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Abstract

We investigate transfer of interpolation in such combinations of modal logic which
lead to interaction of the modalities. Combining logics by taking products often
blocks transfer of interpolation. The same holds for combinations by taking unions,
a generalisation of Humberstone’s inaccessibility logic. Viewing first order logic as a
product of modal logics, we derive a strong counterexample for failure of interpolation
in the finite variable fragments of first order logic. We provide a simple condition
stated only in terms of frames and bisimulations which implies failure of interpolation.
It’s use is exemplified in a wide range of cases.

In 1957, W. Craig proved the interpolation theorem for first order logic [Cra57]. Comer
[Com69] showed that the property fails for all finite variable fragments except the one-
variable fragment. The n-variable fragment of first order logic —for short L,,— contains all
first order formulas using just n variables and containing only predicate symbols of arity
not higher than n (we assume the language has only variables as terms.) Here we will show
that the axiom which makes the quantifiers commute can be seen as the reason for this
failure.

Since Craig’s paper interpolation has become one of the standard properties that one
investigates when designing a logic, though it hasn’t received the status of a completeness
or a decidability theorem. One of the main reasons why a logic should have interpolation
is because of “modular theory building”. As we will see below interpolation in modal
logic is equivalent to the following property (which is the semantical version of Robinson’s
consistency lemma)
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If two theories 17, T, both have a model, and they don’t contradict each
other on the common language (i.e., there is no formula # built up from atoms
occurring both in 77 and in T3 such that T} = 0 and Ty = —0), then Ty U Ty
has a model.

The property is not only intuitively valid for scientific reasoning, it also has practical (and
computational) consequences. In practice it shows up in the incremental design, specifica-
tion and development of software, and has received quite some attention in that community
(cf., e.g., [MS84, Ren89].) Below we will give a more technical reason why interpolation
is desirable: it can help in showing that irreflexivity style rules in an unorthodox axiom
system are conservative over the orthodox part.

In this paper we look at interpolation in combined modal logics (and we will see that
first order logic is just an instance of such a combination.)

Combined modal logics [Gab97] are systems that are built up from simpler and familiar
systems in very diverse ways. They are poly-modal logics with some “additional structure”
or requirements set over their classes of frames. One of the most interesting questions in
the field of combining logics is that of transfer theorems: under which conditions does a
metalogical property —like finite axiomatisability, decidability or interpolation— transfer
to the combined system. We will show that interpolation usually does not transfer in
products of modal logics [GS97]. (Compare this with combining through fibering, where
we often have transfer of interpolation [Mar95].) We obtain our mentioned result for first
order logic by considering L, as a product of modal logics. We will also show failure in
Humberstone’s logic of inaccessibility (a combination of a modal logic with its complement
modality) [Hum83] and several generalisations of this logic. Often, combined modal logics
are proposed in an effort to capture some class of frames that the familiar modal systems
cannot represent. Our article shows that the gain in expressive power has a price: in many
cases the Interpolation Property is lost.

The article is organized as follows. In the next section we show failure of interpolation
in first order logic with finitely many variables. Section 2 presents different Interpolation
Properties that can be found in the literature and explores their interconnections. We will
also present a general proof-method for disproving interpolation which allows us to work
solely with models, and truth preserving constructions like zigzag-morphisms. We then
apply this method in the following sections to combinations of modal logics and see how
certain types of combinations block transfer of interpolation.

Modal logic. A modal similarity type S is a pair (O, p) with O a set of logical connectives
and p : O — w a function assigning to each symbol in O a finite rank or arity. We call
ML(Ks) a modal logic of type S = (O, p), if ML(Ks) is a tuple (Lg, Kg,IFg) in which,

e Lg is the smallest set containing countably many propositional variables, and which
is closed under the Boolean connectives and the connectives in O.

e Ky is a class of frames of the form (W, R<>><>60a in which W is a non-empty set, and
each R® is a subset of W*°*!1. We use calligraphic capitals F to denote frames and



their corresponding Roman F' for their domains.

e |F5 is the usual truth-relation from modal logic between models over frames in K,
worlds and formulas. For the modal connectives it is defined as

M,z k@1, .., 0p0) Mf (T 2p0) : ROzxy .. 200 &
MxilFpr &... &M, 250 IF @po

If the similarity type S is clear from the context, we usually omit it. A formula ¢ is true
in a model M (notation: M = ¢) if it holds in every world in 9. A formula ¢ is said to
be wvalid in ML(K) (notation: ¢ ) if it is true in every model over every frame in K.
We will often equate ML(K) with its set of valid formulas.

1 First order logic

We will show that interpolation fails very badly in first order logic with two variables. For
every finite n, we create Ly formulas @, 1) such that validity of ¢ |= 1) can be proved using
only a minimum of resources from the derivation system, and there is no interpolant for
¢ E ¢ in L,. This strengthens a similar result of Hajnal Andréka (unpublished), who used
just the complete derivation system of L,. Our result shows that the axiom making the
quantifiers commute causes failure of interpolation in the finite variable fragments.

We define a ~highly incomplete— derivation system for L,, as follows. Let 5 denote the
derivation system consisting of these axioms schemas and rules:

Azxl Every propositional tautology is an axiom scheme.

Az2; Yvi(p = ) — (Yvip — Yu9)) for i € {0,1}.

Az8 Yo Yugp — YoV p.

MP  From ¢ and ¢ — 1 infer 1.

UG; From ¢ infer Yv;p, for i € {0, 1}.
Clearly 5 is sound for first order logic, but hopelessly incomplete. Trivial validities like
Vo (v = vg) and FvyTvgyp <> Jvgp cannot be proven in Fs.

Theorem 1.1 For every n, there exist Ly formulas o, such that
1. oo, and
2. for every L, formula 6 in the common language of ¢ and 1), either ¢ =6 or 0 W= 1.

These formulas can be algorithmically obtained, and have size polynomial in n. Either ¢
and 1 are in disjoint languages, but both contain the equality symbol, or they are equality-
free, but the common language contains one binary predicate.

