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Contention Resolution with Bounded Delav

MS Paterson and A Srinivasan

RR285

When many distributed processes contend for a single shared resource that can service at most
one process per time slot, the key problem is devising a good distributed protocol for contention
resolution. This has been studied in the context of multiple-access channels (e.g., ALOHA,
Ethernet), and recently for PRAM emulation and routing in optical computers. Under a
stochastic model of continuous request generation from a set of n synchronous processes,

Raghavan & Upfal have recently shown a protocol which is stable if the request rate is at most )o
for some fixed xo < 1; their main result is that for any given resource request , its expected delay
(expected time to get serviced) is O(log n). Assuming further that the initial clock times of the
processes are within a known bound B of each other, we present a stable protocol, again for
some fixed positive requestrate xl, 0 < I,< 1, whereinrhe expected delayfor eachrequest is
O(l), independent of n. We derive this by showing an analogous result for an infinite number
of processes, assuming that all processes agree on the time; this is the first such result. We also
present tail bounds which show that for every given resource request, it is unlikely to remain
unserviced for much longer than expected, and extend our results to other classes of input
distributions.
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Contention R,esolution rvith Bounded Dclart*

N,Iihe Paterror, i Ararrirrd Srinivasani

Abstract

Whcn nrany distributecl proccsses contencl for a single sliared tesotllce tha,t carr service at

rnost orre process per time slot, t,he kcy problerl is devising a good dislribtLted protocol for
contentiolr resolLrtion. This has been strrcliccl in the contexl olmultiple-accoss channels (c..q..

ALOHI\. Et,herrret). ancl lecently for PR,AM emulation an<l routing in optical contpttlet's.
Under a st,or:lrastic tlodel of continurirrs request generatiorr from a sct, of tz synchrottotts
processes! R,aghavarr & tlpial have recently sholvn a plotocol rvlrich is stable i{'the t't'qrtt'st

late is at rnost ,\s for sorle fixed )6 ( 1; thcir main lesr.ilt is that for aly giveu resourcc

rcquest, its etpr:clt:d r/e/og (expected time to gct, serviced) is O(logrr). Assurning fulther
that the initial cl<-rck times of the processes arc rvitliil a kno'wrr bounci /J o{'cach other. rvc

present a stable protocol. again for some fixcd positive request r::rtt' )1, 0 ( )r < 1, wliereirt
LIte erpecl,ed delny for each, requesl is O(1), independenl. o/rr. \\re derive this by showirrg an

ana.iogous result for an infinite number of processes, assuming that all processes agree on

the time; this is the first such result. We also present tail borrnds lr,hicli show that for cvery
given resource reqllcstl it is ullikel;t to rcnrain unserviced {br mucli longcl thau expectcd,

arrcl extend our result,s to otirer classes of input clistribritions.

Introduction
ht scelalios rvhelc a set of distributed pl'ocesses havc a single shalccl I'esollrce that can service)

at l]]ost orre pl'ocess pel tirle slot. the main probletn is devisirrg a "good" clistribtr,terl prottt<'ol

lbr lesolving contention for the l'esource by the I)r'ocesses. Tiris has traditionallv been stuclied irL

the context of multiple-access c.halnels (e.g., ALOHA) and for Ethernet protor:ols, and rrrolc

rcccntly for PR.AX,I emulation ancl for routing irr optical conpnters. Assumiug a stochastic:

rnodel of continuous leqltest €lenelatiol) from a set of rr, synchronous plocesses (see Section 1.1

for thc forrna,l definitiorr), R.aghava,n & LTpfal ha,ve very recerrtly shorvn a protocol rihiclt is

sta,ble as long as the rc<1rest rate is at rnost )6 fbr sorne fi.xctl )o ( 1 [18] : thcir main lesult
is tlra,t for any giverL rcsorrrce request,its e::r:1x:cted delo"y (expectcd time until it is serviced; i.s

O(logrr). Assrrming further that the initial clock times of thc proc:esses arc rvithirr a littorvn

bclund B of each othcr, rve present a stabie protocol again for sornc fixed positive request rate-'

)1, rvlrerein l,he e:rpr:cted delay for eo,ch, request fs O(1). indepentlertt of tt. \\ie clcrivc this bv

sirorving an a,nalogous rcsult for an ilfinite nurnber of processes (rvhich is a model fol plocesses

errtering ancl leaving dynamically), assrrming that all processes agree on the tinre; tiris is the
f.rst such result. We also present tail bounds rvhich shorv that for evcry given resoutcc rcclucst.

it is unlikeiv to rernain unserviced for rnuch longer thau cxpected. ancl extc-ntl otrr results to
various classes of input distributions.

*Supported in part by the liSPRl'-f Basic R.esearch Action l)rogratnme of the EC ulrcler contra.ct No. 7141

(projecl ALCONI II).
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clone wliile this author was visiting the Departnrcnt of Cornputer Science, L.lniversit)' of \\'a.rrvick. (lovcrrt I v ( l\1.1

7AL, England Part of this rvork was donr: rvhiie visitinp; tire N'Iax-Planr:k-Institut fiir lnforrnatik.



1.1 Model and motivation
hr rnultiple-a,ccess channels (MACs). there is one chanrel (resource) sliared by'a finite ol
iniinite number of svnchronized senders (i.e.. ea,ch sencler's local clock ticks at tire same ratc
as the others'clocks). Tirne is slotted into units of tirne starting at 0, and in each unit
of tinrc. e:rr:h sen<lel lna)' receivo some packets according tcl somc distributior. Ea.r:h scnder
rvhi<'lL lLas pacl<:ts will have to scn<i its packets (one at a timc) to the channel, but if rnore
than one sender attempts to transmit at the samc tiurc slot. the packets r:ollirle ancl are not
r'o('civcd lrv the sendcr'. Otherrvisc if cxactly one packet was sent in a slot. it is receiverl lx'
thc chaurrcl rvlLich serrrcls the corresponding sender an acknor,vledgement. Thus if a, scrLcler

did not reccive an acknorvlcdgement for a packet sent, it krrorvs that there was a collision.
ancl must trv aga.in: it is natural to expect ranclornized protocols to play a kev rolc in this.
This model rvas initiated bv rvork on ALOHA, a multi-user conunlrnication svsteln basccl on
raclio-rvave corrurrlllrication (Abr:rmson [1] ). and asimilar situation ariscs iu Ethernet protocols
(Nlctcalf & Boggs [15]). N'Iuch research on X,IACs rvns sprrrreci by ALOHA. cspecially in the
iulblrna,ticirr theory cornmunitl'; see. e.r.. the special issue of IEEE Trv"ns. Irto. Th,rrtru ot
this topic [12] . Recentll'such resource-allocation problerns have a,risen again, in the c<-rrrtext of
PRAX{ ernrrlation rurnirrg PRAN{ algorithrns o1r rrrore rcalistic moclels of parallel computation
arL<1 in llrcssage louting in opticai cornputers. These parailel rnoilcls inclucle optical netrvor'lis
(Arrclcrsorr & NIiller [4], Ger'6b-Graus & Tsantila,s [7]. Goldberg. JL'lll11n. Leighton & Rao i8]).
D\,INI rnoclels (Dietzfelbinger & Meyer auf der Heicle 16]). and Valiant's S*PRAN,{ rnodel [20];
see f,IacKerLzie. Plaxton and Rajaraman [1a] for details. Il addition. MACs provirlc a griotl
model to study the abstract problern of distributecl corrtcution resolution for a corlrrolr sharecl

I'esoul'ce. All thesc dcfiniti<-rns can easilv be extenclccl to the case of more tha,rr one channel
(sharecl resource).

