 8



Then the relation B � F 0 � F de�ned asBw0w i� w0 and w agree in the truth value assigned to fp1; : : : ; pngis a surjective fp1; : : : ; png-zigzag morphism from M0 onto M.Proof. Trivially, bisimilar worlds agree on the variables p1; : : : ; pn. The back and forthclauses hold precisely because of A3 and A4. So B is a fp1; : : : ; png-bisimulation. B isfunctional by A2 and it is always de�ned by A1. Finally B is surjective because F wasgenerated by the p1-world w1, there exists a p1-world in M0, and B is a zigzag morphism.qedNow we are ready for the proof of Lemma 2.1.Proof of Lemma 2.1. Let G m� F n� H be given as in the lemma, and suppose F isgenerated by w1. We use three disjoint sets of propositional variables:f1; : : : ; fjF j one for each point in F ;g1; : : : ; gjGj one for each point in G;h1; : : : ; hjHj one for each point in H:We create three models by making each variable true at precisely one point in the respectivemodel, and by making the fi true in G and H at precisely those points which are mappedto an fi-point in F by m and n, respectively. Formally we de�ne models MF = hF ; vFi,MG = hG; vGi and MH = hH; vHi, by settingvF(fi) = fwigvG(gi) = fwig; vG(fi) = fw 2 G j m(w) = wigvH(hi) = fwig; vH(fi) = fw 2 H j n(w) = wig:(Any value can be assigned to the other propositional letters.) We de�ne two formulasdescribing m� and n�:�m = V1�i�jF j(fi $ Wfgj j m(wj) = wig)�n = V1�i�jF j(fi $ Wfhj j n(wj) = wig):Let �G and �H be the descriptions of MG and MH in the variables g1; : : : ; gjGj andh1 : : : ; hjHj, respectively, just as in Lemma 2.2. From the valuations it is immediate thatm, n are surjective ff1; : : : ; fjF jg-zigzag morphisms fromMG and MH onto MF , (5)MG j= �G ^ �m and MH j= �H ^ �n: (6)Note that �G;�H ;�m and �n can be algorithmically obtained from G m� F n� H. Theseformulas will provide the counterexample to SIP.Claim 1 (�G ^ �m) ^ (�H ^ �n) j= :f1; (7)there is no splitting interpolant for (7). (8)9



Proof of Claim. We start with the easy part (8). Suppose to the contrary that thereis an interpolant � for (7). Then we have �G ^ �m j= � and (�H ^ �n) ^ � j= :f1 and � isconstructed from the variables ff1; : : : ; fjF jg.We will derive a contradiction. By (6),MG j= �G^�m. So by hypothesis, alsoMG j= �.But then by (5) and the fact that � is in the common ffi; : : : ; fjF jg-language, alsoMF j= �.Then again by (5) but for n, also MH j= �. By (6) now, MH j= (�H ^ �n) ^ �. So byhypothesis, MH j= :f1. But MF contains an f1-point and n is surjective, so MH mustcontain an f1-point as well. The desired contradiction. This proves (8).Now we show (7). Suppose (7) is not true. Then, there is a frame J 2 K and a valuationvJ such that� hJ ; vJ i j= (�G ^ �m) ^ (�H ^ �n) and� there is a w 2 J such that hJ ; vJ i; w  f1.De�ne two relations BG and BH as follows:BG = fhx; yi 2 J �G j x and y agree on the gig;BH = fhx; yi 2 J �H j x and y agree on the hig:Let x 2 G and y 2 H be points such that BGwx and BHwy holds (they exist becauseMJ j= �G ^ �H.) As MJ j= �m ^ �n, also MG; x  f1 and MH; y  f1. Whence,m(x) = n(y) = w1, the generating world of F . Since we assumed that any x 2 G such thatm(x) = w generates G, and similar for H, G and H are generated from x and y respectively.Thus the frames satisfy all the conditions in Lemma 2.2 and we can deriveBG is a surjective fg1; : : : ; gjGjg-zigzag morphism fromMJ onto MG: (9)BH is a surjective fh1; : : : ; hjHjg-zigzag morphism fromMJ onto MH: (10)Because MJ j= �m ^ �n, BG and BH are also ff1; : : : ; fjF jg-zigzag morphisms. But thenthe diagram must commute, since every world inMF satis�es precisely one fi. So we founda frame in K with commuting zigzag morphisms onto G and H, contrary to our assumption.This proves (7). JPart 1. of the lemma follows immediately from this claim. If K is also elementary, thenthe local consequence relation of Modal-Th(K) is compact (by compactness of �rst orderlogic, using the standard translation), so by Proposition 2.1 also AIP and TIP fail. qedIf we slightly strengthen the conditions imposed on F ;G;H in Lemma 2.1 we obtain amethod for disproving the relevance version of SIP.Lemma 2.3 Assume the condition of Lemma 2.1. If in addition F consists of one worldand G and H are both simple (i.e., every generated subframe is the frame itself), then thereare formulas ' and  without common variables such that' ^  j= ?; (11)there is no splitting interpolant for (11): (12)10