PrOOF. Fix an n. Let V*v; abbreviate kK many Vv;. Since all our atomic formulas will
be of the form R(vg,v;), we might as well forget about the variables, and we write atomic
formulas as lowercase variables p, ¢ etc. We propose the following formulas,

3



Al (d+ V{pi | 0<i<n}).
A3 (pi = N{V*vo(d — p) | k < n}) 0<i<n.
A4 (pi = N{V*ui(d — py) | k < n}) 0<i<n.

A5 FvyFg(po A Fv1Tve(pr A Fv13ve(pe - .. JviTvepy)) - - ).

Cl Npengr V'or¥Veoo(d < \V{q | 0 <i < n}).

C2 Ve T3 (Vi A V{FH 01 (=d A FFvg) | 1 <k <n}l).

Clearly these formulas can be algorithmically obtained from n and their size is linear in
n. The predicate d can stand for the equality statement vy = vy, or alternatively it can be

seen as an arbitrary formula D (v, v1).
Let A abbreviate A1 A ... A A5. We claim that

Ay (C1 = C2) (1)
There is no interpolant for A = (C'1 — C2) in L,,. (2)

Before we look at the proof, let us see the intuition behind the formula and its validity in
first order logic. In classical first order logic, V*v;¢ is equivalent to just Vv;. Whenever
A is true on a model, the predicate d is partitioned in the n + 1 p;-predicates. A5 tells
us that all the p; occur, so the domain of any model satisfying A should contain at least
n + 1 elements. The intended interpretation of d is vy = v;. Then A3 and A4 are trivially
true. With that interpretation of d, the formula C'1 — C?2 says that if d is partitioned in n
g;-atoms (C'1), then “there must be two different elements having the same g;-value” (C2.)

We have to use the more lengthy formulations of our formulas, because we want to use
as little from the first order proof system as possible.

We first prove (1). Instead of a derivation using the axioms, we give a semantic proof using
the fact that 5 completely axiomatises a normal modal logic. If we read Vv; as a modal
box operator [i], then -5 axiomatises the bimodal logic over the class of frames (W, Ry, R),
where the following law holds

Veyz((zRoy A yR1z) — Jy(xRiy A yRoz)), (3)

this by virtue of (the Sahlqvist) axiom Az3. We will show that in this semantics, the valid-
ity of (1) must hold. Now our way of writing binary predicates P(vg, v1) as (propositional)
variables p comes in handy, because the formulas involved are in the appropriate modal
language. Suppose to the contrary that (1) fails. So we find a model 9t = (W, Ry, Ry, v)
and a world w € W such that 9 = A and 9, w IF C1 A =C2. By A5 there are n + 1
worlds w; such that for some x, wRyxRyw, and for all 7 there exists an z, w; RijzRyw; 1,
and 9, w; IF p;. By Al, A2, they are all d-worlds and all different. Moreover since (3)
holds in this model, we have

for all i # j such that i + k = j, there is an z such that w; R¥z REw;, (4)

where zR*y stands for a k-long R-path. We claim that all the intermediate x in (4) make
—d true. Suppose to the contrary that for one such z, 9,z I+ d. Then by A4, also
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M, x Ik p;, and by A3, also 9, w, |- p;. But M, w; Ik p;, and 7 # j. So this is impossible
by A2.

Because 9%, w I C'1, and there is one ¢g-variable less than there are p; A d-worlds, there
must be two w; making the same g-atom true. But then, by (4), we can go from a ¢;-world
to a g;-world, via a —d world. This is just what C2 says and that is false at w. Our desired
contradiction. This proves (1).

Let M4 = ({0,...,n},I) be the first order model where I(d) = {(z,y) | * = y} and
I(p;) = {(i,9)}, and M = ({0,...,n—1},I) where d is also interpreted as the equality,
and I(q;) = {(¢,7)}. Tt is easy to see that M4 = A and M = C1A-C2. Let 6 be any L,-
sentence constructed from the atom d which is true in 9t4. Because in 914 d is interpreted
as the equality, 6 is equivalent to a pure (i.e., containing only = as atomic symbols) L,
sentence. But then also Mg E 6, because pure L, formulas cannot distinguish between
models of size at least n, and also in 9 d is interpreted as the equality. But then 6 can
not be an interpolant. This proves (2), whence the theorem. QED

The last theorem shows that by just looking at the number of variables in ¢ — ¥, we
cannot, predict how many variables are needed for the interpolant. Our counterexample
showed 2 variable formulas of length polynomial in n, which didn’t have an interpolant
in n variables. Is there some way of predicting the number of variables needed for an
interpolant as a function of some combination of the parameters, number of variables in
© — 1, number of relation symbols in ¢ — v, and the length of ¢ — 7

2 Kinds of Interpolation

For first order logic we find the following definitions of interpolation in the literature. Let
IP(¢) be the set of atomic symbols occurring in ¢ (propositional variables in modal logic,
relation symbols in first order logic.)

ATIP A logic L has the Arrow Interpolation Property (AIP) if, whenever = ¢ — 1, there
exists a formula @ such that =, ¢ — 0, =1, 0 — ¢ and IP(6) C P(p) N P ().

TIP A logic L has the Turnstile Interpolation Property (TIP) if, whenever ¢ =, 1, there
exists a formula 6 such that ¢ =1, 0, 0 =1, ¢ and IP() C P(p) N P (1).

SIP A logic L has the Splitting Interpolation Property (SIP) if, whenever g A ¢ 1 1,
there exists a formula € such that ¢y =1 0, o1 A0 =1 ¢ and IP(#) C IP(pg) N

(IP(¢1) U IP()).

For first order logic they are all equivalent but in general this is not the case (as we see
below this depends on both compactness and the availability of a deduction theorem, cf.
also [Cze82].) The meaning of TIP and SIP in modal logic depends on the way we define
the consequence relation ¢ |= 1. There are two options: a local and a global one (cf. e.g.,
[van83] or [MV97] for a discussion of their relative merits.) Let K be a class of frames, and
I', ¢ (set of) ML(K)-formulas.