R,ather than the static case (see bclow). rve will be interested in the d1'nanric scenario of
pa,ckets alriving into the svstc.rrl at every tirne step. according to some distribution. There are
two irnportant pararnertcrs Ibr a MAC protocol*the an'iual ra"te ), of packets iuto the s.vstem
(tlre expected number of new arrivals per unit tirne). altl stability. To define sta,bilit.v. sllppose
W( P) is the random r.ariable rnezlsuring the amount of tine a packet P spencls in the svstert
(before boing scnt successfully to the channel). Thel iet thc ra,ndom va,riable I,Ir,,," llc the'

lirrrit as i + oc of the arithmetic mean of I4t(P) for the first I packets arriving into the svstcrn.
Sirrrilarlv. we r]]ay define the random variable Lo," as tire limit as z'--+ x of 7f i times the sum
of thc nrunbcr of i,vaiting packets in the first i steps. Finally. wc may clefine 7,..r to be the
tirnc takerr to have all sender queues empty, if we start frorn an albitrarv state of the system
(rveighted bv the probabilitv of beirrg in such a state). Unifying several prcvious clefinitions.
Hastarl. Lcighton & Rogoff define a plotocol to be stable if :rncl only if all three of ElW,,u.).
E1L,,,,,), and E[7,..1] are finite [9]. Actuall!, Ln,,: \Wo," rvith probability one and sinilarly,
tlte throughpu,t ru"te (average rate of successful transmissions) ecpals ,\ rvith probabilitv ole.
lbr. a sr;1 []c prol-ocol [91.

\AIe mrrst distinguish a ferv uroclels rvlLen deJining the problerri furtirer. First. ivt might
havc a. firLite or infinite nrrmber of senclers. In the former case. there a,re rr se'rLclcrs into which
there is a continuous influx of packets; at nr.ost onc packet arrives per sender, in any giverr
tine step. The usual assul]rption is that thcse arrivals are indepenclent a,closs clifi'ercrrt time
steps ancl across different senders. and that the expected total arrivai per time stcp is at rnost
,\. The irhnite case is a natrrra,l extension of this, witir a random number <-rf ptr,ckets arriving
rvith a, Poisson clistrihution of rnt::ru ), indepeudcntlv at each step. Here, each p:r,cket may be

rr:parclecl as a sender in itsclf.
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The next liev ferature is the type of a,ckrrorvleclgemelt scrrt by the channel to the sentlers. A
popnlar nodel used in thc irrforrnation theory literature for this is that of ternary feedback: at

tlre end of each tinrc slot. each sender receivcs ilformation on rvhether zero. olie, or more tha.rL

ole pacliets wel'e selrt to the channel at that time step. Iu this case, stable ptotocols are kuorvn

for ,\ ( 0.4878... (Vvedenskaya & Pinsker 121]), ancl there is no stable protoc.ol for ) ) 0.587...
(Mikhailov & Tsybakov [16]): but if the stronger feedback of thc cxact numtrer of pacliets that
tried at the current step is sent to each sender, then thelc is a sta.ble protocol lbl all ,\ ( 1

(Pippenger [1i]). A wea,ker feedback model rvhich is more rc:rlistic for the pllrposes of PRA\I
eurrrlation and optical routing is acknourl,erl,ge.ntent-bo.ced. rvhcrcirr the only infolmation lilorvrL

to each senclerr rvhich attempted to send a packet, is whcther it succeedcd or uot; itllc'scnders
get no inforrnation. The aclilowleclgernt:nt-based feedback rnodel is thus il rniuiural-inforrlation
rnodel, and rve f<rllorv [9, 1.1, 18] in for:ussing on this henceforth.

The above classifications dealt with thc dyramic situation of pa,c.liet arrivals at everv stt'p.

Altcrna,tively, rve may corrsiclet a static sceuario rvhere at most lt. of tt, scnders have a pa<:liet

cach to send to the channel; the problern then is to dcsign a distributed protocol (rvltereiu eaclL

scndcl onlv knovu's the value lz. an<l whcther it ha,s a, packet to sentl cir not) fol this. Assnuriug

ackrowleclgemeut-based feeclback, the rvcxli of [14] , alnorrg other things. improves on previorts

rvorli to provide nczrr-optimal bounds for various problcuts relating to tlLe static versiotl: in the

optical rorrting case, a similar problt:rn is termed h-r'elation rorriirtg.Ior rvhich thc liest linowrt

bounds are ciue to i8].
Sincc the static case is tairlv well-rurclerstoocl, rve fcrcus oulr- on tltc dynatnic case irL titis

work.

1.2 Previous work
For our rnodel of interest the dynarnic setting with acknorvleclgernent-basecl protocols, ortlv

rrcgative resuits rverc knoln in the infi,nite -cc:nd.ers case: rvhile Iielly shorvcd that a largc class

of proto<:ols (including "pol.vuourial backoff")are unstablefor any 
^ 

> 0 [13], Alilous extentletl

this to the case of binarv exponential backoff, the Ethcrnet protocol [2]. Also, alv stable

protocol in the irrfirrite case must have ) < 0.587... [16].
In striliirrg contrast to Kclly's result. the inportant work of [9] showecl. among otlLer things.

tlrat irr t,hc finite senders ca,sc" nrost poiyromial baclioff protocols are sta,ble, irr lact for ull

^ 
< 1. Holcvcrr, theil proven uppcl'bound for.E[I4r,,.,..] is 2l("1. rvherc.f(r) : n.o(t). U'ith

applicatiols such as higlL-speecl communications iu rnild rvhele the avcrage delar-E[.[I",.]
neecls to be kept small, the very recent rvork of [18] presentcri a protocol for the firtitc casc,

whiclr is sta,blc for all ) < )o (- Il7O. usilg the analvsis of [18]). rvith thc liev propertv tira,t

El!4rn,,.f : O(logrr), after an initial setup time of rio(l) steps (note the sigrrificant rcclu<'tiol
in -E[I,I',,,,,.]). Moreover, it is shorvn in [18] tiiat for each element P of a large set of plotocols
tlrat inclurles all linown baclioffprotocols, there exists a threshold )p 17 srrch that iI ,\ ) ,\p,
tiren E[I4r",.] : 91n) ulrst [olcl.

