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We study an approach to concurrent contractions, that is, to simulta-

neous contractions performed by multiple agents. Using ideas from the

semantics of programming we adopt an interleaved approach to reason

about concurrent contractions. Although many of the notions from the

traditional G�ardenfors approach transfer to this setting, our approach

also forces us to depart from the G�ardenfors framework in important

ways. We present laws describing rational concurrent contractions, as

well as a construction that satis�es these laws.

In real life concurrent accessing of data is the rule. Multiple agents are

working on the same theory, and multiple copies of some data are kept in

di�erent locations. Typical examples include scienti�c research or writing a

joint-publication, and practical applications vary from networks of personal

computers and workstations sharing some common information to widely

distributed applications such as automatic teller machines. The primary

advantage of concurrent theory change as opposed to single agent theory

change is the ability to share, access and engineer data in an e�cient manner.

The primary disadvantage is the added complexity required to ensure proper

coordination between the agents taking part.

In a multi-agent setting, managing a belief set is a task: not

only may several agents information from one and the same source,

but it may also be the case that multiple agents have permission to a

database (the ight booking procedures are a typical example here). What

are sensible strategies for conict resolution in case inconsistency strikes?

The task of maintaining consistency in the setting of multi-agent theory

1



n

1

0

0

7!

�

0

B

@

1

C

A

2 General Set-up

T; � T ;

T

�

T

� T

� T T

� T

T

�

�

;

expansions

contractions

revisions

change is more complex than in the single agent case, if only because of the

many possibilities that become visible.

This paper is part of a larger project on concurrent theory change (see

[7]). Its purpose is to demonstrate that concurrent theory change forms an

interesting extension of the traditional G�ardenfors style approach towards

theory change, one that has many faces and that calls for new tools. Here

we will con�ne ourselves to the simplest case in which a number of agents

have access to shared data. The data are changed via contractions, which

may in principle be proposed by any one of the agents. We will explore some

of the options and problems that present themselves. A central question of

this paper is: assuming that multiple agents, each guided by a familiar set

of rationality postulates, propose or perform (single agent) contractions for

a shared theory, | what are the laws governing the global contractions?

The rest of the paper is organized as follows. In Section 2 we briey

outline the general set-up. Section 3 contains an informal discussion of con-

current contractions, and Section 4 recalls some facts from the standard

G�ardenfors framework. Then, in Sections 5, 6 and 7 we present our for-

mal approach to concurrent contractions, based on the idea of interleaving.

We conclude the paper with comments and suggestions for further work in

Section 8.

There have been many proposals to alter or extend the basic Alchourr�on,

G�ardenfors, Makinson (AGM) framework of theory change (see [5] for an

overview), but most of the literature in the AGM tradition focuses on a

single agent changing a theory as she receives new information. The actions

of this solitary agent are usually speci�ed in terms of functional input/output

behavior:

( ) (1)

where the input consists of a collection of sentences (the material to be

changed) and a sentence (the newly received information), and the output

is a collection of sentences (the result of the cognitive action). Tradition-

ally, three forms of theory change are considered: , where we add

to and close under logical consequence; , where we remove

from while preserving as much of as possible; and , where

we add to while maintaining or restoring consistency. In this paper we

change the format given in (1), and consider concurrent contractions that

are speci�ed by expressions of the form

.

.

.

(2)
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or , where is as before, and is a vector of formulas to be contracted

from ; is the concurrent contraction action whose principles we want to

understand. The basic assumption here is that there are agents , . . . ,

, each of whom proposes or performs a contraction of in accordance

with her own contraction operation. That is, proposes or performs a

contraction of by , . . . , proposes or performs a contraction of

by , where each agent has her own contraction operation . The

expression in (2) denotes the result(s) of an operation on that is somehow

composed of contractions of by , . . . , performed by, respectively, ,

. . . , using their respective contraction operations , . . . , . The key

questions we address are:

How can we model concurrent contractions?

Which laws govern the concurrent contraction operation ?

How can be understood in terms of the single agent operations ,

. . . , ?

Below we will explore concurrent contractions. We leave the much more

complicated (and realistic) case of concurrent theory change

in which multi-agent contractions, revisions and expansions may take place

concurrently to later publications.

Before proceeding we give an informal discussion of concurrent contractions.

As outlined above, our basic picture is one where agents , . . . ,

simultaneously want to remove information from a given background theory

, that is: each agent proposes or performs a contraction, using her private

contraction operation.

