
http://wrap.warwick.ac.uk/

Original citation:
Zemerly, M. J., Papay, J. and Nudd, G. R. (1995) Characterisation based bottleneck
analysis of parallel systems. University of Warwick. Department of Computer Science.
(Department of Computer Science Research Report). (Unpublished) CS-RR-281

Permanent WRAP url:
http://wrap.warwick.ac.uk/60966

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/29189382?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60966
mailto:publications@warwick.ac.uk

1

Characterisation Based Bottleneck Analysis of Paral-
lel Systems

M.J. Zemerly, J. Papay, G.R. Nudd

Parallel Systems Group, Department of Computer Science,
University of Warwick, Coventry, UK

Email: {jamal, yuri, grn}@dcs.warwick.ac.uk

Abstract

Bottleneck analysis plays an important role in the early design of parallel computers
and programs. In this paper a methodology for bottleneck analysis based on an instruc-
tion level characterisation technique is presented. The methodology is based on the as-
sumption that a bottleneck is caused by the slowest component of a computing system.
These components are: memory (internal, external), processor (ALU, FPU), communi-
cation and I/O. Three metrics were used to identify bottlenecks in the system compo-
nents. These are the B-ratio, the communication-computation ratio and the memory-
processing ratio. These ratios are dimensionless with values greater than unity indicates
the presence of a bottleneck. The methodology is illustrated and validated using a com-
munication intensive linear solver algorithm (Gauss-Jordan elimination) which was im-
plemented on a mesh connected distributed memory parallel computer (128 T800
Parsytec SuperCluster).

1. Introduction

One of the main concerns of parallel computing is to port sequential programs efficient-

ly knowing the resource limitations of the target machine such as processor, memory

and communication network. In order to improve the performance of the parallel code

bottleneck analysis is required. The identification of bottlenecks within parallel sys-

tems is an important aspect of hardware and software design. This process involves ex-

amining the system behaviour under various load conditions. Bottlenecks can be

defined in several ways as:

• The parts of the program that prevent achieving the optimal execution time.

• The parts of the system either hardware or software which consumes the maximum

time or the slowest component of the system.

2

In this paper the second definition is used as the basis for the bottleneck analysis meth-

odology which involves the following steps: predict the execution time components of

a certain workload, identify the time component responsible for the bottleneck (the

slowest part), analyse the component causing the bottleneck into its constituent and

identify the sub-components causing the problem. Optimisation of the software subrou-

tines and/or hardware utilisation causing the bottleneck can improve the system perfor-

mance. This operation can be iterated until no further optimisation is possible. Potential

sources of bottlenecks are summarised in Table 1.

Table 1. Sources of potential bottlenecks

In section 2 a background to the bottleneck analysis is given. Section 3 introduces a bot-

tleneck analysis methodology based on instruction level analysis. Section 4 provides a

case study to illustrate and validate the proposed bottleneck analysis methodology. The

case study selected is a communication intensive linear solver algorithm (Gauss-Jordan

elimination) which was implemented on a transputer-based mesh connected distributed

memory parallel computer (128 T800 Parsytec SuperCluster).

2. Background

A bottleneck in a system is usually the main reason for its performance degradation. A

System parameters Workload parameters

Processing CPU integer operations

FPU fp operations

Memory internal internal memory accesses

cache cache hits

external external memory accesses

Communications latency distance

bandwidth message size

topology communication pattern

number of processors synchronisation

I/O disk (access time, bandw.)disk operations

terminal terminal operations

3

slow system component affects the performance of the whole system by preventing oth-

er components from running at full speed. So it is important to identify these slow com-

ponents (software or hardware) and reduce their effects in order to achieve optimal

performance.

Gustafson in his paper [Gustafson 91] argues that almost every computer is limited not

by the speed of the arithmetic unit but the memory bandwidth and latency. Using sev-

eral examples the author showed that this problem is becoming visible even for work-

stations not just for parallel computers. Gustafson introduced the idea of characterising

the system performance not by the Mflop rate but by the number of delivered Mword/s.

Amdahl described the balanced computing system as a system which for each Mflop/s

arithmetic performance can deliver 1Mword/s. Amdahl's law states that the perfor-

mance enhancement with a given improvement is limited by the amount that the im-

proved feature is used [Hennessy 90].

