View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Warwick Research Archives Portal Repository

THE UNIVERSITY OF

WARWICK

Original citation:

Paterson, Michael S. and Srinavasan, A. (1995) Contention resolution with bounded
delay. University of Warwick. Department of Computer Science. (Department of
Computer Science Research Report). (Unpublished) CS-RR-285

Permanent WRAP url:
http://wrap.warwick.ac.uk/60969

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:

The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

warwickpublicationswrap

————— L ——————————

highlight your research

http://wrap.warwick.ac.uk/

https://core.ac.uk/display/29189385?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60969
mailto:publications@warwick.ac.uk

Research Report 285

Contention Resolution with Bounded Delay

MS Paterson and A Srinivasan

RR285

When many distributed processes contend for a single shared resource that can service at most
one process per time slot, the key problem is devising a good distributed protocol for contention
resolution. This has been studied in the context of multiple-access channels (e.g., ALOHA,
Ethernet), and recently for PRAM emulation and routing in optical computers. Under a
stochastic model of continuous request generation from a set of n synchronous processes,

Raghavan & Upfal have recently shown a protocol which is stable if the request rate is at most A,

for some fixed »y < 1; their main result is that for any given resource request, its expected delay
(expected time to get serviced) is O(log n). Assuming further that the initial clock times of the
processes are within a known bound B of each other, we present a stable protocol, again for

some fixed positive request rate 2}, 0 <X, < 1, wherein the expected delay for each request is
O(1), independent of n. We derive this by showing an analogous result for an infinite number
of processes, assuming that all processes agree on the time; this is the first such result. We also
present tail bounds which show that for every given resource request, it is unlikely to remain
unserviced for much longer than expected, and extend our results to other classes of input
distributions.

Department of Computer Science

University of Warwick

Coventry CV4 7AL April 1995
United Kingdom

Contention Resolution with Bounded Delay*

. . . . +
Mike Paterson | Aravind Srinivasan*

Abstract

When many distributed processes contend for a single shared resource that can service at
most one process per time slot, the key problem is devising a good distributed protocol for
contention resolution. This has been studied in the context of multiple-access channels (e.g.,
ALOHA, Ethernet), and recently for PRAM emulation and routing in optical computers.
Under a stochastic model of continuous request generation from a set of n synchronous
processes, Raghavan & Upfal have recently shown a protocol which is stable if the request
rate is at most Ag for some fixed Ao < 1; their main result is that for any given resource
request, its expected delay (expected time to get serviced) is O(logn). Assuming further
that the initial clock times of the processes are within a known bound B of cach other, we
present a stable protocol, again for some fixed positive request rate Ay, 0 < A; < 1, wherein
the expecied delay for each request is O(1), independent of n. We derive this by showing an
analogous result for an infinite number of processes, assuming that all processes agree on
the time; this is the first such result. We also present tail bounds which show that for every
given resource request, it is unlikely to remain unserviced for much longer than expected,
and extend our results to other classes of input distributions.

1 Introduction

In scenarios where a set of distributed processes have a single shared resource that can service
at most one process per time slot, the main problem is devising a “good” distributed protocol
for resolving contention for the resource by the processes. This has traditionally been studied in
the context of multiple-access channels (e.g., ALOHA) and for Ethernet protocols, and more
recently for PRAM emulation and for routing in optical computers. Assuming a stochastic
model of continuous request generation from a set of n synchronous processes (see Section 1.1
for the formal definition), Raghavan & Upfal have very recently shown a protocol which is
stable as long as the request rate is at most Ag for some fixed Ay < 1 [18]; their main result
is that for any given resource request, its erpected delay (expected time until it is serviced) is
O(logn). Assuming further that the initial clock times of the processes are within a known
bound B of each other, we present a stable protocol again for some fixed positive request rate
A1, wherein the expected delay for each request is O(1), independent of n. We derive this by
showing an analogous result for an infinite number of processes (which is a model for processes
entering and leaving dynamically), assuming that all processes agree on the time; this is the
first such result. We also present tail bounds which show that for every given resource request,
it is unlikely to remain unserviced for much longer than expected, and extend our results to
various classes of input distributions.

*Supported in part by the ESPRIT Basic Research Action Programme of the EC under contract No. 7141
(project ALCOM II).

"Department of Computer Science, University of Warwick, Coventry CV4 TAL, England
(msp@dcs.warwick.ac.uk).

‘Max-Planck-Institut fiir
Informatik, Im Stadtwald, 66123 Saarbriicken, Germany (srinivas@mpi-sb.mpg.de). Most of the work was
done while this author was visiting the Department of Computer Science, University of Warwick, Coventry CV4
TAL, England. Part of this work was done while visiting the Max-Planck-Institut fir Informatik.

1.1 Model and motivation

In multiple-access channels (MACs), there is one channel (resource) shared by a finite or
infinite number of synchronized senders (i.e., each sender’s local clock ticks at the same rate
as the others’ clocks). Time is slotted into units of time starting at 0, and in each unit
of time, ecach sender may recetve some packets according to some distribution. Each sender
which has packets will have to send its packets (one at a time) to the channel, but if more
than one sender attempts to transmit at the same time slot, the packets collide and are not
received by the sender. Otherwise if exactly one packet was sent in a slot, it is received by
the channel which sends the corresponding sender an acknowledgement. Thus if a sender
did not receive an acknowledgement for a packet sent, it knows that there was a collision,
and must try again; it is natural to expect randomized protocols to play a key role in this.
This model was initiated by work on ALOHA, a multi-user communication system based on
radio-wave communication (Abramson [1]), and a similar situation arises in Ethernet protocols
(Metealf & Boggs [15]). Much research on MACs was spurred by ALOHA, especially in the
information theory community; see, e.g., the special issue of IEEFE Trans. Info. Theory on
this topic [12]. Recently such resource-allocation problems have arisen again, in the context of
PRAM emulation-running PRAM algorithins on more realistic models of parallel computation—
and in message routing in optical computers. These parallel models include optical networks
(Anderson & Miller [4], Geréb-Graus & Tsantilas [7], Goldberg, Jerrum, Leighton & Rao [8]),
DMM models (Dietzfelbinger & Meyer auf der Heide [6]), and Valiant’s S*PRAM model [20];
see MacKenzie, Plaxton and Rajaraman [14] for details. In addition, MACs provide a good
model to study the abstract problem of distributed contention resolution for a common shared
resource. All these definitions can easily be extended to the case of more than one channel
(shared resource).