Proof. A copy of the proof of Lemma 2.1 will do. We have to prove that in Claim 1we can delete �m;�n and f1 from the given formula. We used the �'s to show that thefunctions commute. But now that is always the case since F consists of just one point.We used f1 to guarantee that the functions a and b are surjective. But since G and H aresimple, the de�ned BG and BH are always surjective. �m;�n and f1 were not used anyfurther in the proof of Lemma 2.1. qed3 Transfer of interpolation in combined modal logicsIn [MV97] the following tool is presented to prove interpolation in canonical modal logics.Let G and F be two modal frames. A frame H is called a zigzag product of G and F ifH is a substructure of the direct product G � F in the standard model-theoretic sense,where in addition the projections are surjective zigzag morphisms (also called bounded orp-morphisms.)Lemma 3.1 ([MV97]: Theorem B.4.5) If the modal logic of a class K of frames iscanonical and K is closed under zigzag products, then the logic enjoys (AIP) interpolation.An immediate consequence of being closed under zigzag products (because universal Hornsentences are preserved under substructures of direct products) isTheorem 3.2 Every Sahlqvist axiomatisable modal logic whose axioms correspond to uni-versal Horn formulas enjoys the (AIP) interpolation property.Our examples show how existential, or universal but disjunctive frame conditions canindeed lead to failure of interpolation.For the relevance property/disjunction property there exists a similar criterion. Withthe extra condition that the logic needs to be canonical, this lemma occurs in [Sai90].Lemma 3.3 Let K be a class of frames closed under taking �nite products in which thecondition 8x9yRixy holds for all relations Ri. Then the relevance property holds in themodal logic of K.Proof. On such frame classes there are up to logical equivalence only two formulas builtup from constants, > and ?. So we might as well prove the disjunction property. Suppose6j= ' and 6j=  . Then we have K models M and M0, satisfying :' and : , respectively.Because in K every relation is serial, the two models have the one-element frame as a;-zigzag morphic image. From this it follows quickly that the product of the two framesunderlying M and M0 is a zigzag product. The obvious valuation now turns this productinto a model satisfying :' ^ : . qedIn Figure 1 we have listed a few well-known conditions on frames, together with the axiomsthat characterize them. Note that these axioms give rise to canonical modal logics, so byTheorem 3.2 every modal logic de�ned by a subset of these axioms enjoys interpolation.We will see that interpolation does not transfer for any of these logics by taking productsor by forming unions in the sense de�ned below.11