Hollingsworth [Hollingsworth 94] in his thesis describes a monitoring based bottleneck

analysis methodology using an iterative process of refining the answers to three ques-

tions concerning performance problems. These three questions are:why is the applica-

tion performing poorly,where is the bottleneck,when does the problem occur. Thewhy

answer identifies the type of bottleneck (e.g. communication, I/O etc.). Thewhere an-

swer isolates a performance bottleneck to a specific resource used by the program (e.g.

disk, memory etc.). Answering thewhen question isolates a specific phase of the pro-

gram execution.

Goldberg and Hennessy [Goldberg 90] described a simple monitoring method for de-

tecting regions in a program where the memory hierarchy is performing poorly by ob-

serving where the actual measured execution time differs from the time predicted given

a perfect memory system.

Bottleneck analysis based on instruction code level characterisation has been described

by Zemerly [Zemerly 94a]. This approach investigates where the time is spent during

the program run. The analysis concentrates on the following components: memory (in-

ternal, external), processor (ALU, FPU), communication and I/O.

3. Methodology of Bottleneck Analysis

The instruction level bottleneck analysis is based on identification of the following

components of the total execution time: computation (ALU, FPU), memory (internal,

4

external), communication (initialisation, distribution, collection etc.) and I/O (disk

read/write). These components can be further analysed and potential bottleneck prob-

lems can be identified as will be shown later.

3.1. The computation and the memory components

The instruction level characterisation method described in [Zemerly 94b] is used here

to predict the performance of the system. The computation component time can be giv-

en by:

(1)

For the Parsytec system studied here equation (1) becomes:

(2)

where

t0 start-up time for vector processors

nex total number of cycles to execute the instructions

nmem total number of memory cycles

nintmem additional time spent to access internal memory

nexmem additional time spent to access external memory

ninst total number of cycles required to fetch instructions from ex-

ternal memory

ncpu total number of CPU cycles

nfpu total number of FPU cycles

nfpu_over total number of FPU cycles overlapping the CPU

tcyc processor cycle time

3.2. The communication component

Tcomp = τ0 +(νεξ + νµεµ) ×τχψχ

Tcomp = (νχπυ + νφπυ− νφπυ_ οϖερ

νεξ

1 24 44 34 4 4
+ νιντµεµ + νεξτµεµ + νινστ

νµεµ

1 24 4 4 34 4 4) × τχψχ

5

The total communication cost can be given by:

(3)

whereTinit is the initialisation of the communication links (on the Parsytec each link

requires 1270 µs),Tdist is the data distribution time,Tcoll is the collection time andTcom

is the communication time required in individual stages of the algorithm.

The time of the point-to-point communication depends on the message length(l) and

the distance(d) the message has to travel (the number of hops). An analytical commu-

nication model for quiet networks is described by Tron [Tron 93]. In this paper a sim-

pler communication model based on the work of Bomans [Bomans 89] and Norman

[Norman 93] is used and given by:

(4)

For the Parsytec SuperCluster, the target machine used in this paper, the packet size,ps,

is assumed equal to 120 bytes, and the parameters for equation (4) obtained by least

square fitting of measured communication times are given in Table 2.

Table 2. Parameters of the quiet network communication model of the Parsytec Super-

Cluster

Tdist andTcoll are functions ofTcom and will be described later for the case study.

3.3. The I/O component

51.1 0.27 8.86 0.68

-81.5 1.33 93.04 0.05

Ttcom = Τινιτ + Τδιστ+ Τχολλ+ Τχοµ (λι,δι, πι)
ι

σταγεσ

∑

Tcom(l,d) =
α1 + β1λ+ γ 1δ + δ1λδ λ≤ πσ

α2 + β2λ+ γ 2 δ + δ 2λδ λ> πσ





α β γ δ

l ≤ πσ

l f ps

6

The cost of I/O can be analytically expressed by the following formulas (5, 6):

(5)

(6)

The coefficients of the formulas above can be obtained by fitting a linear model to mea-

surements provided on the target machine. For the Parsytec machine these coefficients

are =642.16, =3.73, =1583.73 and =2.2.

