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Abstract

With the increasing sophistication of both software and hardware systems,
methodologies to analyse and predict system performance is a topic of vital interest.
This is particularly true for parallel systems where there is currently a wide choice of
both architectural and parallelisation options; and where the costs are likely to be high.
Performance data is vital to a diffuse range of users including; system developers,
application programmers and tuning experts. However, the level of sophistication and
accuracy required by each of these users is substantially different.

In this paper characterisation based technique is described (considering both application
and hardware resources) which addresses these issues directly. Initially, a framework is
described for characterisation based approaches. A classification scheme is used to
illustrate differences in the level of sophistication and detail in which the underlying
resource models are specified. Finally, verification is provided of the characterisation
techniques applied to several application kernels on a MIMD system. The performance
predictions and error bounds resulting from the level of resource specification are also
discussed.

1. Introduction

Performance evaluation is an active area of interest especially within the parallel
systems community [18, 26, 34]. It is of interest to all parties involved including
machine manufactures, algorithm designers, application developers, application users,
and performance analysts. Performance evaluation strategies have been proposed and
utilised to allow analysis to take place at various stages of application code
development. Prediction techniques can be used to produce performance estimates in
advance of porting code. For fine tuning of performance after implementation,
monitoring information can be gathered to analyse where performance has effectively
been lost when compared with idealised system performance.

Characterisation forms one performance evaluation discipline. A system's performance
is parametrised in terms of the underlying operations. These can include a
characterisation of disk accesses, the communication traffic on the interconnection
network in a parallel system, and can describe the use of  the functional units of a
processor. However, there are many ways in which these characterisation models can
be formulated.
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Characterisation includes a multitude of techniques for the description of the underlying
operations. These range from high-level descriptions, such as a complexity style
analysis, down to a detailed low-level description of the analysis of the instruction
stream within a processor. The level of detail at which the system is characterised
effects the accuracy of the resulting models. In addition the accessibility to system
components effects the characterisation that can be performed, e.g. the instruction
stream cannot be analysed without having a compiler available which in turn needs
access to source code.

Substantial analysis has been carried out for traditional workload characterisation which
are used in capacity planning and performance tuning studies [14, 21, 8]. Workload
characterisation can only be performed when all components of the system are in place,
and thus all measurements can be obtained. However, in the case of the characterisation
of parallel systems most performance studies are required before all the system
components are available, or before porting codes to individual systems. The
characterisation techniques considered in the scope of this work can be used when not
all the system components are in place, thus forming predictive characterisation
techniques.

There has been little work to date that has provided comparative studies of the different
predictive characterisation methods. Further, no classification of the different
characterisation methods is in common use. The work presented here aims to overcome
this shortfall by suggesting a classification scheme for characterisation techniques, and
also to provide comparisons between the characterisation methods. The results
presented here show that the level of detail used within the characterisation models
substantially effect the accuracy of performance predictions.

In the analysis that is presented here a characterisation framework for parallel systems
has been used. This framework consists of separate characterisation of the software, the
hardware, and the parallelisation aspects. This framework has been used to a number of
performance studies [28, 30, 43]. The analysis that is performed here concentrates on
the different characterisation models that can be used for the functional elements of the
processors.

In Section 2 the characterisation framework is described. The different characterisation
models in common use and a taxonomy for their classification is presented in Section 3.
In Section 4 several application kernels are described along with the description of the
characterisation models for a distributed memory MIMD system. Predicted and
measured results for several characterisation models are given in Section 5 and also
analysed to show the prediction error statistics of the different techniques.
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Figure 1 - The layered characterisation framework
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2. Characterisation Framework

A framework in which characterisation studies can be performed for parallel systems
has been proposed and also applied in several studies [28, 30, 43]. This framework
consists of several layers, each encompassing different aspects of parallel systems. The
four layers contained within this framework as shown in Figure 1. These are:

• An Application layer, which describes the control flow of an application in terms
of a sequence of sub-tasks using the software execution graph notation (taken
from Software Performance Engineering [38]).

• An Application sub-task layer which describes the sequential part of every sub-
task.

• A parallel template layer which describes the parallelisation strategy and
communication structure for each task in the application layer.

• A hardware layer  which describes the hardware characteristics including CPU,
communication operation, and I/O subsystems etc.

The framework has been designed to be modular, such that a parallel template may be
interchanged for a given application task. Similarly, the hardware model may be
changed to represent a different architecture. This modularity enables characterisation
models for each of the parallel templates and hardware resource models to be developed
and re-used in further characterisation studies.

Application

Stages

Parallelisation

Strategies

Hardware

Models

Figure 2 - Schematic example of application tasks with associated parallel templates
and hardware models

An example of the use of the layered characterisation framework is shown
schematically in Figure 2. Here the application is shown as a sequence of tasks which
can either be a set of functions within an application code, or a threaded control
sequence through a number of computational kernels (this is the approach being taken
within the ESPRIT PEPS characterisation work [29]). For each of the application tasks,
a separate parallel template can be used for mapping the task onto a target architecture,
and similarly a separate hardware model may be used for each task. It should be noted
that the hardware model may be different for each application task (having different
resource models for the same hardware), or, as in the case of heterogeneous
environments, be hardware models that represent different parallel systems perhaps
interconnected through high speed networks such as HiPPi [15].