1.3 Our results

In thcr finite sendet's case. rve take a further step in tlLc dilection of [18] . rvith tire vierv that
El\4ror*) must be kept lorv. Recall that the lin<lrvn results usc the fact that the scnders'clot'lis
all ticli at the same rate. flndel the additional assurrption that the cloclis of thc rr serLclels tliffer
b1'a,t rnost a knorvn bourd of B tirnc steps, rve preserrt a protocol that has -E[I'I'.,,"] : O(1)
for ,\ < trr € (0,I), indeperrdent of n,, aft,ar a setup time of O(Alog B I n logBlog(niogn))
steps. Our result arrd that in [18] have a stabilitv property strorrger than that clefinetl irr [9].



in that for euery ytn"cket P. the cxpected waiting tirnc 1br P is O(1) (resp., O(logn) in f1S]).
ht our vierv, this assumptiorr on the clock differerrces is reasorrable, since clocks especiallv

those rvithin a, locai enough arca, to be able to share a commolr l'esource rrsua,ily agree to witliin.
s:rv 15 minutes. (\,Vith the sarnt: motivation. Hui & Humblet consicler a sonrervh:lt different
problcm 111].) Another rvay of loohing at this result is that sirrce the o-rpected waiting tinre
ibr'pa<'kt'ts is a ctucia,l parameter, vet alothur payoffis seen lbr builcling ar:r'urate cloclis.

Our abovc rcsult is actuailv shorvn cprite easilv from the rnain resrrlt we prove. u'hich is
a stable protocol ibr the inf.nite. case as long as,\ < 11. assuming that all sendcrs agree
on the titne. Thus. this additiorra,l assrrmptiorL on accul?ltc cloclis plescnts tire first stable
acknou'leclgement-basecl protocol lor thc infinite case. The ilfinite ca,se is ol interest too. since
it models situations rn'here senders ma.v enter and leave the svstern. rvith no kuorvn reasonable
borurd on the number tt of competing processes. An interesting point here is that orrr results
arc conrplerrrrentary to those of [9] while the work of [9] shorvs that (negative) r'esults for the
iu.firite case mav have no bearing on the finite casc, our results suggest that better intrrition
arrd llositive results for the f.nite ca,se may be obtaincd by passing to the infinite casc.

Orrl protocols are simple. \Aie shorv a,n explicit. easilv computable collection {Si.,' ri,f -
0. 1.2. . . .) of finite sets of nonnegative iutegers 5,,1: for all z and f , everv clcment of 5i.r is strallel
than everl' element of 5; r1.1. A pacliet born a,t tirne f and which has made I (unsuccessful)
atternpts at the challel so Iar. piclis a tirne r uniforrnlv at rzlrrrlom fi'om 5;.1. ancl tries using
the channel a,t tiure r. Il it succeeds, it lca,ves the svsten; else if it fails, it incrcrnents i ancl
l'epeats this prcicess. !tr'e also show good upper tail bounds on I,l'(P) for every packet P:
Vn ) 0. Pr(W(P) ) o) : O(a-" ); rvhere c1 ) 1 is a co1sta1t. Thus for o'r protocol. tlLc
expcrctcrcl nunrbcr of pa,ckets (arLd heuce the total storage sizc) in the system a,t an1'givcri 111,r..

is 0(1). improving on the O(logn) bourL<l of [18]. Finalh'. rve extencl our results to various
input distributions to shorv that our protocol is robust to fairly "non-r:lndom" rlistributions
rvith rveak tail properties.

Thus rn'e shou, that the expected rvaiting tirnes of packets can be rcclucecl to just O(1). if
lerliable cloclis are available. Iu the infinite ser<lers case. r,\.,e ask for all clocks to aglee; this gir.'r.s

us the first sta,ble a,cknorvledgement-based protocoi. hL the case of finite sonclers. it suffices if
there is a knorvn lrppor' bourrrl on ther time clifferences betrveen the cloclis.

2 Notation and Preliminaries
For an1'positir.e integer l. we denote the set {1,2,...,1} by [l] . Theorem l presents tlLe

Chcrrroff-Hocffding bounds [5, 10]; see, €.9.. Appendix A of [3] for details.

Theorem 1 Let Rbe, arandomuol'iohleutith EIR)= 1r)0 suchthat eit.hr:r': (a) R is uslnn
of a.fi,rtite nu,ntber o/independenl ro,ndctrn uo"r'iables Xr,Xz, ... with each X; taA:ittg ul"hte.c irt
[0.1]. or (b) R is Po'isson. Then fr,,r' (rTty v > 1, Pr(R> tw) < H(tr.u): (e"-7 f v"|'.

Fact 1is easih'velified. Lemrna 1is "fcrikiore";its proof is shown in the appendix.

Fact 1 If v 2 I the:n H(p,r) < ,-upllI". uthr:rr: )1, ts T.tosttiue urtd ntcntr,ttone decreasirry for
u)I.

Lemma 1

srtch tlt,o,t:

(b)\i.\:2..
Th,u,s 'if t )

Su,ppose -lr,Xz....,XtanrlY1 ,Y2,...,\larese(luerlces o/{0, 1} rattdornuariables,
(a) Vi Vb1.bz.. . ..b;-r € {0,1}, Pr(X;: 1l A;e t;-r1(xr : 6r)) S Pr(\'; : 7). rt'rtrl'

. . .\''J ory: irtclependent. Then fnr arty c ) 0. Pr(!;.1t1 -{; ) c) < Pr(I;e 
tr1 

}'; > r ).
[Ire trt 

X,], then Pr'(I,e lrl-{; ) c ) < H(E[I;e t4 X;l.r:l El\;e 
14 -{;]).



Remark. If. for a pair of rczrl-valuecl randour variables A iird B. it is true that for all c:.

Pr'(A > c:) < Pr(B ) c), then A is said to be .slochastically rlrtrn'ino,t'ed by n.
Suppose (at rnost) s packets are present in a static systern. anci that rvt: ha,ve I tiure units

ivithin rvhich we rvorrld like to scnd out a "largc" lumber of them to tire channel. rvith high

probability (.w.h,.p.) . Thcrr a natural schc'rne is for each pacliet to a,tternpt rrsirg the cltiirtrtcl

at a randomly chost:l time from [l] . (There are s<:itemes rvhich provide bettc'r consta,rLts than
tlLis, and rve hzrve not yet atternpted to optimize the constants.) In fact. lve rvill also neetl a

version of srrcir a scenario rvhere sone nuurber z of such experiments al'e I'utl irr.tleytend,e:n,tl'y.

as considered bv Leurma 2. Silce a packet is successful if ald onlv if no other pacliet chosc

thc saure time slot as it did, thc "collision" of pacliets is a domina,nt concern. Thtr proof of
Lcmma 2 is shor'vn in the appertdix.

