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Dense Edge-Disjoint Embedding of CompleteBinary Trees in Interconnection Networks �S. Ravindran, A. M. Gibbons and M. S. PatersonDepartment of Computer Science, University of Warwick, Coventry CV4 7AL, EnglandAbstractWe describe dense edge-disjoint embeddings of the complete binary tree with nleaves in the following n-node communication networks: the hypercube, the de Bruijnand shu�e-exchange networks and the two-dimensional mesh. For the mesh and theshu�e-exchange graphs each edge is regarded as two parallel (or anti-parallel) edges.The embeddings have the following properties: paths of the tree are mapped ontoedge-disjoint paths of the host graph and at most two tree nodes (just one of whichis a leaf) are mapped onto each host node. We prove that the maximum distancefrom a leaf to the root of the tree is asymptotically as short as possible in all hostgraphs except in the case of the shu�e-exchange, in which case we conjecture that itis as short as possible. The embeddings facilitate e�cient implementation of manyP-RAM algorithms on these networks.Keywords: parallel algorithms, graph embedding, binary tree, hypercube, de Bruijn network, shu�e-exchange network, mesh1 IntroductionThe P-RAM model of parallel computation is a shared memory model with constant-timeaccess from any processor to any memory location. The constant-timememory access is notphysically realisable in present-day hardware. When implementing algorithms for feasiblemodels of parallel computation, a distributed memory machine consists of processors withlocal storage, where each processor is placed at a node of an interconnection network.It is natural to drawn upon the rich literature that has been developed for the P-RAMmodel over the last decade or so (see [4], for example). If we associate (in one-to-onecorrespondence) a P-RAM processor with each network processor, then a P-RAM algorithmcan be implemented on the distributed memory machine in a time equivalent to the P-RAM complexity except that the constant time required for simultaneous (SIMD) memoryaccesses of the P-RAM processor is replaced by the time to solve an equivalent routing�This work was partially supported by SERC grant GR/H/76487 and the ESPRIT II Basic ResearchActions Programme of the EC under contract No.7141 (Project ALCOM II).1



problem on the network. The most useful paradigm for such routing problems is thepermutation routing problem in which each network processor sends and receives preciselyone message of constant length. There are well-known algorithms ([9, 14, 7]) to solvethe permutation routing problem in optimal �(d) time, where d is the diameter of thenetwork, for the most commonly employed networks: hypercubes, meshes, de Bruijn andshu�e-exchange graphs.The time complexities for implementations of the type just described can often beimproved. For problems in NC, the running times are usually within logarithmic factors ofthe lower bound 
(d) and this lower bound can often be attained. See for example [2, 5, 6].Particularly e�ective strategies in this regard include the techniques of compress-and-iterateand the use of graph embedding. A widely applicable technique, advocated by Valiant[13] amongst others to obtain optimality in a di�erent sense, is to use parallel slacknessto hide the network latency. The optimality sought here is that of not exceeding thetime-processor product (the work measure) of the P-RAM computation in the distributedmemory machine implementation. If, for a particular architecture, the P-RAM can beemulated in this way then the P-RAM is said to be universal for that architecture. Valiant[13] has shown that the P-RAM is universal for the hypercubic architectures, for example,but it is not universal for constant degree networks [11] such as the mesh, de Bruijn orshu�e-exchange graphs. The emulation fails because of the limited bandwidth of thenetworks. On hypercubic networks, although the emulation is optimal in terms of thework measure, the computation is slowed down by a factor of O(log n).Our concern in this paper is the improvement of running times for P-RAM algorithmswhen implemented on such interconnection networks. For the implementation of a largeclass of P-RAM computations (or subcomputations) on interconnection networks, the nat-ural lower bound 