Rather than the static case (see below), we will be interested in the dynamic scenario of
packets arriving into the system at every time step, according to some distribution. There are
two important parameters for a MAC protocol-the arrival rate A of packets into the system
(the expected number of new arrivals per unit time), and stability. To define stability, suppose
W(P) is the random variable measuring the amount of time a packet P spends in the system
(before being sent successfully to the channel). Then let the random variable W,,. be the
limit as 2 — oo of the arithmetic mean of W(P) for the first ¢ packets arriving into the system.
Similarly, we may define the random variable Lyye as the limit as ¢ — oo of 1/¢ times the sum
of the number of waiting packets in the first ¢ steps. Finally, we may define T,.; to be the
time taken to have all sender queues empty, if we start from an arbitrary state of the system
(weighted by the probability of being in such a state). Unifying several previous definitions,
Hastad, Leighton & Rogoff define a protocol to be stable if and only if all three of E[Wjy.],
E[L.u], and E[T,.] are finite [9]. Actually, Lype = AWy, with probability one and similarly,
the throughput rate (average rate of successful transmissions) equals A with probability one,
for a stable protocol [9].

We must distinguish a few models when defining the problem further. First, we might
have a finite or infinite number of senders. In the former case, there are n senders into which
there is a continuous influx of packets; at most one packet arrives per sender, in any given
time step. The usual assumption is that these arrivals are independent across different time
steps and across different senders, and that the expected total arrival per time step is at most
A. The infinite case is a natural extension of this, with a random number of packets arriving
with a Poisson distribution of mean A, independently at each step. Here, each packet may be
regarded as a sender in itself.

The next key feature is the type of acknowledgement sent by the channel to the senders. A
popular model used in the information theory literature for this is that of ternary feedback: at
the end of each time slot, each sender receives information on whether zero, one, or more than
one packets were sent to the channel at that time step. In this case, stable protocols are known
for A < 0.4878... (Vvedenskaya & Pinsker [21]), and there is no stable protocol for A > 0.587...
(Mikhailov & Tsybakov [16]); but if the stronger feedback of the exact number of packets that
tried at the current step is sent to each sender, then there is a stable protocol for all A < 1
(Pippenger [17]). A weaker feedback model which is more realistic for the purposes of PRAM
emulation and optical routing is acknowledgement-based, wherein the only information known
to each sender which attempted to send a packet, is whether it succeeded or not; idle senders
get no information. The acknowledgement-based feedback model is thus a minimal-information
model, and we follow [9, 14, 18] in focussing on this henceforth.

The above classifications dealt with the dynamic situation of packet arrivals at every step.
Alternatively, we may consider a static scenario where at most h of n senders have a packet
ecach to send to the channel; the problem then is to design a distributed protocol (wherein each
sender only knows the value h, and whether it has a packet to send or not) for this. Assuming
acknowledgement-based feedback, the work of {14}, among other things. improves on previous
work to provide near-optimal bounds for various problews relating to the static version; in the
optical routing case, a similar problem is termed h-relation routing. for which the best known
bounds are due to [8].

Since the static case is fairly well-understood, we focus only on the dynamic case in this
work.

1.2 Previous work

For our model of interest—the dynamic setting with acknowledgement-based protocols, only
negative results were known in the infinite senders case: while Kelly showed that a large class
of protocols (including “polynomial backoff”) are unstable for any A > 0 [13], Aldous extended
this to the case of binary exponential backoff, the Ethernet protocol [2]. Also. any stable
protocol in the infinite case must have A < 0.587... [16].

In striking contrast to Kelly’s result. the important work of [9] showed. among other things,
that in the finite senders case, most polynomial backoff protocols are stable, in fact for all
A < 1. However, their proven upper bound for E[Wy,.] is 2/(1) where f(n) = n?(M. With
applications such as high-speed communications in mind where the average delay E[W .|
needs to be kept small, the very recent work of [18] presented a protocol for the finite case,
which is stable for all A < Ag (~ 1/10, using the analysis of [18]), with the key property that
E{W,pe] = O(logn), after an initial setup time of nP0) steps (note the siguificant reduction
in E[W,]). Moreover, it is shown in [18] that for each element P of a large set of protocols
that includes all known backoff protocols, there exists a threshold Ap < 1 such that if A > Ap,
then E[W,pe] = Q(n) must hold.

1.3 Our results

In the finite senders case, we take a further step in the direction of [18], with the view that
E[Wg,]) must be kept low. Recall that the known results use the fact that the senders’ clocks
all tick at the same rate. Under the additional assumption that the clocks of the n senders differ
by at most a known bound of B time steps, we present a protocol that has EW..e] = 0(1)
for A < Ay € (0,1), independent of n, after a setup time of O(Blog B + nlog Blog(nlog B))
steps. Our result and that in [18] have a stability property stronger than that defined in [9].

in that for every packet P. the expected waiting time for P is O(1) (resp., O(logn) in [18]).