Lemma 2 Suppo.<e lte rllrl z indepencle'rt err,perintertt-c 8t.E,2,...,8" uthere in E;, o t"7fi; rtf

ot. most.s bu,lls o,r'e throwrt u,niforntl,y o"rtd intleqtendently u"t ro"nrlorrt, irr,to rt setI''; oJ ( bi,rt's: if
i f j , therr, LigLli - cb and\';)I'i : A. Let'tLS soy that a buII ''collide-s" if and on'lt1 if it is nctt, th,e

ortly ball in its bitr. Th,en, (i) Frtr uny giuen ball B, Pr(B collirles) < 1 - (t - 1l( )'-' < .'//.
(ii) If C rlenote:s the, total rr.urnber of balts thut collirlerl, th,e'nYr, 2 1, Pr(C > :.:2r'l() I
H(zs2ulQ{.)).

3 TYee model for contention resolution: the infinite case

\Ve assrrrne a, tinrc-slottecl systern. At every tirne slot I : 0,7,2,..., a tanclont ntrmber of
pacliets rvhose clistributiou is Poisson with mean,\ ( 1, is injected irrto the svsterl; the arrivals

a,rc. independent for differcnt time slots. W'e assume that all the packets agrec o1r a collttlloll
global timel there is no coururon knorvledge (or inter-packet comrntrnication) apart from tliis.
At everv tirne slot. each ptr.cket in the system u'ill dccide autonontottslv. bzrsecl ou its <'trlLettt

time. its time of entry ilto the svstt:rrr. its historv of unsuccossful attcrrrpts iu thc 1tast, ancl

o1 thc outcome of its irrterna,l coin flips. to try usiug the cha,rrnei or not. If it suc.trceds, then

the pachet leaves the system; if rrot. tlLe onlv inforrnation it has ga,ined is that it triecl at this
crrrrcnt time but failed due to a collisiorr.

\\ie preserrt the icleas pararnctrized by scveral constarrts. Latel o1l we rvill choclse values lol
the parameturs to maxiurize the throughput. There will be a tlaclt:-off betrvecu the maxirtrtrrtt

throughprrt ancl the expected rva,iting timc for a pacliot; a cliffereut choice of pa,ra,rneters corrltl

talie this into colsicleraticln. Tire constants wc irave chosen for ease of presentatiol. gtrararttee

tlrat onr protocol is stable for ,\ < 7132. In the fina1 velsiol. rve rvill pl'esent a tnole complicatetl
choice of constants for rvhich ) < 1i 16 rvill suffice for stabilitv.

3.1 The tree protocol
Three irnportant positive consta,nts, b,r and A, 

"vhere 
b ) l and r.A > 1. shape thc plotocol.

At any time during its iifetirne in the protocol, a packet is regarcled as residirrg at somc rrode of
a trec 7 that has an infinite numbcr of leaves. Each non-leaf node of T has exactlv Ar children.

lvhere
k>r

? is not actually coustructed it is just for exposition. The rtocles of ? at the same height i

for any i > 0. are orclered left-to-right. \Ve a,ssociate a finite ronemptv sct of 11e11-llcgatile

irrtegers TrLal(Tr) rvith each node u. Define L(r) * rnin{TriaJ(r)}, -R(t') : rnax{Trial(r.')}. aritl

the c:apor:ity cay.t(1') of r. to be l?rial(r')1. A recpirccl set of propclties of the Ttial(') sets is thc

ibllorving:

(1)



P1. If ?r and .) is any pair of distiru:t nodes of 7, therL Trial(u)n Trial(,r,') : d;

P2. If u is either a proper descendant of 'u, or if u and u are at the same heieht rvith u to thc
left of u. then R(u,) < L(u).

P3. TiLc capacitv of all nocles a,t the same height is the salne. Let z; be a generic no<le at
lrciglrt ri. Then, cap(rLo): lr ancl ccLp(u;) : [, cup(tt;a)], for i ) 1. (Thus, cnpltL;) - hlj
if r is integral: otherrvise. lrr'' l cup(u;) lbr' + (r'' - 1)/(r- 1).)

Suppose' lve have strch a constructiol of the Ttial(.) sets. Each packct P injected ilto the
systertr at tirne slot fp rvili initially enter the leaf node u6(P) rvhere uo(P) is thc leftmost leaf
srrcir tlrat L(us(P)) > tp. Thcn P rvill move up tire tree if rrecessarv to successor (y.tarent)
rtocles of increasing lteight, in the follorving rvay. In gereral, suppose P cnters a nodr: u;(P) at
height r. at time 1;iwe will be guarir,nteed the invariant "Q: u;(P) is an;utcestor of u0(P). and
t;1L(rt;(P))." P rvill then pick an element r; € ?rial('ur(P)) uniforrnlv at random. arrd trn'
using the chattnel a,t tirne r;. If it was successful. P rviil (of course) lca,ver the systern. otherrvise
it rvill entel the palent tzi+r(P) of u;(P). a,t time rr. (Q)is established by uin ea,sy induction
on l. nsiug plopertl'(P2). Note that thc ptr,ckets entering anv gir..en node u coniluct the saure
experiment as is considerecl bv Lcrnrnn 2. with z: I. Nlore irnportantly. if l is anv non-leaf
norle. then the trials at its k children correspond to z: k in Lemma 2. b1'(P1).

Thus. each nocle receives all the unsuccessful packets from ea,ch of its A' children: a,lr 1111-

sur:cessful pacliet is irnagirred to enter the pa,rent of a nodc z, irnmediately aftcr it found itself
rrnsuccessful at u. Informally, if the propoltion of the timc cledicated to height 0 is i/s, rvhere
.s ) 1, tlreu the proportion for height i will be approximately lrlk)i1... Since tire srrm of these
ploportions for all i can be at rnost 1, we have s> kl(k - r); we rvill take

s: kl(k - r) . (2)

X{ort' prcciselv. the ftial( ) sets are constnrcted a,s follows; it will bc immecliate that thev
satisl'v (Pi.P2.P3). First define

l' : 16. .* : 2. arLtl r' : S.

\Yc rcrna.r'k that though rve ha,ve fixecl these constants. we will use thc svmbols k, .s arrcl r
(rather tlLarr their rrumerical values) wlterever possible, to retain generalitv.