(d) can often be attained by the use of certain strategies. If somealgorithmic structure is used frequently then an embedding strategy could be usefully au-tomated. Perhaps the most commonly occurring structure in this regard is the completebinary tree. It is precisely because such logarithmic depth structures are used (either ex-plicitly or implicitly) that polylogarithmic time complexities are attained for many P-RAMalgorithms. Thus many problems are placed in the complexity class NC, which is the classof e�ciently solvable problems in this model.In the P-RAM model, the complete binary tree is most usually employed as follows.Data for a problem (or subproblem) are placed at the leaves, and the required result isobtained by performing computations at the internal nodes in one or more sweeps upand down the tree, so that computations at the same depth are performed in parallel. Itshould be noted however that some algorithmsmay require simultaneous computation at anarbitrary number of nodes at di�erent depths of the tree. If we are to embed the completebinary tree into the host topology of some distributed memory machine, we therefore needto satisfy the following requirements to achieve an e�cient embedding:1. All tree nodes at the same depth should be mapped to disjoint host nodes if (as in theP-RAM computation) computations are to be performed in parallel at these nodes.In addition, P-RAM algorithms may require computation at nodes of the tree which2



are of di�erent depths. Thus for greatest utility, the embedding should map at mosta constant number of tree nodes to any node of the host graph.2. Tree edges at the same depth should correspond to edge-disjoint paths in the host graphif the commonest types of P-RAM algorithm using this technique are to be simulated.For greatest exibility, all tree paths should be mapped to disjoint paths in the hostgraph.3. The maximum distance (in terms of edges of the host graph) from the root to a leafof the tree in the embedding should be minimised, in order that the routing time isminimised.4. Consistent with satisfying the above points, the size of the host graph should be aminimum in the interests of processor economy.2 The embeddingsIn the subsections that follow, we describe embeddings of complete binary trees withn leaves in hypercubes, de Bruijn graphs, doubly-connected two-dimensional meshes andshu�e-exchange graphs, each with n nodes. These are all topologies that have been ad-vocated for interconnection networks and which we individually recall in the followingsubsections. By doubly-connected, we mean that each edge in the standard de�nition ofthe graph is replaced by two parallel edges. As we shall see, with the exception of theshu�e-exchange graph, the embeddings are such as to satisfy the following crucial proper-ties which guarantee that in every respect the e�ciency requirements stated in the previoussection are met.Embedding Properties:1. Each node of the host graph is assigned exactly one leaf of the tree.2. Each node of the host graph, except one, is also assigned exactly one internal nodeof the tree.3. Distinct tree edges are mapped onto edge-disjoint (possibly null) paths in the hostgraph.4. The maximum length of the images in the host graph of tree paths from a leaf to theroot is as short as possible.In the case of the shu�e-exchange graph, the embedding that we describe ensures thatEmbedding Properties 1{3 are satis�ed. However, we can only conjecture that Property 4is also satis�ed by our embedding. In the embedding, the maximum length of an image ofa leaf to root path is 2 log2 n+2, whereas our best lower bound in this case is (3=2) log2 n.Let DRCBT denote Double Rooted Complete Binary Tree. A DRCBT is a completebinary tree in which the path (of length 2) connecting the two children of the root is3
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100 110 111000 001 010 101011Figure 1.replaced by a path, P , of length 3. Each of the two internal nodes of P (both of degreetwo) is a root of the DRCBT. These roots will be denoted by r1 and r2. In the hypercube,de Bruijn and shu�e-exchange graphs, each with n nodes, we shall in fact embed theDRCBT with 2n nodes (n leaves and n internal nodes).The following subsections establish that Embedding Properties 1{3 hold for the embed-dings described. We delay consideration of Embedding Property 4 until the next section.As we shall see, it is also the case that the multiplicity of the topologies (that is, the max-imum number of parallel edges between any pair of nodes) is a minimum consistent withEmbedding Properties 1{2.2.1 Embedding in the de Bruijn graphThe undirected de Bruijn graph of degree m, m � 0, has n = 2m nodes which are namedby all the distinct binary strings of length m. Each node b1b2 � � � bm is connected to nodeb2b3 � � � bmb1 by a shu�e