
http://wrap.warwick.ac.uk/

Original citation:
Goldberg, Leslie Ann, Goldberg, Paul W., Phillips, C. A. and Sorking, G. B. (1996)
Constructing computer virus phylogenies. University of Warwick. Department of
Computer Science. (Department of Computer Science Research Report). (Unpublished)
CS-RR-297

Permanent WRAP url:
http://wrap.warwick.ac.uk/60984

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/29189399?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60984
mailto:publications@warwick.ac.uk

Research R.port 297

Constructing Computer Virus Phylogenies

Leslie Ann Goldberg, Paul W. Goldberg,
Cynthia A. Phillips, Gregory B. Sorkin

RR297

There has been much recent algorithmic work on the problem of reconstructing the evolutionary
history of biological species. Computer virus specialists are interested in finding the evolutionary
history of computer viruses - a virus is often written using code fragments from one or more
other viruses, which are its immediate ancestors. A phylogeny for a collection of computer
viruses is a directed acyclic graph whose nodes are the viruses and whose edges map ancestors to
descendants and satisfy the property that each code fragment is "invented" only once. To provide
a simple explanation for the data, we consider the problem of constructing such a phylogeny with
a minimum number of edges. In general this optimization problem is NP-complete; some
associated approximation problems are also hard, but others are easy. When tree solutions exist,
they can be constructed and randomly sampled in polynomial time.

Department of Computer Science
University of Warwick
Coventry CV4lAL
United Kinedom

January 1996

Constructing Computer Virus Phylogenies

Leslie Ann Goldberg*

Cynthia A. Phillipsl

Paul W. Goldbergl

Gregory B. Sorkin$

January 23, 1996

Abstract

There has been much recent algorithmic work on the problem of reconstruct-

ing the evolutionary history of biological species. computer virus specialists

are interested in finding the evolutionary history of computer viruses - a virus

is often written using code fragments from one or more other viruses, which

are its immediate ancestors. A phylogeny for a collection of computer viruses

is a directed acyclic graph whose nodes are the viruses and whose edges map

ancestors to descendants and satisfy the property that each code fragment is
,,invented" only once. To provide a simple explanation for the data, we con-

sider the problem of constructing such a phylogeny with a minimum number of
edges. In general this optimization problem is NP-completel some associated

approximation problems are also hard, but others are easy. When tree solutions

exist, they can be constructed and raudomly sampled in polynomial tin-re.

*lesl-ie6dcs.rarrick.ac.uk. Department of Computer Science, University of Warwick, Coven-

try CV4 7AL, United Kingdom. Part of this work was performed at Sandia National Laboratories

and was supported by the U.S. Department of Energy under contract DE-AC04-76AL85000. Part

of this work was supported by the ESPRIT Basic Research Action Programme of the EC under

contract ?141 (project ALCOM-IT).
tgoldbepr6helios.aston.ac.uk. Department of Applied Mathematics and Computer Science'

Aston University, Aston Triangle, Birmingham 84 7ET, United Kingdom. Part of this work was

performed at Sandia National Laboratories and was supported by the U.S. Department of Bnergy

under contract DE-AC04-76AL85000.
lcaphillocs.sandia.gov. Sandia National Labs, P.O. Box 5800, Albuquerque NM 87185. This

work was performed under u.s. Department of Energy contract DE-ACO4-76AL85000.
tsorkinQratson.ibn.con, IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown

Heights NY 10598.

1 Introduction
There are now several thousand different computer viruses in existence, with new
ones being written at a rate of 3 to 4 per day. Most of these are based upon previous
ones: someone copies and modifies a virus, or creates a new virus with subroutines
borrowed from one or more ancestors-

For most purposes, a computer virus can be regarded as a fi.xed string of bytes,
each byte consisting ofeight bits. If one virus is based on another, long substrings of
the ancestor, say 20 bytes or more, will appear in the descendant. Using probabilitv
rnodels similar to those employed in speech recognition it is possible to estimatc
the probability that a given byte string occurs in several viruses by chance [1a]; if
the probability is low but the string does occur in several viruses then we conclude
that it was written for one virus, and copied into the others. More details of the
pattern-matching approach used to identify duplicated byte strings are given in
Section 1.3.

We wish to infer an evolutionary or phylogenetic history for a set of com-
puter viruses.l As most phylogenetic literature to date has been based upon bi-
ological evolution, we adopt that terminology. Thus, the viruses in the input set
5 : {rt,...,sr} are ca.lled species. The species are defi.ned by a set of binary
characters c = {cr,...,ck}.A binary characteris afunction c: s * {0,1}. (In
general, the range of a character can be arbitrary, but the presence or absence of
byte strings can be rnodeled with binary characters.) Each character c correspolds
to a byte string, with c(s) : 1 if the string occurs in species s and c(s) = 0 oth-
erwise. Ifc(s) = 1, we say that species s hasor contains character c. In analogy
rvith terminology from the logic synthesis area of computer circuit design, we d.efine
the on-set ,5. of a character c to be the set of all species on which its value is 1:
.9. = {s € 5 | c(s) : 1}. A character c is trivial if l5.l < 1. A trivial character can
be ignored since it imposes no constraints on possible solutions.

We assume that the input species are all related: that the bipartite graph join-
ing species to characters that have them is connected. Otherwise, the connected
components can be considered independently.

We also assume that each code fragment is invented oniy once. For sufficiently
long fragments this is justified by differences in programming style, the many possi-
ble orderings of unconstrained events, etc. We model the evolution of a set of viral
species with a directed graph in which an edge si--ts j indicates that species s; is an
ancestor of species s; (i.e. s; inherited some character(s) from s;).
Definition: A phyloDAG for input species 5 and characters C is a directed acycLic
graph (DAG) with node set S. For each character c € C, the subgraph induced by
on-set ,5" is connected, in the sense that from a single archetype ac € Sc there is a
directed path, within 5., to every other s € .t .