Forrl -0.1,....lctf-t"i20,j:2'(modZ'+t)); thesets-QforurapartitionofZ+.
thc set of uon-rrega,tivc intcgcrs. Lct u; be a, generic node a,t height i; if it is not the leftrnost
noclc iu its lcvei. let r; clerrote the rLode at hcight i that is imrnediately to thc left 6f 1';. \\Ie
rvill ensure that all eleurents of Tl'iai( tr;) lie in 4. (For a,rrv large enough interval I ttr Z+,
tlre fraction of F, lr'ing itL 1is rorrglLlv I12'+t = (rll; )'/..: this was what wc lneant infblmallv
ii,Dove. J

\\ie lorv clefine ftial( r'; ) bv induction on 'l and 1i'om left-to-right rvithin the sa,me levcl. as

follorvs. If i : 0. then if r.'s is the lefimost leaf, rve set Tlial('u6) to be the smaliest crLp(\))
elenrerLts of Fu; else ws set Trial( us) to be the cnp( ro) snallcst elements of Fs largcl tharr
R(uo). If i > 1. let il be the rightmost child of u;. If u; is the leltrnost node at height r. lr','k't
Trial('u;)be the cap(r-;) srnallest elerrrerrts of 'F, that are larger than fl('ur); else rlefi.ne Ttial(a;)
to bc the r:ap(a;) smallest elements of ,Q that are iarger than max{-R(u;),/l(ur)}. In fact. it is
easv to shcirv bv thc samc induc.tivc proccss that, if z; is defined, then ll(ur) I fi(u;); hencc
for everv nocle l; r,vith ri ) 1,

(3)

/(r,,)< l?(u,)+ 2t*t - fi,(trr)* ,s(klr)' (4)



3.2 Waiting tirnes of packets

\Ve norv come to our main tanclorn variable of interest:
spend in the systern. from its a.rrival. \\h need sorne

srea,ter than 1.

the timc tha,t a generic packet P will
<lefinitions. rvherc o,d are <:onstants

Definition I For ony node'u € T, the ro,ndorn uariable locrd(t:),lhe load of l, i.s defi,rted, to be

tlrc nunrber of packets that entelu; for arty po.sitiue integer t, u is de.fi,ned to br: t-bacl i,f rnt'd

on,Iy if locLd(u) ) brirlt-1 f n. Node u i.s saicl t.o be. t,-loaded if it is t-bad but not (t + 1)-bar|, ft.

is atlled, bad i/ it is 7-bo,d, und goocl othet'wise.

It is not harci to verif-v that for an-v given f ) 1, the probabilit.v of being t bad is ther s:rrne for
auv pair of nodes at thc sarne lt vel in 7: this llrings us to the tterxt clefinition.

Definition 2 For olry (ge:r're:r'ic) node u; o,t heigltt i itt T anrl o,ng positiue integer t, pi(t)
rl,erxttes th.e probability that u; is t-barl.

Definition 3 (i) The failure probabilitv q is the marinturn probobi,lity that o, pocket ente:r'irt,g

a, good norle uri,H r'ot sttcceed rhrring the funr:t'ioning of that rtode. (i,i) For o,ny yxtcket P, let,

'rr6(P). trr(P). rr2(P),.. . be the norl,es of T that tL; is o,lloured to pass th.rorryh. uherr: the heigh.t

of n;(P) i.s i" Le:t E;(P) be tltr: e:ue:nt that P enters u;(P).

If a node rr a,t height i is goocl, thcn in the notatiorr of Lemma 2. .s I (.f a, wherc ( : cap(It)l
hulce. Lernrna 2(i) shows that

rt < 7la. (5)

Note tlrat th,e distribution of E;(P) is irxl,e:pendent of its urqu"menf. Hence, ibr any zl ) 1. rvc

rnav clcfirre e;: Pr(Ei( P))for a generic packct P, with €s = 1. Suppose P rvas urtsuccessfirl

at nocies trs(P), ur(P). ....rt;(P). Let A(i) cleuote the maxirnum total arnount of tirne P coultl

lrave speut in these (i+1)nodcrs. Then, it is not hard to see that A(0) < -< cap('uo)f ,s cop(ttii) :
2.sD and that for i > 1, A(r) < kA(t - 1)+ (A'/r)i..l,t', using ('1). Hence,

A(t) < (i f 1).sbA' for all i.

Lernma 3 is about the distribution of the crucial ralclonr variable I'I/(P) thc'time that P
spencls in thc svstem. See tire a,ppentlix for its proof (which is simple. brrt crucial).

Lemma 3 (i) For o.ny pocket P artdfor alli > 0, Pr(I4t(P) > A(i)) ( e;11 ; o,lso, ElIltlP)] <
fpoA(i)e;. (ii) For rtll ti ) 1, r:;1r1c;-r +pr-1(1).

3.3 The inprobability of high nodes being heavily loaded

As is apparent frour Lcmrna 3. our main intcrost is in getting a g<-rod uppel boun<l orr 7r;(1).
However, to do this rve rvill also neecl sorne information about p;(1) for t > 2. atld hcnce

Dt:firr.ition 2. The basic intuitiol is tha,t if a node is good, Ihen ut.h,.p., it rvill successfirlh'

sche<lule ''rlost" of its pacliets; tlLis is formalized by Lernura 2. by setting : : I. In fact.
Lcnma 2 shorvs that for any nocle 'u in the tree. tltc qoorl cltildlen of u rvill, tr./2.p.. pass on a
total of "rrot rnany" paclic.ts to rz, since the firnctioning of eaclL of tliese chilclren is inclcpcrderrt
of the other children.

To estimate p;(f ), we first handlc the easy case of i : 0. Rccall that if X1 and -l2 ale
indepernclcrnt Poisson randorn va,ria,bles lvith rrieans )1 and )2 respectivclv. tlterr Xr * -Xz is
Poissorr rvith mean )r * Iz. Thus.Tr,6 being t-bad is a simpic large-<ieviation e".ent lbl a

t

(6)



Poisson randorn variable with mean.sb). If, for every i > 1, rvc define ut = d,t-|/(-sa)) and
onsrlre tha,t z1 > 1 bv setting

sn) < 1, (7)

thcn Theorern 1 shows that

p6(f) : Pr'(uo is i-bad) < H(sb),.u1). (8)

!\re nor,v <:<lrtsiclcr horv a geuelic nocle u; at height z ) 1 could have be:c:orne /-bacl, fbr anv
gir.'en t. Tire resulting recllrreni:r'yiclcls a proof of an upper bouncl for p;(l) bv induction on r.

The trvocases? f ) 2 and t= 1, are covered by Lemrnas 4 and 5 respectivell . \\t-enorvrerlrile

d2 + k - I1 clr . (9)

Remark. Lemrna 4 can be strengthencd, but rve preserrt this version for sinplicitv.

Lemma 4 Supq,nse d2 + k - I 1 tlr. Then for i ) I and t ) 2, if a 'node u,; at he'igh,t i in T
is t-bad, then at leo,st one of the follouino two conditions holds, for rt;'-s .set, of ch,ildren,. (i) At.
Le:o,st onr: chikl is (1+ i)-barl, or' (ii) at leo,st.2 children are (t - I)-barl. Thus,

/l'\
p;(t) < kp;-lt + 1)+ 

[rJ tl,'-'tt - 1))' .