T: p! 3p 8xRxx reexivity4: 33p! 3p 8xyz((Rxy ^Ryz)! Rxz) transitivityB: p ^3q! 3(q ^3p) 8xy(Rxy ! Ryx) symmetry5: 3p ^3q! 3(q ^3p) 8xyz((Rxy ^Rxz)! Ryz) euclidicityFigure 1: Conditions on frames.3.1 Products of Modal LogicsIn [GS97], bi-dimensional product logics are de�ned as follows. The product F � G of twostandard modal frames F = hF;RFi and G = hG;RGi is the modal frame hF �G;H; V i,where H and V are de�ned as(x; y)H(x0; y0) i� RFxx0 and y = y0(x; y)V (x0; y0) i� RGyy0 and x = x0:The product of two uni-modal frames leads to a bi-modal frame. We will use 3 and 3 forthe modalities de�ned over the V -relation and the H-relation (V and H are for verticaland horizontal), respectively. Their meaning is de�ned in the standard way, for example,M; w  3' i� there exists a w0 such that wV w0 and M; w0  '.For classes of modal frames K and K0 the product K � K0 is the class of frames fF �G j F 2 K and G 2 K0g. If K = K0 we also use the notation K2 to denote K�K. For familiarmodal logics like K, S4, S5, etc., we will use K�K and so on, to denote the product ofthe largest classes of frames for which these logics are complete.The notion of product logic can very easily be extended to n-dimensional productlogics by just taking the product of n uni-modal systems, but for simplicity we will restrictourselves to bi-dimensional logics.Completeness theorems are known for several cases, cf. [GS97]. We only mention thecomplete inference systems for K2 and S52. The class K2 of all product frames can beaxiomatized by adding the axioms 33 p $ 33 p and 32 p ! 23 p to the standardaxiomatization for a bi-modal system. The class S52 of all product frames where V isthe universal relation on the columns and H the universal relation on the rows, can beaxiomatized by adding to the above system the axioms that make both 3 and 3 S5-modalities.Products of modal logics have applications in computer science through their connectionwith labelled transition systems, and are closely related to (�nite variable fragments of)�rst order logic, as follows. Let (D; I) be a �rst order model. Create the modal frame(nD;�i)i<n where s �i t i� s(j) = t(j) for all j except possibly i. Then that frame is justa product of n frames (D;D�D). It's set of \worlds" are all the n-tuples over D, whichwe can view as all assignments of the �rst n variables on D. Every relation �i correspondsto a diamond hii, which in turn is the modal counterpart of the �rst order quanti�er 9vi,as is easy to see by writing out the truth-de�nition. For more on this way of modalising�rst order logic we refer to [MV97]. 12



Taking products of modal logics is a method of combining logics [Gab97] which im-mediately leads to interaction between the modalities (viz. the commutativity and theconuence axioms above.) [Mar95] shows that the method of dovetailing (a special case ofthe �bering logic approach) usually lets interpolation transfer to the combined system. Thedi�erence between dovetailing and taking products is that in the dovetailed system there isno interaction between the combined modalities. We will show that the existential nature1of the interaction obtained by taking products often prohibits transfer of interpolation.We �rst provide a general result. Afterwards we derive some corollaries. Let n2, forn a natural number, denote the product frame with domain n � n where V and H areuniversal relations on columns and rows, respectively.Theorem 3.4 Let K be a class of bi-dimensional product frames containing the frames 22and 32. Then SIP fails in the modal logic of K.Proof. The proof is a purely semantical recast of the proof of Theorem 1.1, now usingLemma 2.1. Take the frames 22 and 32 and de�ne a frame F consisting of two stateswith H and V universal accessibility relations. The functions mapping all states on thediagonal to one state in F , and all states not in the diagonal to the other are surjectivezigzag morphisms. Cf. the picture below (the relations in G, H and F are actually thereexive transitive closure of the relations shown.)
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Since all three frames are simple, in the sense that every world generates the whole frame,the conditions of Lemma 2.1 are met. We will prove now that there is no frame J suchthatJ j= 33 p! 33 p or equivalently J j= 8xyz((xHy ^ yV z)! 9w(xV w ^ wHz)); (13)there are surjective zigzag morphisms g and h from J onto G and H; (14)the morphisms commute, m � g = n � h: (15)By (15) we have for every element x in J , either m � g(x) = n � h(x) = a or m � g(x) =n � h(x) = b.We will now try to construct J and show we will fail. Since g is surjective, there shouldbe an element x1 2 J such that g(x1) = b3. By (15) then either h(x1) = b01 or h(x1) = b02.1Both the commutativity and the conuence axiom are Sahlqvist formulas which correspond to8xy(9z(xV zHy)$ 9z(xHzV y)) and 8xyz(xV y ^ xHz ! 9w(yHw ^ zV w)), respectively.13