The phyloDAG model allows the possibility that a species may be derived from
several ancestors rather than from a single ancestor. For computer viruses this is
appropriate, since a virus author could appropriate code from a variety ofsources. It

i One of us (Sorkin) is a member of the computer anti-virus group at IBM Research. The
group produces a commercial software product, IBM ANrrVm.us, and conducts related theoretical
research. Phylogenetic information may be useful for tracking global virus trends, while the byte
strings serving as characters can be used for virus detection.

is also a plausible model for evolution of bacteria populations which have inherited

genes via infection by bacteriophages[B]: the genes evolve only once, and can be

transferred from host to host by these viruses.
A phyloDAG exists for any inputs (S,C): for any chronology ascribed to the

species (i.e. any total ordering of the species set), the directed graph with edges

from each species to al1 later species is a phyloDAG. However, every pair of species

is related by an edge in this graph. Since most virus species presumably have

few ancestols, we seek a Minimum PhyloDAG, one with a minimum number of

directed edges.

We assume that the input is given in the
species s € ,5, we are given a sorted list of the

Definition: The input length (. = (.(S,C) =
number of characters is A = lCl.

following compact format: for each

characters c for which c(s) : 1.

Dcec 15.1. The size is n: lSl. The

Our approach to the evolution problem corresponds to a restricted model of

evolution: one in which we are not allowed to introduce hypothetical species outside

of the ilput set. This model is well-suited to computer vituses, where because of

good world-wide communications, sharing of data between anti-virus organizations,

and the brief history involved, there are likely to be very few gaps in our viral

database - a situation quite different from that ir biology. Previous work on

restricted. models of evolution will be discussed in Section 1.2. For our model, if
additional species could be introduced into a phyloDAG, there would always be a

trivial sparse phyloDAG: a star graph with the center an added species s such that

c(s) :1forall ce C.

If a phyloDAG's vertices are labeled with the vaLues of one character, the pos-

tulate that no character is "invented" twice corresponds to an assertion that thele

is at most one directed edge labeled 0--+1. Thus the sequence of labels along any

source-to-leaf path is described by the regular expression 0+1*0*, that is' zero or

more 0's, followed by zero or more 1-'s, and finally zero or more 0's again.

1.1 Paper organization and results

We will show in Section 3.3 that the Minimum PhyloDAG problem is NP-hard'

Furthermore, if NTIME(nPolvlosn) I DTIME(nPolvlosn) (a plausible complexitv-

theoretic assumption related toP I NP), it cannot be approximately solved within

a factor less than (1/16)log2(. in polynomial time. In fact, we know of no way

to approximate Minimum PhyloDAG within any logarithmic factor; Section 3.3

shows that various natural greedy strategies (including randomized ones) do not

even approximate within a factor of cn.

Because of the difEculty of the phyloDAG problem, we consider two variants.

In the first variant, we require that each species havejust one ancestot, so that the

phyloDAG is an arborescence (a tree with edges directed away from a root). In Sec-

tion 2 we d.efine a 0-1-0 phylogeny to be an arborescent phyloDAG's underlying

und.irected tree. Species .9 and characters C may be consistent with zero' one' or

multiple 0-1 0 phylogenies. We give two polynomial-time algorithms to randomly

sample 0-1-0 phylogenies if any exist.
The first atomic-set algorithm (Section 2.1) computes a concise data struc-

ture that represents all 0-1-0 phylogenies for the input data and can be used to

select a phylogeny uniformly at random in time O(n(.). When no solution exists
the algorithm returns a witness set: a concise indication of why there can be no
phylogenetic tree.

The second minimum spanning tree algorithm (Section 2.2) characterizes a
0-1 0 phylogeny of the input species set as a minimum spanning tree (MST) of a
particular undirected edge-weighted graph. Using known algorithms for constructing
and randomly sampling spanning trees, a 0-1 0 phylogeny can be constructed i1
deterministic time O((n I n2\ogn) or (with high probability) in rand.omized time
O((.n), and sampled uniformly at random in time O(ln-t M(")), where M(n)is the
time needed to muitiply two n x n matrices. The NIST algorithm does not produce
a concise witness when there is no 0-1 0 phylogeny.

The second variant of phyloDAG is simply its undirected analogue. A phylo-
graph for species 5 and characters C is an undirected graph with vertex set 5, with
the property that the subgraph induced by the on-set of each character c € C is
connected. The Minimum Phylograph problem is find a phylograph with the
minimum number of edges. Theorem 3.1 shows that it is hard to approximate Min-
imum Phylograph within a factor less than (1/16)Iog2l, while Theorem 3.4 shorvs
that approximating it within a factor of.lt(. is easy.

The model of computation used in this paper is the uniform-cost rand.om-access
machine.

L.2 Related work

Previous work in phylogeny has focused on constructing phyiogenetic frees. Horv,
ever, the problem of modeling virus evolution is more suited to phylographs and
phyloDAGs, in which undirected cycles may arise. -A.s far as we know, ours is the
first phylogenetic work that allows cycles.

Tliere is substantial literature on character-based phylogenies where each sub-
graph induced by all species sharing a state for a character is required to be con-
nected. This problem is called the perfect phylogeny problem, and is Np-
complete for the "unrestricted" case (where putative species may be added) with
general characters [3, 18]. For the unrestricted case n'ith binary characters Gusfield
gives an elegant O(nk) algorithm [12], and for the restricted case with generai char-
acters Goldberg et aJ. [11] give an algorithm analogous to the MST algorithm of
Section 2.2.