edge, and to node b2b3 � � � bm�b1 by a shu�e-exchange edge. Here�bk is the complement of bk. By implication, each node is also connected to bmb1b2 � � � bm�1and to �bmb1b2 � � � bm�1.For our purposes it is convenient to direct the edges of the de Bruijn graph from eachnode b1b2 � � � bm towards nodes b2b3 � � � bmb1 and b2b3 � � � bm�b1. Each node of the resultingdirected graph has both out-degree and in-degree 2. Figure 1(a) shows the directed deBruijn graph of degree 3.It is also convenient here to direct the edges of the DRCBT. All edges are directedaway from the roots (the edge between the roots will be bi-directed) as the example ofFigure 1(b) illustrates. We say that each directed edge is from a parent to a child.For i � 0, we inductively de�ne directed graphs G(i;m) as follows:1. G(0;m) consists of two isolated vertices each denoted by a binary string of length mconsisting (for positive m) of alternating 0's and 1's, one string ending with a 0 andthe other ending with a 1.2. G(i;m) is constructed from G(i � 1;m) as follows. From each vertex v = b1b2 � � � bmof G(i� 1;m) we add new directed edges (if they do not already exist) to (possibly4



new) vertices b2b3 : : : bm1 and b2b3 : : : bm0. The former is called the left-child of v andthe latter the right-child of v.Lemma 1 For i < m, G(i;m) is a directed DRCBT and for i = m, G(i;m) is a directedde Bruijn graph.Proof: First suppose that i < m and, to avoid trivial cases, that m > 2. Let [01]k and[10]k denote the binary strings of length k consisting of alternating 0's and 1's that endwith a 0 and a 1 respectively. Now, G(1;m) is easily seen to be the directed DRCBT withfour nodes. The roots are of the form [01]m and [10]m, and are connected by anti-paralleledges. The two additional nodes are c1 = [01]m�200, which is a right-child of one root,and c2 = [10]m�211, which is the left-child of the other. As long as i < m the inductiveconstruction of G(i;m) is such as to grow complete out-trees rooted at c1 and c2, each ofdepth i. To see this, it is su�cient to show that at each inductive step in which G(i;m) isconstructed from G(i � 1;m), the only new edges connect leaves of G(i � 1;m) to nodeswhose labels are distinct from all previously obtained nodes and are distinct amongstthemselves. Thus, the new nodes will be leaves of G(i;m). It is easy to see that the newnodes are of the form [10]m�1�i11� or [01]m�1�i00�, where � is a binary string of length(i � 1). These are distinct from all previous labels because, starting at the ith positionfrom the right, they contain either the substring 00 (if they are descendants of c1) or thesubstring 11 (if they are descendants of c2) and all previously existing nodes contain either10 or 01 at this position. Any two of the new nodes descended from the same ci will havedi�erent �'s because each such � is uniquely determined by the path sequence of left orright edges that must be traced from ci.Thus we have proved that, for i < m, G(i;m) is a directed DRCBT. By a trivial proof, ifi = m�1 then the DRCBT has 2m distinctly labelled nodes. Because this is the maximumnumber of distinct binary strings of length m, it follows that G(m;m) will have the sameset of nodes as G(m � 1;m). Also, every leaf of the G(m � 1;m) will have the form 00�or 11�, so that the rightmost substring of length (m� 1) is distinct amongst the labels ofthe leaves. This ensures that in the inductive construction of G(m;m) from G(m� 1;m)the new edges (all directed from leaves of G(m� 1;m)) will be directed to distinct nodes.In this way, every node of G(m;m) has in-degree and out-degree 2. In fact, it triviallyfollows from the construction of G(m;m) that every node v = b2 : : : bm is connected tob2b3 : : : bm0 and b2b3 : : : bm1 which are the children of v and edges are directed to v fromv1 = 0b1b2 : : : bm�1 and v2 = 1b1b2 : : : bm�1. Of this last pair of nodes, if b1 = 0 then v1 isa leaf of G(m� 1;m) and v2 is the parent of v in G(m� 1;m). If b1 = 1 then the roles ofv1 and v2 are reversed. Thus, the nodal connections of G(m;m) are precisely those of thedirected de Bruijn graph and this observation completes the proof. 2The following theorem follows trivially from the proof of the preceding lemma.Theorem 1 The directed DRCBT with n leaves can be embedded in the directed n-nodede Bruijn graph so as to satisfy Embedding Properties 1{3.5