To give an example of concurrent theory change at work, one can think

of a patient's record in a medical database. Various agents contribute to the

theory contained in the database: a family doctor's report, various laborato-

ries with their test results, specialists with further information. . . . Clearly,

it is important that consistency be preserved. One may conceptualize this

is by personifying consistency checking in terms of a checker that performs

consistency checks at certain discrete intervals. If the checker detects an in-

consistency in the shared theory, she rings the alarm bell, asking the agents

to suggest contractions that will help remove the inconsistency. The agents

then perform or suggest a contraction. Having di�erent areas of expertise,

the agents are likely to base their suggested contractions on di�erent no-

tions of which information is more reliable (or `epistemically entrenched')

than other. In other words, when agents suggest a contraction for the shared

theory they suggest both information should be given up, and

3
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this should be done in their opinion. Therefore, the global change that is

to be made to the theory is in general composed out of a �nite number of

`private' contractions being performed concurrently.

In the special case where all agents employ the same contraction func-

tion, there is a clear connection with the proposed by

Fuhrmann and Hansson [3], and with forms of that

have recently been described by Lehmann and others (see [10]).

Ideas related to concurrent contraction also appear in non-epistemic set-

tings. For example, co-authoring and joint research are processes in which

concurrent contractions occur frequently. They seem especially appropri-

ate when bugs or inconsistencies are discovered in cases where agents have

sole responsibilities for certain parts of the work, and each author can per-

form contractions on the parts for which she holds responsibility. And of

course, in concurrent databases concurrent transactions occur all the time.

It is di�cult, however, to �nd pure cases of concurrent contractions that are

substantially di�erent from the above ones.

In this section we describe the laws governing the contraction operations

of individual agents taking part in a concurrent contraction; as explained

above, we assume that each agent comes equipped with her own contraction

function. We start with some technical preliminaries.

Our background language is simply propositional logic, equipped with a

classical consequence operator Cn that satis�es all the usual properties (see

[4]). A is a set of formulas that is closed under Cn; a

is a set of formulas that needs not be a theory. In the AGM tradition

there are two ways of reasoning about contraction functions, a

way which speci�es postulates that reasonable contraction functions should

satisfy, and a way that de�nes contractions functions obeying those

laws. Here's a list of the standard AGM postulates for contraction.

is a theory (logically closed) whenever is (Closure)

(Inclusion)

If , then = (Vacuity)

If , then (Success)

If , then Cn(( ) ) (Recovery)

If then = (Extensionality)

We refer the reader to [4, 5] for a discussion. The above laws constrain

how contraction functions should operate on a single, �xed theory .

But when agents each come up with a formula to be contracted from

a theory , they should not only provide the system with a contraction

4
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If a contraction function satis�es the postulates of De�-

nition 1, then, for any theory and tautology , we have .

one-place selection function

partial meet

contraction

function , but, since the actual implementation of may deal with

several `intermediate' results from which some of the 's still have to

be contracted, their contraction functions should indicate how to remove

from arbitrary theories.

Hansson [6] gives a formal account of contraction functions able to deal

with arbitrary theories. His approach is formulated in terms of belief bases

rather than theories , and he moreover allows for contractions with

of formulas rather than single formulas. We reformulate Hansson's original

postulates for the `base/set' case for the `theory/formula' case.

We propose

the following postulates for a single agent contraction function that is

de�ned for any theory and formula :

is a theory (logically closed) whenever is (Closure)

(Inclusion)

If ( ) then there exists with (Relevance)

and , but

If for all subtheories , then = (Unifor-

mity)

If , then (Success)

Relevance ensures that if a formula is excluded from when is rejected,

then plays a role in the fact that implies . Whereas Success ensures that

formulas that should be given up are in fact given up, Relevance blocks the

deletion of formulas that need not be deleted. Uniformity ensures that the

result of contracting with depends only on the subsets of that imply ;

if all subsets derive a given formula i� they derive , then contracting with

either or produces the same result. Observe that Vacuity is derivable

from Inclusion and Relevance.

In the setting of concurrent contractions it may well be that some agents

want to refrain from action. The next proposition shows how we can mimic

this situation.

=

The best known model of a contraction function in the AGM theory is

partial meet contraction. It is de�ned as follows. Let denote the set

of maximal subsets of that fail to imply . A

for is a function such that for all formulas , if is non-empty,

then ( ) is a non-empty subset of . When is empty,

( ) = . Then, an operation on a theory is a

if is the intersection of the selected maximal subsets of

that fail to imply : = ( ).