Our 0-1 0 phylogeny problem is similar to a restricted version of the general
character compatibility problem of Benham et al. [2]. There a character c maps
each species s to a subset c(s) C {0, 1,2} rather than to a single value; lhe leartes
of the tree are the species 5; for each c and s, a single value from c(s) is chosen as
a label; and the goal is to find a rooted perfect phylogeny in which the sequence
of labels along any root-to-leaf path is of the form 0 --+ I ---+ 2. The problem is
NP-hard [21.

1.3 Choosing characters

For the bulk of this paper the set of species and the characters are simply inputs,
but at an earlier stage they too must be determined algorithmically. In one math-

3

ematical model of the problem, we are given a collection of byte strings represent-

ing computer viruses (there might be 5,000 such strings, each typically 2,000 bytes

long) and a similar collection representing legitimate computer code (perhaps 40,000

strings, each typically 20,000 bytes long); we wish to find all strings of 20 bytes or

more that occur in at least 2 viruses but in no legitimate programs. Of course the

numerical parameters might be varied, or another criterion might be substituted,

e.g. the string's appearance in at least 10 times as many viral programs as legitimate
programs.

The problems can be solved in linear space and time by a straightforward appii-

cation of suffi.x trees [7]. All viral and legitimate strings are concatenated together,

separated by a special character, and a suffi.x tree is constructed. The leaves of the

suffix tree represent all sufixes of the input string, and the internal nodes - viewed

as paths from root part-way to leaf - denote prefixes of sufrxes, which is to sav

substrings of the input string. Depth-first search can be used to propagate, from
leaves to root, the number of times each substring appears, and in fact the numbel

of times it appears in viruses and (separately) in legitimate strings; this provides

the solution to the stated problem.z

2 Computing a 0-1-0 phylogeny

The case in which each species has only one ancestor is of special interest, and

corresponds to cases in which the phyloDAG is an arborescence a tree with all

edges directed away from some root. There is a straightforward n:1 correspondence

between arborescences and undirected trees: the undirected graph underlying an ar-

borescence is a tree; and each of the n possible rootings of a tree is an arboresceuce.3

Therefore we concentrate on undirected 0 1-0 phylogenies:

Definition: An (undirected) o-1-0 phylogeny, or phylogenetic tree, is a tree ?
on species 5 with characters C such that each on-set 5" induces a sub-tree of 7'

If f is a phyloDAG whose underlying graph is a tree ?, then 7 is a 0-1 0 phy-

logeny as defined above: as each on-set 5. was connected in 7, it is connected in ?.
Also, if ? is a 0-1-0 phylogeny, any arborescence based on 7 is a phyloDAG: the

archetype of any character c is the species in 5. closest to the root. In this sec-

tion, we will show how to generate 0-1-0 phylogenies, and how to generate them

uniformly at random. Given a uniformly random phylogenetic tree, choosing a root
uniformly at random generates a uniformly random arborescent phyloDAG.

Because an arborescence can be rooted anywhere, a 0-1-0 phylogeny alone does

not determine an evolutionary chronology, but it can be useful in combination with

external information. For example if the first species' identity is known, the rest of

the evolutionary history follows.

2For the sake of accuracy, we note that this is not precisely the approach employed in practice

at IBM; we have simplified here for the sake of exposition'
tTh"r" exist phyloDAGs whose underlying graphs are trees but which are not atborescences.

An example, for species with characters (o), (ab), and (b), is (a) - (ab) * (b). But since such

phyloDAGs impty multiple ancestors for some species, they are not especially interesting.

2.r The atomic-set algorithm for computing 0-1-0 phylogenies

As described in the Introduction, our atomic-set algorithm produces a data struc-
tute, an AS-tree, which concisely represents all 0 1 0 phylogenies for species 5 and
characters C, and can be used to generate an arbitrary solution or a solution chosen
uniformly at random.

Generalizing the definition of the on-set of a character, define the on-set of a
collection of chara,cters to be the species having allthose characters: Sc: fl"ecS..
Definition: Let C C C be a maximal (not necessarily marirnum) set of chara-cters
for which lsel > 2. Then A: Se is an atomic set with defining characters C.

Lemma 2.1 For any atom'ic set A and character c, either S.) A (c is a def,ning
cLmracter), orlS.nAl: L (c is a non-defining character owned by the sole species
s € l^t a Al), or S.tr A= A ft is an avoiding character).

Proof. The only logical possibiiity missing is that 15" n al) 2 but s.n A + A,
which would contradict the ma-ximality of ,4.'s set of defining characters. r

An atomic set can be constructed in time o(kn): start with c = 0 (so sc = s),
sweep through all characters c € C in turn, reject c if l.ti n.g.l < 1, but otherwise
add c to the defining set, so e t: C u {"}. An O((.)-time implementation of this
algorithm is described in the Appendix.

Lemma 2.2 Suppose all species in 3 are connected, i.e. the bipartite graph join-
ing characters to species that haue them is connected. Then if s1, s2 € S haae no
characters in cornmon, no phylogeny contains the edge (,tr,sz).

Proof. Suppose a phylogenetic tree 7 contained (sr, sz), and delete ("r,
"r)

to create
a forest 7', consisting of two trees. For any character c and any s, s' € ^9., ? has a
path s,. . ., s' within 5.. The path does not include the edge (rr,

"r),
since not both

s1 and s2 can be in 5., so 7/ contains the same path. Thus in ?/ there is a path
from any species having character c to any other. Given the connectedness of the
species character graph, a series of such paths joins any species in S to any other,
contradicting the fact that Tt is not a connected graph. r

Lemma 2.3 If A is an atomic set, then in any 0-1-0 phylogeny, A's induced sub-
graph is o, subtree.