An important aspect of any characterisation study is the formation and use of the
description of system resources also know as the resource model. The resource model is
coupled with information required from the application tasks in terms of resource usage
information, which are termed as Resource Usage Vectors (RUV's). The resource
model can take several forms, from high level abstract definitions considering only
Mflop rates down to a low level detailing instruction cycle times. Each of these
resource models can be incorporated into the characterisation framework as illustrated
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in Figure 3. Here, a resource model that describes the hardware is chosen, and the
associated RUV needs to be obtained for each application component.
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Figure 3 - Resource models and associated RUV's within the characterisation
framework

The RUV for each application component is combined with the resource model, to give
predicted execution times for each task, and further the timing information for all task
can be combined.

An expression can be developed which captures the control flow of an application.
Evaluation of such expressions can provide performance indications for each software
component. These expressions are commonly referred to as either time formulas [10],
cost functions [2], or performance formulas [16]. Within this paper the term timing
formulas will be used. Timing formulas contain both parameters that depend on the
nature of data, and also on the resource usage of the system. The data dependent
parameters might include loop iteration counts and branch probabilities.

A commonly used method for obtaining timing formulas for complex software
structures is the development of control flow graphs [1, 5, 7, 37]. These graphs are
often referred to as computation structure models [36], control flow graphs, application
abstraction models [31], or software execution graphs [38]. Each node of the graph
includes both data dependent parameters and resource usage information. By using
graph analysis algorithms, a timing formula can be obtained from it.

max = arr[0]

max=arr[i]max<arr[i]

Nelement

True

Figure 4 - Software execution graph
describing the Find_Max code segment

In this paper Software Execution Graphs
(SEG), introduced by Software Performance
Engineering, are used [38]. An example of a
software execution graph for a serial
maximum finding procedure is shown in
Figure 4. Computational segments are
shown as rectangles, loops as circles with a
diagonal line, and conditional branches as a
rectangle with a corrugated edge.

To predict the execution time, each software
component is associated with a resource
usage vector (RUV), e.g. number of CPU
cycles taken, number of memory references
etc. By combining the RUV with the

resource model of the hardware it is possible to predict the execution time for each
software component. The timing formula for the above example is given in Equationּ1.
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tx = t vassign( ) + Nelement ⋅ t vloop( ) + t vif( ) + Pmax ⋅ t vassign( )( ) (1)

where vassign, vloop, and vif are the RUVs for each component of the software execution
graph, and the function, t(), takes the specific RUV as a parameter which it expands in
terms of the resource model to provide execution time predictions. The number of loop
iterations (Nelement) and the probability of finding the maximum value (Pmax) are data
dependent parameters (dependent on the size of the array and the distribution of data).

There are a number of different ways, corresponding to different levels of complexity,
in which the resource usage information can be described. This description is coupled
with the resource model used for the hardware, and is the subject of the next section.

3. Resource Models within Characterisation Studies

The characterisation techniques in common use involves a description of the software
and uses an underlying resource model. The techniques range from high level
descriptions, dealing with only a few resource descriptors, through to a detailed micro-
analysis concerning an instruction level analysis. The characterisation techniques
described are as follows:

• Design Based Characterisation (DBC) - undertaken before software
implementation

• Principal Operation Characterisation (POC) - a macro-analysis technique
considering only principal operations

• High Level Language Characterisation (HLLC) - a micro-analysis considering
constructs within a programming language

• Intermediate Code Characterisation (IntCC) - considers the intermediate code as
output by a compiler

• Instruction Code Characterisation (ICC) - examines the actual assembly code
that executes on the target system

• Component Timing (CT) - uses actual measurements of the software obtained
from a monitoring tool running on the target system

The different resource models contained in the above characterisation techniques are
described and compared in this section. Two classification schemes for the different
types of the resource models are first introduced below. The important features of the
resource models are identified and a detailed examination is given for those contained
in the above characterisation techniques.

3.1 Classification of resource models

Two classification schemes for resource models are described below. The first
considers two classes, namely micro and macro analysis, which consider the detail at
which the resources are described. The second considers three classes namely abstract,
software, and system based characterisation, which depend upon the status and
accessibility  of software and hardware system components.
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3.1.1Classification based on the detail of the resource model

The techniques to obtain RUVs have been classified by Cohen [10] into two main
categories based on the number and size of operations measured (or predicted):

1.ּ Macro Analysis: These techniques focus on the dominant operations in an
algorithm. An example of a macro type analysis is to consider floating point
operations while ignoring all others.

2. Micro Analysis: Micro analysis include the techniques that measure all the
operations that are performed in a program. This includes a range of techniques
from a high level characterisation to a low level instruction characterisation.