Say h(x1) = b01 (by the symmetrical nature of H, the proof also goes through if we startfrom h(x1) = b02.) Because b3Ha2, by (14) we must have an x2 2 J such that x1Hx2and g(x2) = a2. The homomorphism condition on h makes h(x2) either a02 or b01, but usingrestriction (15) the former should hold. In the same way we obtain, by the zigzag conditionof g, x2V x3 and g(x3) = b2, and by homomorphism of h and (15), h(x3) = b02. Now by(13), from x1Hx2V x3 we can infer the existence of an x4 such that x1V x4Hx3. But thento keep the projections homomorphisms we have to make g(x4) = b1 and h(x4) = a01 andthis is excluded by (15). Hence we cannot �nd a J as asked for in Lemma 2.1 and SIPfails. The picture below shows where the contradiction is found.
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VJ

x2 [g->a2, h->a2’]

x3 [g->b2, h->b2’]

x1 [g->b3, h->b1’]

x4 [g->b1, h->a1’]

qedCorollary 3.5 Let S1 and S2 be modal logics both weaker than S5. Then SIP fails in theproduct of S1 and S2.[GS97]: Section 7 shows that the product of two elementary frame classes is itselfelementary. So in these cases, the local consequence relation is compact, and failure of SIPimplies failure of all three types of interpolation. Now we can infer many non transferenceresults, for exampleCorollary 3.6 Let K1 and K2 be two classes of frames de�ned by some subset of the listof axioms in Figure 1. Both the logics of K1 and K2 enjoy all types of interpolation, but allof them fail in the logic of the product K1 � K2.In general, we can conclude that interpolation does not transfer when taking products.(A noticeable exception is the product of two classes where the accessibility relation isa (partial) function. Interpolation for this class can easily be shown using Lemma 3.1.)[Sai90]: Theorem 2 implies that the Beth de�nability property fails for the class S5�S5,but that the AIP relevance property holds. We conjecture that the Beth property alsofails in the product of two tense logics (where we assume nothing about the accessibilityrelations.) The proof would be a combination of Sain's counterexample and the proof ofTheorem 1.1.We have some positive news concerning the relevance property though.Theorem 3.7 Let K1;K2 be two classes of frames, both closed under �nite direct productsin the model-theoretic sense. If the relations in K1 and K2 are serial, then the logic of thebidimensional product K1 � K2 has the AIP relevance property.14



Proof. By Lemma 3.3 it is su�cient to show that K1 � K2 is closed under �nite directproducts. Let � denote the bidimensional product, and 
 the direct product of structures.We claim that for all frames A;B; C;D,(A� B)
 (C � D) �= (A
 C)� (B 
 D): (16)(16) is simple to prove using the obvious isomorphism which sends hha; bi; hc; dii to hha; ci;hb; dii. Because K1 and K2 are closed under �nite direct products, (16) implies that K1�K2is closed under them as well. qedWe will now turn our attention to other combined modal logics: Humberstone's logic ofinaccessibility and its generalization to unions of modal logics.3.2 Humberstone's Inaccessibility LogicIn [Hum83], Humberstone presented the logic of inaccessibility HIL, an extension of theclassical modal systems through the introduction of a new modality h�i that has as associ-ated relation the complement of the accessibility relation of h i (which in this case we willdenote by h+i.)Humberstone proved that the inaccessibility operator h�i greatly increases the expres-sive power of the logic. New properties of frames such as irreexivity, asymmetry andintransitivity can now be captured by the system.For this logic, the questions about �nite axiomatization and �nite model propertywere already solved [GHR94, GPT87] but interpolation was still open. We will show thatinterpolation fails.A frame for HIL is a structure F = hF;R+; R�i where F is a nonempty set andR+; R� are binary relations on F that satisfy the condition (R�)c = R+ (Rc stands for thecomplement of R.) Truth is de�ned as usual:For j 2 f+;�g, hF ; vi; w  hji' i� 9w0 2 F;Rjww0 & hF ; vi; w0  '.[GPT87] contains an axiom system for HIL. They show that the class of HIL-frames andthe class of frames hW;R1; R2i where R1 [ R2 is an equivalence relation have the samemodal fh+i; h�ig-theory. (The notion of \conditions over unions" will be generalized inSection 3.3.) But then, by a simple Sahlqvist argument, the basic bi-modal axiom systemenriched with axioms which make the de�ned modality h�i' �= (h�i'_h+i') an S5-modalityis sound and complete for HIL.Theorem 3.1 All three types of interpolation fail for Humberstone's Inaccessibility Logic,even in the strong sense of the relevance property.Proof. Let K be the class of all frames hW;R1; R2i where R1 [ R2 is an equivalencerelation. We will show that SIP fails for the bi-modal logic of K. In Section 3.3 we willshow that each of the conditions reexivity, symmetry and transitivity of the union alone15