In our view, this assumption on the clock differences is reasonable, since clocks—especially
those within a local enough area to be able to share a common resource—usually agree to within.
say 15 minutes. (With the same motivation, Hui & Humblet consider a somewhat different
problem [11].) Another way of looking at this result is that since the expected waiting time
for packets is a crucial parameter, vet another payoff is seen for building accurate clocks.

Our above result is actually shown quite easily from the main result we prove. which is
a stable protocol for the infinite case as long as A < Ay, assuming that all senders agree
on the time. Thus, this additional assumption on accurate clocks presents the first stable
acknowledgement-based protocol for the infinite case. The infinite case is of interest too, since
it models situations where senders may enter and leave the system, with no known reasonable
bound on the number n of competing processes. An interesting point here is that our results
are complementary to those of [9]-while the work of [9] shows that (negative) results for the
infinite case may have no bearing on the finite case, our results suggest that better intuition
and positive results for the finite case may be obtained by passing to the infinite casc.

Our protocols are simple. We show an explicit. easily computable collection {S;,: ¢,t =
0.1.2,...} of finite sets of nonnegative integers S, +; for all 7 and ¢, every element of S;; is smaller
than every element of S;11,. A packet born at time t and which has made ¢ (unsuccessful)
attempts at the channel so far, picks a time r uniformly at random from S;,, and tries using
the channel at time r. If it succeeds, it leaves the system; else if it fails, it increments : and
repeats this process. We also show good upper tail bounds on W(P) for every packet PI:
Ya > 0. Pr(W(P) > a) = O(a™), where ¢ > 1 is a constant, Thus for our protocol. the
expected number of packets (and hence the total storage size) in the system at any given time
is O(1), improving on the Q(logn) bound of [18]. Finally, we extend our results to various
input distributions to show that our protocol is robust to fairly “non-random” distributions
with weak tail properties.

Thus we show that the expected waiting times of packets can be reduced to just O(1), if
reliable clocks are available. In the infinite senders case, we ask for all clocks to agree; this gives
us the first stable acknowledgement-based protocol. In the case of finite senders, it suffices if
there is a known upper bound on the time differences between the clocks.

2 Notation and Preliminaries

For any positive integer (, we denote the set {1,2,...,{} by [¢{]. Theorem 1 presents the
Chernoff-Hoeftding bounds [5, 10]; see, e.g., Appendix A of [3] for details.

Theorem 1 Let R be a random variable with E[R] = u > 0 such that either: (a) R is a sum
of a finite number of independent random variables X1, Xy, ... with each X; taking values in
[0,1]. or (b) R is Poisson. Then for any v > 1, Pr(R > pv) < H(p.v) = (/71 Ju¥)H,

Fact 1 is easily verified. Lemma 1 is “folklore”; its proof is shown in the appendix.

Fact 1 Ifv > 1 then H(pu,v) < oMy phere M, s positive and monotone decreasing for
v>1.

Lemma 1 Suppose X1, X,....,X¢and ¥1,Ys, ..., Y, are sequences of {0,1} random variables,
such that: (a) Vi ¥by, by, bi—y € {0,1}, Pr(X; = 1 Njeri-1)(X; = b;)) < Pr(Y: = 1), and
(b)Y1.%5,.. ., Ye are independent. Then for any ¢ > 0. Pr(X ¢ X; > ¢) < Pr(YicqYi > o).
Thus if ¢ > E[Zie[(} Xi], then PT(Zze[(] X, > < H(E[Zz‘e[q Xi]~(f/E[Zie[(’] Xi]).

4

Remark. If, for a pair of rcal-valued random variables A and B, it is true that for all c.
Pr(A>¢)< Pr(B > ¢), then A is said to be stochastically dominated by B.

Suppose (at most) s packets are present in a static system, and that we have { time units
within which we would like to send out a “large” number of them to the channel, with high
probability (w.h.p.). Then a natural scheme is for each packet to attempt using the channel
at a randomly chosen time from [(]. (There are schemes which provide better constants than
this, and we have not vet attempted to optimize the constants.) In fact, we will also need a
version of such a scenario where some number z of such experiments are run independently.
as considered by Lemma 2. Since a packet is successful if and only if no other packet chose
the same time slot as it did, the “collision” of packets is a dominant concern. The proof of
Lemma 2 is shown in the appendix.

Lemma 2 Suppose we run =z independent ezperiments Ey. Ey, ..., E. where in E;, a set U; of
at most s balls are thrown uniformly and independently at random into a set Vi of € bins: if
i # j, then UnU; = ¢ and ViNV; = ¢. Let us say that a ball “collides™ if and only if it is not the
only ball in its bin. Then, (i) For any given ball B, Pr(B collides) <1 — (1 — 17077 < s/t
(ir) If C denotes the total number of balls that collided, then Vv > 1, Pr(C > zs*v/() <
H(zs%v/(20)).

3 Tree model for contention resolution: the infinite case

We assume a time-slotted system. At every time slot t = 0,1,2,..., a random number of
packets whose distribution is Poisson with mean A < 1, is injected into the system; the arrivals
are independent for different time slots. We assume that all the packets agree on a common
global time; there is no common knowledge (or inter-packet communication) apart from this.
At every time slot, each packet in the system will decide autonomously, based on its current
time. its time of entry into the system. its history of unsuccessful attempts in the past, and
on the outcome of its internal coin flips. to try using the chaunel or not. If it succeeds, then
the packet leaves the system; if not, the only information it has gained is that it tried at this
current time but failed due to a collision.