3.1.2 Classification based on access to software/system

A further way in which to classify the resource models is based on the access to
software/hardware components, e.g. if software is unavailable, or if it is available but a
parallel port has not yet been performed. Using this as a basis for classification, the
following categories can be used:

1. Abstract Characterisation: This category includes the characterisation methods
that can be used in the initial stages of the software development by analysing
the algorithms (or designs) being considered.

2. Software Based Characterisation: The methods in this category require the
existence of the software source code, and resource usage information which is
hardware independent.

3. System Based Characterisation: Finally the characterisation techniques that are
system dependent (i.e. both software and hardware dependent) are contained in
this category. These methods are used mainly in capacity planning and tuning
style performance studies that require high accuracy on a given system.

The two classification schemes described above are complementary, and as such, a
particular method may be placed in a category of both classification schemes without
overlap. That is, the resource model may be dependent upon available software, but is
also considered as a micro-analysis.

3.2 Resource model attributes

The selection of the appropriate resource model for a performance study is dependent
on a number of requirements including: the prediction accuracy; the effort required to
obtain the RUVs; the status and availability of software; the access to the target system
and compiler; and also in the portability of the resource models. These attributes are as
follows:

1. System Component Accessibility : Factors that influence the selection of the
resource model are the availability of the source code, the compiler, and the
hardware system. For example in some cases, the source code may be available,
but a compiler and the hardware system are unavailable. Consequently, it would
not be possible to measure the performance of each part of the software
execution graph using actual measured timing information, or to analyse the
output of the compiler.

2. Phase of Software Development: In initial stages of software development,
source code is not available, and so the resource information must be acquired
from the initial software designs and algorithmic structures. In later stages,
when source code is available other types of resource models can be used.
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Finally in post-development stages where tuning and capacity planning is
required, actual timing information can be obtained.

3. Portability: A number of resource models are applicable to many hardware
platforms while others are specific to a single system.

4. Accuracy:  The resultant accuracy, required from the predictions of a
characterisation study is another criteria for selecting the appropriate resource
model. High accuracy of the results often requires more effort in obtaining the
RUVs, and also may be less portable.

5. Effort:  The effort involved in obtaining the RUVs is a further factor which
should be considered. Typically when low effort is spent the descriptors are
either system dependent or the prediction results will be of poor accuracy while
high effort may result with high accuracy or high portability. It should be noted
however, that obtaining resource usage information can be automated in many
cases.

3.3 Description of resource models

The characterisation techniques are placed within the two classification schemes
proposed earlier and their properties, according to the list above, are described. Each
technique and the associated resource model is described below.

3.3.1Design based characterisation (DBC)

Design based characterisation is performed in the initial stages of software development
when source code does not yet exist. The output of this characterisation technique is
similar to the RUVs as in the high level language characterisation and the instruction
level characterisation described below. However, the procedure used to obtain the
RUVs is not based on the analysis of the source code, and the resulting accuracy is
substantially different.

Software Performance Engineering suggests an engineering based methodology that
allows early performance predictions of a software system, termed performance
walkthroughts [38]. The purpose of this technique is to develop the software execution
graph of the application, define representative workloads, and estimate the RUV
information for each software component. To obtain the RUVs a performance engineer
make estimates based on previous experience. The descriptors in SPE studies are
presented in terms of CPU execution time, number of I/O calls,  number of system calls
etc. [37, 38].

Other techniques and tools exist that allow development of control flow graphs in the
initial stages of software development including GQUE [22], and QNAP2 [41]. A tool
that allows the user to develop computational structure models and define resource
usage descriptors in terms of principal high level language operators has also been
developed [1].

Design based characterisation conforms to the abstract and macro classifications
discussed earlier. Since the characterisation is performed in the early stages of software
development, the resulting predictions typically have a low accuracy.

3.3.2 Principal operation characterisation (POC)

Principal operation characterisation is based on the assumption that by studying one
operation, or a small class of operations, it is possible to approximate the performance
of the system. For example in the initial stages of the software development it is



8

possible to make initial predictions of the performance, by identifying the principal
operations.

An example of principal operation characterisation in the performance studies of
scientific applications are those based on floating point operations (or flops) [12, 16,
19]. The number of flops, that are to be credited for different types of floating point
operations can be based on the scheme suggested by McMahon [25]. Using Table 1 one
can use flops as the RUV for each node of the software execution graph. Then by using
the flop rate (Mflop/s) of a specific system the execution time can be estimated.

Operation Cost
add, subtract, multiply 1 flop
divide, square-root 4 flop
exponential, sine, etc. 8 flop
IF( X .REL. Y ) 1 flop

Table 1 - Floating point operation costs

Principal operation characterisation conforms to an abstract based, macro classification
methodology. It can be used at various stages of software development. The main
advantages of this characterisation method is its high portability and the low effort
required to obtain the principal operations. The main disadvantages of this method is its
resulting low accuracy, and the limited applicability to applications that don't use the
type of operations that have been selected, e.g. in non floating point intensive
applications where flops has been selected as the principal operation.