Proof. In a 0-1-0 phylogenetic tree ?, the on-set of any character c € C induces
a connected subgraph, therefore a subtree. A is the intersection of the subtrees
corresponding to A's defining chatacters, and the intersection of subtrees is itself a
subtree. I

Lemma 2.4 For ang phylogeny T and, atomic set A, if the subtree Ta is replaced,
by anE other treeT'a on the set A, the resultant oaerall treeTt 'is also a phylogerty.

Proof. For any character c and species s, s/ € .9., consider the (unique) path
s,. . ., s' in 7. If .9" n A : A, the path never enters ,4, so it is unaffected (i.e. the
identicalpathexistsinT').If l^9.nAl = l,thepathtouchesatmostonevertexinA,

hence no edges within A, and is unaffected. Otherwise (by Lemma 2.1) S.I A, and

if the path through ? included any sub-paths through Ta (in fact there can be at

most one), those sections could be replaced by sub-paths through { (and thus still
within 5.). So connectedness of all characters in ? implies the same fot T', and ?'
is a phylogeny. r

Lemma 2.5 For any phylogenyT and atomic set A, if A is collapsed - replaced

by a single spec'ies "a" hauing all defining and non-defi'ning characters of A (but

not its auoiding characters), and the subtreeT4 is contracted, to the single species a,

then the resultant ouerall tree Tt is a phylogeng for 5' : (5 \ A) U {o}.

Proof. Same as previous. I

Lemma 2.6 If (S,C) has an atomic set A, with species s1,52 €. A own'ing non'
defining characters c1,c2 respectiuely, and if 5., n 5., * A' then there is no 0 1

0 phylogeny for E.

Proof. Suppose there is a phylogeny ? for 5. Root 7 at any s3 € ,56' ff S.r, and let

s, be the lowest common ancestor of s1 and s2. Then the path (all paths in a tree

are unique) from s1 to s2 passes through s"; thepath from s3 to s1 passes through s"

(since s" is an ancestor of s1); and the path from s3 to s2 passes through s' (since .s,'

is an ancestor of sz). By Lemma 2.3, Ainduces a subtree, so 51,s2 € A implies that
the s1-s2 path is contained in,4, and in particular s" €,4" Similarly sr,s3 € 56'

implies s, € S"r, and s2, s3 e 56, implies s, € S.r. Therefore s" € AOSrrnS.r-

Brrt c1 and c2 are nondefining characters with distinct owneIS, so An5., nS"2 - A.

a contradiction. I
If the hypotheses of Lemma 2.6 are sa,tisfied, we say that the atomic set A.

characters cr,c2, and species s1, s2 provide a witness attesting to the non-existence

of any 0 1-0 phylogenetic tree.

Lemma 2.7 Let A be an atomic set, and, suppose tltat no srrs2,c1,c2 satisfy the

conditions of Lernma 2.6. As before, "collaqtse" A to the single species a hauing all

defi,ning and non-defi,ning characters of A. If 5' : (5 \ A) U {a} has a phylogeny,

so does E.

Proof. Let T' be a phylogeny for 5'. Deiete rz and its incident edges, and replace

them with the set A and any tree on A. Additionally, replace each edge (s, a) witir
a single edge as follows.

By Lemma 2.2,.s and rr must share some character(s), which (since c, has then)
must be defining or nondefining characters of A. If. s and a share any non-defi'ning

characters, those characters must have a single owner s' (or else A, these characters,

and their owners ale a negative witness), in which case add the edge (", "')' Other-

wise, s and a only share defining characters of A, in which case add any edge (s, s')

with s/ € A.
Replacement of each edge (s,o) with an edge (","'), s' € A, means that the tree

components created by a's deletion are all connected to the tree on A, creating a

single tree ?. Using arguments similar to those in Lemma 2.4, all. characters indrrce

connected components in ? as they did in ?'. r

In fact, the constructive nature of the proof of Lemma 2.7 immediately suggests
the atomic-set algorithm. Starting from 56 :: 5, repeatedly, find an atomic set
A; and check for a witness as per Lemma 2.6. If one is found, terminate negatively.
otherwise, collapse A; lo a single new species a;, and, re-define the species set to be
S; :: (5;-1 \ -A;) U {o;}. Since each atomic set contains at least two species, this
reduces the number of species, and needs to be performed at most n - 1 times.

We construct the AS-tree during this contraction phase. The leaves of the AS-
tree are the species in S, and all elements of any set A; have n; as their parent.
Equivalently, the fi.nal n; is the root of the AS-tree, and each o1 has all species in
A, as children. This tree concisely represents all possible phylogenies.

Itlow, starting at the root of the AS-tree, we expand any node n; whose parelt is
already expanded using the method suggested by the proof of Lemma 2.7: Replace 4;
with A; and form any tree T; on A;. For each old edge (",o;), if s has a nondefining
character c of A;, add edge (s,owner4,(c)); otherwise s must have only defining
characters, in which case add any edge (",

",),
s, € A;.

Theorem 2.8 The algorithm aboae produces a phylogeny for S,c if one erists, and.
otherwise prod,uce-s a negatiae witness. If the algorithm is implemented. to choose
trees T; uniformly at random, and to choose s' € A; uniformly at random for
def'ning-character edges (s,st), then it produces a un'iformly random undirectefl 0-
1 0 phylogeny.