We present the ideas parametrized by several constants. Later on we will choose values for
the parameters to maximize the throughput. There will be a trade-off between the maximum
throughput and the expected waiting time for a packet; a different choice of parameters could
take this into consideration. The constants we have chosen for ease of presentation, guarantee
that our protocol is stable for A < 1/32. In the final version. we will present a more complicated
choice of constants for which A < 1/16 will suffice for stability.

3.1 The tree protocol

Three important positive constants, b, r and &, where b > 1 and 7,k > 1. shape the protocol.
At any time during its lifetime in the protocol, a packet is regarded as residing at some node of
a tree T that has an infinite number of leaves. Each non-leaf node of T has exactly & children,
where

k>r. (1)

T is not actually constructed-it is just for exposition. The nodes of T at the same height i
for any ¢ > 0. are ordered left-to-right. We associate a finite nonempty set of non-negative
integers Trial(v) with each node v. Define L(v) = min{ Trial(v)}, R(v) = max{ Trial(v)}, and
the capacity cap(v) of v, to be |Trial(v)|. A required set of properties of the Trial(-) sets is the
following:

(&2}

P1. If v and v is any pair of distinct nodes of T, then Trial(u) N Trial(v) = ¢;

P2. If u is either a proper descendant of v, or if v and v are at the same height with u to the
left of v, then R(u) < L(v).

P3. The capacity of all nodes at the same height is the same. Let u; be a generic node at
height 7. Then, cap(ug) = b and cap(u;) = [r cap(u;—1)], for i > 1. (Thus, cap(u;) = br'
it » is integral; otherwise, br' < cap(u;) < br* + (r' = 1)/(r — 1).)

Suppose we have such a construction of the Trial(-) sets. Each packet P injected into the
system at time slot ¢p will initially enter the leaf node ug(P) where ug(P) is the leftmost leaf
such that L(ug(P)) > tp. Then P will move up the tree if necessary to successor (parent)
nodes of increasing height, in the following way. In general, suppose P cnters a node u;(P) at
height ¢, at time ¢;; we will be guaranteed the invariant “Q: u,;(P) is an ancestor of uy(), and
ti < L(u;(P)).” P will then pick an element r; € Trial(w;(P)) uniformly at random, and trv
using the channel at time r;. If it was successful, P will (of course) leave the system, otherwise
it will enter the parent u; () of u;(P). at time ;. (Q) is established by an easy induction
on !, using property (P2). Note that the packets entering any given node v conduct the same
experiment as is considered by Lemma 2, with z = 1. More importantly, if v is any non-leaf
node, then the trials at its & children correspond to z = k in Lemma 2, by (P1).

Thus, each node receives all the unsuccessful packets from each of its & children; an un-
successful packet is imagined to enter the parent of a node u, immediately after it found itself
unsuccessful at «. Informally, if the proportion of the time dedicated to height 0 is 1/s, where
s > 1, then the proportion for height ¢ will be approximately (r/k)!/s. Since the sum of these
proportions for all ¢ can be at most 1, we have s > k/(k — r); we will take

s=kj(k—r). (2)

More precisely. the Trial(-) sets are counstructed as follows; it will be immediate that they
satistv (P1,P2.P3). First define

k=16, s =2, and r = 8. (3)

We remark that though we have fixed these constants, we will use the symbols k,s and r
(rather than their numerical values) wherever possible, to retain generality.

For i =0,1,....let F; = {j >0:7 =2 (mod 2:t1)}; the sets F: form a partition of Z7.
the set of non-negative integers. Let v; be a generic node at height ¢; if it is not the leftmost
node in its level, let u; denote the node at height ¢ that is immediately to the left of »;. We
will ensure that all elements of Trial(v;) lie in F;. (For any large enough interval I in 77T,
the fraction of F Iving in I is roughly 1/2'7' = (#/k)*/s: this was what we meant informally
above.)

We now define Trial(v;) by induction on ¢ and from left-to-right within the same level, as
follows. If ¢ = 0, then if vy is the leftmost leaf, we set Trial(vy) to be the smallest cap(vg)
elements of Fy; else we set Trial(vg) to be the cap(vg) smallest elements of Fy larger than
R(ug). If ¢ > 1, let w be the rightmost child of »;. If v; is the leftmost node at height i, we let
Trial(v;) be the cap(v;) smallest elements of F; that are larger than R(w): else define Trial(v;)
to be the cap(v;) smallest elements of F; that are larger than max{R(u;), R(w)}. In fact, it is
easy to show by the same inductive process that, if u; is defined, then R(w) > R(u;); hence
for every node v; with ¢ > 1,

L{v)) < R(w)+ 2" = R(w) + s(k/r)". (4)

6

3.2 Waiting times of packets

We now come to our main random variable of interest: the time that a generic packet P will
spend in the system, from its arrival. We need some definitions, where a,d are constants
greater than 1.

Definition 1 For any node v € T, the random variable load(v), the load of v, us defined to be
the number of packets that enter v; for any positive integer t, v is defined to be t-bad if and
only if load(v) > brid*~'/a. Node v is said to be t-loaded if it is t-bad but not (t + 1)-bad. It
15 called bad if it is 1-bad, and good otherwise.

It is not hard to verify that for any given ¢ > 1, the probability of being #-bad is the same for
any pair of nodes at the same level in T'; this brings us to the next definition.

Definition 2 For any (generic) node u; at height i in T and any positive integer t, pi(1)
denotes the probability that u; is t-bad.

Definition 3 (i) The failure probability ¢ is the mazimum probability that a packet entering
a good node will not succeed during the functioning of that node. (it) For any packet P, let
ug(P). u1(P).uy(P), ... be the nodes of T that u; is allowed to pass through. where the height
of w;(P) is i. Let E;(P) be the event that P enters u;(P).