5
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Note that the �rst argument of is still relevant: when modeling a contraction ,

we calculate ( ( )).

A single agent contraction function satis�es the postulates

of De�nition 1 i� there exists a two-placed selection function with

, for any theory and formula .

uni�ed

redundancy

If a contraction function satis�es the postulates of De�ni-

tion 1, then it also satis�es redundancy.

One-place selection functions are speci�c for a particular theory; if is

a one-place selection function for , and = , then is not a one-place

selection function for (see Hansson [6]). Selection functions that work

for arbitrary theories are obtained by extending them with an additional

argument; thus we will assume that each agent is equipped with a two-

placed selection function , where, for each theory and set of theories

( ), we have ( ( )) ( ).

The following result links up the postulates for with two-placed con-

traction functions; a proof is given in the Appendix.

=

( ( ))

Now that we have shown how an agent's contractions can be modeled

using two-placed contraction functions , we pause a moment and reect

upon the desired e�ects of the �rst argument of . Recall that

denotes all maximal sub-theories of that do not entail (if ). When

contracting from , the function should make a selection from these

sub-theories. This selection should principally reect the agent's preferences

among the theories in ( ). Thus, if we have

( ) = ( ) =

it seems natural to require that

( ( )) = ( ( ))

In other words, the common parts of the selections agree whenever possible.

Hansson calls a selection function with this property . When working

with belief bases this property doesn't come for free. Hansson comes up

with a condition on contraction functions called to characterize

uni�ed partial meet contractions. In our set up this redundancy principle

reads as follows:

Suppose is a theory, and . Suppose

furthermore that is a set of formulas, satisfying: (i) is a theory, and

(ii) for all : . Then we have: = ( ) .

6
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5 From Sequential to Interleaved Contractions

A single agent contraction function satis�es the postulates

of De�nition 1 i� there exists a two-placed selection function with

, for any theory and formula .

while another agent is still performing her

contraction

Theorem 4 (the proof of which is to be found in the Appendix) guarantees

that we do not have to add redundancy as a separate postulate, so that we

can now formulate the main result of this Section; its proof is given in the

Appendix.

uni�ed

= ( ( ))

In the sequel, we will assume that selection functions are uni�ed, and we

will often suppress their �rst argument.

In many models of situations in which multiple agents need to access shared

resources, one �nds a reduction to a sequential, non-deterministic scheme.

Our model of concurrent contractions will be based on the same idea. To

see how we arrive at our model, consider the following diagram in which a

contraction by a single agent is depicted by a line segment labeled with .

Figure 1: Overlapping contractions

It pictures how multiple agents might | in principle | act on a single theory

to perform their individual contractions as time progresses: their actions

might or might not overlap in arbitrary ways. But what does it mean for an

agent to start a contraction

? To what should apply her selection function? What should

she act on, if not on the outcome of 's actions? To perform a concurrent

contraction one should execute the individual single agent contractions, one

at a time. Thus, instead of Figure 1, Figure 2 seems to o�er a much more

realistic picture.

Figure 2: Interleaved contractions

To understand this situation, it may help to observe that there is a

clear analogy with some forms of concurrent computation. Speci�cally, the

7
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situation is reminiscent of the concurrent execution of several independent

programs on a single processor (see e.g. [2]). In a popular formal model

is represented by . This means that parallel processes

are never executed at precisely the same instant, but take turns in execut-

ing atomic transitions. When one of the participating processes executes an

atomic transition, the others are inactive. Thus, rather than input/output

pairs, execution of the atomic instructions of sequential processes

are at the focus of attention. And rather than talk about input/output pairs,

one describes properties of concurrent programs that hold under some or all

interleavings of the instructions. Let us briey expand on this issue.

As parallel execution of sequential processes is modeled by the non-

deterministic interleaving of atomic steps of the individual processes in in-

terleaved models of concurrent programs, a program starting in a given state

may follow any one of a number of computation paths corresponding to the

di�erent non-deterministic choices the program might make. The di�erent

computation paths thus represent alternative possible `futures': at each mo-

ment, time may split into alternative courses and thus has a `branching'

tree-like structure. A semantic theory of computations provides a formal

basis for describing or deducing properties of programs under possible

interleavings (see [2] for further details).