Proof. The first assertion follorvs directiy from the preceding sequence of lemmas.
If we detect a negative witness, we correctly terminate negatively by Lemma 2.6
coupled witir Lenma 2.5. Otherwise, by Lemmas 2.b and 2.7, we can collapse the
atomic set, solve the problem on the new set, and "expand" the collapsed set to
a 0-1-0 phylogeny. The choices made in the expansion phase are independent and
lead to different phylogenies. The uniform generation of phylogenies follows from
this one-to-olle correspondence between phylogenies, and choices in the algorithm.
I

Since we can generate a random 0 1 0 phylogeny from the AS-tree, it concisely
represents all possible 0-1 0 phylogenies.

The atomic-set algorithm produces an AS-tree in time o(nL): in each of the
O(n) collapsing iterations, we find an atomic set, check for a witness, and collapse
tlre set, each such operation taking fime O((.). (See the Appendix.)

The expansion can be completed in time o(nL). There arc o(n) expansions. To
expand node o;, we can produce a random tree on the set A; in time O(lA,l), since
a labeled tree on r nodes can be selected uniformly at randorn in O(r) time. (See,
for example, [16].) If we store pointers to owners of non-defining characters when
constructing the AS-tree, we can connect this tree to its neighbors in time O(l).

2.2 The Minimum Spanning Tbee algorithm
In this section we give a second algorithm for computing 0 1-0 phylogenies. It is
very simple, and is based on the observation that 0-1-0 phylogenies for species 5 and
characters C correspond to minimum-weight spanning trees (MSTs) of a particular
undirected edge-weighted graph G(E,C). (This observation was also used in [11] to
obtain an algorithm finding restricted perfect phylogenies.)

The graph G(E,C) is a complete graph on 5, with edge weights ur(s1,s2) :
k _ l{" € C lc(s1)= "(rz):1}l. It can be constructed in O(/n) time.

Theorem 2.9 0-1-0 phylogeni,es for (3,c) are spanning trees of G(s,c) with weight

nk - (. Furth.ermore, G(3,C) has no spanning trees of smaller weight.

Proof. Every spanning tree of G(5) has weight at least nk- (, since the contribution
of eachcharacterctothetotalweightisatleast(n -1)-(lS.l -1). Spanningtrees
of G(5) with weight nk - I correspond to trees in which each on-set .9. is connected

(see [11]). r
Because of this correspondence, phylogenies can be constructed (or randomly

sampled) by established algorithms for constructing (or randomly sampling) MSTs.

Prim's algorithm [17, 10] constructs an MST of G in O(mlogm) time, where m

is the number of edges in G, and * : (;) for G : G(S, C). If a faster algorithm
is required, Karger, Klein and Tarjan's randomized algorithm constructs an MST,

with high probability , in O (m) time [13]. (Their model of computation is a unit-cost

rand.om-access machine with the restriction that the only operations allowed on edge

weights are binary comparisons. See also the other algorithms discussed in [t3].)
Givel an unweighted n-vertex graph, an algorithm of Colbourn, Myrvold and

Neufeld [5] selects a spanning tree uniformly at random in O(M(n)) tirne.a (Here

M(") : O(r2'3'u) is the time needed to multiply two n x n matrices [6].) Colbourn

and Jerrum [4] note that the algorithm can be used to select an MST of a weighted

graph G uniformly at random h O(M(n)) time: construct a random spanning tree

on each connected component of the subgraph of G induced bv the edges of minimun
r,veight, put the spanning trees'edges into the fiual solution, conttact the spannilg
trees, and repeat.

Compared with the atomic-set algorithm, the MST approach has the advantage

of using an unusually widely understood and simpie paradigm, a benefit echoed in

the availability and effi.ciency of computer programs. However, it does not supply a

structural representation of all possible phylogenies, ltor a concise witness when no

phylogeny exists.

3 Phylographs and phyloDAGs

Having considered the problem of constructing phylogenetic ttees, we now turn to
phylogenies that are not trees. In particulal, we consider the phylograph and phy-

IoDAG problems that were defined in the Introduction. In Section 3.1 we prove that

it is hard to approximate the optimal phylograph within better than a logarithmic
factor, and in Section 3.2 that the natural greedy algorithm gives an approximation
within such a factor. In Section 3.3 we show both that it is hard to approximate the

optimal phyloDAG within better than a logarithmic factor, and that in this case

the natural greedy algorithm can perform very badly, even on average'

aAnother randomized algorithm, due to Wilson [19], has an expected running time equal to the

mean hitting time of the graph; this is often smaller than M(n), but can be larger.

3.1 Hardness of approximation of phylograph

The following theorem states that Miniumum Phylograph is hard, and (unless n6n-
deterministic quasi-polynomial time is equivalent to deterministic quasi-polynomial
time) is hard to approximate:

Theorem 3.1 Giuen species S and characters C, it is NP-cornplete to compute a
phylograph G : (E, E) such that lEl is min'imized. Also, for any constant c 1
1f 16, unless NTIME(nnolvlosn; : DTIME(rrolrios';, there is no polynomial-time
algorithm to compute a phylograph such thatlEl is within a factor of clogr(of the,
ntinimum possible ualue. '

We will use the following notation in the proof of Theorem 3.1.
Definition: The neighborhood of a vertex o of a graph G : (v,E) is the set
l/(u): {o} u {tu : (u,w) e E}.A dominating set of G is a set of vertices D cv
whose neigirborhoods cover the graph: U1ro U1a;: y.

Lemma 3.2 computing a Minimum Dominating set D of a gra?th G is Np-
cornplete.

Proof. Garey and Johnson [Oj indicate the proof as a simple reduction from Vertex
Cover; no primary source is cited. r

The following theorem, from [15], shows that it is also hard to approrinzate
Minimum Dominating Set to within better than a loqarithmic factor: a similar
result appears in [1].

