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Two TopologiesAre Better Than OneSimon O'NeillApril 1995AbstractPartially ordered sets and metric spaces are used in studying semantics in Com-puter Science. Sets with both these structures are hence of particular interest. Thepartial metric spaces introduced by Matthews are an attempt to bring these ideastogether in a single axiomatic framework.We consider an appropriate context in which to consider these spaces is as a bitopo-logical space, i.e. a space with two (related) topologies. From this starting point, wecover the groundwork for a theory of partial metric spaces by generalising ideas fromtopology and metric spaces.For intuition we repeatedly refer to the real line with the usual ordering and metricas a natural example. We also examine in detail some other examples of more relevanceto Computer Science.1 IntroductionIn [5] Matthews introduces partial metric spaces and provides clues for developing a generaltheory. The main contribution of this report is to make precise how we generalise metricand topological properties to partial metric spaces. We do this by providing a generalframework in which to work, and see how far this process can take us.We make no claim that this work is near completion. For example, important topicssuch as function spaces have barely been touched upon. For this reason we avoid anydiscussion of the applicability of the theory, although [4] does contain some examples, andideas for the future.OriginalityThe originality of this report is fairly hard to judge, since it is linked so closely with theearlier paper [5]. Some results are taken directly from this paper, others are in the paper,but we approach them from a new perspective, and yet others are completely new in their1



present format. However, many of the later are mainly generalisations from metric spaces,with similar proofs to match. We make these somewhat vague comments more precise bycontrasting this report with the earlier paper, although familiarity with [5] is not necessaryto read this report.We make one fundamental change to the partial metric axioms, by allowing the partialmetric function to take negative values. This means that we have to recheck even the mostfundamental results, and accounts for most of the duplication from [5].A second di�erence is in the de�nition of the open balls. It is arguable, of course, butwe feel that the version we adopt here is a more natural generalisation of the metric openballs, since we can choose " to be arbitrarily small, without the open ball being empty.Apart from these two changes, the essential di�erence between the two presentations isin the approach taken. One example will su�ce to explain this. In [5] the Cauchy sequencesare de�ned directly in terms of the partial metric. However, we �t the de�nition into amore general framework, thereby explaining where the de�nition comes from.At the heart of our new approach is the role we give the metric induced on our spacesby the partial metric. Rather than considering this as an interesting side e�ect, we makeit central to the theory. This gives us the second topology on our space, and leads to thebitopological approach we adopt to generalisations.Required BackgroundVery little Computer Science background is needed for this report, if it can be accepted thatpartial orders and metric spaces are of relevance to the subject. If not, [6] is recommendedfor details.This report is entirely mathematical, and relies on �rm foundations in metric spaces(see [8] for example), and to a lesser degree, topological spaces (see [3]). Although partialorders are central to the report, beyond the basic de�nitions very little background in thisarea is needed. For this reason we give the relevant information in the appendices (formore details see [1]).2 Partial Metric SpacesThis section covers much the same ground as [5], with the notable exception of Cauchysequences, which are considered later. We begin with the axioms, which di�er in oneregard from those given by Matthews, and will give a number of contrasting examples.The partial metrics on S1 and S? were given in [5], but the others are new. Throughoutthe section we refer back to a natural partial metric on < for intuition.The existence of our �rst topology is essentially the same as in [5], but we includethe proof since our axioms have changed. We then begin to di�er in our approach to thesubject, in that we regard the order and convergence as derived from the topology, andprove the partial metric de�nitions of Matthews.We consider the heart of the subject to be the second topology on our spaces. Theexistence of this is certainly proved in [5]. However we raise it to a greater degree of2



prominence for reasons that we explain in the text. We conclude the section with ageneral discussion of how this bitopological approach should be used in developing thetheory.2.1 Axioms and Basic ResultsThe axiomatic de�nition of a partial metric space uses axioms generalised from metricspaces. Our spaces have a natural T0{topology on them, and every T0{space has aninduced partial order and notion of convergence. In our spaces both these properties canbe expressed naturally in terms of the partial metric.Our main motivating example will be <, which we will give a partial metric respectingthe natural ordering and metric properties. We will also consider other examples, two ofwhich are of particular importance in Computer Science.Partial Metric AxiomsIn [5] Matthews introduces the partial metric axioms as a generalisation of the metricaxioms. The essential di�erence being that the distance of a point from itself is notnecessarily zero (but always positive). We take this generalisation one step further, andallow the distance function to be negative. We could justify this by saying that veryfew changes were needed to the proofs in [5] as a result. We will however, give a moreconvincing argument in section 3.4.De�nition 2.1 A partial metric space is a non{empty set S, and a function (thepmetric) p : S � S ! <, such that for any x; y; z 2 S:P1. p(x; y) � p(x; x).P2. x = y if, and only if, p(x; x) = p(x; y) = p(y; y).P3. p(x; y) = p(y; x).P4. p(x; z) � p(x; y) + p(y; z)� p(y; y).We consider the following to be a standard example of a partial metric space. We willconsider a number of other examples later.Example 2.2 The real line < is a set with which we are familiar, and has a natural metricand order associated with it. This space is thus a prime candidate for our �rst example ofa partial metric space. Suppose we de�ne p : <�< ! < byp(x; y) = �minfx; yg;then the proof that (<; p) is a partial metric space is straight{forward. We call p the usualpmetric on <. Notice that p0(x; y) = maxfx; yg is also a pmetric on <. We will later seewhy we call p, and not p0, the usual pmetric on <.3



Partial Metric TopologyOur �rst task is to show that partial metric spaces are T0{topological spaces. As withmetric spaces, we begin with the open balls. For any x 2 S, " 2 < (" > 0), we de�ne:B"(x) = fy 2 S j p(x; y) < p(x; x) + "g:If there is any possible confusion with the notation, we emphasis that this is a p{openball, by writing B"(x; p).Lemma 2.3 If (S; p) is a partial metric space, then the open balls are a basis for a T0{topology on S, called the pmetric topology, and denoted by T [p].Proof. Suppose B"x(x) and B"y (y) are open balls in (S; p), and thatz 2 B"x (x) \B"y (y):We de�ne � = minfp(x; x) + "x � p(x; z); p(y; y)+ "y � p(y; z)g > 0;and show that B�(z) � B"x(x) \B"y (y). Suppose z0 2 B�(z), thenp(x; z0) � p(x; z) + p(z; z0)� p(z; z)< p(x; z) + �� p(x; x) + "x;and z0 2 B"x (x). Similarly we prove that z0 2 B"y (y). Since S = Sx2S B1(x), then theopen balls are indeed a basis for a topology on S.To see that the topology is T0, we suppose that x; y 2 S are distinct points, and thatp(x; x) < p(x; y) (wlog). If we let" = p(x; y)� p(x; x) > 0;then x 2 B"(x), but y 62 B"(x). 2Example 2.4 In < with the usual pmetric, the open balls are of the formB"(x) = fy 2 < j �minfx; yg < �x + "g = (x� ";1) � <:4