. The local consequence relation T' E="° ¢) holds iff for every F € K, for every valuation
v, for every world w in F, (F,v),w Ik T implies (F,v), w IF 1.

. The global consequence relation T' =" 1) holds iff for every F € K, for every valuation
v, (F,v) = T implies (F,v) = 1.

The global relation is the one familiar from first order logic, but it is always defined for I'

a set, of sentences (if they are formulas, the universal closure is considered.) If we view the

world w as an assignment, then for sentences as premises, the two notions are equivalent.

Indeed, when T is a set of formulas —and they are treated as formulas— the local definition

becomes the more interesting (cf., the definition just before Proposition 2.3.6 in [CK73].)
In modal logic, the different interpolation properties are related as follows.

Proposition 2.1 (i) With the local consequence relation, AIP, TIP and SIP are all equiv-
alent.
(i1) If =" is compact, then AIP implies TIP, and TIP and SIP are equivalent.

For this reason, we will only use TIP and STP defined using the global consequence relation.
As compactness is a common notion in modal logic (e.g., every modal logic of an elementary
class of frames is compact), AIP and TIP are often referred to as the strong and weak
interpolation property, respectively. We note that the splitting interpolation version is the
one used in connection with modularisation of programs [MS84, Ren89]. In the rest of the
article = refers always to the global consequence relation.

PROOF. For (i), use the fact that with the local relation the deduction theorem ¢ ¢ 1)
iff = ¢ — 1 holds. We prove (ii) for the uni-modal case only. The proof extends easily to
any modal similarity type. For (ii) we use that we can switch from the global to the local
perspective by ¢ =9 o iff {O0%p | n < w} ¢4 ([van83]: Lemma 2.33.)

(AIP implies TIP). Assume ¢ E9° ¢). This holds iff {O"¢ | n < w} E"° 4, iff (by
compactness) 0™ ¢ ¢ ¢ for some m, where 0™ @ = p AOp AOOp A ... A O™, Iff —by
the deduction theorem— = O™*p — 1. But then, by AIP, there is an interpolant € such
that F 0™ ¢ — 0 and = 6 — 1. Whence ¢ =9° 6 and 0 =9 4.

(SIP is equivalent to TIP). The direction from SIP to TIP is trivial. For the other
direction, assume @y A 1 =9° . As above we obtain, O™ @y A O, ¢ ¢). Then by
the deduction theorem, O™, =l°¢ OF*p — 1h. Whence, O™ p, =9 OF*p — 1. By TIP,
we find an interpolant # such that O™, =9 0 and § = O — 1. Whence, @y =9 0
and @1 A0 =9 1. QED

In the absence of the notion of a sentence, Robinson’s consistency property is rather hard
to formulate globally. The local version is

RCP A logic L has the Robinson consistency property if whenever 'y, 'y are both satisfi-
able and there is no # such that IP(8) C IP(I'y)NIP(I'y) and Ty ¢ @ and Ty ¢ 0,
then also I'y U I'y is satisfiable.



It is a standard proof to show that

Proposition 2.2 Assuming that the local consequence relation is compact, AIP and RCP
are equivalent.

Relevance property. The version of the interpolation property where there are no com-
mon variables in the given formulas is sometimes called the relevance property. Again we
have three versions of this property corresponding to AIP, TIP and SIP. If in a modal
logic OT «» T and &L «» | is valid for all modalities, then the AIP relevance property
is equivalent to the disjunction property for formulas ¢, 1) without common variables: if
E ¢ V1, then = ¢ or = 1. The relevance property —insignificant as it may look at first
sight— is a strong weapon for axiomatising “difficult logics”. We mean logics for which
it is not easy to find a finite (Sahlqvist) axiomatisation, but there is a finite axiomati-
sation using irreflexivity-style rules. The relevance property can help to decide whether
such rules are really needed, viz Proposition 2.9.2 in [Ven92]. The result states that for a
logic axiomatised using unorthodox rules, these rules are conservative (i.e., not needed) if
the axiom system without these rules has the AIP relevance property, and the two axiom
systems derive precisely the same formulas built up from constants only.

We will now provide some simple semantical conditions on frames that imply the failure
of SIP. The proof is given for unary mono-modal logics (the similarity type S = {()}
is assumed fixed throughout the proof) for notational convenience, but the result can be
easily extended to n-ary poly-modal logics. First we recall the notion of bisimulation and
zigzag-morphism.

Bisimulation. Let G and H be two frames of type S. Let B C G x H.

1. We say that B is a bisimulation between G and H if for any operator (i) € S the
following clauses (called forth and back) hold:

if Bxx' & R<gi>:1:y, then (3y')(Byy' & RS z'y')
and similarly in the other direction,
if Bza' & RYa'y/, then (3y)(Byy' & R<gi>:cy).
If Bzz' holds we will call x and x’ bisimilar.

2. If B is a total function f, then it is called a zigzag morphism. If f is also surjective
. f . .
we use notation G — H, and call H the zigzag morphic image of G by f.

Note that in this case, it is equivalent to say that f is a homomorphism that further-
more satisfies the (zag) condition

it RS f(x)y', then (Gy)(f(y) = & R zy).



3. The notions of bisimulation and zigzag morphism can also be defined for models
Mg = (G,vg) and My, = (H, vy), relative to a given set of propositional variables V'
by adding the following condition:

if Bxx' then for all p; € V, Mg, x |+ p; iff My, 2" IF p;.
We will say in this case that B is a V-bistmulation or a V -zigzag morphism.
Lemma 2.1 Let K be a class of frames.

1. SIP fails in Modal-Th(K) if there are finite frames G, H € K, a frame F and surjective

zigzag morphisms m,n such that G SF& H, F is generated by one point w, every
m-pre-image of w in G generates G, and similar for H, and there is no frame J € K
with commuting surjective zigzag morphisms g and h from J onto G and H (i.e.

h
¢GLTS5H and mog=mnoh.)
Moreover, an explicit counterexample for SIP can be algorithmically constructed from
the frames and functions G S FEA

2. If in addition, K is elementary, then also AIP and TIP fail.

The proof relies on the fact that for any finite frame F generated by a point there is an
algorithmically constructible formula ¥z that characterises the frame up to bisimulation.
The formulas that describe frames G and H together with a description of the zigzag
morphisms m and n, will play the role of formulas g and ¢; in the definition of STP,
while v is simply a negated propositional symbol that will be “standing” in a world in

F. From G % F & 3 we will be able to prove that there is no splitting interpolant for
o N\ 1,1, while the inexistence of a frame J implies ¢y A 1 = 1.