3.3.3 High level language characterisation (HLLC)

Here the resource information is described through an  analysis of the operations used
in a high level language. An n-value vector is defined where each component represents
the performance of a particular language operation. The components of the vector are a
set of primitive operations that are found in a high level language, e.g.:

c = tint add ,tint sub ,tint div ,...,tloop ,tif ,...( )T
(2)

where c is the operation cost vector, tintadd, tintsub, tintdiv are the times required for an
integer addition, subtraction, and division respectively, tloop is the overhead for a loop
operation, and tif is the time overhead for an if statement and so on. The number of
operations represented by this vector depends on the language, and the detail of analysis
required.

The values of these parameters can be measured by a benchmarking procedure which
isolates, and measures the performance of each operation. Each node of the software
execution graph can be represented in terms of these primitive operations by analysing
the source code of the program that corresponds to the graph node. A RUV is generated
corresponding to the operation cost vector above that contains the frequency of each
operation, e.g.:

f = f int add , f int sub , f int div ,..., f loop , f if ,...( )T
(3)

where f is the RUV, fintadd, fintsub, fintdiv are the frequencies of the integer addition,
subtraction and division operations respectively, floop is the frequency of loop
statements, and fif is the frequency of if statements etc.
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The execution time, tx, of each node of the software execution graph is given by the
inner product of the operation cost vector and the RUV:

tx = cT ⋅ f (4)

High level language characterisation has been used in many performance studies, e.g.
[3, 10, 31, 34]. Languages that have been characterised in this way include FORTRAN
[3, 31],  and Pascal [34].

The generation of control flow graphs and automatic estimation of resource usage in
terms of the high level language constructs was first described by Cohen [10]. A more
pragmatic approach was followed in [3] where the performance of FORTRAN
scientific programs is analysed using high level language characterisation for a range of
systems from workstations, up to supercomputers each having a different operation cost
vector. In [34] a micro time cost analysis methodology is presented for parallel
computations. A sub-set of PASCAL was used as the target language and a tool
(TCAS) described that allows the automatic generation of control flow graphs of the
program and automatic estimation of RUVs. Finally in [31] an interpretative framework
for application performance prediction is presented targeted mainly on heterogeneous
high performance computing systems. A tool is presented that can estimate HPF
FORTRAN programs automatically. As in the TCAS tool part of the interpretative
performance tool includes the estimation of the RUVs in terms of HPF FORTRAN
constructs.

Although these last two tools describe parallel system characterisations, the TCAS tool
is limited to a shared memory system where no-contention in accessing memories is
considered (an idealised system), and the HPF-FORTRAN was analysed through its
implicit data-parallelism. Thus their applicability to general parallel systems is yet to be
developed.

High level language characterisation is an attractive methodology because it allows the
software characterisation to be performed in a system independent fashion. Since the
software is characterised in terms of RUVs, the performance can be predicted for any
system by using the system dependent operation cost vector. Another advantage of the
method is that it only requires the source code of the program for estimating the
resource usage without the need of a compiler for the system under investigation or the
actual system to obtain measurements. The effort required in obtaining the frequency of
operations is relatively small and can be performed automatically in many cases.
However, the operation cost vector approach considers non-overlapping independent
operations and does not lend itself readily to optimising compilers and to super-scalar
processors (which allow multiple operations to take place simultaneously).

3.3.4 Intermediate code characterisation (IntCC)

Another characterisation approach similar to the high level language is intermediate
code characterisation. Instead of analysing the high level language operations,
intermediate code as output from a compiler is examined. Since the intermediate code is
closer to the assembly language, more detailed hardware models can be used which
include parameters such as cache misses, branch behaviour, main memory access
frequency etc. This methodology has been used for sequential benchmark
characterisation [11].

Intermediate code analysis can be achieved by the use of high-quality architecture-
independent compilers such as the GNU compiler [39] and the Impact compiler [9].
They produce intermediate code that is the assembly language of an abstract machine
and thus is language and architecture independent. This independence is one of the
main advantages of intermediate code characterisation, whilst also containing a detailed
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hardware system model. It conforms to the micro and software based classifications
presented earlier.

3.3.5 Instruction code characterisation (ICC)

Instruction code analysis is based on the statistical examination of the assembly code
that is produced as the final output from a compiler. The result of this procedure is the
derivation of a frequency table of the instructions that are executed within each node of
the software execution graph. From the instruction frequency table, a RUV can be
derived that can be used as input to a detailed resource model.

Examples of such resource models are the number of clock cycles for task execution,
main memory references, cache hit ratios etc. A number of instruction code
characterisations have been detailed previously, e.g. [13, 18, 23, 33, 42].

Instruction code analysis does not require the execution of the code on the target
system, but requires only the system compiler. Predictions are obtained by evaluating
the resource model with the RUV derived from the instruction frequency tables and
provides higher accuracy than the other characterisation techniques described here. The
main disadvantages of this method is that it requires relatively high effort in obtaining
the RUVs, although tools can be used to accelerate the procedure (e.g. [42]), and the
portability of the results obtained is low. Portability only across systems which contain
the same processor component is possible. The resource model is applicable across a
number of systems, but the parameters contained within it are system specific, (e.g.
cycle time, pipeline length).