Partial OrderOnce we have a T0{topology, we immediately have a natural partial order1 (v) on S,which we call the induced order. Unless we specify otherwise, whenever we consider apartial order on S it will be the induced order.The value of partial metric spaces lies in the fact that the structure of the space can beexpressed naturally in terms of the pmetric, thus allowing an analytic approach to manyproblems. The following lemma gives our �rst instance of this.Lemma 2.5 Suppose (S; p) is a partial metric space thenx v y if, and only if, p(x; x) = p(x; y):Proof. Suppose �rst that x v y. Then, for all " > 0, y 2 B"(x) and we have,p(x; x) � p(x; y) < p(x; x) + ":Since this is true for all " > 0, then p(x; y) = p(x; x).Conversely, suppose that p(x; x) = p(x; y), and x 2 U with U 2 T [p]. Then there exists" > 0 such that B"(x) � U . However,p(x; y) = p(x; x) < p(x; x) + ";implies that y 2 B"(x), and so y 2 U . Since this holds for any U 2 T [p], we see thatx v y. 2One topic of interest, is when we can put a pmetric on a partially ordered set thatcaptures the order. We introduce some terminology now, and will return to this subjectlater.De�nition 2.6 If (S;�) is a partially ordered set, then a pmetric p on S is satisfactoryif p induces the ordering � on S.Example 2.7 The usual pmetric on (<;�) is satisfactory sincex v y () �x = �minfx; yg () x � y:The pmetric p0(x; y) = maxfx; yg is not satisfactory, and in fact induces the dual ordering.1The specialisation order, see the appendices for details.5



Examples of Partial Metric SpacesLet us consider some other examples of partial metric spaces. We omit the proofs sincethey are straightforward.Example 2.8 Let P! denote the power set of the natural numbers, with the subset or-dering. This set plays an important role in Computer Science, since Scott showed that itcan be considered as a semantic model of the �{calculus (see [7] for example).If we de�ne p : P! � P! ! < by,p(x; y) = 1� Xn2x\y 2�n; for any x; y 2 P!;then p is a satisfactory pmetric on P!.Example 2.9 A second example of interest to Computer Science, is the set S1 of �niteand in�nite sequences over some set S, with the pre�x ordering, as discussed in [4, 6].If we denote the length of a sequence x 2 S1 by l(x), then the function p : S1�S1 !< de�ned by,p(x; y) = 2� supfi2Nji�minfl(x);l(y)g;8j<i;xj=yjg; for any x; y 2 S1;is a satisfactory pmetric on S1, called the Baire pmetric. Intuitively, the value of thesupremum is the �rst instance where the sequences di�er, taking care if one sequence isshorter than the other.Example 2.10 In common with other theories, it is always useful to have some exampleswhich satisfy the axioms, if not the motivating intuition. These become a source of possiblecounter{examples when developing the theory.For us, metric spaces can play this role since they must have a at induced order. Wemention speci�cally the function pf : <�< ! < de�ned bypf (x; y) = 12 jx� yj, for all x; y 2 <;which we call the at pmetric on <.Example 2.11 As a �nal example we consider the at domain (S?;�) over a set S, whereS? = S [ f?g and x � y if, and only if, x =? or x = y 2 S. If we de�ne p : S � S ! <to be the discrete metric, and extend this to S? by de�ning p(x;?) = p(?; x) = 1, for allx 2 S?, then we have a satisfactory pmetric on S?.ConvergenceAs with all topological spaces, we have a notion of convergence in partial metric spaces.In common with metric spaces, this can be expressed naturally in terms of the pmetric.6



Lemma 2.12 Suppose (xn) is a sequence in a partial metric space (S; p) and a 2 S, thenxn ! a if, and only if, limn!1 p(xn; a) = p(a; a):Proof. It is clear that limn!1 p(xn; a) = p(a; a) if, and only if, for any " > 0, there existsN � 1 such that xn 2 B"(a), for any n � N . Since the open balls are a basis for T [p], theresult follows. 2Suppose (xn) is a sequence in a partial metric space (S; p), and we de�ne L(xn) to bethe set of limit points of (xn). It is almost immediate that if a 2 L(xn) and a0 v a, thena0 2 L(xn), since any open set containing a0 must contain a, and hence eventually contain(xn). We will be looking at L(xn) again in section 3.1.Example 2.13 In < with the usual pmetric, the sequence (1=n) has L(1=n) = (�1; 0].2.2 A Second TopologyBefore giving the second topology on a partial metric space (S; p), we motivate the need forit. We have already seen how the induced convergence and partial order can be expressednaturally in terms of the pmetric. It would seem that the next logical step is to considerother possible topological properties of T [p] in terms of the pmetric.Let us see where this takes us. In metric spaces, dense sets are used to approximatepoints in the space, and in generalising to partial metric spaces, we would like to preservethis meaning. Suppose b 2 <, and we have the usual pmetric on (�1; b] � <, then the setfbg is dense in T [p]. But how can b \approximate" every point in (�1; b] in any intuitivesense of the word?The problem is that in considering the pmetric topology, we are really only investigatingthe order properties on S. There is however, a metric structure on the space as well, notcaptured by T [p]. So, we are not looking at our spaces in the correct context, and it is notsurprising that we are only getting part of the picture. We see how we can view partialmetric spaces as bitopological2 spaces, and consider the implications of this in developinga theory of partial metric spaces.Induced Metric TopologyIf we look again at the de�nition of the open balls, we see that in a partial metric space(S; p), the actual values of p(x; y) and p(x; x) (for some x; y 2 S) are of less signi�cancethan the di�erence p(x; y)�p(x; x)� 0. This simple observation will lead us to our secondtopology on S.2A bitopological space is just a set with two topologies, see [2] for example.7