leads to failure of interpolation (Corollary 3.9.) Since K is elementary this implies that allinterpolation properties fail, and because the intended HIL-frames and K have the samemodal theory, this implies the theorem. qedThis is the \lazy" proof using Lemma 2.1. We will now provide an explicit counterexample,which also works for the expansion of HIL with the \past" or inverse operators.Goranko ([Gor90]) extended the expressive power of HIL by de�ning the system HILiwhich includes not only the complement operator h�i, but also the inverse operators h+iiand h�ii that have as associated relations the converse of R+ and R�, respectively. Thissystem is so powerful that it can give a categorical characterization of the natural orderhN ; <i (which cannot be achieved in, for example, First Order Logic.)A frame for HILi is a structure F = hF;R+; R�; Ri+; Ri�i where F is a nonempty setand R+; R�; Ri+; Ri� are relations on F � F that satisfy the conditions (R�)c = R+; Ri+ =R�1+ ; Ri� = R�1� . Notice that given a HILi frame we can obtain a HIL frame just \forget-ting" the inverse relations.Truth is de�ned using the standard clauses:For j 2 f+;�g; hF ; vi; w  hji' i� 9w0 2 F;Rjww0 & hF ; vi; w0  ':For j 2 f+;�g; hF ; vi; w  hjii' i� 9w0 2 F;Rijww0 & hF ; vi; w0  ':A complete Sahlqvist axiomatization for this system is given in [GPT87]. Again de�ningh�i' �= (h�i' _ h+i') the axiomatic system for HILi is built from the distributive ax-ioms, the basic temporal axioms and an S5 system for h�i. Thus, just as in the case ofHIL, the intended HILi frames and the class HIL�i of frames hF;R1; R2; R3; R4i whereR1 = R�13 ; R2 = R�14 and R1 [ R2 is an equivalence relation have the same modalfh+i; h�i; h+ii; h�iig-theory.We will prove that the addition of the inverse modalities to HIL is not enough to regaininterpolation.Theorem 3.2 All three types of interpolation fail for Humberstone's Inaccessibility Logicwith Inverse Operators. Furthermore all three relevance properties fail.Proof. Applying Lemma 2.3 to the following frames proves the theorem. Instead of usingthat lemma we extract two formulas which describe the crucial properties of these frames.
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(Here we don't show the converse relations.)We propose the following HIL-formulas (the subscripted g and h are propositionalvariables):' : h�i(ga ^ [+]:ga) ^ h+i(gc ^ [+]:gc) : h�i((ha0 ! h�iha0) ^ (:ha0 ! h�i:ha0)) ^ h+i((hb0 ! h�ihb0) ^ (:hb0 ! h�i:hb0)):We claim that ' !  is HILi-valid, whence also HIL-valid. Take any HILi frame F ,any valuation vF and any world w 2 F and assume that hF ; vFi; w  '. By the semanticde�nitions of h�i and h+i, there exist worlds w0; w00 2 F such that wR�w0 and wR+w00 andhF ; vFi; w0  ga ^ [+]:ga, hF ; vFi; w00  gc ^ [+]:gc. As F is a HILi-frame this impliesw0R�w0 and w00R�w00 (w0  ga ^ [+]:ga and w00  gb ^ [+]:gb forbid w0R+w0 and w00R+w00,respectively.) But this directly implies hF ; vFi; w   . Thus '!  is valid in HILi.To prove that there is no interpolant we use the frames proposed above. Transformframes G and H into models by providing the valuations vG and vH such that vG(gw) = fwgfor w 2 fa; b; cg and vH(ha0) = fa0g, vH(hb0) = fb0; c0g and vH(hc0) = fc0g.From this, hG; vGi; b  '. Let � be any HILi-formula in the common language of 'and  , i.e., it is constructed from constants, such that ' ! � is HILi-valid. Then alsohG; vGi; b  �. Now, using the fact that the function m sending all elements in G to w inF is a zigzag morphism (for HILi), hF ; vFi; w  �. As all elements in H are mapped to wand n (de�ned as m over H) is also a zigzag morphism all force �. But, as is easy to check,hH; vHi j= : . Thus '!  has no interpolant, whence the relevance version of AIP failsin HILi. Because ' !  is already HIL-valid, this is also a counterexample for AIP inHIL.We provided a counterexample to AIP and not to TIP. But the fact that in HIL (andthen also in HILi) the universal diamond h�i can be de�ned, makes it easy to transform itin such a proof (h�i' � h�i' _ h+i' means \' somewhere in the frame".) Because '!  is HILi-valid, h�i' j= h�i . If we assume there is a (turnstile) interpolant � we can againuse models hF ; vFi, hG; vGi and hH; vHi to derive a contradiction. Clearly hG; vGi j= h�i'which implies hG; vGi j= �. As above, this makes hF ; vFi j= � and hence hH; vHi j= �. As� is an interpolant we obtain hH; vHi j= h�i . But as we said before, nowhere in hH; vHidoes  hold. qedWe will now provide a more �ne-grained analysis of the failure of interpolation in HILby generalising it to unions of modal logics. This will show that there are several reasonsfor this failure, and indicate the possible ways in which interpolation can be regained byexpanding the language.3.3 Unions of Modal LogicsAs we saw, the HIL-system is equivalent to the bi-modal logic of the class of frameshW;R1; R2i where the union of R1 and R2 is an equivalence relation. We can generalizethis to a way of combining logics which we call union logics. Let I be some index set.An I-union logic is a poly-modal logic (containing modalities fhii j i 2 Ig) of a class ofI-frames hW;Riii2I where the union of all relations Ri satis�es some condition.17