Instruction code analysis is a system based and a micro type characterisation method. It
requires the measurement of all the operations produced as output by the compiler, and
thus is software and processor dependent. However, its advantages is that it has the
scope in producing the most accurate predictions from all characterisation methods
described.

3.3.6 Component Timing (CT)

The last  characterisation method is to actually measure the time required to execute
each node of the software execution graph on the target system. This can be performed
when the source code and the system are both available. Component timing is most
appropriate for performance tuning, capacity planning, and when studying the effects of
data dependent parameters.

Monitoring tools are widely available that allow the measurement of the execution time
of each node of the software execution graph. Some examples of monitoring tools that
can be used for this purpose are IPS-2 [26], PABLO [35], and PEPS monitoring tool
[24]. Because of the available tools it is easy to perform performance studies using
component timing as resource information and will result with high accuracy. However,
component timing can only be used in the last stage of the software development when
the source code and system are both available. Another disadvantage is that the timing
information cannot be used on other systems.

Component timing cannot be considered as micro or macro analysis, since it does not
involve the measurement of any operations, but can be classified as a system based
characterisation.

3.4 Summary of characterisation resource models

A summary of resource models is shown in Table 2. The scales on which the
portability, accuracy, and effort have been assessed range from low (*) to high (***). In
the next section, the accuracy of each method is quantified through a number of
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examples. The design based and principal operation characterisation methods provide a
systematic approach to approximate resource usage information for software from an
algorithm or from the software design. They do not require the existence of source
code, compiler, or the system itself, but the resulting accuracy is low.

The high level language characterisation and intermediate code analysis provides two
system independent methods to predict performance. The accuracy obtained is high and
different degrees of effort is required to obtain the resource usage information.

Finally, instruction code analysis and component timing can be used for system
dependent studies, where the source code, compiler, and system are available. The
accuracy of the predictions is typically high. The effort required for the instruction code
analysis is typically high but for the component timing is typically low.

Method Classifications Requirements Phase of Portability Accuracy Effort

Code Compiler System Develop.

DBC Macro,
Abstract

Design ***† * ***

POC Macro,
Abstract

Algorithm
Design
Code

*** * *

HLLC Micro,
Software Based

✓ Code *** ** **

IntCC Micro,
Software Based

✓ Code ** *** ***

ICC Micro,
System Based

✓ ✓ Code * *** ***

CT Monitoring,
System Based

✓ ✓ ✓ Code None *** *

† * low, ** medium, *** high
Table 2 - Overview of resource usage characterisation methods

4. Example Application Kernels

For the analysis of the different characterisation techniques three application kernels are
used. These kernels have been implemented on a Parsytec MIMD parallel system and
have been characterised using the layered characterisation framework, described in
Section 2. A number of different resource models have been analysed on each kernel.
The kernel applications are described below in terms of their software execution graphs
and parallelisation strategies. This is followed by a description of the communication
model and resource models.

4.1 Kernel  descriptions

The kernel applications have been selected to represent commonly used operations that
occur within many application processing domains. They can be considered as separate
operations which have being individually analysed. The kernel applications were
selected from the results of a study of the processing operations that commonly occur
across many application domains [29].

The three kernels used here consist of a numerical integration, sorting, and a matrix
multiplication. The control flow through each of the predominant operation contained
within each one of these kernels is shown in the software execution graphs in Figure 5.
Note that each stage in the graphs has been individually labelled, and each is associated
with its necessary resource information. In the case of a loop this is simply the loop



12

iteration count, a conditional branch has a probability value of each branch occurring,
and a RUV is used for each of the processing stages.
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Figure 5 - Software execution graphs for application kernel processing intensive
functions

It can be seen in Figure 5, that the surface estimation of the numerical integration kernel
consists of 5 processing stages, 1 conditional branch, and 2 loops, whereas the dot
product operation from the matrix multiplication kernel consists of a single processing
stage embedded within a double nested loop.

The timing formula for the software execution graphs of each application kernel is
shown in Table 3. This formula is simply the summation of the time taken for each of
the processing stages, multiplied by their probability of occurring and by any loop
iteration counts. Note that the function t() provides the execution time for the
processing stages and represents the resource model.

Kernel Function Timing Formula
Integration Surface

Estimation
tx = Pedge ⋅ t vedge( ) + 1 − Pedge( ) ⋅

Npower ⋅ t vpower( ) + t vvinit( ) + Nivals ⋅ t vsrf( ) + t vresult( )( )
Sorting Merge

tx = t vinit( ) + Nmerge ⋅ t vmerge( ) + Ntail ⋅ t vtail( ) +

Ncopy ⋅ t vcopy( )
Matrix
Multiplication

Dot Product
tx = Ncols ⋅ Nrows ⋅ t vdtpr( )

Table 3 - Timing formulas for computational intensive parts of application kernels
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The descriptions of the kernel applications above are within the application layer of the
characterisation framework. The parallelisation aspects of these kernels are contained
within the parallel template layer. This describes the computation and communication
patterns that result from mapping the kernels onto the target parallel system. For the
kernels used here the parallelisation methods used was a domain decomposition with
different communication patterns for each kernel. In the case of the numerical
integration this consisted of a multiphase structure [17], for the sorting kernel a
butterfly style structure was used [4], and for the matrix multiplication a standard row-
column broadcast structure was used [27]. A detailed description of the characterisation
of the computation-communication patterns within the parallel template is out of the
scope of this paper.