3.4. Parallel execution time

The parallel execution time can be derived from the sequential execution time using the

non-overlapped computation-communication model for parallel algorithms [Basu 90,

Zemerly 94b] and is given by:

(7)

whereTp is the execution time of the algorithm part that can be parallelised.Ts is the

execution time of the serial part of the algorithm including initialisation time.Tpo is the

parallel overhead processing required when parallelising an algorithm, it can only be

used when the overhead is knowna priori. For example, processing of the data overlap

that may be necessary between processors for a domain decomposition problem.Ttcom

is the total communication overhead,TI/O is the input/output times andUp is the pro-

cessor utilisation and is given by:

Tinput (l) = α ρεαδ +βρεαδλ

Toutput (l) = αωριτε+ βωριτελ

αρεαδ

βρεαδ

α ωριτε

βωριτε

T xp(N, p) = Τσ +
Τπ

Υπ × π
+ Τπο + Ττχοµ + ΤΙ / Ο

7

(8)

wherepi is the number of processors active at stagei andTi is its execution time.

3.5. Bottleneck analysis

A prediction of the components constituting the execution time to identify the slowest

part of the system is first carried out using the characterisation method described be-

fore. Also three metrics are used to identify bottlenecks in the system, these are the B-

ratio, the communication to computation ratio and memory to processing ratio. The B-

ratio (B stands for bottleneck) of an execution time component (i.e. processing, mem-

ory, communication and I/O) is the ratio of the component to the sum of all other com-

ponents. This metric is dimensionless and a simple comparison between all the B-ratios

will clearly identify a bottleneck problem when visualised in the same plot. The best

performance is obtained when all the B-ratios are equally balanced and have values less

than unity. The communication to computation and memory to processing ratios can be

used to identify the communication and memory bottlenecks, i.e. when they exceed uni-

ty. These ratios will be used for the bottleneck analysis of the linear solver presented in

section 4. Once an execution time component is identified as a bottleneck further anal-

ysis of its sub-components can be carried out to highlight any software or hardware re-

lated problems causing the bottleneck. This will allow optimisation of software or

usage of the hardware resources where possible. These sub-components are: FPU,

CPU, external memory, internal memory, initialisation of communication links, data

distribution, data collection, other communication overheads, disk read time and disk

write time.

4. Bottleneck analysis of large dense systems of linear equations

4.1. Description of the linear solver

In this section the solution of large dense systems of linear equations on a Parsytec Su-

Up =
πι × Τιι

∑

π Τιι
∑

8

perCluster is described to illustrate the use and validate the bottleneck analysis meth-

odology. Linear solvers belong to the computational and communication intensive

class of algorithms. A system of linear equations can be represented in the following

form:

A X = B (9)

whereA is a non-singular square matrix,B is the solution vector andX is a vector of

unknowns. There are several solution methods for the system of linear equations which

can be classified as direct and iterative methods. In the case of direct methods the

amount of computation required can be specified in advance, whereas for the iterative

methods the number of computation steps depends on the value of the initial solution

vector and the required precision. Typical examples of the direct methods are Gauss

elimination with back substitution, Gauss-Jordan elimination, LU, QR and Cholesky

factorisations [Barnett 90, Modi 88]. The iterative methods are based on Jacobi or

Gauss-Seidel algorithms [Champion 93].

For this case study the Gauss-Jordan elimination has been selected since this algorithm

provides a good load balance during the parallel computation. The operations involved

in Gauss-Jordan elimination are very similar to that of the well known Gauss elimina-

tion, but instead of calculating an upper-triangular matrix followed by back substitu-

tion, the algorithm immediately calculates a diagonalised matrix, e.g. instead of just

subtracting the normalised actual row of the matrix from the rows below them at each

stage, the subtraction is performed for all other rows in the matrix. The sequential com-

plexity of the algorithm isO(N3). The software execution graph for the sequential lin-

ear solver based on the Gauss-Jordan elimination algorithm is shown in Figure 1.

9

Figure 1. Software execution graph for the sequential linear solver

The computational blocks shown in Figure 1 are:Inv- calculate the inverse of the pivot

element,Norm- normalisation of the actual row,Set- variable setting,Rsub- row sub-

traction andBuf- data buffering.

The sequential execution time for the linear solver can be given by:
(10)

where ti is the number of cycles for module i.