If a node u at height ¢ is good, then in the notation of Lemma 2. s < {/a, where (= cap(u):
hence, Lemma 2(i) shows that
qg<l/a. (5)

Note that the distribution of E;(P) is independent of its argument. Hence, for any ¢ > 1, we
may define e¢; = Pr{E;(P)) for a generic packet P, with ey = 1. Suppose P was unsuccessful
at nodes ug(P), uy(P), ..., u;(P). Let A(7) denote the maximumn total amount of time P could
have speut in these (74 1) nodes. Then, it is not hard to see that A(0) < s cap(ug)+s cap(ug) =
2sh and that for i > 1, A(i) < kA(i — 1) 4 (k/7)isbri, using (4). Hence,

A(#) < (i 4 1)sbk' for all i. (6)

Lemma 3 is about the distribution of the crucial random variable W(I?)-the time that P
spends in the system. See the appendix for its proof (which is simple, but crucial).

Lemma 3 (i) For any packet P and for alli > 0, Pr(W(P) > A(i)) < e;41; also, E[W(P)] <
Yoo Alie;. (it) For alli > 1, e; < gejy + pi—i(1).

3.3 The improbability of high nodes being heavily loaded

As is apparent from Lemma 3, our main interest is in getting a good upper bound on p;(1).
However, to do this we will also need some information about p;(t) for ¢ > 2, and hence
Definition 2. The basic intuition is that if a node is good, then w.h.p., it will successfully
schedule “most” of its packets; this is formalized by Lemma 2, by setting = = 1. In fact,
Lemma 2 shows that for any node u in the tree, the good children of w will, w.h.p.. pass on a
total of “not many” packets to w«, since the functioning of each of these children is independent
of the other children.

To estimate p;(t), we first handle the easy case of i = 0. Recall that if X; and X, are
independent Poisson random variables with means A; and Ag respectively, then X; + X is
Poisson with mean Ay + Ay, Thus, ug being t-bad is a simple large-deviation event for a

=~

Poisson random variable with mean sbA. If, for every ¢ > 1, we define v, = d'=1/(sa\) and
ensure that v, > 1 by setting
sa\ <1, (7)

then Theorem 1 shows that

po(t) = Pr(ug is t-bad) < H{(sbA, ;). (8)

We now cousider how a generic node «; at height ¢ > 1 could have become t-bad, for any
given f. The resulting recurrence yiclds a proof of an upper bound for p;(¢) by induction on .
The two cases, t > 2 and t = 1, are covered by Leminas 4 and 5 respectively. We now require

P +E-1<dr. (9)
Remark. Lemma 4 can be strengthened, but we present this version for simplicity.

Lemma 4 Suppose d* + k — 1 < dr. Then fori > 1 and t > 2, if a node u; at height i in T
is t-bad, then at least one of the following two conditions holds, for u;’s set of children. (i) At
least one child is (t + 1)-bad, or (ii) at least 2 children are (t — 1)-bad. Thus,

pilt) < Epii(t+ 1)+ (2) (pici(t —1))% .

The proofs of Lemmas 4 and 5 are shown in the appendix. We now consider the case that
t = 1 where the intuition, that the good children of w; can be expected to have successfully
transmitted much of their load, plays a key role. We now require

alr—dy>k—1. (10)

Lemma 5 Ifa(r —d)> (k—1), then for any ¢ > 1,

’ k 2, ’(k — 1)br'=t a(r —d) Ebrt=t ar
pi(1) < kpima(2) + (2) (Pic1(1))" + kpia(1H (Sy= R el L (ol

We now present a key theorem that proves an upper bound for p;(¢), by induction on i.
We assume that our constants satisfy the conditions (1, 2, 7, 9. 10).

Theorem 2 There exists a constant Ay > 0 such that for a sufficiently large value of b the
follownng holds for A < Ay. There are positive constants «, 3 and v, with o, 3 > 1, such that

Yi>0Vt>1, pi(t) < e AT

Before proceeding to the proof of Theorem 2, let us see why it shows the required property
that E[W(P)], the expected waiting time of a generic packet P in the system, is finite. Theo-
rem 2 shows that for large ¢, p;_1(1) is negligible compared to ¢* and hence, by Lemma 3(ii),
¢; = ¢'(1 4 o(1)), where the o(1) term goes to zero as i tends to infinity. Hence, Lemma 3(i)
combined with bound (6) shows that as long as we can ensure that ¢ < 1/k, then E[W(P)] is
finite (and, in fact, that good upper tail bounds can be proven for the distribution of W(P)).

Combining this with (5), all we need is to pick a large enough so that

a>k. (11)

Proof of Theorem 2 Induction on 7. If ¢ = 0, we use inequality (8) and require that
H(sbAvy) < e (12)

From (7), we see that v; > 1; thus by Fact 1, there is some M > 0, M < M,,, such
that H(sbA, 1) < ¢ vesDAM - Therefore to satisfy inequality (12), it suffices to ensure that
A=Y/ (aM) > v3'". We will do this by choosing our constants so as to satisfy:

d> 3 and b > valM . (13)

We will choose a and 3 to be fairly close to (but larger than) 1, and so the first inequality
will be satisfied. Although v will have to be quite large, we will be free to choose b sufficiently
large to satisfy the second inequality.

We proceed to the induction for ¢ > 1. We first handle the case t > 2, and then the case
t=1.

Case I: t > 2. By Lemma 4, it suffices to show that Fe—ve'TiAt 4 (’5) 2 s L

It is easy to verify that this holds for some sufficiently large v, provided
B>aand 2> af. (14)
We can pick a = 1+ € and 3 = 1 + 2¢ for some small positive €, € < 1, to satisfy (14).