Theorem 3.3 (Lund and Yannakakis) Let c be: u, constant in the range 0 I c 1
114. [Jnless IITIME(zrolvlogn) : DTIME(rrpolylo8 "), there is no porynornial-tznrc
algorithm that takes as input a graph G and outputs a dominating set D of G such
that lDl is wi.thin a factor of clog2lvl ,f the minimum poss'ible ualue.

We are now ready to prove Theorem 3.1.
Proof. We use an approximation-preserving reduction from Minimum Dominating
Set to Minimum Phylograph. Given an input G: (V,86) with lVl= u, construct
an instance P to Minimum Phylograph as follows: The species set is S : u U x
where X is a set of z3 "auxiliary vertices". For each pair of vertices {q,az} €V(2),
define a character with on-set {at,uz}. Thus any phylograph for P contains each
edge in the complete graph on 7. In addition, for each pair of vertices (a, r) e v x x
we def.ne a character with on-set {r} U .nf (o).

If Po : (5, Eo) is an optimal phylograph for P and D6 is a minimum dominating
set for G, then ltol : (? + lxl lDsl . To see this, observe that the complete graph
on V added toV xDe is a phylograph for P, so lEsl < G) +lxl llol. On the other
hand, every phylograph for P has at least (i) edges connecting species in I/ and has
at least lD6l edges adjacent to each r € X.

Suppose we had an algorithm A that could produce a phylograph (S, Ea) for
P with lE.ql < clogr((.) l-Usl edges. By the construction of P, some vertex r € X
is connected to a dominating set D for G with lrl < lnnlllXl < clogr(l)lnolllXl
edges. Since lEsl : (:;) + lXl llol, we have

lDl S "rogr((.)
((;) + lxl lDo) llxl.

Thus (since lxl : v3 and lrol > 1), lrl < c(1+o(1))Iog2(')lDsl. Now note that / :
u(u - L) + ulxl + 2lEGl lXl : O (r5). Thus, lDl < 5c(1 + o(1)) 1og2(z) lD6l, which is

contrary to Theorem 3.3 if c < ll20,unless NTIME(7?polrlosn; = DTIME(rrolvlos';.
Using lXl : ru2*' instead of v3 gives the constant 1/16.

The same reduction shows that an exactly minimum phylograph would contain

a minimum dominating set, so the NP-completeness of Minimum Dominating Set

implies that of Minimum Phylograph. r

3.2 Greedy algorithm for phylograph

There is a natural greedy algorithm for the Minimum Phylograph problem.'In
a phylograph, every character's induced subgraph consists of a single connected

component, so the greedy algorithm "grows" a solution by iteratively adding an

edge that maximally reduces the number of connected components.

The same notation needed to define the algorithm more precisely can be used

in the proof of its quality. Given species 5 and characters C, and a set of edges

P c 5(z) define the "cost" of E to be

f(E)= f .o-ponents(5.) -lcl,
c€C

where components(5.) denotes the number of connected components in the subgraph

of (5,-E) induced by the on-set of c. Thus f(0) = Lcecls.l - lcl = {'- lcl' and if
-E is a phylograph, f (E): Icec 1- lcl :0.

For any edge set -B and any edge e,let A6(e) = f (E)- f (EU{ei) be the amount

by which e decrea,ses the cost /. The greedy algorithm begins rvith each species an

isolated vertex, and iteratively adds the edge rvhich rnaximally decreases the cost,

until the cost is 0. (See the Appendix for pseudocode).

Theorem 3.4 Suppose that for species S and characters C, of total input length ('

the minimum phylograph {e(7),...,"(")} has cardinality r. Thenthe greedy algo-

rithm produces a phylograph Ec of size lE6;l < rln(/ - lCl)

Proof. If we have any partial solution, adding in all r edges of a minimum phylo-

graph will certainly yield a phylograph. Since r mole edges are enough to complete

the job, some edge (one of these, even) must take care of at least 1/rth of the cost.

If the initial cost was /(0), and the greedy algorithm reduces it by 1 - 11, at ea,c.h

step, after rln f0) steps the cost must be reduced below 1, and the algorithm must

have terminated.5
More formally, for any edge set E(0) define a series of sets E(0) q ..- C E(r),

where E(i) = E(0) u {"(1),...,"(r)} and the edges e(i) are those of the minimum

phylograph. Note that E(r) is a phylograph, since it contains the minimum phy-

lograph. Because components (with respect to any character) only become more

connected as i increases, for any €, if i < j then A61;y(e) 2 Artil(e). Thus for any

sThe same approach will not work for phyloDAGs. Since directed cycles are forbidden, chosen

edges constrain the addition offuture ones, and even ifthere was a solution ofsize r initially, there

may not be once some edges have been chosen sub-optimally.

10

starting set Zs,

r. max
e€.S(z)

Ar(o)(")

= U,freto- 1)) - f (EID)
x= |

: /(E(0)) -f@(,))
: f (E(0)).

Comparing the first and last quantities, we conclude that there always exists an
edge e for which AE(ot(r) > f (Eo)lr.

Therefore the greedy algorithm reduces the cost by a factor 7 * 7lr at eaclr
step. Since the initiai cost is (- lcl, the cost after rIn((. - lCl) steps of the greedy
algorithm is at most (7-rlr)'r"(Llcl)U- lcl) < 1. The greedy algorithm therefore
terminates within rIn((. - lCl) steps, producing a phylograph of the same size. r

This complements the result of Theorem 3.1: Minimum Phylograph is apparently
hard to approximate to better than a factor of (1116)log2l, but is certainly easy
to approximate to a factor of ln((. - lCl) (ln/. So the threshold for c at which
(chrl)-approximability becomes feasible lies betrveen (1/t6)logr(e) = 0.09, a1cl 1;
closer bounds would be of some interest.