A similar concern is found in concurrent database theory, where one

studies mechanisms for controlling the execution of several transactions at

the same time. Here, one of the main interests lies in describing all pos-

sible executions of transactions and in identifying serializable transactions,

that is: transactions that are equivalent in some sense to serial (consistency

preserving) database transactions (see [9, Chapter 10] for an introductory

overview).

In our setting of multi-agent contractions, we take a similar interleaved

approach. Concurrent contractions will be viewed as (collections of) se-

quences of `atomic' single agent contractions that don't overlap and that

don't interfere. This interleaved approach calls for new ways of thinking

about theory change. For a start, if we reduce concurrent contractions to

non-deterministic sequential contractions, instead of single one step contrac-

tions we should be considering collections of sequences of contractions that

are organized in a tree as in Figure 3. But then, we also have to give up the

idea of concurrent contractions as functions. For, in general, even singleton

contractions are not commutative, that is: the identity

( ) = ( )

is not universally valid (see [6] for a plausible counterexample). Hence, even

in the case where we only have two agents that share the same contraction

operation, say , the global concurrent contraction may have

two interleaving executions leading to di�erent results: ( ) and

8
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De�nition 6 (Basic postulates for interleaved contractions)
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Figure 3: Interleaved contractions

( ) . As a consequence, it makes little sense to talk about

outcome of interleaved contractions. As a further consequence, we have to

abandon the idea that contractions can be speci�ed in terms of preconditions

and postconditions. Instead, we need to reason about intermediate stages

of a concurrent contraction, as these clearly have internal structure in the

interleaved approach.

By and large, theory change in the AGM tradition has had two main con-

cerns: (1) Constraints and axioms that rational operations of theory change

should satisfy; and (2) Explicit constructions of operations of theory change

that satisfy those constraints or axioms. In our approach to concurrent

theory change we follow the same strategy. In particular, in this section

we present a list of postulates that any reasonable operation of interleaved

contraction should satisfy. Then, in Section 7 below, we present a model for

interleaved contractions that satis�es these postulates.

We �rst need some notation. Let and be vectors of formulas of

length . We write for `for all : ,' and for a set of

formulas , means that for all : . Special vectors

are and , consisting only of the formulas and , respectively; [ ]

denotes the result of replacing the -th component by . A

is a function that produces a set of theories when given

a theory and a vector as input. Finally, we write ( ) for ` is

a result of concurrently contracting with .'

Let

be a set of formulas, and let 1 be a natural number (the number of

agents taking part). We assume that each satis�es the postulates for

single agent contraction given in De�nition 1.

If is a theory and ( ) , then is also a theory (C-closure)

If ( ) then (C-inclusion)

9
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Suppose ( ) and , . Then there are (C-relevance)

and such that , ,

and

If for all subtheories , (C-uniformity)

then ( ) i� ( )

For all , if and ( ) , then (C-success)

If for all = , we have = then ( ) i� = (Solo)

C-closure and C-inclusion are straightforward concurrent versions of

their single agent counterparts. C-Relevance says that for every formula

that is given up in a concurrent contraction from , there is an agent

that is `responsible' for this removal; according to the individual obedience

to Relevance, this agent can determine a part of from which the formula

he proposed for contraction has indeed been removed, and in the process of

doing this, had to be given up. C-uniformity says that if no subtheory

of can distinguish any component of from the corresponding compo-

nent of , then concurrently contracting from cannot be distinguished

from concurrently contracting from . This uniformity postulate implies

the following condition of C-extensionality:

If then ( ) i� = ( ) (C-extensionality)

It guarantees that only the of the individual's proposal for contrac-

tion matters, not the actual . C-success guarantees that, as long as

an agent does not propose to contract a tautology, her request for contrac-

tion will have been granted in each of the possible results. Thus, whereas

C-relevance says that each formula that is given up in a concurrent contrac-

tion should be due to one of the agents, C-success guarantees that all of the

agents' wishes will be met as far as they are reasonable. Finally, the Solo

postulate shows that interleaved contractions really builds on the individual

contraction strategies: when only one agent comes up with a non-trivial

formula to be removed, it will be her strategy that determines the result of

the concurrent contraction.

The postulates in De�nition 6 provide no means to reason about pos-

sible `intermediate' results of interleaved contractions, and they certainly

don't impose the condition that the concurrent contraction process can be

unraveled into successive single agent contractions. To make up for this, we

consider two further laws: Decomposition and Composition.