Case II: t = 1. The first term in the inequality for p;(1) given by Lemma 5. is the same as for
Case I with ¢+ = 1; thus it can be assumned to be much smaller than e~ by an appropriate
choice of constants, as seen above. Similarly, the second term in the inequality for p;(1) can
be handled by assuming that o < 2 and that v is large enough, which again has been handled
above. The final two terms given by Lemina 5 sum to

: L il gl — L=l
fe—at Tl g ((A, 1) 7!1(\7 d)) v H (kbr ﬂ) ' (15)

2a2 k-1 202 "k

We wish to make each summand in (15) at most, say, e /4, using Fact 1: we now cxamine
some sufficient conditions for these to hold. Let M’ be a sufficiently large constant for both
applications of Fact 1. Then by Fact 1. we just need to ensure that

bri_l(?‘ —d) ; byt o | -
o > va' + In(4k) and S5a il > ~va' +1n4. (16)

Both of these arc true for sufficiently large ¢, since r > . To satisfy these inequalities for small
i, we choose b sufficiently large to satisfy (16,13), completing the proof of Theorem 2. a
Finally, we can choose
d=4.

It is now easily verified that conditions (1,2,9,13,14) are all satisfied. Inequality (10) is satisfied
in view of (11). Inequalities (7,11) show that ours is a stable protocol if A < Ay = 1/(ks) =
1/32.

Theorem 3 In a MAC problem with infinitely many senders, suppose the senders’ clocks all
agree on the time. Then there is a fived Ay € (0.1) such that for any A < Ay, our protocol
gquarantees an expected waiting time of O(1) for every packet.

9

4 The finite case

The model now is the one studied in [9, 18]. There are n senders, with a packet arriving with
probability A; at sender ¢ at every time step, independently of the other senders; arrivals at
different time steps are independent of each other. We assume > A; < A < 1/32, as in
the infinite case. The further assumption we make is that in addition to synchrony. there is
a known bound on the time difference between any pair of sender clocks. i.e., that only the
last WV bits of the time will have to be agreed upon by the senders, for some known W. Note
that once we have this agreement. we can simply run our “infinite senders” protocol; so we
focus on this clock agreement problem now. One obvious solution to this is for the senders to
communicate with each other to agree on the time. Though this is potentially expensive, this
one-shot cost might well be balanced by the good gain in the storage requirements and in the
waiting times for all packets, from then omn.

Suppose though that such inter-process communication is prohibitively expensive. Then
the only means of communication is the shared channel, and we now show how to use it to
agree on the time within O(W2% 4+ nW log(nW¥V)) steps, w.h.p.. (We have not attempted to
optimize the running time of this protocol.) To this end, the senders will send fake “packets”™
to the channel; this should not be confused with our actual MAC protocol to be run later on.

The clock agreement protocol would ask all senders to “switch on” when their local clocks
show some particular time (such as 23:59 EST on April 26, 1995). Let { = alog n for some suit-
able constant a. Each sender s will independently attempt to use the channel with probability
1/n independently at each step, until it succeeds. If s does not succeed within 2" + ¢ steps.
it will stop attempting to use the channel; else if it does succeed, it will then continuously
attempt using the channel, for the next 22" 4 ¢ steps. Since any pair of senders switch on
within 2" steps of each other, it is clear that at most one sender (the leader) is successful.

No leader will be elected only if for the ¢ successive steps beginning 2V steps after the
first sender switched on, either no sender or at least two senders tried using the channel. The
probability of this happening is very small—e %)
elected. Starting at time step 3 - 2" + ¢ + 1 since it switched on, so will attempt to make all
other senders agree with its local time, in phases Py, P, ..., Py. We denote a generic sender
that is not sy, by s henceforth. The sender s will, starting at time step 3 - 2" 4 ¢+ 1 since it
switched on, try to agree with sg’s clock. After phase P;, all senders will agree with sg on the
i least significant bits (Isbs) of the time, w.h.p.. P; lasts for £; = 3-2" 4 cnlog(nW) steps for
a suitable constant ¢; thus, two different senders might differ by at most one in the index of
the phase that they think they are in.

Assuming that Py, Py, P; have been finished. we describe P,q now. Let T;y| denote

. Thus we may assume that a leader sy was

thie set of time steps when the clock of sg shows a one in the (7 + 1)st Isb. In P14, s attempts
to use the channel exactly at those time steps that lic in T;,¢. Sender s, on the other hand,
attempts using the channel independently with probability 1/(3n) at each time slot, and infers
the the (¢4 1)st Isb by taking the majority result from the time steps (in its version of P;q)
in which it tried (using the channel) and collided. A quick analysis of the correctness of this
is as follows, the details will be given in the final version. During the period that was P
according to sg, s would have tried using the channel Q((¢; — 2%)/n) times, w.h.p.. Since
the measure of T;;; during this period is roughly a half and since the expected number of
non-leaders that can collide with s at any time step is roughly 1/3, the majority result chosen
by s will be correct, w.h.p.. Similarly, the fact that s might have thought that some portions
of this period belonged to P; (or P ,) has negligible effect, since ¢; > 2", This protocol takes
O(W2W 4 nW log(nW)) steps. and hence we get

10

Theorem 4 In a MAC problem with n senders, suppose the senders’ clocks differ by at most
a known number B of steps. Then there is a fired Ay € (0,1) such that for any A < Ay, our
protocol guarantees, after a setup time of O(Blog B + nlog Blog(nlog B)) steps, an erpected
waiting time of O(1) for every packet.