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110Figure 2.Figure 1 provides an illustration of the theorem. Both (a) and (b) are G(3; 3). In (b)each node appears twice, once as a leaf of the directed DRCBT and once as an internalnode. Copies of nodes are identi�ed in (a) to show the directed de Bruijn graph.2.2 Embedding in the shu�e-exchange graphAn undirected shu�e-exchange graph of dimension m has n = 2m nodes which are all thebinary strings of length m. Each node b1b2 : : : bm�1bm is connected by an exchange edge tob1b2 : : : bm�1�bm and by a shu�e edge to b2b3 : : : bmb1. By implication, each node b1b2 : : : bmis also connected by a shu�e edge to bmb1b2 : : : bm�1.Figure 2 shows the shu�e-exchange graph of degree 3 in which each exchange edgeshas been replaced by a pair (dashed for emphasis) of anti-parallel edges and each shu�eedge has been replaced by a pair of parallel edges. This particular form is derived from apreviously known (see [8], for example) embedding of the de Bruijn graph in the shu�e-exchange graph. This embedding has both congestion and dilation of 2. The embeddingis obtained by removing each shu�e-exchange edge (b1b2 : : : bm; b2b3 : : : bm�b1) from the di-rected de Bruijn graph and replacing it with the directed path consisting of the shu�eedge (b1b2 : : : bm; b2b3 : : : bmb1) followed by the exchange edge (b2b3 : : : bmb1; b2b3 : : : bm�b1) ofthe shu�e-exchange graph. Because the graph now uses just the nodal connections of theshu�e-exchange graph, it is precisely such a graph but with parallel and anti-parallel edges.In this way, for example, it is easy to see that Figure 2 can be derived from Figure 1(a).The following theorem follows immediately from this embedding of the de Bruijn graphand from Theorem 1.Theorem 2 The DRCBT with n leaves can be embedded in the doubly-connected shu�e-exchange graph with n nodes so as to satisfy Embedding Properties 1{3.2.3 Embedding in the two-dimensional meshThe two-dimensional doubly-connected mesh is the target graph for the embedding of thissubsection. Adjacent nodes are connected by a pair of anti-parallel edges. The guest graphof the embedding is the complete binary in-tree, that is, a complete binary tree in whichthe edges are directed towards the root. We prove the following theorem [3].Theorem 3 For all m � 1, there are embeddings of the complete binary trees with 22mand 22m+1 leaves into a doubly-connected 2m� 2m mesh and a doubly-connected 2m� 2m+16



AFigure 3.mesh respectively, which satisfy Embedding Properties 1{3.Proof: First consider the embedding in a square for the tree with 22m leaves. The casem = 1 is easy. For m = 2, Figure 3 shows one possible embedding in the 4 � 4 mesh.In this �gure, the internal tree nodes and the the paths corresponding to the tree edges,are drawn with increasing size and boldness from leaves to root respectively. The edgesare directed towards the root. The leaf nodes are not shown explicitly since there is oneat each mesh node. Note that some tree edges, incident with the leaves, are mapped tonull paths indicated by loops in the �gure. The root is embedded on the left side, but theheavy path shown from this to the top-left corner is used later in larger embeddings. Thenode distinguished with a dotted square in the �gure is that unique node which has notyet been assigned an internal tree node. The small diagram underneath gives the salientfeatures of this embedding, A2, for use in the recursive construction. The arrows on theperimeter indicate the usage so far of the outside edges, and show that all the clockwiseoutside edges on three of the sides are as yet unused. The construction requires also analternative 4 � 4 embedding, B2, shown in Figure 4. The root here is embedded in theinterior of the square but there is an outgoing path from it to the lower-right corner. Thistime, all the clockwise edges on the top, left and bottom sides are free.The next stage in our construction, the embeddings for m � 3, is shown in Figure 5.Three Am�1's and one Bm�1 are combined to give embeddings of the 22m-leaf tree in a2m � 2m mesh. The three new internal tree nodes required are shown by white and blackcircles, and are connected by paths of appropriate weight. For the recursion, the embeddingis continued in two di�erent ways. The black root node can be connected to the top-left7