(Decomposition)

( )

= and

there exist and with and

such that , =

and ( ) , where = [ ]

10
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either

or

Assume that a set of individual contraction functions (

) and a concurrent contraction are connected via the Decomposition

and Composition laws. If all the 's satisfy the postulates from De�nition

1, then satis�es all the Concurrent postulates from De�nition 6.

Proof.

Decomposition says that concurrently contracting with is a void action

and that a concurrent contraction with = can be decomposed in an

individual contraction followed by another, yet simpler, concurrent con-

traction.

(Composition)

( )

= and

there exist and with and

such that , =

and ( ) , where = [ ]

Composition states that if one recursively unravels a concurrent contrac-

tion into an individual contraction followed by a concurrent

contraction of a vector (obtained from ) from the theory ( ), one

ends up with a theory that will be a result of the initial concurrent con-

traction. Notice that the Solo postulate is a consequence of Decomposition.

If we think about interleaving contractions in an algorithmic way, we can

view the Composition and Decomposition postulates as halting criteria: to

contract from , try to turn all components of into the formula by

successively contracting with one after another until equals .

Observe that the conjunction of Decomposition and Composition postu-

lates is equivalent to the following statement; let be the length of .

( ) i� there exists a permutation of 1 such that

= (( ( ) ) )

1

Suppose all the 's satisfy the postulates from De�nition 1. As

pointed out above, we have that ( ) i� for some permutation of

1

= (( ( ) ) )

Let = and = , for 0. Note that, by Inclusion, we

have (for 1 ). Now, satis�es C-closure trivially: if is a

theory then, by applications of Closure, = are all theories.

C-inclusion follows similarly.

For C-relevance, suppose all 's satisfy Relevance, and suppose that

( ) . Since each satis�es Inclusion, there must be

some such that , . Since = and

satis�es relevance, we �nd a with ,

11
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transfer

projection

Assume that a set of individual contraction functions (

) and a concurrent contraction are connected via the Decomposi-

tion and Composition laws. If satis�es the Concurrent postulates from

De�nition 6, then all the 's satisfy the postulates from De�nition 1.

Proof.

and . Using Inclusion, we see that = = .

From this we can conclude that satis�es C-relevance.

For C-uniformity, suppose that for all subtheories . Thus,

for all , . Suppose furthermore that ( ) : we have

to demonstrate that ( ) . But, since all the 's satisfy Relevance,

we immediately see that

= ( ) ) ) = ( ) ) )

which proves that ( ) .

For C-success, suppose and ( ) . Let = ( ), then, by

Success, = and, by Inclusion, = .

Finally, we prove that satis�es Solo: suppose that for all = , we

have = . Let be such that = ( ). Then, by Proposition 2, we have

for any = , that = 0. Thus, we have

= = = = = = = = =

Thus, = .

Theorem 7 expresses a property: if we de�ne a concurrent con-

traction via Composition and Decomposition using individual contractions

, we get the rationality postulates for if we impose rationality postu-

lates on all the 's. Theorem 8 expresses a principle going in

the converse direction.

1

We note the following. For any formula , let ( ) be the vector

with at index , and with at all other places: ( ) = and ( ) =

= . Using the interleaved contraction postulate Solo, we immediately

obtain:

( ( )) = (3)

Equation (3) expresses that a single agent contraction can be modeled by

the multiple-agent contraction, provided that all agents but one refrain from

acting. Now, let satisfy the properties of De�nition 6. Then, using (3),

one easily reads o� the properties Closure, Inclusion and Success from

C-closure, C-inclusion and C-success for , respectively. For Relevance,

suppose that ( ). Using C-relevance, we �nd a and a

with ( ( )) = such that ( ) and ( ) .

Since for all = , ( ) = , we must have = . Since ( ) = , we

have and for some with ( ) , expressing

12
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that satis�es Relevance. To check Uniformity for , suppose that

for all subtheories . By de�nition of ( ), we immediately

see that ( ) ( ) so that C-uniformity yields

( ( )) i� ( ( ))

Using (3) we conclude that ( ) = = ( ), and this proves

Uniformity.

Combining Theorems 7 and 8 we see that the Composition and De-

composition postulates properly link individual and concurrent contractions

together: postulates for individual operations are guaranteed by imposing

postulates on the concurrent one, and vice versa.