5 The effect of the input distribution

Suppose that the distribution of incoming packets to the system has substantially weaker
random properties than the independent Poisson distribution (or independent binomial, in the
finite case); our protocol will still ensure that the expected waiting time for every packet is
O(1). The motivation for studying this is two-fold. First, our contention resolution protocol
might be a module in a larger system, with the previous module feeding packets with some
possibly very “non-random” distribution. For instance, one of the results of [14] is that for
PRAM emulation, memory locations can be hashed in an (-wise independent fashion for some
suitably large fixed (rather than in a completely random fashion, to avoid having to store hnge
hash tables. (Recall that a sequence of random variables Xy, Xy, ..., Xy, is (-wise independent
if every { of them are mutually independent; such sequences are well-known to be sampleable
using many fewer random bits than do their completely independent counterparts. We will
encounter these again, below.) We might be able to guess the packet distribution of their
PRAM emulation, for any given PRAM algorithm. The second reason is to show that our
protocol does not need crucially the very good large-deviation properties of “well-hbehaved”
distributions like independent Poisson/binomial, to maintain E[W,,] = O(1). In particular for
an (-wise independent distribution to be sketched below, direct use of the protocol and analysis
of [18] for the finite case, will mandate E[Wg,e] = nf | rather than their O(log n) bound that
holds for independent binomial arrivals. (Of course it is conceivable that a modification of
their protocol might do better.) Due to the lack of space, we just sketch the result.

From the paragraph immediately following the statement of Theorem 2, we see that
pi(t) = O(a™") will suffice to maintain the property that E[W,,.] = O(1)—the strong (doubly
expounential) decay of p;(t) as 7 increases, is unnecessary. In turn, by analyzing the recurrences
presented by Lemmas 4 and 5, we can show that rather than the strong bound of (12), it
suffices if

H(sb\,vy) < ok (17)

\

for some constant large enough in comparison with k&, and for a sufficiently small constant
6 > 0. We can then proceed by induction on i to show that p;(t) = O(a™") (by showing that
pi(t) = O(a™'k~t)., which is all we need. Bound (17) can connote a very weak tail belaviour.
In particular in the finite senders case, such a bound holds if packets arrive independently at
different time steps, but if within each time step, the (at most n) incoming packets have an
(-wise independent distribution, for some large enough constant (. It is for this scenario that
direct use of the protocol and analysis of [18] will mandate E[Wepe] = nf4),

In fact, such a requirement can he weakened further, to not have independent arrivals
at each time slot. We would only need that for any finite sequence of distinct time slots
t1 < ty < --- < t,,, the probability that the total arrival in each of these time slots was
more than some value beyond expected, is at most some constant times the corresponding
probability, had the arrivals been independent at these time slots with the weak tail distribution
of (17). Such sitnations occur commonly in “negatively correlated” cases. For instance, suppose
a total of at most AN packets, for some large N, can arrive into the system, each arriving
independently at a time chosen uniformly at random from [N]. Note that the arrivals at

11

different time steps are not independent, but that they do satisfy the above negative correlation
property.

Acknowledgement. We wish to thank Michael Kalantar of Cornell University for explaining
the practical side of this problem to us. We thank Prabhakar Raghavan and Eli Upfal for
sending us an early version of their paper [18], and thank Phil MacKenzie, Greg Plaxton and
Rajmohan Rajaraman for allowing us to use part of the IATRX source of their work [14].

References

[1] N. Abramson. The ALOHA system. In N. Abramson and F. Kuo. editors. Computer-
Communication Networks. Prentice Hall, Englewood Cliffs, New Jersey, 1973.

[2] D. Aldous. Ultimate instability of exponential backoff protocol for acknowledgement based trans-
mission control of random access communication channels. IEEFE Trans. on Information Theory,

I'T-33(2):219-223, 1987.

[3] N. Alon, J. H. Spencer, and P. ErdSs. The Probabilistic Method. Wiley Interscience Series, John
Wiley & Sons, Inc., New York, 1992.

[4] R.J. Anderson and G. L. Miller. Optical communication for pointer based algorithms. Technical
Report C'RI-88-14, Computer Science Department, University of Southern California, 1988.

[5] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of
observations. Annals of Mathematical Statistics, 23:493-509, 1952,

[6] M. Dietzfelbinger and F. Meyer auf der Heide. Simple, efficient shared memory simulations. [n
Proc. ACM Symposium on Parallel Algorithms and Architectures, pages 110-119, 1993.

[7] M. Geréb-Graus and T. Tsantilas. Efficient optical communication in parallel computers. Tn Proc.
ACM Symposium on Parallel Algorithms and Architectures, pages 41-48, 1992.

[8] L. A. Goldberg, M. Jerrum, F. T. Leighton, and S. B. Rao. A doubly logarithmic communication
algorithm for the completely connected optical communication parallel computer. In Proc. ACM
Symposium on Parallel Algorithms and Architectures, pages 300~ 309, 1993.

[9] J. Hastad, F. T. Leighton, and B. Rogoff. Analysis of backoff protocols for multiple access channels.
In Proc. ACM Symposium on Theory of Computing, pages 241-253, 1987. To appear in SIAM J.
Compul.

[10] W. Hoeffding. Probability inequalities for sums of bounded random variables. American Statistical
Association Journal, 58:13-30, 1963.

[11] J. Y. N. Hui and P. A. Humblet. The capacity region of the totally asynchronous multiple-access
channel. IEEE Trans. on Information Theory, 1T-31:207-216, 1985.

2} IEEE Trans. on Information Theory, I'T-31, 1985.

[13] F. . Kelly. Stochastic models of computer communication systems. J. Royal Stalistical Society
(B), 47:379-395, 1985.

[14] P. D. MacKenzie, C. G. Plaxton, and R. Rajaraman. On contention resolution protocols and
associated probabilistic phenomena. In Proc. ACM Symposium on Theory of Computing, pages
153-162, 1994.