4.2 Hardware models for the Parsytec SuperCluster

The hardware system used in this study is a Parsytec SuperCluster with 128 T800
(25Mhz) transputer nodes. This system supports grid style topologies, uses a micro-
kernel operating system (PARIX 1.2), and is hosted by a SUN workstation. In obtaining
parameters for the hardware models and measurements for the kernel applications sole
use of the systems was possible (i.e. there were no multi-user effects).

Four of the characterisation resource techniques previously described have been used to
obtain performance predictions. The resource models cover a wide range of
characterisation techniques ranging from design based, macro type analysis techniques
to detailed, system based, micro type analysis techniques. The techniques considered
are: principal operation characterisation (using flops as the principal operation), high
level language characterisation (using C constructs), instruction level characterisation
(using the T800 assembly code), and component timing of code segments (obtained
from the PABLO monitoring tool).

The effects of the communication are considered separately from the computation
components of the kernel applications. The underlying model used for the
communication is the same across all characterisation techniques considered and thus it
has been isolated to emphasise the differences in the resource models. The
communication model encompasses part of the parallelism cost in contrast to the
software execution graph that considers the serial parts of the application.

The model used for the Parsytec system is based upon a linear model parametrised in
terms of inter-processor communication node distance, and message length (bytes). The
model also contains values for communication start-up time, packet size, bandwidth etc.
This model is based on the work done by Bomans [6] and has been extended for packet
switching routing by Tron [40], and has not been modified here. The inaccuracies
contained within the communication model are not of interest here and are separated
out in the analysis that follows. The communication model is as follows:

tcom(l,d) =
α + d ⋅ β + τ ⋅ l + h( )( ) l ≤ p

α + d ⋅ β + τ ⋅ p( ) + l

p
−1







⋅ α 2 + β + τ ⋅ p( ) l > p






(5)

where l is the message size, d distance between source and destination nodes, h is the

size of the packet header, p the size of the packet, α is the time to prepare the message,

β is the start up time, τ is the inverse of bandwidth, and α2 is the time to prepare a
packet.
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The parameters in this model are obtained through the regression of a set of
measurements obtained for different values of l (from 100 to 20000 bytes) and d (from
1 to 10 node distances).

The resource models within the four characterisation techniques being considered are
described in detail below. It is described which parameters within these resource
models are required and whether they are obtained from measurements or system
specifications. Note however, that there is no resource model when component timing
is used.

4.2.1Principal operation characterisation

The principal operation characterisation used here, considers only floating point
operations (flops). The RUV for each node of the software execution graph contains the
type and frequencies of floating point operations. Using McMachon's weighting
function, Table 1, a single value is calculated that represents the total number of flops.
The resource model is this case consists of only the floating point rate of the processor,
when combined with the flops value provides the predicted execution time, tx:

tx =
N flops

Rfpu

(6)

where Nflops is the flops value for this node and Rfpu is the sustained Mflop/s rate of the
processor. The Rfpu can be obtained from the specifications of the processor, or through
benchmark measurements. In the case here, the value of this was taken to be 1.5
Mflop/s [20].

4.2.2 High level language characterisation

The resource model within the High Level Language Characterisation considered the
construct that occur in the C programming language. A full set of these was not defined
however a sub-set which encompassed all necessary constructs for the three application
kernels was used.

In total 28 constructs were considered grouped into integer operations, floating point
operations, double precision floating point operations, control flow statements, and
local/global variable memory references. The time cost of each operation was measured

using a benchmark routine taking the average of 1x104ּrepetitions while isolating the
effects of loop overheads. The benchmarking process was based on a suggestion given
by Barrera [3].

The time cost measured for most arithmetic operations is shown in Table 4 (NB not all
operations are applicable to all types). Some of these measurements are not as expected
(e.g. single floating point add/subtract compared with double floating point
add/subtract). However, an understanding of these arithmetic costs is not required as
long as an understood benchmarking process is used.

+ - * / Shift Sqrt Abs
Integer (32 bit) 0.41 0.41 0.57 2.08 0.12 N/A 0.84
Float (Single) 0.51 0.50 0.69 1.32 N/A N/A N/A
Float (Double) 0.48 0.49 1.18 1.61 N/A 9.77 0.96

Table 4 - Measured time cost (µsec) for the arithmetic high level language operations

The associated RUV for each node of the software execution graph was obtained by
examination of the corresponding elements of the source code and totalling the
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frequency of each operation. The execution time tx for each component of the software
execution graph is calculated as in Equation 4.