Lemma 2.14 Suppose (S; p) is a partial metric space, and we de�ne a function d : S �S ! [0;1) by d(x; y) = 2p(x; y)� p(x; x)� p(y; y), for any x; y 2 S.Then (S; d) is a metric space, and if T [d] is the metric topology on S, we have T [p] � T [d].Proof. We can immediately prove from the de�nitions that d is a metric,d(x; y) = 0 () p(x; x) = p(x; y) = p(y; y) () x = y;and d(x; y) = 2p(x; y)� p(x; x)� p(y; y)� 2p(x; z) + 2p(z; y)� 2p(z; z)� p(y; y)� p(x; x)= d(x; z) + d(z; y):To see that T [p] � T [d], we note that,p(x; y)� p(x; x) � d(x; y); for any x; y 2 S;which implies that, for any " > 0, B"(x; d) � B"(x; p). 2We call d the induced metric on (S; p). Unless we specify otherwise, whenever weconsider a metric on S, it will be the induced metric. Now we have a metric on our spaces,we similarly extend de�nition 2.6. We will then see some examples of induced metrics,and in particular how di�erent partial metric spaces can have the same induced metricspace.De�nition 2.15 If (S;�; d) is a partially ordered metric space, then a pmetric p on S issatisfactory if p induces the ordering � and the metric d on S.Example 2.16 If we apply this discussion to < with the usual pmetric p, we �nd thatd(x; y) = 2p(x; y)� p(x; x)� p(y; y)= x+ y � 2minfx; yg= jx� yj:So the usual pmetric is satisfactory on < with the usual order and metric. The pmetricp0(x; y) = maxfx; yg on < induces the dual ordering and usual metric, and the at pmetricpf(x; y) = 12 jx� yj induces the at order and usual metric.Example 2.17 As another example we consider the space P! with the pmetric de�nedin (2.8). This induces the metric,d(x; y) = Xn2x4y 2�n; for any x; y 2 S;where x4 y = (x n y) [ (y n x). 8



Towards A General TheoryWe are now in a position to regard a partial metric space (S; p) not as a set S with adistance function p, but as a bitopological space (S; T [p]; T [d]). It is then a simple stepto say that we regard a topological property as holding on (S; p) if it holds for both thetopologies, and that a metric property holds on (S; p) if it holds on (S; d).The fact that T [p] � T [d], merely simpli�es the issue in most cases. Indeed we �ndthat the work we have to do in developing a theory of partial metric spaces is signi�cantlyreduced, since many results come directly from the induced metric space.The di�culty though, is in accepting that bitopology is the correct context in which toview partial metric spaces. This is not something that we can prove in anyway. However,throughout the next section we use the bitopological approach to generalise many ideas topartial metric spaces. In each case we give examples as to why we consider the resultingde�nitions to be intuitively correct.More generally, what we are seeking is a theory of partial metric spaces with as much ofthe avour of metric spaces as possible, while respecting the additional structure, namelythe partial order. The fact that we are interested in spaces with two structures, is perhapsthe most convincing case for a two topology approach.3 Bitopological PropertiesPerhaps the only way to see if the bitopological approach is the correct one, is to see howfar it will take us, if it agrees with our intuition, and if it proves useful in applications.In this section we pursue the �rst, and �nd (unsurprisingly) many interesting connectionswith metric spaces. By considering examples we hopefully show how the intuition agreeswith the theory we are developing. As for applications, these will come only once thetheory is su�ciently well developed.We take four of the most fundamental ideas from topology and metric spaces; separa-bility, continuity, completeness and compactness, and generalise to partial metric spaces.Of these only completeness has been considered before by Matthews, in [5]. An imme-diate bene�t of our general approach is that we can cover a lot of ground fairly quickly.Although we continue to use the natural pmetric on < as a motivating example, in thissection we also consider the spaces P! and S1 in some detail.3.1 SeparabilitySeparable spaces in topology have countably dense subsets, and since we used these asmotivation for the bitopological approach in the last section, it seems appropriate to lookat these �rst. We begin by reconsidering convergence, and then move on to dense sets,before starting our investigation into the properties of P! and S1.9



Proper ConvergenceWe call convergence in the bitoplogical sense proper convergence to distinguish it from ourexisting de�nition. It turns out to be useful to have both notions of convergence availableto us. We give the de�nition (which uses the fact that T [p] � T [d]), and then see how wecan express proper convergence naturally in terms of the pmetric.De�nition 3.1 If (xn) is a sequence in a partial metric space (S; p), then c 2 S is aproper limit of (xn), written xn ! c (properly), if xn ! c in (S; d). If a sequence has aproper limit then we say that the sequence is properly convergent.Lemma 3.2 Suppose (xn) is a sequence in a partial metric space (S; p) and c 2 S, thenxn ! c (properly) if, and only if, limn!1 p(xn; c) = limn !1 p(xn; xn) = p(c; c):Proof. xn ! c (properly) () limn!1 d(xn; c) = 0() limn!1 p(xn; c) = limn !1 p(xn; xn) = p(c; c): 2Example 3.3 In < with the usual pmetric the proper limit of the sequence (1=n) is 0.From the de�nition, we immediately see that proper limits are unique if they exist.We return briey to the set L(xn) of limit points of a sequence (xn). The next lemmashows that L(xn) has a nice structure for properly convergent sequences.Lemma 3.4 Suppose (xn) is a sequence in a partial metric space (S; p), and xn ! c(properly), then c = supL(xn).Proof. Since c 2 L(xn), we only have to show that if a 2 L(xn) then a v c. For any " > 0,we know there exists N � 1, such that for any n � N ,p(a; xn) < p(a; a) + "=2;d(c; xn) < "=2:So, for any n � N ,p(a; a) � p(a; c) � p(a; xn) + p(xn; c)� p(xn; xn)� p(a; xn) + d(xn; c)< p(a; a) + ":Since this holds for any " > 0 then p(a; a) = p(a; c), and a v c, as required. 2It is important to notice that the converse to the lemma does not hold. For example,if we give <n (�1; 0] � <, the usual pmetric, then the sequence (1=n) has no proper limit,but supL(1=n) = �1. 10



Separable SpacesWe begin with the bitopological de�nition of a dense set (which again uses T [p] � T [d]),and then discuss an equivalent notion in terms of proper convergence.De�nition 3.5 We say that a set Y in a partial metric space (S; p) is dense if Y is densein (S; d).By considering the induced metric space, we see that Y is dense in (S; p) if, and only if,every point in S is the proper limit of a sequence in Y . So we have regained our intuitiveidea of approximating every point in S. If we reconsider the motivating example of (2.2),i.e. S = (�1; b] � < with the usual pmetric, then we see that fbg is not dense in (S; p).As an example of a dense set in (S; p) we have Q \ S.De�nition 3.6 A partial metric space (S; p) is separable if there is a countable densesubset of S.Now, a metric space is separable if, and only if, it has a second{countable topology. Itis interesting to see that exactly the same relationship holds with respect to both topologiesfor a partial metric space.Theorem 3.7 The following three conditions are equivalent:1. (S; p) is separable.2. T [d] is second countable.3. T [p] is second countable.The equivalence of (1) and (2) follows from considering the induced metric space. Wedelay the proof of the equivalence of (1) and (3) until the appendices, so as not to interruptthe main ow of the report.Separability ExamplesExample 3.8 P! with the usual pmetric is separable.Proof. Consider the countable set Y = fy 2 P! j jyj < 1g � P!. For any x 2 P!, wede�ne yn = x \ f1; : : :ng 2 Y; for all n � 1.Then, for all n � 1, d(x; yn) � 1Xi=n+1 2�i = 2�n;so that yn ! x (properly), and Y is dense in P!. 211