We start by proving that we are able to syntactically characterize finite frames, up to
bisimulation.

Lemma 2.2 Let F = (F,R) be a finite frame generated by wy and let |F| = n. Let
M = (F,v) be a model such that v(p;) = {w;} forpi,...,p,. Define X as the conjunction
of the following formulas

A = Vi,

Ay = pi—=> N i # 7},

Az = pi—= N{Dp; | Rwiw},

Av = pi = M=@p; | ~Rwiw; .

Let M = (F',v') be any model such that

1. M = Xx and

2. M, w' Ik py for some w'.



Then the relation B C F' x F' defined as

Bw'w iff w' and w agree in the truth value assigned to {pi,...,pn}
is a surjective {p1, ...,y }-2igzag morphism from M’ onto M.
Proor. Trivially, bisimilar worlds agree on the variables py,...,p,. The back and forth

clauses hold precisely because of A3 and A4. So B is a {pi,...,p,}-bisimulation. B is
functional by A, and it is always defined by A;. Finally B is surjective because F was
generated by the p;-world wy, there exists a p;-world in 9, and B is a zigzag morphism.
QED

Now we are ready for the proof of Lemma 2.1.

ProOOF OF LEMMA 2.1. Let G 5 F & Hbe given as in the lemma, and suppose F is
generated by w;. We use three disjoint sets of propositional variables:

fi,-.., fipy one for each point in F,
gi,---,9)¢ one for each point in G,
hi,..., g one for each point in H.

We create three models by making each variable true at precisely one point in the respective
model, and by making the f; true in G and H at precisely those points which are mapped
to an f-point in F by m and n, respectively. Formally we define models 9Mr = (F,vz),
Mg = (G,vg) and My, = (H,vy), by setting

ve(fi) = A{wi}

vg(g9:) = A{wi}, vg(fi) = {weG|m(w)=uw}

vu(hi) = {wit, ou(fi) = {weH|n(w)=mw}

(Any value can be assigned to the other propositional letters.) We define two formulas
describing Z and S

I = Aiciqr(fi Vs [ m(wy) = wi})

o = Aicicr|(fi & ViR [ n(w;) = wi}).

Let ¥g and X4 be the descriptions of 9 and My in the variables gy,..., g and
hy ..., hym, respectively, just as in Lemma 2.2. From the valuations it is immediate that

m, n are surjective {fi,..., fir|}-zigzag morphisms from Mg and My, onto M, (5)
mg ):Eg/\rm and SDIH):EH/\Fn (6)

Note that Xq, Xy, I, and '), can be algorithmically obtained from G % F <& . These
formulas will provide the counterexample to SIP.

Claim 1

(Eg Alm) A (S AT) = f1, (7)
there is no splitting interpolant for (7). (8)



PROOF OF CLAIM. We start with the easy part (8). Suppose to the contrary that there
is an interpolant @ for (7). Then we have ¥g AT, =60 and (¥4 AT,) A0 = —f; and 6 is
constructed from the variables {fi,..., fir}.

We will derive a contradiction. By (6), Mg = g ATl,. So by hypothesis, also Mg = 6.
But then by (5) and the fact that 6 is in the common {f;, ..., fir }-language, also Mx = 0.
Then again by (5) but for n, also My = 6. By (6) now, My = (X4 AT,) Ab. So by
hypothesis, My = —f1. But Mz contains an fi-point and n is surjective, so My must
contain an fi-point as well. The desired contradiction. This proves (8).

Now we show (7). Suppose (7) is not true. Then, there is a frame J € K and a valuation
vz such that

o (J,v7)E (Bg ATp) A (X4 AT,) and
e there is a w € J such that (J,v7),w |- fi.

Define two relations Bs and By as follows:
B = {{(z,y) € J x G|z and y agree on the g;},
By = {{(z,y) € J x H |z and y agree on the h;}.

Let z € G and y € H be points such that Bgwx and Bywy holds (they exist because
Ms = g AXy.) As My E Ty ATy, also Mg,z - fi and My, y - fi. Whence,
m(x) = n(y) = ws, the generating world of F. Since we assumed that any x € G such that
m(z) = w generates G, and similar for H, G and H are generated from = and y respectively.
Thus the frames satisfy all the conditions in Lemma 2.2 and we can derive

Bg is a surjective {g1,. .., g|¢|}-zigzag morphism from 9t onto Mig. 9)
By is a surjective {hy, ..., hg}-zigzag morphism from 9T, onto My, (10)

Because My =TI’y Ay, Bg and By are also {fi,..., fir }-zigzag morphisms. But then
the diagram must commute, since every world in 90z satisfies precisely one f;. So we found
a frame in K with commuting zigzag morphisms onto G and H, contrary to our assumption.
This proves (7). <

Part 1. of the lemma follows immediately from this claim. If K is also elementary, then
the local consequence relation of Modal-Th(K) is compact (by compactness of first order
logic, using the standard translation), so by Proposition 2.1 also AIP and TIP fail. QED

If we slightly strengthen the conditions imposed on F,G,H in Lemma 2.1 we obtain a
method for disproving the relevance version of SIP.