BFigure 4.corner by one of the shaded paths shown, or joined to the lower-right corner by anothershaded path. The �rst alternative yields an embedding Am which has edge characteristicsof type A given by the small diagram in Figure 3, while the second similarly yields Bm.The arrangement shown in Figure 5 therefore represents a recursive step by which theconstruction can be continued inde�nitely. The third shaded path illustrated to the lower-left corner, will be used in the 22m+1-leaf embedding. For the case 2m � 2m+1, if m � 3 wecan connect seven copies of Am�1 with one copy of Cm�1 as shown in Figure 6. The caseswhere m < 3 are simple. 22.4 Embedding in the hypercubeA hypercube has n nodes (where n = 2m, for some positive integer m) labeled from 0 ton�1 in binary and such that there is an edge between two nodes if and only if their binarylabels di�er in exactly one bit. For completeness, we briey present the following resultwhich was �rst described in [10].Theorem 4 The double-rooted complete binary tree with n � 32 leaves can be embeddedwith unit dilation in the hypercube with n nodes, so as to satisfy Embedding Properties 1{3.Proof: We construct the embedding recursively starting with the base case of n = 32, asshown in Figure 7. In the �gure nodes occur at the corners of the squares de�ned by thedashed lines, and the labels of nodes in the top left-hand quarter of the �gure are shown.The �rst two binary bits of the labels of nodes in the other quarters are shown at the center8
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T* Figure 8.of their quarter of the �gure. The last three binary bits of such an address will be thesame as the corresponding node in the top left-hand quarter. Generally speaking, �gureswill only show those edges of the hypercube that are of interest. Dashed edges correspondto certain hypercube edges but are used merely as an aid in locating nodes in the layout.For clarity, two �gures (7(a) and (b)) are used to describe this case. Figure 7(a) shows theembedding of those tree edges which have leaves as end-points. For clarity, some embeddedtree edges point towards that endpoint which is a leaf of the tree. Some tree edges aremapped to null paths which are indicated by loops. Figure 7(b) shows the embedding of allother tree edges. Notice that shaded edges are used for the path of length 3 on which fullcircles denote the roots of the embedded DRCBT. Also, notice that the three edges on thispath belong to three di�erent dimensions of the hypercube. In Figure 7(b), the internalnodes are drawn with increasing size and the tree edges are drawn with increasing boldnessthe nearer they are to the root. It is easy to see that this base case satis�es Properties 1{3in all respects.Figure 8 illustrates the inductive step in the construction of the embedding of theDRCBT with n leaves in the hypercube with n nodes from two embeddings of n=2-leaf10



(b)(a) Figure 9.DRCBT's in hypercubes with n=2 nodes. These two embeddings are denoted by T and T �in Figure 8(a). The shaded vertical edges in that �gure are edges of the new dimensionof the constructed hypercube. The shaded horizontal paths ((c1,r1,r2,c2) and (c�1, r�1, r�2,c�2)) are the paths of length 3 containing the roots of the embedded DRCBT's with n=2leaves. The triangular shapes attached to children of these possible roots represent theembedded subtrees rooted at these children. The two smaller hypercubes are oriented sothat r2 and r�1 correspond, the dimensions of the edges (r1,r2) and (c�1,r�1) correspond, andthe dimensions of the edges (r2,c2) and (r�1,r�2) correspond. This is always possible giventhe edge-transitivity of the hypercube and given that each of the horizontal shaded pathsof length 3 has each edge of di�erent dimension. Figure 8(b) shows the embedding of theDRCBT with n leaves and unit dilation in the constructed hypercube with n nodes. Thelabeling of nodes in this �gure makes clear its derivation from Figure 8(a), and shows thatthe new central path of length 3 uses three di�erent dimensions. 2For complete binary trees we have a similar theorem.Theorem 5 The complete binary tree with n � 16 leaves can be embedded with dilationtwo in the hypercube with n nodes, so as to satisfy Embedding Properties 1{3.Proof: For n = 16, an embedding satisfying Properties 1{3 is shown in Figure 9. Theconventions used to represent the hypercube are similar to those of Figure 7. Again, forconvenience of illustration the embedding of tree edges attached to leaves are shown in onediagram (Figure 9(a)) and the embeddings of all other edges in another (Figure 9(b)).For n � 32, the embedding is derived directly from the embedding of the DRCBT givenby Theorem 4. 23 Depths of the embedded treesIn this section we examine the quality of our embeddings from the point of view of Em-bedding Property 4. The maximum distance from the root to a leaf in the image of thecomplete binary tree for any host graph is an important algorithmic parameter. It is ameasure of the routing time required for a single sweep of the balanced binary tree. Wedenote this distance by P (n) for the complete binary tree with n nodes. If the embedding11