Example 3.9 S1 with the usual pmetric is separable if, and only if, S is countable.Proof. Suppose �rst that S is countable, and consider the countable setY = fy 2 S1 j l(y) <1g:Then for any x 2 S1, we can assume that l(x) =1 (otherwise x 2 Y already), and de�neyn = (x0; : : : ; xn�1) 2 Y; for all n � 1.Then, for all n � 1, yn v x implies thatp(yn; x) = p(yn; yn) = 2�n:So limn!1 p(yn; x) = limn!1 (yn; yn) = 0 = p(x; x), and yn ! x (properly), which impliesthat Y is dense in S1.If we now assume that S is uncountable, and that Y is dense in S1, we show that Y isuncountable, and hence S1 cannot be separable. For all s 2 S, we let xs = (s; s; : : :) 2 S1.Then there exists ys 2 Y such thatp(ys; xs) < p(xs; xs) + 1=2:But this implies that ys;0 = xs;0 = s, and so Y is uncountable. 23.2 ContinuityOne of the main results of this report is that every partial metric space has an essentiallyunique completion (in the same sense as metric spaces). To make this statement precisewe require a de�nition of an isometry, and so we look at continuous functions next. Wenote however, that it is in the area of function spaces that much work remains to be done.De�nition 3.10 Suppose (S; p) and (S0; p0) are partial metric spaces, with induced metricsd and d0 respectively, then f : (S; p) ! (S 0; p0) is continuous if both f : (S; T [p]) !(S 0; T [p0]) and f : (S; T [d])! (S0; T [d0]) are continuous.This is the �rst time that we haven't been able to utilise the fact that T [p] � T [d], sincea function can be continuous with respect to the metric topologies, but not the pmetrictopologies. We immediately see that f : (S; p)! (S 0; p0) is continuous if, and only if,1. xn ! x implies f(xn)! f(x).2. xn ! x (properly) implies f(xn)! f(x) (properly).The de�nition of a homeomorphism is just as natural, and we follow it with an examplewhich hopefully gives some justi�cation for our de�nitions.12



De�nition 3.11 Suppose (S; p) and (S0; p0) are partial metric spaces and f : (S; p) !(S 0; p0) is a continuous function, with a continuous inverse, then we say that f is a home-omorphism, and that (S; p) and (S0; p0) are homeomorphic.Example 3.12 Consider < and < n (�1; 0] � < with the usual pmetrics. We de�nef : < ! < n (�1; 0] by f(x) = ( x; if x > 0,x� 1; if x � 0.It is easy to check that f is a homeomorphism with respect to the pmetric topologies, butnot the metric topologies. So f is not a homeomorphism in the partial metric sense. Thisagrees with our intuition, since the sequence (1=n) has a proper limit in the one (i.e. 0),but not in the other.Now an isometry is a metric concept, but even so, the de�nition we require is not atall obvious. We will give a de�nition and then try to justify it with a brief discussion andexample. Further evidence comes when we consider completions in section 3.3. A moresatisfactory explanation would require a detailed examination of equivalent partial metricson a given space, which is probably a separate topic in its own right.De�nition 3.13 Suppose (S; p) and (S0; p0) are partial metric spaces, then an isometryis a bijection f : (S; p)! (S0; p0) such thatp(x; y)� p(x; x) = p0(f(x); f(y))� p0(f(x); f(x)); for all x; y 2 S:If f is an isometry from (S; p) to (f(S); p0), then we say that f is an isometry into(S 0; p0).It is easy to see that an isometry is a homeomorphism, and that if there exists � 2 <such that f : (S; p)! (S0; p0) satis�esp0(f(x); f(y)) = p(x; y) + �; for all x; y 2 S;then f is an isometry into (S0; p0). In the next example, we see why we don't demand thatthe above equation hold for an isometry with � = 0.Example 3.14 Consider the two sets [0; 1]; [1; 2]� < with the usual pmetric p. Intuitivelythese spaces really are \identical", and we would expect the map f : ([0; 1]; p)! ([1; 2]; p)de�ned by f(x) = x+ 1, to be an isometry. Sincep(f(x); f(y)) = p(x; y)� 1; for all x; y 2 [0; 1];we see that our de�nition is the strongest for which f is an isometry.13



3.3 CompletenessWe turn now to Cauchy sequences and completeness, which were discussed in [5]. Wetake these ideas one step further, and see that every partial metric space has an essen-tially unique completion, in the same sense as metric spaces. We will then pursue ourinvestigation of P! and S1.Cauchy SequencesWe begin with the bitopological de�nition of a Cauchy sequence, and see that they canbe expressed naturally in terms of the pmetric.De�nition 3.15 A sequence (xn) in a partial metric space (S; p) is Cauchy if it isCauchy in (S; d).Lemma 3.16 Suppose (xn) is a sequence in a partial metric space (S; p), then(xn) is Cauchy if, and only if, limn;m!1 p(xn; xm) exists:Proof. Suppose that (xn) is a Cauchy sequence. Sincej p(xn; xn)� p(xm; xm) j� d(xn; xm), for all n;m � 1,then limn; m!1 d(xn; xm) = 0 implies that (p(xn; xn)) is a Cauchy sequence in <, and solimn!1 p(xn; xn) 2 <. Then we have,(xn) is Cauchy () limn;m! 1 d(xn; xm) = 0 and limn! 1 p(xn; xn) 2 <() limn;m! 1 p(xn; xm) 2 <: 2From considering the induced metric space, we see that every properly convergentsequence is Cauchy. It is not true, however, that every convergent sequence is Cauchy.Consider for example the sequence (0; 1; 0; 1; 0; : : :) in < with the usual pmetric. Thisconverges to 0, but is not Cauchy by the above lemma.De�nition 3.17 A partial metric space is complete if the induced metric space is com-plete.So in a complete partial metric space, every Cauchy sequence has a proper limit. Boththe usual and at pmetrics on < are complete, since they induce the usual metric on <.We look now at completions, and lift the de�nition straight from metric spaces.De�nition 3.18 Suppose (S; p) is a partial metric space, then a completion of S is apartial metric space (Ŝ; p̂) and a map i : S ! Ŝ such that14