Lemma 2.3 Assume the condition of Lemma 2.1. If in addition F consists of one world
and G and H are both simple (i.e., every generated subframe is the frame itself), then there
are formulas ¢ and v without common variables such that

pAYE L (11)
there is no splitting interpolant for (11). (12)
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PROOF. A copy of the proof of Lemma 2.1 will do. We have to prove that in Claim 1
we can delete I',,, ', and f; from the given formula. We used the ['’s to show that the
functions commute. But now that is always the case since F consists of just one point.
We used f; to guarantee that the functions a and b are surjective. But since G and H are
simple, the defined Bg and By are always surjective. I',,,I',, and f; were not used any
further in the proof of Lemma 2.1. QED

3 Transfer of interpolation in combined modal logics

In [MV97] the following tool is presented to prove interpolation in canonical modal logics.
Let G and F be two modal frames. A frame # is called a zigzag product of G and F if
‘H is a substructure of the direct product G x F in the standard model-theoretic sense,
where in addition the projections are surjective zigzag morphisms (also called bounded or
p-morphisms.)

Lemma 3.1 ([MV97]: Theorem B.4.5) If the modal logic of a class K of frames is
canonical and K is closed under zigzag products, then the logic enjoys (AIP) interpolation.

An immediate consequence of being closed under zigzag products (because universal Horn
sentences are preserved under substructures of direct products) is

Theorem 3.2 FEvery Sahlquist axiomatisable modal logic whose axioms correspond to uni-
versal Horn formulas enjoys the (AIP) interpolation property.

Our examples show how existential, or universal but disjunctive frame conditions can
indeed lead to failure of interpolation.

For the relevance property/disjunction property there exists a similar criterion. With
the extra condition that the logic needs to be canonical, this lemma occurs in [Sai90].

Lemma 3.3 Let K be a class of frames closed under taking finite products in which the
condition Yx3AyR;xy holds for all relations R;. Then the relevance property holds in the
modal logic of K.

PROOF. On such frame classes there are up to logical equivalence only two formulas built
up from constants, T and L. So we might as well prove the disjunction property. Suppose
= ¢ and £~ 9. Then we have K models 9t and 9V, satisfying =@ and —), respectively.
Because in K every relation is serial, the two models have the one-element frame as a
(-zigzag morphic image. From this it follows quickly that the product of the two frames
underlying 9t and 9 is a zigzag product. The obvious valuation now turns this product
into a model satisfying —¢p A ). QED

In Figure 1 we have listed a few well-known conditions on frames, together with the axioms
that characterize them. Note that these axioms give rise to canonical modal logics, so by
Theorem 3.2 every modal logic defined by a subset of these axioms enjoys interpolation.
We will see that interpolation does not transfer for any of these logics by taking products
or by forming unions in the sense defined below.
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T. p—Cp VeRzxx reflezivity
4. OOp—=Cp Vazyz((Rry A Ryz) — Rxz) transitivity
B. pAOCqg— O(qACp) Vay(Rzy — Ryzx) symmetry
5.

OpAOqg— O(gNOp) Vryz((Rxy A Rrz) — Ryz)  euclidicity

Figure 1: Conditions on frames.

3.1 Products of Modal Logics

In [GS97], bi-dimensional product logics are defined as follows. The product F x G of two
standard modal frames F = (F, Rz) and G = (G, Rg) is the modal frame (F' x G, H, V),
where H and V' are defined as

(z,y)H(z',y") iff Rrzxz' and y =1y
(z,y)V (2", y) iff Rgyy and z = 2.

The product of two uni-modal frames leads to a bi-modal frame. We will use & and < for
the modalities defined over the V-relation and the H-relation (V and H are for vertical
and horizontal), respectively. Their meaning is defined in the standard way, for example,
M, w IF O iff there exists a w’ such that wVw' and M, w' IF .

For classes of modal frames K and K’ the product K x K’ is the class of frames {F x
G| FeKand G eK'}. If K=K’ we also use the notation K? to denote K x K. For familiar
modal logics like K, S4, S5, etc., we will use KxK and so on, to denote the product of
the largest classes of frames for which these logics are complete.

The notion of product logic can very easily be extended to n-dimensional product
logics by just taking the product of n uni-modal systems, but for simplicity we will restrict
ourselves to bi-dimensional logics.

Completeness theorems are known for several cases, cf. [GS97]. We only mention the
complete inference systems for K2 and S52. The class K? of all product frames can be
axiomatized by adding the axioms ¢ ©p <> ©Pp and PHp — MSp to the standard
axiomatization for a bi-modal system. The class S52 of all product frames where V is
the universal relation on the columns and H the universal relation on the rows, can be
axiomatized by adding to the above system the axioms that make both & and © S5-
modalities.

Products of modal logics have applications in computer science through their connection
with labelled transition systems, and are closely related to (finite variable fragments of)
first order logic, as follows. Let (D, I) be a first order model. Create the modal frame
("D, =;)i<n where s =; t iff s(j) = t(j) for all j except possibly i. Then that frame is just
a product of n frames (D, Dx D). Tt’s set of “worlds” are all the n-tuples over D, which
we can view as all assignments of the first n variables on D. Every relation =; corresponds
to a diamond (i), which in turn is the modal counterpart of the first order quantifier Juv;,
as is easy to see by writing out the truth-definition. For more on this way of modalising
first order logic we refer to [MV97].

12



Taking products of modal logics is a method of combining logics [Gabh97] which im-
mediately leads to interaction between the modalities (viz. the commutativity and the
confluence axioms above.) [Mar95] shows that the method of dovetailing (a special case of
the fibering logic approach) usually lets interpolation transfer to the combined system. The
difference between dovetailing and taking products is that in the dovetailed system there is
no interaction between the combined modalities. We will show that the existential nature!
of the interaction obtained by taking products often prohibits transfer of interpolation.

We first provide a general result. Afterwards we derive some corollaries. Let n?, for
n a natural number, denote the product frame with domain n x n where V' and H are
universal relations on columns and rows, respectively.

Theorem 3.4 Let K be a class of bi-dimensional product frames containing the frames 22
and 3%2. Then SIP fails in the modal logic of K.

PRrROOF. The proof is a purely semantical recast of the proof of Theorem 1.1, now using
Lemma 2.1. Take the frames 22 and 3? and define a frame F consisting of two states
with H and V universal accessibility relations. The functions mapping all states on the
diagonal to one state in F, and all states not in the diagonal to the other are surjective
zigzag morphisms. Cf. the picture below (the relations in G, # and F are actually the
reflexive transitive closure of the relations shown.)