Requiring that single agent contractions and a concurrent contrac-

tion are related through Composition and Decomposition is a non-trivial

requirement, even if the single agent contractions satisfy the postulates of

De�nition 1, and the concurrent contraction satis�es the postulates of Def-

inition 6. The main reason is that the postulates for contraction don't, in

general, uniquely pin down its actual implementation. One can have di�er-

ent single contractions and satisfying the postulates of De�nition 1

(for example, can be a full meet contraction , and a partial meet

contraction). Now, assume that and are composed with , . . . ,

(all satisfying the postulates of De�nition 1) into and , respectively,

using Composition. Then, the single agent contractions , . . . , and the

concurrent contraction are not related via Composition and Decomposi-

tion.

Let 1 be the number of agents. We assume that for each , agent

's contraction function is de�ned using a selection function , as outlined

in Section 4. The models we are about to de�ne are called selection sys-

tems; they are based on the selection functions contributed by the individual

agents. Roughly, a selection system is a collection of compositions of single

agent selection functions that satis�es certain constraints.

More precisely, a ( ), intended to represent inter-

leaved contractions, is given by the following components:

, a set of states. Each state is labeled with a theory Th( ). These

are the theories that the theory of the Th( ) can evolve

into by applying sequences of single agent contractions. Two states

may be labeled with the same theory.

, a set of possible transitions built up from the individual agents'

single contraction:

= ( ) ( (Th( ) (Th( ) )) = Th( ))

13



T

0

0

0 0

T

T

T

S S

S

S

Theorem 9

0 1

1 1 0

+1 +1

1

1

0

0

+1 +1

+1

+1

0

0

1

0

0 +1

( +1) ( )

s s s

s

s s s s

s

s s s

s s s

s

s s s

s

s s

s

s

s s s s

s s

s s

s

s

� �!

�! 6

2 S

S T

2 �!

S T

�

�

�!

�

�

�!

�

S T �

�

S T � �

�

� � �

� /

?

f g

� �

�

� �

i

i;�

i;�

m

j

j i j

i;�

j

m

k

n

j j j

i;�

j

j j

j

i;�

j

n j j

n

i

f i

i i

f i

n

i

i

�

; ; � ; : : : ;

� s �

T n

~

� � �

; ;

T

~

�

T

�

i n

�

T

~

�

� i n �

T

~

�

; ; T

~

�

T

~

�

; ; T

~

� T

~

�

T

~

�

s s s j n

S T

~

� S S S

S T S s S ; S � f

; : : : ; n S S

successor successor

terminal choice sequence

Initiation

Consecution

Termination

pre�x

length
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model

proper choice sequence

gen-

erates a full selection system for and

Let be a concurrent contraction function, and a set of

single agent contractions. Then satis�es the C-postulates from De�ni-

tion 6, and and are related via the Composition and Decomposition

Here is called a (or - ) of ; notation:

. For technical reasons we will assume that all successor steps are

irreexive: if then = .

A state is if it has no successors. A of

a selection system ( ) is a �nite sequence : satisfying

the following requirements. First, the requirement says the state

is the initial state of the selection system, that is: = . Second,

the requirement says that for each pair of consecutive states ,

there is a selection function and a formula such that .

(Observe that two states may be connected by multiple transitions.) Finally,

the requirement says that the �nal state is a terminal state.

A is a sequence , . . . , satisfying the requirements of initiation

and consecution, but not necessarily of termination. The of a pre�x

is its number of states.

Let be a theory, the number of agents, and = ( , . . . , ) a

sequence of formulas. Our next aim is to determine what it means for

a selection system = ( ) to model or represent the interleaved

contraction . We will impose three constraints. First, the

constraint says that Th( ), the theory of the initial state, should equal .

Second, the constraint requires that for every choice sequence

in and every there exists at most one pair of consecutive states

, in such that . Intuitively, the tightness property says

that no attempt is made to carry out a single agent contraction in

twice. Third, the constraint says that for every choice sequence

in and every there is a consecutive pair , in such that

. holds. The fairness property expresses that every single agent

contraction in will eventually be carried out.

Let = ( ) be a selection system. is called a for if

it satis�es the starting, tightness and fairness conditions for . Given a

model = ( ) for , a of is simply

a choice sequence in . What this de�nition boils down to is that we view

interleaved contractions as generators of proper choice sequences.

To be able to express the connection between concurrent contraction

functions and selection systems, we say that a contraction function

if there are single agent selection

functions , . . . , such that is de�ned in terms of (1 ), and

for all such that ( ) there exists a sequence , . . . , such

that = , = ( ( )), where is a permutation of

1 , and = .
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laws from Section 6 i�, for every theory and vector of formulas ,

generates a full selection system for and .