satis�es Embedding Properties 1{3 of Section 2, the O(log n) routing time of the P-RAMalgorithm for such a sweep translates to O(P (n)) for the interconnection network.We �rst determineP (n) for the embeddings in each of the four interconnection networksconsidered in this paper. Then we establish lower bounds for the maximum root-to-leafdistances for these embeddings, showing that, in all cases except for that of the shu�e-exchange graph, our values of P (n) are asymptotically as short as possible. We conjecturethat this is also true for the shu�e-exchange graph, although there is a gap between theP (n) of our embedding and the lower bound obtained.3.1 Maximum root-to-leaf distances of the embeddingsFor the n-node hypercube (for n � 32) and for de Bruijn graphs, P (n) is log2 n + 1. Thisis because each edge of the n-leaf DRCBT is mapped into at most one edge of the n-nodehost and there are root-to-leaf paths for which every such edge is mapped to precisely oneedge of the host. Thus, for the embedded DRCBT the maximum length of root-to-leafpaths is log2 n in these cases. This translates to log2 n + 1 for the complete binary treewhen its root is identi�ed with a particular one of the two roots of the DRCBT.In our embedding of the n-leaf DRCBT in the doubly-connected n-node shu�e-exchangegraph one of the pair of edges from each parent to its children is mapped into two edgesof the host and so for this case P (n) = 2(log2 n + 1) = 2 log2 n+ 2.We now consider the embedding of the 22m-leaf complete binary tree into a doubly-connected 2m � 2m mesh. Let D(m) be P (n) when expressed as a function of m. It isa trivial matter to construct an embedding for m = 1 with D(m) = 2. For m = 2, wesee by inspection of the embedding B2 of Figure 4 that this maximum distance is 6 meshsteps and so D(2) = 6. For square meshes with n = 22m nodes, m � 2, let A(m), B(m)and C(m) be the maximum distances from a leaf to the output from the top left corner ofpattern Am, the lower-right corner of pattern Bm and the lower-left corner of pattern Cm,respectively. From Figures 3 and 4, we see that A(2) = 10 and B(2) = 8. A correspondinglayout C2 with C(2) = 9 is easy to derive from B2. We can verify from Figure 5 thefollowing recurrence equations for m � 3:A(m) = D(m) + 2m;B(m) = D(m) + 2m � 2;C(m) = D(m) + 2m � 1;D(m) = maxfA(m� 1) + 2; B(m� 1) + 2g= D(m� 1) + 2m�1 + 2 :The solution to these equations is:D(m) = 2m + 2m� 2 for m � 1;that is, P (n) = pn+ 2 log2 n� 2 = pn+O(log n) :12



Finally, for the embedding of a 22m+1-leaf tree into a doubly-connected 2m � 2m+1 mesh,let D0(m) be the corresponding maximal leaf-to-root distance. We may verify in Figure 6that: D0(m) = maxfA(m� 1) + 4; C(m� 1) + 3g+ 2m�1and so, in this case, P (n) = 32rn2 +O(log n) :3.2 Lower bounds for the embedded tree depthsHere we obtain lower bounds for the depth of the complete binary tree for the di�erentembedding problems and show that, in the cases of the mesh, hypercube and de Bruijngraphs, these bounds asymptotically match the values of P (n) that were obtained in theprevious subsection.For a given graph, let its radius � be the minimum distance r such that, for somecentral node c, every node is at a distance at most r from c. Clearly, for any embedding ofa complete binary tree in a communication network in which Embedding Properties 1{3are met, a lower bound for P (n) is provided by �.Lemma 2 The following relationships hold for graphs with n = 2m nodes:(i) for the hypercube: � = m,(ii) for the de Bruijn graph: m� 1 � � � m, and(iii) for the shu�e-exchange graph: � � 32m.Proof: The result is trivial for the hypercube. For the directed de Bruijn graph � = m,but we can take advantage of the extra possibilities of the undirected graph. It is easyto show that the node 0m�11 has distance at most m � 1 from every node. We haveveri�ed that � = m � 1, for 2 � m � 9, and we expect that � 2 fm � 2;m � 1g for allm � 2. The radius of the shu�e-exchange graph is more elusive. The nodes [01]m and[10]m demonstrate that � � 3m=2 + 1, but experimental results show that these nodes arenot centres for 3 � m � 9.The lower bounds for the de Bruijn and shu�e-exchange graphs follow from simplecounting arguments. We have only to estimate the numbers of nodes br reachable within adistance r of an arbitrary node. Our bounds follow from the requirement that b� = 2m. 2For the hypercube we obtain a marginally stronger lower bound for P (n) in the followinglemma.Lemma 3 For any leaf-disjoint embedding of a complete binary tree with n = 2m leavesinto the n-node hypercube, P (n) � m+ 1. 13