4.2.3 Instruction level characterisation

The hardware model of the Instruction Level Characterisation is more complex than
those in the other characterisation techniques analysed here. The model includes
parameters concerned with instruction cycle counts, memory references, and
overlapped operation between the transputer FPU and ALU. The model used here is
based on that described in [43]:

tx = nex + nin_mem + e ⋅nex_mem +
e−3( )

2
⋅ninst − n fpu_ovr( ) ⋅ tcyc (7)

where nex is the total number of clock cycles for instruction execution, nin_mem is the
number of internal memory references, nex_mem is the number of external memory
references, ninst is the total number of instructions, nfpu_ovr is the number of cycles in
which FPU and ALU are overlapped, tcyc is the processor cycle time, and e is an off-
chip memory cost factor. For the Parsytec SuperCluster the value of e was taken to be 5
cycles and tcyc was 40ns.

The RUV for this model consists of the five parameters (Equation 7). They are obtained
by the analysis of the assembly code output of the ACE C compiler. The value of nex is
taken to be the sum of the frequency of each instruction multiplied by the cycle count
for it. The parameters nin_mem and nex_mem are calculated from the number of memory
references (and their addresses) in the operands of load and store instructions. The
parameter ninst is taken to be the number of instructions executed and nfpu_ovr is
calculated by the examination of the sequence of instructions performed. These
parameters are obtained for each node of the software execution graph and the
execution time, tx, is then calculated using the above hardware instruction level model.

5. Results

Presented here are prediction results and measurements for the three application kernels
described earlier. For each, results are given for the characterisation techniques
described in Section 4. The results were obtained from the implementation of the
characterisation models within the Mathematica programming environment. This has
also been used in previous characterisation and modelling studies [30, 32].

5.1 Comparison of measurements and characterisation predictions

The measurements and predictions have been obtained for the Parsytec SuperCluster.
To measure elapsed time, a short assembly code routine was used that takes 6.5µsec to
execute. For each of the application kernels (integration, sorting, and matrix
multiplication) results are given for the four characterisation techniques, principal
operation (flops), high level language (C language constructs), instruction level
(transputer assembly), and component timing. These four methods are compared with
the elapsed time measured for the complete kernel.

The execution times for each component in the software execution graphs are shown in
Table 6. The table shows the execution time for each node after evaluation of the RUVs
with the relevant resource model. These values show the error in the characterisation
techniques due solely to the different resource models. The components of each graph
are shown in Figure 5 earlier. These values are used within the software execution
graph timing formulas  and combined with the parallelisation template to produce the
total execution time.
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Node CT† ICC‡ HLLC* POC**

Surface Estimation - Integration
tedge 37.0 37.1 29.6 12.0
tpower 3.1 3.6 2.1 0.0
tvinit 8.8 10.4 7.0 5.4
tsrf 23.0 22.9 19.4 11.5
tresult 7.0 7.9 6.0 6.2

Merge - Sort
tvinit 1.5 1.2 0.5 0.0
tmerge 12.1 10.8 9.2 0.8
ttail 6.0 8 3.9 0.0
tcopy 8.9 9.2 5.6 0.0

Dot Product - Matrix Multiplication
tdtpr 6.5 6.4 6.9 1.5

† Component Timing, ‡ Instruction Code Characterisation, * High Level Language Characterisation,
**ּPrincipal Operation Characterisation

Table 6 - Software execution graph node predicted execution times (µsec)

The measured and predicted total execution times are shown in Figures 6, 7, 8. These
are for a range of processor numbers but on a fix sized data set. The data size for the
sorting kernel was 128K floating point data elements, the matrix multiplication kernels
for matrices of size 256x256, and in the integration kernel the integration interval was 0

to 100 of a fifth order polynomial with a final allowable precision of 1x10-10.
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Figure 6 - Measured and predicted times for the integration application kernel
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Figure 7 - Measured and predicted times for sorting application kernel
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Figure 8 - Measured and predicted times for matrix multiplication application kernel

The difference between each of the predictions and the measurements has been
calculated and shown in Figures 9, 10, 11 for each of the kernels. This can be
considered as the overall error in each of the characterisation techniques. This error
includes the parallel template, communication, software execution graph
approximations, and the effect of the different resource usage techniques. These effects
are separated out and discussed in the next section.
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Figure 9 - The error (%) between measured and predicted total execution times for the
integration kernel

5.2 Discussion of results

The errors between the predictions and the measurements for the total execution times
presented earlier illustrate the differences between each of the characterisation
techniques. It can been seen in Figures 9, 10, 11 that the overall error for the instruction
level characterisation is less than that of the high level language characterisation which
in turn is less than the principal operation (flop) characterisation. However, the errors
presented in these graphs are due to errors in the resource models and those that occur
within the characterisation framework being used. These can be categorised as follows:
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• Resource Models: Errors due to the assumptions within the different techniques for
characterising the resources.

• Software Execution Graph Approximations: Errors due to software control flow
approximations.

• Parallel Template: Approximations made in the modelling of the parallelisation
strategies.

• Communication Model: Inaccuracies in the communication model (e.g. network
contention, synchronisation overheads).

• Other Effects: These include errors due to other characterisation and modelling
techniques embedded into the framework, e.g. regression models that represent the
performance of software and hardware components that cannot be otherwise
characterised.
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Figure 10 - The error (%) between measured and predicted total execution times for the
sorting kernel
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Figure 11 - The error (%) between measured and predicted total execution times for the
matrix multiplication kernel
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Within the analysis here only the errors due to the different resource usage models are
of interest. These can be separated out from the overall errors presented in section 4 as
follows.