Proof.

(1) (1) ( ) ( )

0 +1

( +1) ( +1)

( +1)

( +1) ( +1)

( )

+1

( +1) ( )

0

+1

( +1) ( ) ( +1)

( +1)

( +1)

+1

( +1) ( +1)

0

+1

( +1) ( +1)

Selection systemsPostulates for

Selection functionsPostulates for

Syntax Semantics

First, suppose that satis�es the C-postulates of De�nition 6, and

suppose also that and are related via Composition and Decomposition.

Let be such that ( ) . Just as in the proof of Theorem 7 we �nd

a permutation of 1, . . . , such that

= (( ( ) ) )

Now, de�ne = and = ( ). Theorem 8 guarantees

that each individual contraction satis�es the postulates of De�ni-

tion 1 and hence, we may use one direction of Theorem 3 to conclude that

each contraction corresponds to taking the intersection of

the selection that agent ( ) generates, using and , so that we

have = ( ( )). This proves that every and

generate a full selection system.

For the converse, suppose that for every and , the operator gen-

erates a full selection function. Let and be such that ( ) .

We know that, semantically, this gives rise to a sequence = and

= ( ( )), where each is a selection function.

Now, we use the other direction of Theorem 3 to lift this semantic result to a

syntactic level: we can associate a single agent contraction satisfying

the postulates of De�nition 1 with each selection function , and we

may write = ( ). Hence, by an application of Theo-

rem 7 we conclude that satis�es the C-postulates of De�nition 6. Finally,

by observing that each sequence , . . . , in a full selection system deter-

mines a permutation of 1 such that = , it

follows that and are related via the Composition and Decomposition

postulates.

With the above result we can `complete the square' in the following

diagram:
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8 Concluding Remarks

entrenchment systems

By walking around the above diagram we see that full selection systems are

a model for our postulates for interleaved contraction, and any full selection

system for and is given by the postulates for .

We have shown that concurrent contractions are well-behaved in that they

satisfy a set of fairly transparent rationality postulates. On the assumption

that all the underlying single agents contract in a rational way, and that

concurrency is modeled in an interleaving manner.

In the course of the paper we have had to make explicit and alter some

of the assumptions underlying the AGM approach to theory change as they

seem no longer appropriate in our setting:

In our interleaved setting theory change operations need not be func-

tional; they are always de�ned but they need not have a unique out-

come. (A similar deviation from the AGM assumptions in the con-

text of single agent theory change is explored by Lindstr�om and Ra-

binowitz [11].)

In our interleaved setting theory change no longer is a one step op-

eration. Although theory change typically occurs in dynamic envi-

ronments in which agents may learn new information in a continuous

process, the traditional AGM framework consistently avoids mention-

ing iterations of its operations. Recently a number of authors have

abandoned this assumption, and considered forms of iterated theory

change; see for example Lehmann [10] and K�r-Dahav and Tennen-

holtz [8].

In our interleaved setting theory change operations have internal struc-

ture, and they are no longer fully characterized by their pre-conditions

and postconditions. In contrast, the traditional AGM postulates have

nothing to say about the internal mechanisms by which operations of

theory change achieve their goals.

To formulate it in a single sentence, the reason that the above assumptions

are no longer valid is that we have been considering collections of sequences

of (single agent, one-step) contractions that are organized in a tree as in

Figure 3 above.

In our ongoing work we consider alternative models for interleaved con-

tractions called that are based on compositions of

single agent entrenchment relations. One can prove a representation result

to the e�ect that every selection system can be represented as an entrench-

ment system, and vice versa.
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Our future work revolves around the idea of using other models of con-

currency than interleaving, and determining the e�ects this has on the pos-

tulates describing multi-agent theory change.
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Below we give proofs for results that were stated without proofs in earlier

sections.

= ( ( ))

Let us �rst assume that is de�ned using a selection function : we

show that satis�es the required postulates. The Closure and Inclusion

conditions follow immediately from the de�nition of and the fact that

theories are closed under intersection. Uniformity follows because if

for all subtheories , then ( ) = ( ) and hence

( ( )) = ( ( ))

Success is also clear: if , then for any ( ), so

( )). As to the Relevance postulate, suppose ( (

)). Then, there must be a ( ( )) with . By the de�nition

of , and, by the de�nition of ( ) we must have .