Union logics are a natural class in a poly-modal framework. In many cases, a re-quirement over a relation in the model is too strong. Suppose for example that relationsrepresent actions. Then we might want to require that in each state, there is some actionthat does not change the state. But perhaps this action is not always the same! If thetemperature is increasing, for example, a stable state is obtained by cooling, while we needheating if the temperature is going down. In these cases a reexive condition over theunion of the relations representing the possible actions is what we need.Union logics are also related to the �eld of Informations Systems [Paw81]. Based on thenotion of rough sets, these systems try to capture relationships of indiscernibility amongobjects. Clearly, these relations are equivalence relations, but usually a further conditionof Local Agreement is needed to obtain an accurate model of the situation: for each framehF;Riii2I there is a linear order � on I such that i � j implies Ri � Rj. This conditionreects the fact that the di�erent relations are modeling di�erent degrees of indiscernibilityover the same objects. [Gar86] proves that if R and S are equivalence relations then theLocal Agreement condition over R and S is equivalent to transitivity of R [ S. Becauseof this, Local Agreement Logics are a kind of union logics. It is at present open whetherinterpolation holds for this logic of local agreement.For the axiomatization of union logics, we can also generalize the idea used for HIL.Let S be a modal system, de�ning h�i' �= Wi2I hii', the axiomatic system for Si2I S isbuilt from the distribution axioms for each hii plus an S system for h�i. [Are97] proves thatif S is an axiomatic system with axioms in Sahlqvist form, then the system given abovefor Si2I S is a correct and complete Sahlqvist axiomatization for its corresponding class offrames. The proof is simple and relies on the fact that changing a diamond modality h iin a Sahlqvist formula by a �nite disjunction of modalities Wi2I hii gives again a Sahlqvistformula which characterize the same property the former formula did but this time overthe union of the accessibility relations.We will now show that any of the conditions from Figure 1 leads to failure of inter-polation when they are stipulated over a union of relations, and when the class of framescontains a few, very small frames where the union is an equivalence relation. Recall thatany mono-modal logic de�ned by a subset of these conditions enjoys interpolation, so weobtain another example where transfer of interpolation fails. We �rst prove a general result,then mention some corollaries.Theorem 3.8 Let I be a set of indices of size larger than 1. Let K be a class of frameshW;Riii2I which satis�esmin K contains all �nite frames hW;Riii2I where Si2I Ri is an equivalence relation.max at least one of the conditions from Figure 1, but now speci�ed over Si2I Ri is validin K.Then the relevance version of SIP fails in the union logic ML(K).18