The errors associated with the last four categories are the same for the characterisation
techniques used. However, the first category depends upon the resource model in the
characterisation technique (in the case of component timing this is zero). Thus by
subtracting the resulting errors in the component timing from the errors in the predicted
times of the other characterisation techniques, the errors only due to the resource
models can be separated. The errors due only to the resource model within the
characterisation techniques are shown in Table 6 for the three kernels.

Integration Sorting Matrix Multiplication

Processors ICC† HLLC‡ POC* ICC HLLC POC ICC HLLC POC

2 0.3% 15.5% 48.6% 0.4% 1.4% 4.8% 0.8% 4.8% 80.5%

4 0.4% 15.4% 48.4% 0.5% 3.7% 12.4% 1.6% 4.9% 79.9%

8 0.3% 15.2% 47.7% 0.6% 5.3% 21.4% 1.5% 4.9% 79.2%

16 0.3% 14.7% 46.1% 0.3% 9.0% 29.4% 2.0% 5.1% 78.0%

32 0.4% 13.2% 41.1% 0.1% 12.3% 40.0% 1.8% 4.8% 72.8%

64 0.5% 9.5% 29.8% 0.1% 12.5% 40.6% 1.9% 5.2% 69.0%

128 0.7% 5.1% 15.1% 0.7% 5.1% 15.1% 1.6% 4.3% 57.2%
† Instruction Code Characterisation, ‡ High Level Language Characterisation, * Principal Operation

Characterisation
Table 6 - Error in Predictions due to Resource Models

It can be seen from this table that the error increases between the instruction level
characterisation to the high level characterisation and similarly between the high level
characterisation to the principal operation characterisation. This is as expected due to
the increase of complexity in the resource models and RUVs between the more abstract
methods and the detailed instruction level characterisation. These effects where
discussed in Section 3 but can now be quantified.

The variation in Table 6 for different processor numbers is due to different weightings
that are placed on the components of each software execution graph such as the looping
iterations, and the conditional branches which are parametrised in terms of the number
of processors. In the case of the multiplication kernel it can be seen that errors in the
principal operation characterisation are large. This is due to the core computation (the
dot product calculation) consisting of a single multiply - accumulate operation nested
within a double loop. The principal operation characterisation does not considers the
looping overheads (consisting of only integer operations). The accuracy bounds for
each of the resource models in the characterisation techniques are shown in Figure 12.
It is clearly shown here the different bounds in accuracy that each of these methods
produced for the kernels analysed. The values of the mean error (%), standard
deviation, minimum and maximum errors, and the 90% confidence interval of the mean
are tabulated in Table 7.

Method Mean
Standard
Deviation

Error Bounds
(Min, Max)

90% Confidence
Interval of Mean

ICC† 0.80 0.64 (0.10, 2.00) (0.57, 1.030)

HLLC‡ 8.19 4.65 (1.40, 15.50) (6.52, 9.85)

POC* 45.58 24.31 (4.80, 80.50) (36.86, 54.3)
† Instruction Code Characterisation, ‡ High Level Language Characterisation, * Principal Operation

Characterisation
Table 7 - Error (%) Statistics in Predictions due to Resource Models
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Figure 12 - Accuracy bounds of the resource models

6. Summary

In this paper, characterisation techniques have been examined and classified into a
number of categories depending upon the complexity of the resource models.
Commonly, each characterisation technique involves a description of the underlying
hardware which is combined with resource usage information to enable predictions of
the execution time to be made. The emphasis on the analysis of the resource models has
been to quantify their effects when applied to parallel systems. For this purpose this
analysis has been performed within a characterisation framework which also
encompasses aspects of parallel systems. The effects that the framework have on the
accuracy of resulting predictions is separated so that the full effect of the resource
models can be quantified.

The characterisation techniques in common use range from abstract levels involving
little resource information through to detailed low level information. These were:
abstract characterisation, principal operation characterisation, high level language
characterisation, intermediate language characterisation, instruction code
characterisation, and component timing characterisation. The advantages and
disadvantages of each technique was discussed.

Representative characterisation techniques were used on three application kernels
(integration, sorting, matrix multiplication) to demonstrate and compare the accuracy of
each method. The characterisation techniques used were principal operation (flop), high
level language (C constructs), instruction level (transputer assembly), and component
timing analysis (obtained from monitoring information).

The results obtained for the different resource models have illustrated that the more
detailed the resource model used is then the more accurate the resulting predictions are.
For the software kernels and the hardware considered the error bounds due only to
resource usage information in each of the characterisation techniques ranged between
0.1-2.0%, 1.4-15.5%, 4.8-80.5% for the instruction level characterisation, high level
language characterisation, and principal operation characterisation respectively.

The accuracy required in a characterisation study, the stage of software development,
and the accessibility of the system components (compiler, hardware system) determine
which of the resource usage techniques can and should be used.
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