The proofs of Lemmas 4 and 5 arc shorvn in the appendix. !\Ie rrorv consider the case that
/ : 1 rvhr:rc the iltuitior, that the good children of t; cal be expecteci to havc successfirllv
tlansrnitted rrruch of their loacl. pl:rys a kcv role. lVe now rerluile

a(r-rl) >A' 1. (10)

LenrnaS If a(r-d)> (fr-1), thenforamf i)I,

1r,ru) ( A'r;-,(r,* fl) (pi-rr1))2 + A'p;-,(r)H ((A' 1)br'-r 
i=+) + H (Lbr'-t n'\

t.t\Lt:'\r't-t\-t| 
\_, 

_t\r/'\ 
,u, 

. 
A,_I )-,,\ * T)

We norv present a key theorem tha,t ploves arl upper bound for p;(/), by induction on i.
\\'e assurne that our corrstants satisfl-the conclitions (1.2,7,9. 10).

Theorem 2 There erists a consto,nt trr ) 0 snch that for a sufficiently large uah,e of b t,he,

fol,l,rxui,nq h,ol,rls for ) (,\1 . Th,ere o"r'e positiue constantsa.B arri1. uti,th a.d ) I. sru:l-r, that,

Vt > 0 Vf > 1 . l,ilt)S r-^'o"r'-r.

Belore procee rling to thc proof of Theolem 2, Iet us sqe \ 'h)' it sh<xvs the required propcrtv
that E[W(P)]. the expectecl rvaitirLg tirne of a generic pa,cket P in thc svstem. is finite. Thco-
renr 2 shorvs that for lalge'i, p;-r(1) is legligible cornpared to q'and hence. bv Lcmura 3(ii),
(,i- qi(1 f o(1)), rvhere thc o(1) telm goes to zero as r, tends to infinitv. Hence. Lernrna 3(i)
t:ornbined rvith bound (6) shows that as long as we can ensllrc that g <11k. thel E[I4/(P)] is

finite (ancl. irr fnct, that good upper tail bounds can bo proven for the ilistribution of I4,'(P)).
Cornbining this with (5). all rve need is to pick a la,rge enough so that

o>k.

8
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Proof of Theorem 2 Induction on i. If i = 0, we use inecFrality (8) and reclrrire that

H('sb)' u1) I 6-^ii3'-' '

Frorrr (7), rve see tltzrt u1 ) 7; thus by Fact 1, there is sorne,tf > 0, l\l1 I X[,,,
that l/(sir),ut) I ,'-utsb\f\4. Tlierefore to satisfy inequality (12). it suffices to ensule

dt-|bl(oil1) > ^iit-'. lVe rvill do this by choosing oul constants so a,s to satisfv:

(12)

suclr

that

(13)

. (15)

1: rve norv cxtrntine
e corstant fol both

(16)

rI2Aandb)1aI'I .

We rvill choose r.- ancl ,9 to be fairl-v close to (but larger tharr) 1. a,nd s<-r the fir'st itecltalitr'
will be satisfied. Although 1 will have to be qrrite large, rve rvill be free to choose b sufficieltlr.'
la,rgc to satisfy thc seconcl iu.erpality.

\\ie procccrl to the incluction for i ) 1. \\/e hlst halrlle the case t > 2, autl then tILc case

t- |

Case r: t > 2. Bv Lemma 4. it srrffices to shorv that ke-"'t-''' + (j).-""'-' 'tt-2 < {'-1ni/3r-r

It is easv to vcrily that this holds for somc suffi.ciently lalge 7, provided

0>rrand2>aB.

\['e cal pick a = 1 + e and d = 1 f 2e for some small positive e, e ( 1, to satisfy (14).

(1-l.I

Case II: t : \. The first term il the inequalitv for 2;(1) givcn by Lemrna 5. is the same as lirr
Case I rvith f : 1; thus it can be assurned to be rurrch smaller than e-1^ bY an apltropriate
choice of constants, as seen above. Sirnilarly, the second terrn in the inerpralitv for p;(1) carL

be handlcd by assuming tirat ct I 2 and that 7 is large enou.glL. rvhich a,gain has becu handlcd

above. The final two terms siven bv Lemrna 5 sum to

/,., -r^i-' , (t* - !l!"-t, n(,'' -,')) t n (A'tt-''-' ."\ 2u2 k-l ) 
--\ )tP

\\ie rvisir to uralie each sumrnand in (15) at rrtost. sar-..-r"i/4. trsirrg

sornt' srrfficient conditious for these to hold. Let ,1/' be a, strfflcientlv
applications of Fact 1. Then bv Fact 1. rve just ueerl to ensurt' that

nt'\
Ll

Fact
Ielo'

bri-1(r - rl)

2rLl[l ) t t,' + ln(l A'1 nua jf ) J .' -t lrr -l .

2n,f,It - '

Both of these a,rc true for sufficierrtly ialge i. sincc r ) a. To satisfy these inequalitics for surall

rl. we choose b sufficiently large to sa,tisfv (16,13), complcting the ploof of Theolern 2. n

Finally, we can choose

cI=4.

It is norv easil.v verifie<l that conditions (1,2,9,13.14)are all satisfied. Inecpality (10) is satis{ied

in vierv of (11). Ineclualities (7,1i)shorv that ours is a stable protocol if ,\ < )r : 1/(/,r.') -
r132.

Theorem 3 In a MAC problen't. ttrith infi,nitely rnang -cenders. sLlppose tlr,e: senders' clrx:l,:s tt"l,l

o,qT'ec, on the. time. Then. tlrnre is o, f":rerl )t € (0, I) nLch that fnr rmg \ I z\1 . olLr prcttocol

qtr,rtrantee.c an, e,r:pecterl uo,i,tirtg time of O(I\ for euery packet.



4 The finite case

The rnodel norv is the one studicd in [9, 18]. There arc n senclers. with a packet auiving rvith
plobabilitv ,\; at sender tl a,t evcry tirne step, inclepen<lentlv of the otht:r senclers: alrivals at
cliffcrcnt tirne steps a,re independent of each other. We a,ssuure Ii'=, ),' < ) < 1/32. as in
tht' irLfirito <ra-se. The furthel assumption rve ntakc is that in additiou to svncirront'. there is
a linou,n bound on the time difference betrveelr anv pair of sencler r:locks. i.e.. tlLa,t onlv the
last ll- bits of the tirne rvill have to be agrccd upon by the senders, for some known I,I,. Note
that ortcc rvc ha.vt. this agreement, rve can simplv r'nrr orlr "infinite senders" protocol; so we
focus orr this clock agleernerrt problem norv. One obvious solution to this is for the sendcrs to
cornrnunicatc rvith cach other to agree on the time. Though this is potentiallv expensive. tlLis
one-sirot cost might rn'ell be ba,lancecl by thc good gain in the storagc recpirements ancl in the
lvaiting tirnes for all packets, from therr orr.