Conversely, let satisfy the postulates of De�nition 1. For any theories

and and formula such that = , we have to guarantee that

( ( )) = . We de�ne ( ), with 2 as follows.

( ) :=

if =

if = ( ) = for some formula

otherwise.

To see that is a selection function, we �rst observe that ( ) =

and if = , then ( ) is a non-empty subset of . It is also a function:

suppose = and = . If ( ) is not a matching pair, then

neither is ( ) and we have

( ) = = = ( )
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Otherwise, we may assume that = and = for

some formulas and . Thus ( ) = ( ). Let be an

arbitrary subtheory of = . If , we have ( ) and

hence ( ). Thus, we have either that and then also

, or some with ( ). The latter is impossible,

since it would yield ( ) and . This proves that for any

subtheory of we have . By Uniformity and = , we

then have = . From this we immediately get

( ) =

=

= ( )

Finally, we have to show that ( ( )) = , whenever = .

We immediately have ( ( )). For the other inclusion, we �rst

assume . Suppose we have some . By Relevance, we �nd an

with , for which and . This can be expanded

to an such that ( ) and . We thus have

( ( ))

Finally, if , then by Vacuity (which follows from Inclusion and Rele-

vance), we have = and thus = ( ( )), so that ( (

)) .

Let be a theory and suppose . Suppose furthermore that is

a set of formulas, satisfying: (i) is a theory, and (ii) for all :

. We have to prove: = ( ) . If the equation

holds trivially, so let us assume the existence of a . We now �rst

show that : if we would have , we reason as follows. Since ,

we have ( ) . But ( ) , since otherwise we would have,

by that . Thus, ( ) . By de�nition of , we

have ( ) . Since (( ) ) ), we would have ,

contradicting one of the premises. Thus, .

Now we can prove that ( ) = . For , suppose ( ) .

By Inclusion, we have . If would be in , we would have

and hence ( ) , contradicting Success. Thus, . To see that

also ( ) , let . Then . If ( ) , by

Relevance, we �nd a with

( )
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A contraction function satis�es the postulates of De�ni-

tion 1 i� there exists a two-placed uni�ed selection function such that, for

any theory and formula ,

Proof.

U; � U � Z

U T  T U; � T �

 T Z �

s

T �

T � s T; T � :

s

s

U � V  :

s U; U � s V; V  U �

s U �

U � U V � :

� U V � V � Y Y V  

� X X U � �

U � � �

� U V � �:

X U � X �

X V X U V �

X U V � X � � U X

X;� � X U �

� V X U V � X;� � � V

� U V X;� �

V  U V  

U V � U V  :

T U V Z U V U V �

U � s

s U V; U V � s U; U � :

s U V; U V  s V; V  

s U V; U V � s U V; U V  ;

s U; U � s V; V  

and such that and . By the assumptions on , the latter

implies that . Since and we have | a possibility

we already excluded. Thus, ( ) .

= ( ( ))

If is a selection function, by Theorem 3 we �nd a contraction func-

tion satisfying the postulates of De�nition 1. Conversely, suppose

satis�es the postulates of De�nition 1. By Proposition 4 we know that it

also satis�es redundancy. We will show that the selection function whose

existence is guaranteed by Theorem 3, is uni�ed. To do so, suppose

( ) = ( ) (4)

We have to show that ( ( )) = ( ( )). If ( ) = ,

the conclusion follows from the de�nition of . So suppose ( ) = . We

will �rst argue that

( ) = (( ) ) (5)

Suppose that . Then and hence for any ( )

and, by (4), for any ( ). Since has been removed from

all maximal subsets of that do not entail , we must have . Thus

(6)

To prove the -direction of (5), suppose ( ). Then and

by (6) we must also have , and so (( ) ). Conversely,

suppose (( ) ). Then . Let be any formula in .

If we can show that , we may conclude ( ). Firstly, if

, then, since (( ) ), we have . If we

have , and by (6), . This proves (5), and, by a similar

argument, we of course have ( ) = (( ) ). Combining this

with (4), we get

(( ) ) = (( ) ) (7)

Taking = and = , Redundancy guarantees that ( ) =

. Since is modeled by a selection function , we have

( (( ) )) = ( ( ))

Similarly, ( ( ) ) = ( ( )). From (7) we infer

( ( ) ) = ( ( ) )

so that we can �nally conclude that ( ( )) = ( ( )), as

required.
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