0et——— > gt——— >
b1 N e . .
® b1 N7
__,H
y H
G “«——— > ga—— — > -
S b3 S a2 S b4 S
v ® 2
m n
“«——— > g4 — — — >
®a ® bs b6

- ~

.A ‘.
F ex__

a

Since all three frames are simple, in the sense that every world generates the whole frame,
the conditions of Lemma 2.1 are met. We will prove now that there is no frame J such
that

J ESOp— ©Spor equivalently J = Veyz((tHy AyVz) — Jw(aVw AwHz)), (13)
there are surjective zigzag morphisms ¢g and h from .J onto G and H, (14)

the morphisms commute, m o g = no h. (15)

By (15) we have for every element z in J, either m o g(x) = no h(z) = a or mo g(x) =
noh(x) =b.

We will now try to construct 7 and show we will fail. Since g is surjective, there should
be an element xy € J such that g(z1) = bs. By (15) then either h(zy) = b} or h(z1) = b,

!Both the commutativity and the confluence axiom are Sahlqvist formulas which correspond to
Vay(3z(xVzHy) < Jz(xH2Vy)) and Yeyz(xVy A xHz — Jw(yHw A 2V w)), respectively.

13



Say h(z) = b} (by the symmetrical nature of H, the proof also goes through if we start
from h(z;) = by.) Because bgHas, by (14) we must have an 25 € J such that zHx,
and g(x2) = as. The homomorphism condition on h makes h(xs) either ai, or b}, but using
restriction (15) the former should hold. In the same way we obtain, by the zigzag condition
of g, xoVx3 and g(x3) = by, and by homomorphism of h and (15), h(x3) = b,. Now by
(13), from 2y HzyV 23 we can infer the existence of an x4 such that x;Vx,Hxs. But then
to keep the projections homomorphisms we have to make g(x,) = by and h(x,) = @} and
this is excluded by (15). Hence we cannot find a J as asked for in Lemma 2.1 and SIP
fails. The picture below shows where the contradiction is found.

x4[g>L, h->al]  x3[g->b2, h->b2]

e ———-—-——>0
__,H
J Y
e T "o

x1[g->b3, h->b1'] x2[g->a2, h->a2']
QED

Corollary 3.5 Let S, and Sy be modal logics both weaker than 85. Then SIP fails in the
product of 87 and Ss.

[GS97]: Section 7 shows that the product of two elementary frame classes is itself
elementary. So in these cases, the local consequence relation is compact, and failure of SIP
implies failure of all three types of interpolation. Now we can infer many non transference
results, for example

Corollary 3.6 Let Ki and Ky be two classes of frames defined by some subset of the list
of axioms in Figure 1. Both the logics of Ky and Ky enjoy all types of interpolation, but all
of them fail in the logic of the product K; x K.

In general, we can conclude that interpolation does not transfer when taking products.
(A noticeable exception is the product of two classes where the accessibility relation is
a (partial) function. Interpolation for this class can easily be shown using Lemma 3.1.)
[Sai90]: Theorem 2 implies that the Beth definability property fails for the class S5xS5,
but that the AIP relevance property holds. We conjecture that the Beth property also
fails in the product of two tense logics (where we assume nothing about the accessibility
relations.) The proof would be a combination of Sain’s counterexample and the proof of
Theorem 1.1.

We have some positive news concerning the relevance property though.

Theorem 3.7 Let Ki, Ky be two classes of frames, both closed under finite direct products
in the model-theoretic sense. If the relations in Ky and Ky are serial, then the logic of the
bidimensional product K; x Ky has the AIP relevance property.

14



PrROOF. By Lemma 3.3 it is sufficient to show that K; x K, is closed under finite direct
products. Let x denote the bidimensional product, and ® the direct product of structures.
We claim that for all frames A, B,C, D,

AxB)®(CxD)2(A®C) x (B D). (16)

(16) is simple to prove using the obvious isomorphism which sends ({a, b), (¢, d)) to ({a,c),
(b, d)). Because K; and K are closed under finite direct products, (16) implies that K; x Ky
is closed under them as well. QED

We will now turn our attention to other combined modal logics: Humberstone’s logic of
inaccessibility and its generalization to unions of modal logics.

3.2 Humberstone’s Inaccessibility Logic

In [Hum83|, Humberstone presented the logic of inaccessibility HIL, an extension of the
classical modal systems through the introduction of a new modality () that has as associ-
ated relation the complement of the accessibility relation of () (which in this case we will
denote by (H).)

Humberstone proved that the inaccessibility operator (—) greatly increases the expres-
sive power of the logic. New properties of frames such as irreflexivity, asymmetry and
intransitivity can now be captured by the system.

For this logic, the questions about finite axiomatization and finite model property
were already solved [GHR94, GPT87] but interpolation was still open. We will show that
interpolation fails.

A frame for HIL is a structure F = (F,R,,R_) where F is a nonempty set and
R, , R _ are binary relations on F' that satisfy the condition (R_)¢ = R, (R° stands for the
complement of R.) Truth is defined as usual:

For j € {+,—}, (F,v),wlF (j)p iff o' € F, Ryww" & (F,v),w" |+ ¢.

[GPT87] contains an axiom system for HIL. They show that the class of HIL-frames and
the class of frames (W, Ry, Ry) where Ry U Ry is an equivalence relation have the same
modal {(#), (&) }-theory. (The notion of “conditions over unions” will be generalized in
Section 3.3.) But then, by a simple Sahlqvist argument, the basic bi-modal axiom system
enriched with axioms which make the defined modality (x)p = ((© ¢V #H ) an S5-modality
is sound and complete for HIL.

Theorem 3.1 All three types of interpolation fail for Humberstone’s Inaccessibility Logic,
even in the strong sense of the relevance property.