Suppose though that such inter-procerss cornlllllllication is prohibitivcl.v expensive. TlLen

the oulv [real]s of communication is the shared channel. and rve now shorv horv to rrse it to
aglee on the time rvithirr O(I,I'2\v * nl4r 1og(nI4'-)) steps, w.h.p.. (\\rc have not atternptccl to
optimize the mnning tirne of this protocoi. ) To this end, the serr<lers will sencl fakc ''pzrt:1iets"

to the channel; this shorrlcl not bc confirserl rvith our actual IvIAC protocol to be rrn later ori.
Tlre clock agleement protocol rvould ask all senders to "srvitr:h on" rvhen tlteft local r:kx:k.c

slLolr sorne particnlar tirne (such as 23:59 EST on April26, 1995). Lct l: nlogn for sonre suit-
a,ble colstant a. Each sender s will independently attempt to use the channel rvith probability
1/rr irrclependentiv at each step, until it succeeds. If s does not succeed ivithin Zw + ( steps.
it rvill stop atternpting to use the channel; else if it docs sur:ceecl. it r,'i11 then contilu<.ruslv
attenrpt usirrg the channel, for the next 2 .2\r' + I steps. Since any pair of sendcrs switch on
rvitlrirr 2II- steps of each other. it is clear that at most one sendcr (tbe leader) is successful.

No leacler will be elected only if for the I successive steps beginning 2lv steps aftel the
first scnclcr srvitchecl on. eitirer no sender or at least tlvo scnclcrs tried usins tire charnrel. The
plolr:rlrilitl of rlLis happerLirrg is r-erv small c-Q(r). Tlrrrs \\'e rl:1.\'irssrurro rhar a learier'.su \\'irs

eler:te<1. Startirrg at time step 3 .2w + I + 1 since it srvitchccl or, .es rvill attempt to nrakc till
otlrcl scrrdels a,gree with its local time. in phases Pt,Pz....,Pyy. Wc denote a genelic selcler
tlrat is not ss, by .s herrceforth. The sencler s will. starting at time step 3 .2n" + d 11 since it
srvitchecl on. trv to n,grcc rvith.s6's clocli. After phasc P,, all senders rvill agree rvith.ss on the.

i least significant bits (lsbs) of the tirre, w.h.p.. P, lasts for l;:3.2t1'f cnlog(rrl,Ir-) steps Ibr
a suitablc constant r:; thus. trvo different senclers might differ bv at most one iu the inclex of
thc plLnse that they think the-v are in.

Assu.rning tliat P1 ^P2,....P, have been finisheci. rve describe Pi11 rrow. Lct 7,+r denote
the set of time steps rvhcn thc clocl< of ,s6 shorvs a onc in the (i* 1)st lsb. Il Pi+i..s9 attcmpts
to use the charrrrel exactl.v a,t those tirne steps that 1ic in 7,11 . Sencler s, on the othel halcl.
atternpts usirLg the channcl indcpcndently with probabiliti' TlQn) at eaclL tirne slot. ancl in{'crs

the the (r f 1)st lsb b1'taking the majoritl'rcsult from the time steps (in its version of P,+r)
irr rvhi<:h it tried (using the channel) and collided. A cluick analysis of tirc correctness of this
is as Ibll.orvs, the details will be given in the final version. During tlLe period that was P,11

accorcling to .s0. s rvoulcl have tried using the channel 0((l; - Zw)1") times. w.h.p.. Since

the measrrre oi 7;11 during this period is roughly a half ancl since the expected nurnbcr of
lon-learlcrs that can collicle rvith.s at anv tirne step is roughly 1/3. the rna,jority result choscn
by.s rvi1l be correct. u.h.yt.. Similarlv. the fact that s might have thought that some portions
ol tlLis perioci belongecl to P, (or P,12)has rregligible effect, since l; ) 2t''. This plotocol takes

O(Iy2\r' * nl4t log(nlf )) steps. and hence we get
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Theorem 4 In a MAC problen"r, with, rt, sertdcrs, suppose tlte .se-rulers' clctcks dilfer b'y at most
a knowrr nuntber B of steps. Then there i,s a f,rerl Ar € (0, \) nr,ch tho"t for o"ny A I \t, ou"r'

7n'otocol guaro,ntees, after a setu,p tirne, of O(B logB * nkrg?7log(nlog B)) str:ps, arr erpectecl

'uoiting tirne etf O(7) for euer"g packet.

5 The effect of the input distribution
Suppose that the distribution of incomirg packets to the svstcur has substantiallv rvcalier

randorn properties thal thc inclependent Poisson distribrrtion (or irrdepeudcnt binontial, ir the

finite ca,se): our protocol lvill still ensure that the expcctecl r,vaiting tirnc for cverv packet is
O(1). The motivatior fol studving this is two-fol<1. First, oul conteutiorr t'csolution protocol
might be a, modul<. irr a larger system. with thc prcvious moclule fecclirrg packets rvith somc

possiblv vely "non-randorn" <listributiol. For instance, oner of the results of [1a] is that lbr
PRA\'{ ernulation, rnem.oly loca,tions carL be irashed in a,n l-rvisc irrdependelt fa.shiorL fol some

suitablv large hxed I rather tha.n in a corupletely ranrlorn fashion, to avoid having to stclc'httge
lraslr tables. (Rccall that a sequence of ra,ndom variablcs Xr,X2,...,X,, ts (-utise ittdepett,d,r:n,t.

if every I of them arc rnutually independent: such sequerrces are well-kuorvrL to be sampleablc
usirrg nra,ly fewer random bits tha.n do their completely indepcndent c.ounierparts. \\-e r,vill

encourrt<:r these again. belorv.) \\Ic rnight be able to guess the packet distributiol of their
PRAI'I ernrrlatiol, for an1 given PRAX, algorithm. The second lcason is to shorv tlLat out'

protocol rloes not lccd cmciall.v the verv goo<l large-cleviation proirclties of "we11-Jrcltavecl"

distributions lilie indcpen<lent Poisson/binomial, to mairttairr ElI4/o,,.1: O(I). In palticrrlirr for'

an l-rvise indepcndent distribution to be sketched belorv, clirect use of the protocoi ancl tirralvsis

of [18] fol the finite case, rvill mandate E[I,I;,,"] - r]o(1), ra,ther than their O(logrr) bound that
holcls fol inclependeni binornial arrivrils. (Of coulse it is corrcciva,ble that a, rnotlification o1

the'ir protocol might clo better.) Due to the lack of spacc, we just sketch the result.
From the pa,ragraph immediately follorving the statement of Thcorem 2, we seer that

7r,(l): O(n-i) rvill suffice to rnairrtairr the property that ElI4r.".): O(1) thc strolg (dorrblv
exponcntial) decay of pi(t) as z irrcrcases. is unnecessarlr. In turr, b.v ana,lvzing thc lccur'r'ences

presentcrl by Lemmas 4 and 5, we carr shorv that rather tha,n tlLe strorg bound of (12), it
suffices if

H(sbA"uy) t hr-t (1r )

for sonre constant n large t:nough in comparison with A, aud {bl a sufficiently sruali constant
6 > 0. \\l-e can then proceed bv inclur:tion ol i to sirorv that Lt;(t) - O1r,-i; (bv shorvirrg that
pift): O(rr-'n-t). rvhich is all rve nccd. Bound (1i) ca,n connotc a vely rveali tail belLaviour.
In particula,r in the finite senders case , such a bound holds if paclicts arrive indepeuclcutlr' at
rliff'erent tirne steps, but if rvithirr each time step, the (a,t nost n) incouring paclicts have an

l-wisc independent distribution, for some large enough constant l. It is fbr this scenario thzrt

ciirect use of the protocol and analysis of [18] 'will mandate .U[tr{/o,,.] = pa(r1.