Proof: If there were an embedding satisfying Embedding Properties 1{3 with P (n) = m,this would imply that a unit dilation embedding of the complete binary tree (perhaps withsome parent-to-leaf edges mapped to null paths) was possible in the hypercube. Theinduced embedding of the subtree consisting of all internal tree nodes would be vertex-disjoint, with every edge being mapped to a hypercube edge, i.e., the subtree would be asubgraph of the hypercube. Both the subtree and the hypercube are bipartite graphs, andthe embedding would respect the bipartition of the nodes. In the case of the hypercubeboth halves of the bipartition contain the same number of nodes, whereas for the subtreethe two parts contain b2m=3c and b2m+1=3c nodes. This contradiction proves the lemma.2Lemma 4 For an arbitrary leaf-disjoint embedding of a complete binary tree with n leavesinto the integer mesh graph Z � Z,P (n) � rn2 �O(1) :For such an embedding into an r � s rectangle, where n = rs,P (n) � � = �r � 12 �+ �s� 12 � = (r + s)=2 �O(1) :Proof: The number br of vertices of Z � Z within distance r of the origin is given by:br = 1 +Pri=1 4i = 2r(r + 1) + 1. For any injective mapping of n leaves into the mesh, ifn > br then some vertex has to be mapped to a mesh node at distance greater than r fromthe root. 2We summarise the above lemmas and our embedding results in the following theorem.Theorem 6 For any of the families of host interconnection graphs considered, let p(n) bethe minimal value of P (n) achieved by any embedding of the n-leaf complete binary treesatisfying the Embedding Properties 1{3.(i) For the hypercube: p(n) = log2 n+ 1 for n � 16 .(ii) For the undirected de Bruijn graph: p(n) � log2 n .(iii) For the shu�e-exchange graph: 32 log2 n � o(log n) � p(n) � 2 log2 n +O(1) .(iv) For the two-dimensional mesh: p(n) � pn if log2 n is even; p(n) � 32pn if log2 n isodd.This theorem shows that our embeddings are asymptotically optimal with respect toEmbedding Property 4 for the hypercube, de Bruijn, and two-dimensional mesh intercon-nection networks. We conjecture that our embedding for the shu�e-exchange graph is alsoasymptotically optimal, although in this case the value of P (n) exceeds our lower boundby a factor of 43 . 14



4 Further remarks and algorithmic issuesHere we briey justify the use of parallel or anti-parallel edges in some of our embeddings.We then comment on the complexity gains a�orded by our embeddings when used forP-RAM implementation on the associated interconnection networks.A natural question to consider is whether the pairs of anti-parallel edges are necessaryfor the mesh. Can the complete (undirected) tree be densely embedded in the usualundirected mesh? Each mesh node (except two) is host to one leaf vertex with degree oneand one internal vertex with degree three, and so has a total of at least four embeddededges incident with it. Note that some of the edges adjacent to leaves can be mapped intopaths of length zero, the loops in our �gures, and so some mesh nodes may require onlytwo of their incident mesh edges. Thus there is no immediate contradiction from degreeconsiderations. However, we now consider local details and easily �nd a contradiction.Consider boundary mesh nodes, away from the one special node that does not host aninternal tree vertex. Any such node has degree less than four and so must have a loopin the embedding. It therefore is host to a leaf vertex and the internal node adjacent tothat leaf, and requires one incoming path from another leaf, and one outgoing path to theparent vertex. Since the neighbouring boundary nodes are in the same predicament, thereis an impossible situation at the boundary, even worse if it is at a corner.It is also easy to see that we need parallel (or anti-parallel) edges for the shu�e-exchange graph when embedding the complete binary tree if the embedding is consistentwith Embedding Properties 1{2. This is because the shu�e-exchange graph has degree 3but any internal node of the tree which is not adjacent to a leaf has to be mapped to thesame node of the shu�e-exchange graph as a leaf. This requires that at least four tree edgeshave this shu�e-exchange node as an end-point which is not possible without parallel (oranti-parallel) edges being added to the shu�e exchange graph to ensure edge-disjointnessof the embedding. Notice that it also follows that the dilation of the embedding must begreater than 1.For the hypercube, de Bruijn and shu�e-exchange graphs our embeddings show thatthe