4. 2. Parallel linear solver

The diagonalisation of the initial matrix requiresN algorithmic steps (k =1,N) and each

step consists of the sequence of the following operations: normalisation of the k-th row,

i=0,N

j=i+1,N

k=0,N-1

j=i+1,N

Set

Norm

Inv

Rsub

Buf

i=0,N

T x(N) = τΙνϖ + τΝορµ + τΣετ + τΡσυβ
ϕ=ι+1

Ν

∑
κ=0

Ν−1

∑
ϕ=ι+1

Ν

∑



 




ι= 0

Ν

∑ + τΒυφ
ι=1

Ν

∑

10

broadcasting the k-th row to all the processors and updating the submatrix on all the

processors.

The parallel linear solver can be obtained by extending the sequential algorithm with

communication routines which provide distribution of input data, broadcasting and col-

lection of output data during the algorithm execution. The block-row data decomposi-

tion which divides the matrix horizontally and assigns adjacent blocks of rows to

neighbouring processors is considered here. The matrix decomposition and the commu-

nication graph for four processors are presented in Figure 2.

Figure 2. Block row data decomposition and the communication graph

Assuming thatTs andTpo are negligible andUp is 1 in equation (7), the parallel execu-

tion time for the linear solver can be given by:

(11)

where

(12)

(13)

1

2

3
4

5
6

7
8

p1

p2

p3

p4

P1 P2 P3

P0 P2 P3

P1 P2 P3

P1 P2 P3

P0 P1 P2 P3

P0

P0

P1

P0

•
•
•

T xp(N, p) =
Τξ (Ν)

π
+ Τδιστ+ Ν × Τβροαδ + Τχολλ+ ΤΙ / Ο

Tdist = Τχοµ
ι=1

π

∑ (λι,δ0,ι)

Tcoll = Τχοµ (λι
ι=1

π

∑ ,δ0,ι)

11

(14)

The value ofli for distribution is (N/p)*(N+1)*8, for collection is (N/p)*8 and for broad-

casting is (N+1)*8. The parameterdi,j is the distance between processorsi andj. The

linear solver algorithm was implemented on the Parsytec machine and the execution

times were measured to validate the predictions. The results of the predictions and the

measurements for various task sizes (128, 256 and 512 equations) and number of pro-

cessors are given in Figure 3 and Table 3.

Figure 3. Predictions and measurements for the non-optimised linear solver

Table 3. Predictions and measurements for non-optimised linear solver

1 2 4 8 16 32 64 128

measured_nopt(128) 10.13 5.65 4.05 3.4 4.47 8.73 17.33 36.56

measured_nopt (256)78.21 41.52 27.21 18.91 20.91 36.03 69.81 146.27

measured_nopt (512)612.35 317.93 198.06 116.48 104.07 156.49 283.32 622.91

predicted_nopt (128) 9.51 5.48 3.5 3.24 4.49 9.11 19.53 44.89

predicted_nopt (256) 74.26 39.98 23 17.32 19.75 36.12 73.41 160.9

predicted_nopt (512) 586.52 304.78 164.32 105.24 96.4 151.62 291.77 624.61

Tbroad = Τχοµ (λι
ι=0

π

∑ ,δσενδερ,ι) ωηερει ≠ σενδερ

Processors

T
im

e,
 s

0

100

200

300

400

500

600

700

1 2 4 8 16 32 64 128

measured_nopt(128)

measured_nopt (256)

measured_nopt (512)

predicted_nopt (128)

predicted_nopt (256)

predicted_nopt (512)

12

Note that the broadcast used here is based on a simple one-to-all communication. A de-

tailed analysis of the results identified a bottleneck in the communication component

which is represented by the broadcast subroutine. This subroutine was then optimised

using neighbourhood communication. A sample of the bottleneck analysis which was

carried out on the non-optimised code will be given for the final version of the code in-

stead. Figure 4 and Table 4 show the execution time measurements and predictions for

the optimised linear solver.