[15] R. Metcalf and D. Boggs. Ethernet: distributed packet switching for local computer networks.
Communications of the ACM, 19:395-404, 1976.

[16] V. A. Mikhailov and T. S. Tsybakov. Upper bound for the capacity of a random multiple access
system. Problemy Peredachi Informatsii, 17:90-95, 1981. Also presented at the IEEE Information
Theory Symposium, 1981.

12

[17] N. Pippenger. Bounds on the performance of protocols for a multiple access broadcast channel.
IEEFE Trans. on Information Theory, I'T-27:145-151, 1981.

[18] P. Raghavan and E. Upfal. Stochastic contention resolution with short delays. In Proc. ACM
Symposium on Theory of Computing, 1995. To appear.

[19] R. Raman. The power of Collision: Randomized parallel algorithms for chaining and integer
sorting. In Proceedings, 10th Annual FST & TCS Conference, Lecture Notes in Computer Science
472, pages 161-175. Springer-Verlag, Berlin, December 1990. Also available as University of
Rochester CS Dept. TR 336, March 1990 (Revised January 1991).

[20] L. G. Valiant. General purpose parallel architectures. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, Volume A, pages 943-971. Elsevier, New York, 1990.

21] N. D. Vvedenskaya and M. S. Pinsker. Non-optimality of the part-and-try algorithm. In Abstracts
P 8
of the International Workshop on Convolutional Codes, Multiuser Commaunication, Sochi, USSR,
pages 141--148, 1983.

Appendix

Proof of Lemma 1 Let a; = Pr(Y; = 1). This proof is essentially the same as the one of
Raman [19]. However since the scenario of [19] is a little different, with @; being the same for
all 7, we present this proof here.

The proof is by induction on £; the base case of £ = 1 is immediate. Assume the lemma
for { — 1. For i € [{], let X() = > jer) X and YO = Yjer Yj- We may assume that ¢ is an
integer, since the X; and Y; are integral. If ¢ = 0, then P'I*(X(f) >¢)=Pr(Y) >¢)=1. For
c>1,

PriXW>e¢) = Pr(XUY >)4 Pr(XD = - D)Pr(X, = 1| XD = ¢ - 1)
< PrXUY >)4 aPr(XUY = ¢ = 1) (by (a)
= aPr(X"V >c—1)+ (1-a)Pr(XY > ¢
< aPr(YY U >ce—1)4(1- ar)Pr(Y =0 > ¢} (by induction hypothesis)

Pr(Y >).

a

Proof of Lemma 2 Part (i) is immediate. For part (ii), number the balls in each U; as
1,2,...arbitrarily and let X; ; be the indicator random variable for the jth ball in U; colliding
with a lower-numbered ball from U;. Thus, C < 2X, where X = 37, - X; ;. Note that, since the
balls are thrown independently, the conditional probability that X;; = 1 is at most (j — 1)/(,
even given the bins in U; occupied by all the balls but the jth. Thus by Lemma 1. X is
stochastically dominated by a sum Y of independent {0,1} random variables, where

EY]< 2 (- 1)/t < 28 /(20).
JEM

Thus Lemma 1, combined with the fact that C < 2X, concludes the proof. |

Proof of Lemma 3 Part (i) is immediate. For part (ii), note that

¢; = Pr(E;)=Pr(E]|E,_1)Pr(E;_y)=¢,.1Pr(E;|E;_1)
= e, 1(Pr{E]ui_1(P) was good A E;_1)Pr(u;_1(P) was good|E;_;) +

13

Pr(E;|u;—(P) was bad A E;,_1)Pr(u,_1{ P) was bad|F;_1))
¢i1(Pr(Eilui—1(P) was good A E;_1) 4+ Pr(u;_1(P) was bad|E,;_y))
€i—1(Pr(E;|u;—1(P) was good A E;_1) 4+ Pr(u;—1(P) was bad)/Pr(E;_1))
€i—1¢ + Pr(u;—1(P) was bad) = qe;_1 + p;_1(1).

(VAN VAN VAN

a

Proof of Lemma 4 Suppose that w; is t-bad but that neither (i) or (ii) holds. Then, u; has
at most 1 child v that is either t-loaded or (¢t — 1)-loaded, and none of the other children of is
{t—1)-bad. Node v can contribute a load of at most b'r‘i_ld’/a packets to u;; the other children
contribute a total load of at most (k — 1)br'='d*=2/a. Thus the children of u; contribute a
total load of at most br'd=%(d*> + k — 1)/a, which contradicts the fact that w; is t-bad if (9)
holds. O

Proof of Lemma 5 Supposc that u; is -bad. There are the possibilities that at least one
child of wu; is 2-bad or that at least two children are 1-bad. If neither of these conditions holds.
then either (A) u; has exactly one child which is 1-loaded with no other child being bad, or
(B) all children are good. To apply Theorem 1 and Fact 1, we require that the corresponding
values of v exceed 1. The hypothesis of the lemma assures a(r — d)/(k — 1) > 1. and, since
r<kd,ar/k>a(r—d)/(k-1)>1.

In case (A), the £ — 1 good children contribute a total of at least

bri(r — d)

cap(ui)/a — cap(u;—)d/a =
ar

In the notation of Lemma 2, 2 = k — 1, s = br'"!/a, and ¢ = br'~'. Thus by Lemma 2. the
probability of occurrence of case (A) is at most

A VAet— .
kpl'_l(l)H<(k 1)y a(r (l))

22 k-1

packets to u;. In case (B), the k good children contribute at least cap(u;)/a = br'/a . By a
similar argument, the probability of occurrence of case (B) is at most

kbr'=t ar
H| ———,— 1.
(202 "k >

The inequality in the lemma follows. m

14