complete binary tree can be embedded with disjoint edges in hosts that are generallyhalf the size compared with previously described embeddings, without detriment to thetime complexities of P-RAM algorithms that use complete binary trees. The embeddingof a complete binary tree in the hypercube described in [1] meets all our e�ciency require-ments except that the host graph is twice as large as it need be: the n-leaf complete binarytree is embedded in the hypercube with 2n nodes. In [7] (pages 407-410), an embedding isdescribed in which the n-leaf tree is embedded in the n-node hypercube. However, in thisembedding, up to log2 n tree nodes of di�erent depths are mapped to a single node of thehypercube. Although the embedding is such as to facilitate the e�cient implementationof most P-RAM algorithms, there may be di�culties in the exceptional cases when simul-taneous computation is required to take place at an arbitrary number of di�erent levelswithin the tree. Such an example is cited later in this section.For the two-dimensional mesh, our embeddings may not only reduce the size of the hostgraph but will also improve running times of the implementations. For example, in the15



well-known H-tree construction (see for example, page 84 of [12]) the complete binary treewith n leaves is embedded in the (2pn�1)�(2pn�1) mesh and the maximumroot-to-leafdistance in the mesh image is 2pn � 2. Of course, this embedding was not designed tosatisfy our criteria and would in any case be very costly in terms of unused processor sites.In the embedding of [6], although the complete binary tree with n leaves is embedded inthe square mesh with n nodes, the maximum root to leaf distance is 3:54pn. Moreover,only tree edges at the same depth are guaranteed to be mapped to disjoint paths.Compared with other previous embeddings and for some P-RAM algorithms, the edge-disjointness property of our embeddings in the mesh yields further complexity gains. Occa-sionally it is useful for all nodes in the tree, not just those at the same level, to pass messagessimultaneously to their children in such a way that this continues until all messages (in-cluding that from the root) reach the leaves of the tree. An example of such a cascadingrequirement is provided within the implementation of a bracket matching algorithm on amesh detailed in [6]. This can be simulated in the embedding of [6] by allowing the mes-sages from the internal tree nodes adjacent to leaves to be passed directly to the leaves,then subsequently messages from the nodes at the next level are sent to the leaves and soon, until �nally the message from the root is allowed to be copied down to all descendants.In this way, only tree edges at the same level are being used at the same time and the lackof disjointness of all paths from the root to the leaves is no hindrance. In the embedding of[6], the routing time for such a process would be 3:54(1+1=2+1=4+1=8+ � � �) � 7:08pn.The successive terms arise from routing from successive tree levels. For the embeddingof this paper, the path-disjointness property allows messages to be passed down the treesimultaneously from all levels, and so the routing time for the cascading requirement is justthat for passing a message from the root to the leaves (this masks the time for messagepassing from all other internal nodes) which is pn.5 Summary and open problemsWe have described dense edge-disjoint embeddings of the complete binary tree with n leavesin the following n-node intercommunication networks: the hypercube, the de Bruijn andshu�e-exchange graphs and the two-dimensional mesh. The embeddings have the followingproperties: paths of the tree are mapped onto edge-disjoint paths of the host graphs, andat most two tree nodes (just one of which is a leaf) are mapped onto each host node.We also proved (except for the shu�e-exchange graph) that an algorithmically importantparameter, the maximum distance from a leaf to the root of the tree, is asymptotically asshort as possible. We conjecture that for the shu�e-exchange graph this distance is alsooptimally short within our embedding. The embeddings facilitate e�cient implementationof many P-RAM algorithms on these networks and improve extant results. For the meshand shu�e-exchange graphs these embeddings required replacing each edge by a pair ofparallel (or anti-parallel) edges.A number of problems remain open. Because of the logarithmic lower order term inP (n) for the embedding of a complete binary tree in the mesh there is a small gap between16
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