1. (Ŝ; p̂) is complete.2. i is an isometry into Ŝ.3. i(S) is dense in Ŝ.In the appendices we prove the main result of this section.Theorem 3.19 Every partial metric space (S; p) has a unique completion (up to isome-try).Completeness ExamplesExample 3.20 P! with the usual pmetric is complete.Proof. Suppose that d is the induced metric as in (2.17), we prove that (P!; d) is complete.Let (xn) be a Cauchy sequence in (P!; d). Then, for any k � 1, there exists Nk � 1, suchthat for any n;m � Nk, Xi2xn4xm 2�i = d(xn; xm) < 2�k:In particular, for any n;m � Nk, k 2 xn if, and only if, k 2 xm. We claim thatx = fk 2 N j k 2 xNkg 2 P!;is the limit of (xn) in (P!; d).If " > 0, there exists k � 1 such that 0 < 2�k < ". Then, for any n � maxfNi j 1 � i � kgand 1 � i � k, since n � Ni we havei 2 xn () i 2 xNi () i 2 x:So we see that, for any n � maxfNi j 1 � i � kg,d(xn; x) = Xi2xn4x 2�i � 1Xi=k+1 2�i = 2�k < ":So xn ! x in (P!; d) which is then complete as required. 2For S1 we will again be considering a Cauchy sequence (xn) in S1. Since this canget notationally confusing (i.e. we have a sequence of sequences), we remark that we willwrite xn = (xn;0; xn;1; : : :) 2 S1, for any n � 1.Example 3.21 S1 with the usual pmetric is complete.15



Proof. Suppose that p is the usual pmetric, we prove that (S1; p) is complete directly.Let (xn) be a Cauchy sequence in (S1; p). We must have limn;m!1 p(xn; xm) = 2�t (forsome t 2 N [ f1g, t � 0), since, for every n;m � 1, p(xn; xm) is of this form.Now, for any 0 � k < t, there exists Nk � 1 such that for all n;m � Nk,p(xn; xm) < 2�k�1 + 2�t � 2�k() supfi 2 N j i � minfl(xn); l(xm)g; 8j < i; xn;j = xm;jg > k() l(xn); l(xm) > k and 8j � k; xn;j = xm;j :We claim that the following point in S1 is the proper limit of (xn),y = (y0; y1; : : :) where yk = xNk ;k for all 0 � k < t:So, l(y) = t and p(y; y) = 2�t = limn;m!1 p(xn; xm). We consider separately the casest <1 and t =1.If t <1, then for all n � maxfNi j 0 � i < tg and 0 � i < t, since n � Ni, then l(xn) > i(and so l(xn) � t) and xn;i = xNi ;i = yi:So supfi 2 N j i � minfl(xn); l(y)g; 8j < i; xn;j = yjg = t;and p(xn; y) = 2�t.If t = 1, then given " > 0, there exists k � 0 such that 0 < 2�k < ". So, for anyn � maxfNi j 0 � i < kg and 0 � i < k, since n � Ni, thenxn;i = xNi ;i = yi:This implies that for any n � maxfNi j 0 � i < kg,p(xn; y) � 2�k < ":In each case we have limn!1 p(xn; y) = 2�t = limn; m!1 p(xn; xm) = p(y; y), so that xn ! y(properly). 23.4 CompactnessBefore looking at compactness, we will justify our generalisation of the partial metricaxioms by considering boundedness and monotonic sequences. We then move on to com-pactness, and �nish by looking at P! and S1 once more.16



BoundednessWe give the natural generalisation of a bounded space from metric spaces, which wecall p{bounded (for reasons we consider later), and then show how this can be naturallyexpressed in terms of the pmetric.De�nition 3.22 A partial metric space (S; p) is p{bounded if (S; d) is bounded.Lemma 3.23 Suppose (S; p) is a partial metric space, then (S; p) is p{bounded if, andonly if, there exists K1; K2 2 < such thatK1 � p(x; y) � K2; for all x; y 2 S:Proof. Suppose �rst, that (S; p) is p{bounded, then there exists K 2 [0;1) such thatd(x; y) � K, for all x; y 2 S:If we �x a 2 S, we have for any x; y 2 S,p(a; a)�K � p(a; a)� d(x; a) = 2 [p(a; a)� p(a; x)] + p(x; x) � p(x; y)and p(x; y) � p(x; a) + p(a; y)� p(a; a)� d(x; a) + d(a; y) + p(a; a)� 2K + p(a; a):Conversely, if there exists K1; K2 2 < thend(x; y) = 2p(x; y)� p(x; x)� p(y; y) � 2(K2 �K1);so (S; d) is bounded, and (S; p) is p{bounded. 2Using the notation of the lemma, we say that (S; p) is p{bounded above if K2 exists,and p{bounded below if K1 exists. We will also say that the pmetric is unbounded ifneither K1 nor K2 exist.But notice that we already have another notion of boundedness in our spaces, fromthe induced order. It is clear, if a little confusing, that if a set is bounded below (in theinduced order) then it is p{bounded above. Similarly if it is bounded above then it isp{bounded below. The converse to these statements are not true.We can now see that the generalisation of the partial metric axioms, that we introducedin section 2.1, was to allow unbounded pmetrics. In [5], there was an asymmetry in theaxioms, since all the partial metric spaces were p{bounded below (by 0), but not necessarilyp{bounded above. We consider what e�ect this had by looking at monotonic sequences.17