PROOF. Let K be the class of all frames (W, Ry, Ry) where R; U Ry is an equivalence
relation. We will show that SIP fails for the bi-modal logic of K. In Section 3.3 we will
show that each of the conditions reflexivity, symmetry and transitivity of the union alone
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leads to failure of interpolation (Corollary 3.9.) Since K is elementary this implies that all
interpolation properties fail, and because the intended HIL-frames and K have the same
modal theory, this implies the theorem. QED

This is the “lazy” proof using Lemma 2.1. We will now provide an explicit counterexample,
which also works for the expansion of HIL with the “past” or inverse operators.

Goranko ([Gor90]) extended the expressive power of HIL by defining the system HIL;
which includes not only the complement operator (=), but also the inverse operators (),
and (—), that have as associated relations the converse of R, and R_, respectively. This
system is so powerful that it can give a categorical characterization of the natural order
(N, <) (which cannot be achieved in, for example, First Order Logic.)

A frame for HIL; is a structure F = (F, R, R _, Ri, R') where F is a nonempty set
and R, , R_, Rﬁr, R! are relations on F' x F that satisfy the conditions (R_)¢ = R, Rﬁr =
Rjrl, R" = R™'. Notice that given a HIL; frame we can obtain a HIL frame just “forget-
ting” the inverse relations.

Truth is defined using the standard clauses:

For j € {+, =}, (F,v),wlk (jp iff ' € F, Rjuww' & (F,v),w' I .
For j € {+, =}, (F,v),wlk ()¢ iff Iu' € F, Riww' & (F,v),w" |- .

A complete Sahlqvist axiomatization for this system is given in [GPT87]. Again defining
(Yo = (g V [Py) the axiomatic system for HIL, is built from the distributive ax-
ioms, the basic temporal axioms and an S5 system for (x). Thus, just as in the case of
HIL, the intended HIL; frames and the class HIL} of frames (F, Ry, Ry, R3, R,) where
R, = Rg_l, Ry = R4_1 and Ry U Ry is an equivalence relation have the same modal
{(, &), i, () }-theory.

We will prove that the addition of the inverse modalities to HIL is not enough to regain
interpolation.

Theorem 3.2 All three types of interpolation fail for Humberstone’s Inaccessibility Logic
with Inverse Operators. Furthermore all three relevance properties fail.

PrOOF. Applying Lemma 2.3 to the following frames proves the theorem. Instead of using
that lemma we extract two formulas which describe the crucial properties of these frames.

G .- O~
7
SN "
. L~ .
® c ®
~v ) 7w L7 2
A~—- =" S~__- . R
m n
F »."
I 4
\I



(Here we don’t show the converse relations.)

We propose the following HIL-formulas (the subscripted ¢ and h are propositional

variables):

v (g0 N [F]7ga) A B (ge A [H]ge)

b O (ha = Ghe) A (Fha = G =ha)) A G ((hy = Ghy) A (Shy — G =hey)).
We claim that ¢ — 1 is HIL;-valid, whence also HIL-valid. Take any HIL; frame F,
any valuation vz and any world w € F and assume that (F,vz), w IF ¢. By the semantic
definitions of (-) and (), there exist worlds w’, w” € F such that wR_w" and wR,w" and
(F,og),w' Ik go A [+]7Ga, (Fovg), w" IF ge A [+]7ge. As F is a HIL;-frame this implies
w'R_w" and w"R_w" (w' Ik go A [+]7g, and w” Ik gy A [+]7g, forbid w'R,w’ and w" R w",
respectively.) But this directly implies (F,vzg), w |- ¢. Thus ¢ — ¢ is valid in HIL;.

To prove that there is no interpolant we use the frames proposed above. Transform
frames G and H into models by providing the valuations vg and vy such that vg(g,) = {w}
for w € {a,b,c} and vy (hy) = {a'}, vy (hy) = {V',} and vy (he) = {'}.

From this, (G,vg),b Ik ¢. Let 6 be any HIL;-formula in the common language of ¢
and 1, i.e., it is constructed from constants, such that ¢ — @ is HIL;-valid. Then also
(G,vg),b IF 0. Now, using the fact that the function m sending all elements in G to w in
F is a zigzag morphism (for HIL;), (F,vr),w Ik #. As all elements in H are mapped to w
and n (defined as m over H) is also a zigzag morphism all force §. But, as is easy to check,
(H,vy) E —p. Thus ¢ — 9 has no interpolant, whence the relevance version of AIP fails
in HIL;. Because ¢ — 1 is already HIL-valid, this is also a counterexample for AIP in
HIL.

We provided a counterexample to AIP and not to TIP. But the fact that in HIL (and
then also in HIL;) the universal diamond (x) can be defined, makes it easy to transform it
in such a proof ((*)¢ = ()¢ V (Hy means “p somewhere in the frame”.) Because ¢ — ¢
is HIL;-valid, (x)¢ | (x)1. If we assume there is a (turnstile) interpolant 6 we can again
use models (F,vz), (G,vg) and (H,vy) to derive a contradiction. Clearly (G,vg) = (x)¢
which implies (G, vg) = 0. As above, this makes (F,vz) = 0 and hence (H,vy) E 0. As
6 is an interpolant we obtain (#H,vy) = (x)1. But as we said before, nowhere in (H, vy)
does v hold. QED

We will now provide a more fine-grained analysis of the failure of interpolation in HIL
by generalising it to unions of modal logics. This will show that there are several reasons
for this failure, and indicate the possible ways in which interpolation can be regained by
expanding the language.

3.3 Unions of Modal Logics

As we saw, the HIL-system is equivalent to the bi-modal logic of the class of frames
(W, Ry, Ry) where the union of Ry and R, is an equivalence relation. We can generalize
this to a way of combining logics which we call union logics. Let I be some index set.
An T-union logic is a poly-modal logic (containing modalities {(i) | i € I}) of a class of
I-frames (W, R;),.; where the union of all relations R; satisfies some condition.
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Union logics are a natural class in a poly-modal framework. In many cases, a re-
quirement over a relation in the model is too strong. Suppose for example that relations
represent actions. Then we might want to require that in each state, there is some action
that does not change the state. But perhaps this action is not always the same! If the
temperature is increasing, for example, a stable state is obtained by cooling, while we need
heating if the temperature is going down. In these cases a reflexive condition over the
union of the relations representing the possible actions is what we need.