Proof. We will use Lemma 2.3. Fix an index set I.First we give three frames which lead to failure of SIP when the union is either reexiveor transitive.
a c

b

G
R1

R2

a’ c’

b’

H

m n

F wThe relations Ri with i 6= 1; 2 are empty. Clearly m and n mapping all elements to w arezigzag morphisms, and each element of G and H generates the full frame.First assumeSiRi must be reexive in K. Then no frame in K can exist with commutingzigzag morphisms onto G andH, because G contains an R1-reexive point, whileH doesn't.Now assume SiRi must be transitive. Again, we start the intended construction of Jby an element x1 2 J which is mapped to a in G, g(x1) = a (it exists by surjectivity.) Weanalyze the case h(x1) = a0 (for the other elements in H the argument is similar, note thesymmetry of H.) Using the relation R1 in frame G and the conditions on g and h thereexists elements x2 and x3 in J such that R1x1x2 and R1x2x3 and furthermore g(x2) = b,h(x2) = b0, g(x3) = c and h(x3) = c0. Then transitivity of the union would force Rix1x3for some i, but the homomorphism condition makes this impossible.
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x3 [g->c, h->c’]x1 [g->a, h->a’]For the cases where the union of the relations is either symmetric or euclidean, we onlygive the frames and leave it to the reader to check that the counterexample works. In bothcases the relations Ri for i 62 f1; 2g are empty and the zigzag morphisms m;n map allelements to w.
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m n qedCorollary 3.9 We just obtained four di�erent reasons why SIP fails in the union logic ofan equivalence relation, whence four reasons for failure of SIP in HIL.The next corollary is the counterpart of Corollary 3.6 (for products), which shows thattransfer of interpolation fails for these unions of modal logics.Corollary 3.10 Consider the modal theory of the class of frames hW;Riii2I where Si2Isatis�es some (nonempty) subset of the axioms from Figure 1. If jIj = 1, all types ofinterpolation hold. If jIj > 1 and �nite, the relevance version of all types of interpolationfails.4 Conclusion and further directionsWe have seen that interaction of an existential or disjunctive kind between modalitiesoften blocks transfer of interpolation in combinations of modal logics. If interpolationor the Robinson consistency property is important for the intended application of thecombined modal logic, then further work in the logic-design phase is needed to �x thefailure. Interpolation can show complex behavior when we consider reducts and expansions.For instance, monadic �rst order logic with just one variable (i.e., modal logic S5) hasinterpolation, it fails in all other �nite variable fragments, but it holds again in full �rstorder logic. If the counterexample to IP is based on a \limited counting argument", thenone often has to consider in�nite similarity types to regain interpolation (e.g., interpolationfails for the di�erence operator, but is obtained when expanding the logic with all countingmodalities.) The four di�erent reasons we provided for failure of interpolation in HIL eachsuggest an expansion of the language in which it might be recovered. E.g., the symmetry-example leads one to consider modalities with the following truth-de�nitionw  hi; ji' i� 9w0 : wRiw0 & w0Rjw & w0  ':Using them, we can eliminate the indeterminacy arising from the symmetry condition overthe union. We think that the recipe provided by Lemma 2.1 is useful for a systematicsearch for expansions which lead to regaining interpolation.We �nish with the following open problem concerning the logic of inaccessibility.Problem 4.1 Find an expansion of HIL which enjoys interpolation, and keeps the HIL-properties of decidability and �nite (schema) axiomatisability. In the optimal case, noteven the complexity of the validity problem should go up.20
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