De�nition 3.24 A sequence (xn) in a partial metric space is monotonic increasing(decreasing) if xn v xn+1 (xn+1 v xn), for all n � 1. It is monotonic if it has eitherof these properties.The following lemma shows immediately that in [5], all monotonic increasing sequencesare Cauchy, whereas not all monotonic decreasing sequences need be. We then deduce thatany satisfactory pmetric on < with the usual order and metric, must be unbounded.Lemma 3.25 Suppose (S; p) is a partial metric space, then every monotonic increasing(decreasing) sequence (xn) that is p{bounded below (above) is a Cauchy sequence. Fur-thermore, if xn ! c (properly) then c = supfxn j n � 1g (c = inffxn j n � 1g).Proof. Suppose (xn) is monotonic increasing, then for all n � m,p(xn; xn) = p(xn; xm) � p(xm; xm):So we have, limn;m!1 p(xn; xm) = limn!1 p(xn; xn) = inffp(xn; xn) j n � 1g;which exists since (xn) is p{bounded below. So (xn) is a Cauchy sequence. Similarly if(xn) is monotonic decreasing.For the second part of the lemma, we �rst assume that (xn) is a monotonic increasingsequence with proper limit c. It is clear that for all k � 1, limn!1 p(xk; xn) = p(xk; xk), soxn ! xk, then by (3.4), xk v c and c is an upper bound for fxk j k � 1g.Suppose c0 2 S is also an upper bound for this set, thenp(c; c)� p(c; c0) � p(c; xn) + p(xn; c0)� p(xn; xn) 8n � 1= p(c; xn)! p(c; c) as n!1:So p(c; c0) = p(c; c), and c v c0, which implies that c = supfxn j n � 1g.Now we assume that (xn) is a monotonic decreasing sequence, with proper limit c. We �xk � 1, and havep(c; c) � p(c; xk) � p(c; xn) + p(xn; xk)� p(xn; xn) 8n � k= p(c; xn)! p(c; c) as n!1So p(c; c) = p(c; xk), and c is a lower bound for fxk j k � 1g.Suppose c0 is also a lower bound for this set, thenp(c0; c0) � p(c; c0) � p(c; xn) + p(xn; c0)� p(xn; xn) 8n � 1= p(c; c)+ p(c0; c0)� p(xn; xn)! p(c0; c0) as n! 1So p(c; c0) = p(c0; c0) and c0 v c which implies that c = inffxn j n � 1g.18



2Corollary 3.26 Any satisfactory pmetric on <, with the usual metric and order is un-bounded.Proof. Suppose for a contradiction that p is a satisfactory pmetric on < such that (<; p)is bounded below (wlog). Then the sequence (n) is a monotonic increasing sequence in(<; p), which is bounded below, and so is Cauchy. But p induces the usual metric on <,which is complete, so that (<; p) is complete. So (n) has a proper limit, which is thesupremum of N by the lemma. This is clearly a contradiction. 2Now, it could certainly be argued from a Computer Science perspective, that we don'tneed unbounded pmetrics. However this does not mean that we should force all pmetricsto be bounded in the axioms. What we are really claiming, is that partial metric spacesmay be of interest in other areas of mathematics, without the bounded restriction. Thisis certainly the case for < with the usual ordering and metric.Compact SpacesDe�nition 3.27 A partial metric space (S; p) is compact if (S; d) is compact.When we look at P! and S1, we will �nd it useful to consider equivalent notions ofcompactness. For this reason, we generalise �nite "{nets to partial metric spaces, andthen consider an essential di�erence from metric spaces.De�nition 3.28 Suppose (S; p) is a partial metric space and " > 0, then a �nite "{netof (S; p) is a �nite set A � S such thatS � [x2AB"(x; p):The existence of a �nite "{net in a metric space, implies the existence of one for anysubspace. This property does not hold for partial metric spaces. Consider for example thepmetric on the at domain (S?;�), with S an in�nite set. Now f?g is a �nite 12{net of(S?; p) since B1=2(?; p) = S?. However, (S; p) has no �nite 12{net since B1=2(x; p) = fxg,for all x 2 S.Before proving our main theorem on compactness, we need a simple lemma involvingsequences in a p{bounded partial metric space.Lemma 3.29 Suppose (S; p) is a p{bounded partial metric space, then every sequence(xn) has a subsequence (xnk ) such that limk !1 p(xnk ; xnk) exists.Proof. By (3.23), there exists K1; K2 2 < such that the sequence (p(xn; xn)) lies in thecompact interval [K1; K2] � <, which must then have a convergent subsequence.19



2Theorem 3.30 Suppose (S; p) is a partial metric space, then the following three condi-tions are equivalent:1. (S; p) is compact.2. Every sequence in (S; p) has a properly convergent subsequence.3. (a) (S; p) is complete.(b) (S; p) is p{bounded.(c) For any " > 0, and R � S, there exists a �nite "{net for (R; p).Proof. The equivalence of (1) and (2) follows immediately from considering sequentialcompactness on the induced metric space. We prove that if (S; d) is totally bounded, then(3b) and (3c) hold, and then consider the induced metric space to see that (1) implies (3).We �nish by proving that (3) implies (2).Suppose �rst that (S; d) is totally bounded, then for any R � S, (R; d) is totally bounded.But we also have, for any " > 0 and x 2 S, B"(x; d)� B"(x; p), so that (R; p) has a �nite"{net. Since a totally bounded metric space is bounded, then (S; p) is p{bounded.Now, suppose that (3) holds, and that (xn) is a sequence in (S; p). By lemma (3.29)and (3b) we can assume that limn!1 p(xn; xn) exists. We let R1 = fxn j n � 1g �S, and fx�1 ; : : : ; x�mg be a �nite 12{net for (R1; p). So there exists an �j such thatB1=2(x�j ; p) contains in�nitely many xn. We let (xn;1) be a subsequence of (xn) belongingto B1=2(x�j ; p), with x1;1 = x�j .Suppose inductively that for i = 1; 2; : : : ; k � 1, there exists a subsequence (xn;i) of (xn)such that p(xn;i; xm;i) � p(x1;i; x1;i) + 1=i; for all n;m � 1;and that (xn;i) is a subsequence of (xn;i�1) for i = 2; 3; : : : ; k� 1.We let Rk = fxn;k�1 j n � 2g � S, and fx�1;k�1; : : :x�m;k�1g be a �nite 12k{net for (Rk; p).Then there exists an �j such that B1=2k(x�j ;k�1; p) contains in�nitely many xn;k�1. Welet (xn;k) be a subsequence of (xn;k�1) belonging to B1=2k(x�j;k�1; p), with x1;k = x�j ;k�1.If we consider the subsequence (x1;n) of (xn), we see that for all m � n,p(x1;n; x1;m) � p(x1;n; x1;n) + 1=n:Since limn!1 p(x1;n; x1;n) exists, we see that (x1;n) is a Cauchy subsequence of (xn). Wethen use (3a) to �nish the proof. 220