3.3 PhyloDAGs

We begin by observing that a phyioDAG cannot ahvays be obtained by directing the
edges of a phylograph. Consider four species rvith s1 defined by characters (ir,c,d),
s2 by (a,c,d), s3 by (o,6,d), and saby (a,D,c). The cycle s1,s2,s3,s4,s1 is a 4_

edge phylograph, but there is no way to direct the edges of the cycle to obtain a
phyloDAG: any acyclic orientation will create two archetypes for some character's
on-set.

we now prove the following theorem, which is analogous to Theorem 3.1.

Theorem 3.5 Giuen spec'ies S and characters C, it is Np-cctmplete to compute a
phyloDAG G : (5, E) such that lEl is minimized. Also, for any constant c I
7f 16, unless NTIME(npolvlogn; : DTIME(rrnolrlosn;, there is no polynomial-time
algorzthm to compute a plryloDAG such that lEl is w'ithin a factor of clog, I of the
nz'in'imum po s s,ible u alue.

Proof. The proof uses the same reduction as the proof of Theorem 3.1. Let -86
be the edge set in an optimal phyloDAG for P. We must show that lEol = (;) +
l)(l llol . The direction that differs from the proof of Theorem 3.1 is showing ihat
given adominating set D6, we can construct aphyloDAG of size (? +lxt lD6l. To
do so, f.rst construct a phylograph (as in the proof of Theorem 3-.1). Then direct
edges having both end-points in I/ according to a total order on the vertices in V,
and direct all remaining edges from vertices in V toward vertices in X. The resultine

11

digraph has no directed cycles and each character has a unique archetype. Therefore,

it is a phyloDAG. The rest of the proof is identical to that of Theorem 3.1. r
As already noted, the natural greedy algorithm does not work well for phr'-

IoDAGs: the phyloDAG problem seems to be more difficult because the prohibition
of cycles means that it is possible for the greedy algorithm to add a "bad" edge which
prevents other "good" edges from being added later. In the remainder of this section,
we give an example of a species set for which various natural greedy approaches for
constructing a phyloDAG lead to an f)(n) ratio between the size (number of edges)

of the constructed phyloDAG and the size of the optimal phyloDAG. A randour-
ized strategy has an Q(n) expected ratio and has a ratio of A@llogn) rvith high
probability.

We construct a species set as follows. There are n speci€s s1, ...rsn, and two
distinguished species s' and s". Now we add

o 2n chatacters shared by s/ and s//;

o 2 characters shared by s/ and s;, for i : 1,...,n

r 1 character shared by r", s; and s;, for 7 < i,j I n,i I j.

Duplicating characters forces the order in which a greedy algorithm connects

species. We hide this duplication from an algorithm that checks for it by adding a

set 54of dummy species, where lSal = [ogr(an).l. There a1s2lr"sz(nn)l > 4r, distinct
subsets of ^9a. We add one such subset to each of the 4n nonunique characters.6 An
optimal solution has O(n) edges, consisting of an edge from s' to s", edges from -.'

and s" to each of the s;, and edges from s' to each species in 5a.

A phyloDAG has exactly one archetype for each character. A greedy algorithm
begins with each species an isolated node, thus an archetype for each character it
contains. A natural edge to add in a greedy fashion is one that maximally reduces

the number of archetypes (over all characters). Of course, we may not introduce
directed cycles.

There may be times where we can choose the direction of the edge to be intro-
duced (for example at the first iteration) and we show that the algorithm performs

badly for any of the following strategies:

r The direction is chosen arbitrarily.

o The direction is chosen uniformly at random. (The expected performance of
the algorithm is bad for this example, and the example can be modified so

that the bad performance occurs with high probability.)

o The edge is directed out from the node with the larger number of characters.
(This a natural way of breaking ties, since we expect ancestral nodes to have

manv characters.)

6An algorithm may also check for dornination, where sa contains a subset of the characters

contained by s. We can remove the dominated species sa from the instance and later direct an edge

from s to sa in the phylogeny for the reduced set. To avoid this situation here, we add a character

lsa(i),sa(i{ 1)} for i:1,...,14"1, which chains the dummies together. This does not change the

asymptotic size of the optimal solution.

t2

A greedy algorithm starts by putting an edge between s/ and s//, and an edge
between s'(or possibly s") and each species in ^94. Then it adds edges between,s/
and the s;. If directions are chosen arbitrarily we may assume that these edges are
from s' to s//, and from each of the s; to s/. Hence it is now impossible to add edges
ftom s" to any of the si, since they would create directed cycles. This means that
in order to prevent there being two archetypes for a character sharecl by s//, s; and
-sj, species s, must be connected to s, by an edge. This results i" (l)edges.

Now consider the variant where the direction of an edge is chosen uniformly at
random whenever it is equally good to direct it either way. With high probabiLity
(i.e. with complement probability that is exponentially small in n), there will be
at least nf 4 edges directed from the s;'s to s/. If the edge between s, and s,, is
directed the wrong way (i.e. from s/ to s//) then these s, nodes will have to be
connected in a clique, resulting in a quadratic number of edges. If we now consider
a species set consisting of a log(n) copies of the species set as described (for a positive
constant a), rve see that the optimal solution has O(n logn) nodes and edges, an<i
witlr probability at least 1 - D-o , at least one of those copies will have the eclqe
between s' and s// directed the wrong way, resuiting in O(n2) edges.

If edges are directed away from nodes with higher numbers of characters, thel
the algorithm can be forced to take the "wrong" direction for the edges by addiug
dummy characters at the nodes from which we want the edges to be directed.