Figure 4. Execution time prediction and measurements of the optimised linear solver

Table 4. Predictions and measurements for the optimised linear solver

The broadcast time used here can be given by:

1 2 4 8 16 32 64 128

measured_opt(128) 10.13 5.63 3.36 2.31 1.82 1.72 1.85 2.34

measured_opt (256) 78.15 41.33 22.67 13.73 9.4 7.46 6.89 7.54

measured_opt (512) 612.26 316.85 166.41 92.35 55.21 38.22 30.5 29.3

predicted_opt (128) 9.51 5.35 3.03 1.9 1.4 1.26 1.47 2.16

predicted_opt (256) 74.26 39.48 21.12 12 7.55 5.52 4.99 5.62

predicted_opt (512) 586.52 302.79 156.83 83.99 47.79 30.06 22.13 19.69

Processors

T
im

e,
 s

0

100

200

300

400

500

600

700

1 2 4 8 16 32 64 128

measured_opt(128)

measured_opt (256)

measured_opt (512)

predicted_opt (128)

predicted_opt (256)

predicted_opt (512)

13

(15)

As can be seen from the results above the introduction of optimised broadcast subrou-

tine provided good scalability for the algorithm.

4.3. Results of the bottleneck analysis for the optimised code

The results in Figures 5, 6 show the components of the execution time: processing,

memory, communication and I/O for 256 linear equations for various number of pro-

cessors.

Figure 5. Processing, memory, communication and I/O times

Tbroad = Τχοµ (λι
νειγηβουρσ

∑ ,1)

1 2 4 8 16 32 64 128

Processors

0

10
20

30

40
50

60
70

80

T
im

e,
 s

1 2 4 8 16 32 64 128

Processors

Tcom(256)

Ti/o(256)

Tmem(256)

Tproc(256)

14

Figure 6. Processing, memory, communication and I/O percentages

Figures 7 and 8 show the B-ratio and the communication-computation ratio for 256

equations for various numbers of processors.

Figure 7. B-ratio for processing, memory, communication and I/O for 256 equations

1 2 4 8 16 32 64 128

Processors

0%

20%

40%

60%

80%

100%

T
im

e,
 %

1 2 4 8 16 32 64 128

Processors

Tcom(256)

Ti/o(256)

Tmem(256)

Tproc(256)

Processors

B
-r

at
io

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16 32 64 128

Bproc

Bmem

Bcomm

Bi/o

15

Figure 8. Communication-computation and memory-processing ratios for 256 equa-
tions

As can be seen from Figure 7 the communication becomes a bottleneck after 64 proces-

sors while the I/O time is a bottleneck between 16 and 64 processors. Figure 8 shows

that the communication-computation ratio exceeds unity at around 48 processors and

hence the communication is becoming a potential bottleneck after that number. The

memory-processing ratio is constant throughout because of the absence of a cache

memory level on the Parsytec system. This ratio will show clearly the effect of cache

in systems where it exists. Figure 9 and Table 5 show the breakdown of execution time

components for various number of processors for 256 equations.

Processors

0

1

2

3

4

5

6

1 2 4 8 16 32 64 128

mem/proc

comms/comp

1 2 4 8 16 32 64 128

Processors

0%

20%

40%

60%

80%

100%

T
im

e,
 %

1 2 4 8 16 32 64 128

Processors

Tcoll(256)

Tbroad(256)

Tdist(256)

Tcini(256)

Tout(256)

Tinp(256)

Tinmem(256)

Texmem(256)

Tcpu(256)

Tfpu(256)

16

Figure 9. Breakdown of execution time components

Table 5. Breakdown of execution time components

Figure 9 shows clearly thatTinp becomes a major bottleneck starting from 32 processors

and for 128 processorsTbroad becomes another potential bottleneck.

5. Conclusions

A bottleneck analysis methodology for parallel systems based on characterisation has

been described. A characterisation method used here is based on the instruction level

analysis used in [Zemerly 94b]. A case study on a communication intensive algorithm

has been presented to illustrate and validate the bottleneck analysis methodology. The

execution time measurements obtained from running a parallelised version of the linear

solver on the target machine were compared with the predictions and showed an aver-

age error of about 15%. Three bottleneck metrics were successfully used in the analysis

to identify the execution time components causing the bottlenecks. The analysis iden-

tified a bottleneck problem in the algorithm and a part of the code causing the bottle-

neck was optimised resulting in a significant performance improvement.