Union logics are also related to the field of Informations Systems [Paw81]. Based on the
notion of rough sets, these systems try to capture relationships of indiscernibility among
objects. Clearly, these relations are equivalence relations, but usually a further condition
of Local Agreement is needed to obtain an accurate model of the situation: for each frame
(F,R;),-; there is a linear order < on I such that ¢ < j implies R; C R;. This condition
reflects the fact that the different relations are modeling different degrees of indiscernibility
over the same objects. [Gar86] proves that if R and S are equivalence relations then the
Local Agreement condition over R and S is equivalent to transitivity of R U S. Because
of this, Local Agreement Logics are a kind of union logics. It is at present open whether
interpolation holds for this logic of local agreement.

For the axiomatization of union logics, we can also generalize the idea used for HIL.
Let S be a modal system, defining (x)p = Vicr (i), the axiomatic system for (J,.; S is
built from the distribution axioms for each (i) plus an S system for (x). [Are97] proves that
if S is an axiomatic system with axioms in Sahlqvist form, then the system given above
for [ J;c; S is a correct and complete Sahlqvist axiomatization for its corresponding class of
frames. The proof is simple and relies on the fact that changing a diamond modality ( )
in a Sahlqvist formula by a finite disjunction of modalities \/,_, (i) gives again a Sahlqvist
formula which characterize the same property the former formula did but this time over
the union of the accessibility relations.

We will now show that any of the conditions from Figure 1 leads to failure of inter-
polation when they are stipulated over a union of relations, and when the class of frames
contains a few, very small frames where the union is an equivalence relation. Recall that
any mono-modal logic defined by a subset of these conditions enjoys interpolation, so we
obtain another example where transfer of interpolation fails. We first prove a general result,
then mention some corollaries.

Theorem 3.8 Let I be a set of indices of size larger than 1. Let K be a class of frames
(W, R;),c; which satisfies

min K contains all finite frames (W, R;),., where |J,c; R; is an equivalence relation.

R; is valid

max at least one of the conditions from Figure 1, but now specified over | J

in K.

el

Then the relevance version of SIP fails in the union logic ML(K).
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Proor. We will use Lemma 2.3. Fix an index set .
First we give three frames which lead to failure of SIP when the union is either reflexive

or transitive.
O,
[ ]
7 v = N
/ \
\
\
|
4 3y
C
[ ]
v Ve

O,
[ J
/v \\ Rl
G - N - H
/ \ /
I \ _>R2 I
| | \
. v Lo
a - c a
o .~ Sd o - ./—\
G o~ D G vl O

F /ovW
\ —‘I

The relations R; with ¢ # 1,2 are empty. Clearly m and n mapping all elements to w are
zigzag morphisms, and each element of G and H generates the full frame.

First assume | J; R; must be reflexive in K. Then no frame in K can exist with commuting
zigzag morphisms onto G and H, because G contains an R;-reflexive point, while { doesn’t.

Now assume | J; R; must be transitive. Again, we start the intended construction of J
by an element x; € J which is mapped to a in G, g(x;) = a (it exists by surjectivity.) We
analyze the case h(x;) = o' (for the other elements in H the argument is similar, note the
symmetry of #.) Using the relation R; in frame G and the conditions on g and h there
exists elements x5 and x3 in J such that Rixixe and Ryxex3 and furthermore g(zs) = b,
h(zg) =V, g(x3) = ¢ and h(x3) = ¢’. Then transitivity of the union would force R;zix3
for some 7, but the homomorphism condition makes this impossible.

X2 [g->b, h->b’]
Pl o -~ N _ _»R1
7 AN
/ \ R
J 1 \
| |
\ /
[ >< A »
° °
x1[g->a, h->a’] x3[g->c, h->C']

For the cases where the union of the relations is either symmetric or euclidean, we only
give the frames and leave it to the reader to check that the counterexample works. In both
cases the relations R; for i ¢ {1,2} are empty and the zigzag morphisms m,n map all
elements to w.

Cla__s00 e Cés 22D
m n
Q)
F "
N
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QED

Corollary 3.9 We just obtained four different reasons why SIP fails in the union logic of
an equivalence relation, whence four reasons for failure of SIP in HIL.

The next corollary is the counterpart of Corollary 3.6 (for products), which shows that
transfer of interpolation fails for these unions of modal logics.

Corollary 3.10 Consider the modal theory of the class of frames (W, R;),.; where |,
satisfies some (nonempty) subset of the axioms from Figure 1. If |I| = 1, all types of

interpolation hold. If |I| > 1 and finite, the relevance version of all types of interpolation
fails.

4 Conclusion and further directions

We have seen that interaction of an existential or disjunctive kind between modalities
often blocks transfer of interpolation in combinations of modal logics. If interpolation
or the Robinson consistency property is important for the intended application of the
combined modal logic, then further work in the logic-design phase is needed to fix the
failure. Interpolation can show complex behavior when we consider reducts and expansions.
For instance, monadic first order logic with just one variable (i.e., modal logic S5) has
interpolation, it fails in all other finite variable fragments, but it holds again in full first
order logic. If the counterexample to IP is based on a “limited counting argument”, then
one often has to consider infinite similarity types to regain interpolation (e.g., interpolation
fails for the difference operator, but is obtained when expanding the logic with all counting
modalities.) The four different reasons we provided for failure of interpolation in HIL each
suggest an expansion of the language in which it might be recovered. E.g., the symmetry-
example leads one to consider modalities with the following truth-definition

wlk (i, j)e iff Fw': wRw' & w'Rjw & w' Ik ¢.

Using them, we can eliminate the indeterminacy arising from the symmetry condition over
the union. We think that the recipe provided by Lemma 2.1 is useful for a systematic
search for expansions which lead to regaining interpolation.

We finish with the following open problem concerning the logic of inaccessibility.

Problem 4.1 Find an expansion of HIL which enjoys interpolation, and keeps the HIL-
properties of decidability and finite (schema) axiomatisability. In the optimal case, not
even the complexity of the validity problem should go up.
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