References

[1] N'{. Bellare, S. Goldwasser, C. Lund, and A. Russell. Efficient probabiiisticallv
cireckable proofs and applications to approximation. In Proceedings of the 25th
Annu,al ACM Symposium on the Tlteory of Computing, pages 294 J04,Igg3.

12) c. Benham, s. Kannan, M. Paterson, and r. \&arnow. Hen's teeth and whale's
feet: Generalized characters and their compatibility. Journal of Mathemati,cal
Biology. To appear.

[3] H. Bodlaender, M. Fellows, and r. warnow. Two strikes against perfect phy-
logeny. In Proceed,ings of the 19th Internat'ional Colloquiurn on Automata, Lan-
guages, and Programming, Lecture Notes in Computer Science, pages 273 283.
Springer Verlag, 1992.

[4] C. Colbourn and M. Jerrum, 1995. Personal communication.

[5] c. colbourn, w. Myrvold, and E. Neufeld. Two algorithms for unranking
arborescences. Journal of Algorithms. To appear.

[6] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic pro-
gressions. Journal of Symbolic Computation, g:257 280, 1990.

[7] M. Crochemore and W. Rytter. Tert Algori.thrns. Oxford University Press,
1994.

[8] R. Dulbecco and H. Ginsberg. virology. J.B. Lippincott, 2nd edition, 1988.

IJ

[9] M. R. Garey and D. S. Johnson. Computers and Intractabilitg. Freernan, San

Francisco, CA, 1979.

[10] A. Gibbons. Algorithmic Graph Theory. Cambridge University Press, 1985.

[11] L. Goidberg, P. Goldberg, c. Phillips, E. sweedyk, and T. warnow. computing
tlre phylogenetic number to find good evolutionary trees. Discrete Appl'i'ed

Mathernatics. 1996.

[12] D. Gusfield. Efrcient algorithms for inferring evolutionary tr.ees. Networks,

2I:12-28,7997.

[13] D. Karger, P. I{lein, and R. Tarjan. A randomized linear-time algorithm to find

minimum spanning trees. Journal of the Associati,onfor Computing Machinery,

42(2), 1995.

[14] J. Kephart and W. Arnold. Automatic extraction of computer virus signa-

tures. In R. Ford, editor, Proceedings of the lth Virus Bulletin Internation'o,1,

Conference, pages I79-I94. Virus Bulletin Ltd; 1994.

[15] C. Lund and l\{. Yannakakis. On the hardness of approximating minimization
problems. In Proceedings of the 27th Annual ACM Symposiunt on the Theory

of Cornpu,ting, pages 286-293, 1993.

[16] A. Nijenhuis and H. WIII. Cctmbinatorial Algorithms for Cornpu,ter.s and Cal-

culators. Academic Ptess, 2nd edition, 1978.

[17] R. Prim. Shortest connection networks and some generalizatio:ns. BeLl Systertr'

Technical J ournal. 36 : 1389-140 1, 1957.

[18] M. Steel. The complexity of reconstructing trees from qualitative characters

and subtrees. Journal of Classifi,cat'ion,9:91 116, 1992.

[19] D. Wilson. Generating random spanning trees more quickly than the cover

time. Submitted for publication, 1995.

Acknowledgements: We thank Phil MacKenzie, Tom Martin, Madhu Sudal,

and David Wilson for useful discussions.

4 Appendix
This appendix contains additional proofs and details.

4.1 The greedy phylograph algorithm

Let i :: 0 and E6l0) :: A

While f@cQ))) 0 do

begin
LeIi::il7
Let e be an edge maximizing Ln"(;-rl(r)

I4

Let E6(i) :: Ec(.i - l)u {e}
end
Return the set Ec : Ec(i)

4.2 An O(t)-time algorithm to compute an atomic set

\4/e presume that each species is described by a sorted list of the charactels it
possesses. From this, construct a description of each charactcr, as a sorted list of
the species possessing it. This can be done in linear tirne: loop through specics i;
loop through cha,ractcrs J on i; add specics zl to character 7's list.

Now the basic algorithm is:

Let As:: S (Oth atomic set contains al1 species)
Let D := 0 (set of defining characters is initially empty)
Loop through characters f, and consider the list 5; of species having character i:

(1) size := lA,_1 O 5;l
(2) If size (2 then A; :: A;-1
(3) If size) 2 then A; := A;-1O 5;, and D :: D U {i}
(4) next i

We now shor,v how to compute the intersection size (step 1) and the intersection
itself (step 3) in linear time. This implemention gives a iinear-time algorithm overall.
Let all the sets A be represented doubly, as both a sorted linked list, and as a binary
array of leugth A (rvith 1's for species present in,,1,0's for species absent from J).

Cornputing the size of A O ,5; can be done in time l5; l: Over species s € S;, sum
up the binary arrav elernents ,,{[s]. Thus all iterations of step 1, together, take timt:
of order ;- 1,9;1.

Computing A' :: A L5; can be done in time lAl f 1.9;l: The ordered List for A/
is constructed bl' stepping through the ordered lists for A and ,5; in synchrony,
advancing in the list rvith the smaller current value, and augmenting the List for A/
when the lists for A and ,5; have the same current value. The binary array for A,
is formed by modifying that of A, which is no longer needed for any other purpose;
the list for.,{ is used to set all 1's in the array back to 0, and then the list for A/ is
used to set 1's appropriately.

Thus over values i where step 3 is executed, the total time consumed is of order

l2

L'

+\-tqt| lJ t"tl
z

since the execution of step 3 implies that lA;l S lS;1. Thus the total time consumed
by all steps of the algorithm is at most of order l5l + D, ls;l : O(l).

I lao-'l+ | ls;l

15