Compactness ExamplesExample 3.31 P! with the usual pmetric is compact.Proof. We know that (P!; d) is complete, if we can show that (P!; d) is totally boundedthen we are done. Given " > 0, we let k � 1 be such that 0 < 2�k < ", and de�neA = fx 2 P! j x � f1; : : : ; kgg:Then jAj = 2k <1.Now for any y 2 P!, there exists x 2 A such that for all 1 � i � k, i 2 x if, and only if,i 2 y. So d(x; y) � 1Xi=k+1 2�i = 2�k < ";and y 2 B"(x; d). So (P!; d) is totally bounded as required. 2Example 3.32 S1 with the usual pmetric is compact if, and only if, S is a �nite set.Proof. Suppose, �rst, that S is an in�nite set, and let s1; s2; : : : be a countable collectionof distinct elements of S. We de�ne xn = (sn; sn; : : :) 2 S1. Then (xn) is a sequence inS1 such that p(xn; xn) = 0; for all n � 1,p(xn; xm) = 1; for all n;m � 1 (n 6= m).Clearly (xn) can have no Cauchy subsequence, and hence no properly convergent subse-quence, so S1 cannot be compact.Now suppose that S is �nite. We know that S1 is complete and p{bounded below by 0,and above by 1, so we are left to prove condition (3c) of the theorem. Suppose we aregiven " > 0, we let k � 1 be such that 0 < 2�k < ", and de�neA = fx 2 S1 j l(x) � kg;then jAj = jSjk <1.Suppose R � S1, we de�ne A0 � R as follows. For each x 2 A, if there exists a y 2 Rwith x v y, then we choose one such y for A0. Clearly jA0j � jAj < 1. Then for anyz 2 R, there exists x 2 A such that xi = zi, for all 0 � i < k. For this x 2 A, there existsy 2 A0 such that xi = yi, for all 0 � i < k. Then we havep(y; z) � 2�k < ";and z 2 B"(y; p). So A0 is a �nite "{net for (R; p), and we are done. 221



4 ConclusionsAlthough the central argument of this report is that bitopology is the correct context inwhich to view partial metric spaces, we will use this section to briey summarise someof the other points raised. Foremost among these, is the case we present for extendingthe axioms to allow unbounded pmetrics. While acknowledging that this may be of littlerelevance within Computer Science, we must agree with a general point of Sutherland's(in [8]) in wishing \to prove any given result in the appropriate context", which is why wetake the broader view.In the text, we stress that section 3 is a case of putting our ideas on generalisations intopractice. However, we are in danger of losing sight of the fact that we are now in possessionof many useful results from metric spaces. This process of generalisation is certainly farfrom over, but at some point we will have su�cient theory to tackle applications, andultimately test the utility of the theory developed.In the same vein, we should also be aware that rather than just having a number ofmotivating examples, we have actually made a study of some interesting partial metricspaces. If these prove to be useful, then we could be closer than anticipated to puttingour new theory into practice.A ProofsWe return now to the proofs we left out of the main text.Separable SpacesLemma A.1 If (S; p) is a separable partial metric space then T [p] is second countable.Proof. Suppose Y is a countable dense subset of S. We de�neB = fBr(x; p) j x 2 Y; r 2 Q(r > 0)g;which is clearly a countable collection of sets in T [p]. We show that B is a basis for T [p].Let y 2 S, and U 2 T [p] containing y. We want to �nd an element of B containing y,lying inside U . We know that there exists r 2 <(r > 0), so that y 2 Br(y; p) � U . We �xr=4 < s < 3r=4 with s 2 Q: (1)Now there exists a sequence (xn) in Y with proper limit y. So there exists N � 1 suchthat Bs(xN ; p) 2 B, and p(xN ; y)� p(y; y) < r=4; (2)p(y; y)� p(xN ; xN) < s � r=4: (3)We �rst show that y is in this open ball,p(xN ; y) < p(y; y) + r=4 by (2)< p(xN ; xN) + s by (3)22



and so y 2 Bs(xN ; p). Now suppose that z 2 Bs(xN ; p). We show that z is in U byshowing that it is in Br(y; p),p(y; z) � p(y; xN) + p(xN ; z)� p(xN ; xN)< p(y; xN) + s< p(y; y) + r=4 + s by (2)< p(y; y) + r by (1)and so z 2 Br(y; p), and hencey 2 Bs(xN ; p) � Br(y; p) � U:Which proves that B is a countable base for T [p] as required. 2Lemma A.2 If T [p] is second countable then (S; p) is separable.Proof. Since T [p] is second countable, then the collection of open balls, which is a basis,has a countable sub{basis B = fB1; B2; : : :g. For each n � 1 we suppose thatBn = B"n(xn; p)where xn 2 S and "n > 0. Since every open ball is p{bounded above, we can de�ne�n = supfp(x; x) j x 2 Bng:We then de�ne a countable set Y = fyn j n � 1g as follows: For all n � 1, if inf Bn 2 Bnthen we de�ne yn = inf Bn, otherwise we let yn 2 Bn be such that�n � 1=n < p(yn; yn) � �n:We show that Y is dense is (S; p). Suppose x 2 S and x 62 Y . We de�ne� = inffn � 1 j x 2 Bng:Now, for each m � 1 there exists nm � 1 such thatx 2 Bnm � B1=m(x; p):It is clear that (ynm) is a sequence in Y with limit x. But we still have to �nd a sequencein Y which has proper limit x. We claim that there must be a subsequence of (ynm) withthis property. 23



Now, for any k � 1, we let k0 � maxf�; kg and de�neVk = k0\i=1x2BiBi;which is open in T [p], and has x 2 Vk.There clearly exists J1 � 1 such thatx 2 BnJ1 � B1=J1(x; p) � Vk:If B1=j(x; p) = Vk for all j � J1 then x = inf Vk = inf BnJ1 , and so x = ynJ1 2 Y , acontradiction. So there must exist J2 � J1 such that for all j � J2,x 2 Bnj � B1=j(x; p) � B1=J2(x; p) 6= Vk;and so nj > k0 � k.For notational convenience, we will let (zm) denote the sequence (ynm). So we can �nd asubsequence (zmk) of (zm) such that, for all k � 1, we have nmk > k. Thenp(zmk ; zmk)� p(x; x) � p(zmk ; x)� p(x; x)< 1=mk � 1=k;p(x; x)� p(zmk ; zmk) � �nmk � p(zmk ; zmk)< 1=nmk < 1=k:So j p(zmk ; zmk)� p(x; x) j< 1=k for all k � 1, and (zmk) has proper limit x as required.2CompletionsConsider �rst a simple, but useful, lemma.Lemma A.3 Suppose (S; p) is a partial metric space with induced metric d, thenjp(x; y)� p(z; w)j � d(x; z) + d(y; w):Proof. Clearly,p(x; y)� p(z; w) � p(x; z) + p(z; y)� p(z; z)� p(z; w)� d(x; z) + p(z; w) + p(w; y)� p(w;w)� p(z; w)� d(x; z) + d(y; w):Similarly for p(z; w)� p(x; y), and so the result holds. 224