Time (s)\Proc 1 2 4 8 16 32 64 128

Txp(256) 74.26 39.48 21.12 12 7.55 5.52 4.99 5.62

Tproc(256) 32.09 16.04 8.02 4.01 2 1 0.5 0.25

Tmem(256) 40.2 20.1 10.05 5.02 2.51 1.25 0.62 0.31

Ti/o(256) 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97

Tcom(256) 0 0.37 0.58 0.75 0.94 1.23 1.86 3.07

Tfpu(256) 12.34 6.17 3.08 1.54 0.77 0.38 0.19 0.09

Tcpu(256) 19.75 9.87 4.93 2.46 1.23 0.61 0.3 0.15

Texm(256) 33.16 16.58 8.29 4.14 2.07 1.03 0.51 0.25

Tinm(256) 7.04 3.52 1.76 0.88 0.44 0.22 0.11 0.05

Tinp(256) 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97

Tout(256) 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006

Tcini 0 0.001 0.004 0.01 0.03 0.07 0.17 0.49

Tdist(256) 0 0.36 0.54 0.65 0.72 0.77 0.86 0.89

Tbroad(256) 0 0.005 0.02 0.06 0.16 0.37 0.79 1.65

Tcol(256) 0 0.01 0.01 0.01 0.02 0.02 0.02 0.03

17

Bibliography

Barnett 90 S. Barnett. Matrices Methods and Applications, Clarendon Press, Oxford
1990.

Basu 90 A. Basu, S. Srinivas, K. G. Kumar, A. Paulraj. A Model for Performance Pre-
diction of Message Passing Multiprocessors Achieving Concurrency by Do-
main Decomposition. Proc. of the Joint Int. Conf. on Vector and Parallel
Processing, (editor) Burkhart, H., Lecture Notes in Computer Science, 457,
10-13 September, Zurich, Switzerland, Springer-Verlag, pp. 75--85, 1990.

Bomans 89 I. Bomans and D. Roose. Benchmarking the iPSC/2 Hypercube Multicom-
puter.Concurrency: Practice and Experience 1 (1), pp 3-18, 1989.

Champion 93 E. R. Champion. Numerical Methods for Engineering Applications. Marcel
Dekker, Inc, 1993.

Goldberg 90 A. Goldberg, J. Hennessy. MTOOL. A Method for Detecting Memory Bot-
tlenecks. WRL Technical Note TN-17, Palo Alto, California, 1990.

Gustafson 91 J.L. Gustafson. Computer Intensive Applications on Advanced Computer
Applications, D .J. Evans, G. R. Jouber and H. Lidell (Editors), Parallel Com-
puting, pp. 75-89, 1991.

Hennessy 90 J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative
Approach, Morgan Kaufmann Publishers, 1990.

Hollingsworth 94 J. K. Hollingsworth. Finding Bottlenecks in Large Scale Parallel Programs.
PhD Thesis, Dept. of Computer Science, University of Wisconsin-Madison,
1994.

Modi 88 J. J. Modi. Parallel Algorithms and Matrix Computation, Clarendon press,
Oxford, 1988.

Norman 93 M. G. Norman and P. Thanish. Models of Machines and Computation for
Mapping in Multicomputers. ACM Computing Surveys, vol 25, no.3, Sep-
tember, pp 263-301, 1993.

Smith90 C. U. Smith.Performance Engineering of Software Systems . Addison-Wes-
ley Publishing Co. Inc., 1990.

Tron 93C. Tron and B. Plateau. Modelling Communication in Parallel Machines Proc.Performance
Evaluation of Parallel Systems, University of Warwick, UK, pp 110-117, De-
cember 1993.

Zemerly 94a M. J. Zemerly, G. R. Nudd, T. J. Atherton, D. J. Kerbyson, E. Papaefstathiou,
J. Papay and R. Ziani. Analysis of Bottlenecks. ESPRIT III PEPS Project
(6942) Interim Report, University of Warwick, January 1994.

Zemerly 94b M. J. Zemerly, D. J. Kerbyson, E. Papaefstathiou, R. Ziani., J. Papay, T. J.
Atherton and G. R. Nudd. Characterising Computational Kernels to Predict
Performance on Parallel Systems. Proc.World Transputer Congress 94, Co-
mo, Italy, 5-7 September 1994, pp.105-119.