In lact, such a rerpirement can be rveakencd further. to not have indepenclent arrivals
at each time slot. We would onlv need that for arry f.nite sequence of ciistirrct tirne slots

ty1t2
more tha,n some value beyond expectecl. is at rnost some consta,ut tirrres the corresponding
probabilitv, hacl thc arrivals been independent at th.csc tirne slots rvith the rvea,li tzril distribution
of ( 17). Such situatiols occur comrnonly in "negatively colrelated" cases. Fol irrstarrc('. srlppose

a total of a,t most )l'pac{iets, for some lalge ,\r, can arrive into the svsteln. eaclL a,r'r'ir..irLg

inrlerpendently at a tirue chosen uniforrnly a,t ra,ndoru from [l[]. I{ote tira,t the alliva,is at

11



tliffererrt tirrre stcps are not independent, but that they do satisfl' the a,bove negative colrelatiou
p1'opeItv.
Acknowledgement. trVe wish to thank Michael Kal:r,nta,r of Cornell Llniversity for explaining
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Appendix
Proof of Lemma 1 Lct e; = Pr(Yi = 1). This ploof is essentially the same a,s thc ote t.t1

Rarnan [19]. However since the scenario of [19] is a little differert, with n; being the sarne fol
all r. rvr- plesent this proof here.

Thc llroof is b-v inductiorr on l: the ba,sr: case of I : 1 is immecliatc. Assume tltc lerunta

for (. - 1. Foli e llll,let X(') : Ireldf, ancl 1-(l) -' I,,e[i]l;. \Ate may assume that c is al
iuteger. siuce the X; ancl Il are integral. If c:0, thel Pr(X() ) r:) : Pr(l'(r) ) r:) : 1' For

c)1.

PrlXQ) > c1 :

:

:

Pr(X(i-t) > c)+Pr(X(z-t) =c- l)Pr(Xr= 1l1(r-l) - c- 1)

Pr1-{(t-tl > c) + alPr(l(-t) : c _ 1) (bv (a))

alPr(f(-t) > c - 1) + (1 - oa)Pr(X1r-t) ) c)

rtrPr(Y'{(- r) > 
" - 1)+ (7 - ua)Pr(1'(r-t) > c) (bf incluctiorL hvpothesis)

Pr(I'({) > c;.

Proof of Lemma 2 Part (i) is immediate. For part (ii), nrrrnber the balls itt p2,gh [r'; a,s

1,2,... arbitrarilv tlrr.d iet X;,; be tire indicator-r'andoln valia,ble for the.ith ball il [ri collidilg
rvitlr a lorver-numbered ball {i'orn [i;. Thus, C < 2X, whcrc X : I;,j X;,r. Notc that. since the
balls are thrown inclependentlv, tire conditional plobabilitv that -{;,r: 1is at rnost (rr I)l(.
even gir.en the bins in LI; occrrpied bv all tlLe balls but thc 7th. TiLus by Lemma 1. tr is

stochastically' <lominated by a sum l'' of irrclependent {0, 1} randonl \'?i,riables. rvhele

Ef)'l <: f t.l -r)l( <:.,21t2t.1.
?ui"

Thus Lenrna 1. cornbined with the fact that C < 2X, concludes the proof.

Proof of Lemma 3 Palt (i) is irunecliate. Fol palt (ii), note that

!

Pr(E;l : Pr(E;lE;-1 )Pr(E,-1)
c;-r (Pri E,lLt;-1(P) rvas good A

= r:,*tPr(E;lE;-t)
E;-t\Pr(ru r(P) rvas goocllE;-1)

l3



Pr(E;lu,-1(P) was bad n E;-1)Pr(rL,-r{P) was badlE;-1))

e ;-y(Pr(E;lu;-r(P) was good A E;._'t) + Prlrro-r(P) was badlE;-1))
e;-1(Pr(E;|";-r(P) rva,s good A E;-t) + t"1u;-1(P) was berd)/Pr.(E,_r))
c:;-1tl I Pr(u;-1(P) r,vas ba<1) : {l€:;-1 * p;-r(1).

Proof of Lemma 4 Supposc that u; is f-bad but that n<'ither (i) or (ii) holds. Then. u; lLas

a,t most 1 child l that is either f-loadccl or (t - 1)-loadecl. ancl uone of the other chilclren of is
(l 1) bad. Nodc'r, can contribute aload of at most Ort-t4t f o. packets to u;; the other childrerr
<:orrtrilrrrte a total loacl of at most (k - I)bri-t{t-2f n. Thus the children of Tr; contribute a

total load of at most 6rz4t-z1.7lz + k - 1)/n, rvhich contradicts the fact tha,t tr; is f-bad if (9)
holds. n

Proof of Lemma 5 Supposc that tr; is t-bad. There are thc possibilities that at lea,st one
child of 'u; is 2-bad or that at least two chilclren are 1-bad. If neither of these conditiorrs holds.
tiren cither (A) rr; has exactlr-onc chilrl rvhich is l-loaded rvith no other child being bad, or
(B)al1 chilclren are good. To apply Theorern l and Fact 1. -"ve recpire that the'corresponding
valnes of ru exceed 1. The hvpothesis of the lerrrna assures o(r - d)l(k - 1) > 1. and. sincc
r < krl" arlk > a(r - rl,)l(Ar - 1) > 1.

In case (A), the A - 1 goo<1 children contribute a total of at least

r:up(,u;)la - cap(u;-1)df a - 
bri(r - d)

aI'

In tlre notation of Lemrna 2, z:k_ 7rs:bri-l ln, and I * bri-r. Thus bv Lcrnrna 2. the
probabilitv of or:currence of case (A) is at rnost

l?,-t,1)H(ry H)
packets to rr;. In case (B). the A good children contribute at least cap(rL;)f a : bri la. Bj' u

similar argument, the probability of occlllrence of casc (B) is at nost

.<

s

o(tt'ri:.'.ur\
\zn'^A)

The ileqrrality in the lemma follows. n

L1