We will now prove that every partial metric space has a unique completion (up toisometry). We do this be generalising the respective proof for metric spaces from [8]. Weprove �rst that every partial metric has a completion.Theorem A.4 Every partial metric space (S; p) has a completion.Proof. Suppose d is the induced metric on S. We let Ŝ be the set of equivalence classes ofCauchy sequences in S, where (xn) � (yn) if, and only if d(xn; yn)! 0 as n ! 1. Thenfor any x̂; ŷ 2 Ŝ, represented by (xn) and (yn) respectively,d̂(x̂; ŷ) = limn !1 d(xn; yn);is a well{de�ned metric, and (Ŝ; d̂) is a completion of (S; d), in the metric sense.Now, for any x̂; ŷ 2 Ŝ, represented by (xn) and (yn) respectively, we de�nep̂(x̂; ŷ) = limn !1 p(xn; yn):We show that (Ŝ; p̂) is a completion of (S; p).Our �rst task is to show that limn!1 p(xn; yn) exists. For any n;m � 1, we have0 � jp(xn; yn)� p(xm; ym)j � d(xn; xm) + d(ym; yn) by (A.3)! 0 as n;m!1.So (p(xn; yn)) is Cauchy in <, and limn!1 p(xn; yn) exists.To see that p̂ is well{de�ned, we suppose that (x0n) also represents x̂. Then0 � jp(x0n; yn)� p(xn; yn)j � d(x0n; xn) by (A.3)! 0 as n!1.So we must have limn !1 p(x0n; yn) = limn! 1 p(xn; yn), and p̂ is well{de�ned.To see that p̂ is a pmetric, we note thatp̂(x̂; x̂) = p̂(x̂; ŷ) = p̂(ŷ; ŷ) () limn!1 p(xn; xn) = limn !1 p(xn; yn) = limn! 1 p(yn; yn)() limn!1 d(xn; yn) = 0() (xn) � (yn)() x̂ = ŷ:The other axioms are all immediate from the axioms for p and taking limits. It is alsoclear that p̂ has induced metric d̂, so that (Ŝ; p̂) is complete.Finally, we de�ne a function i : S ! Ŝ by i(x) = (x; x; x; : : :). Sincep(x; y) = limn! 1 p(x; y) = p̂(i(x); i(y)); for any x; y 2 S,then i is an isometry into Ŝ, and i(S) is dense in (Ŝ; p̂) since it is dense in (Ŝ; d̂).25



2To prove the uniqueness of the completion, we need a preliminary result. Again we relyheavily on the corresponding result from metric spaces (see [8]). We remark �rst that anisometry between two partial metric spaces is a (metric) isometry between their inducedmetric spaces.Lemma A.5 If X is a dense subset of a partial metric space (S1; p1), and f : X ! S2 isan isometry into a complete partial metric space (S2; p2), then f extends uniquely to anisometry of S1 into S2.Proof. If x 2 S1, then there exists (xn) in X properly converging to x, since X is dense in(S1; p1). By considering the induced metric spaces, we see that the function g : S1 ! S2,where g(x) is de�ned to be the proper limit of the sequence (f(xn)) in (S2; p2), is awell-de�ned extension of f .Now, if x; y 2 S1 and (xn), (yn) are sequences in X properly converging to x; y, then weuse (A.3) to see that limn !1 p2(f(xn); f(yn)) = p2(g(x); g(y)) (and the corresponding resultin (S1; p1)). We then havep2(g(x); g(y))� p2(g(x); g(x)) = limn!1 [p2(f(xn); f(yn))� p2(f(xn); f(xn))]= limn!1 [p1(xn; yn)� p1(xn; xn)]= p1(x; y)� p1(x; x):So g is an isometry into (S2; p2). To see that g is unique, we note that if g0 is any continuousextension of f , and (xn) is a sequence in X properly converging to x 2 S1, then g0(x) isthe proper limit of (g0(xn)), which is the same sequence as (f(xn)), and so g0(x) = g(x).2We �nish with the following theorem, which gives (essential) uniqueness of completions.We omit the proof, since this is now a standard argument which follows from the lemmausing commutative diagrams and the relevant isometries.Theorem A.6 Suppose (S; p) is a partial metric space, with completions (Ŝ; p̂) and (S0; p0)via i and i0 respectively. Then there is a unique isometry j : Ŝ ! S 0 such that j � i = i0.B Partial OrdersDe�nition B.1 A partial order is a binary relation � on a set S such that for anyx; y; z 2 S,1. (Reexive) x � x.2. (Antisymmetric) x � y and y � x implies that x = y.3. (Transitive) x � y and y � z implies that x � z.26



In a partially ordered set (S;�), an upper bound for A � S is an element x 2 Ssuch that a � x, for all a 2 A. Similarly for a lower bound. The supremum of A (supA)is the least upper bound of A, and the in�mum of A (inf A) is the greatest lower bound.De�nition B.2 A partially ordered set (S;�) is at if, for every x; y 2 S,x � y if, and only if, x = y:De�nition B.3 If X is a topological space, then the specialisation order on X is de-�ned as x v y () x 2 U , U open, implies y 2 U .Lemma B.4 Suppose X is a topological space with specialisation order v, it follows that1. If X is a T0{space, then v is a partial order.2. If X is a T2{space, then v is a at partial order.References[1] G. Birkho�, Lattice Theory, AMS Colloquium Publication, third edition, 1967.[2] J.C. Kelley, Bitopological Spaces, Proc. London Math. Soc., 1963.[3] J.L. Kelley, General Topology, University Series in Mathematics, D. van Nostrand 1955.[4] S.G. Matthews, An Extensional Treatment of Lazy Dataow Deadlock, AMAST/MASK Workshop on Topology and Completion in Semantics, Chartres 1993, to ap-pear in Theoretical Computer Science, Special Issue.[5] S.G. Matthews, Partial Metric Topology, Proc. 8th Summer Conference on Topologyand its Applications, New York 1992.[6] M.B. Smyth, Topology, Handbook of Logic in Computer Science, Volume 1, OxfordScience Publications, 1992.[7] J.E. Stoy, Denotational Semantics: The Scott{Strachey Approach to Programming Lan-guage Theory, MIT Press, Cambridge, Massachusetts, 1977.[8] W.A. Sutherland, Introduction to Metric and Topological Spaces, Oxford UniversityPress, 1975. 27


