
http://wrap.warwick.ac.uk/

Original citation:
Papaefstathiou, E., Kerbyson, D. J. and Nudd, G. R. (1994) A layered approach to
parallel software performance prediction: a case study. University of Warwick.
Department of Computer Science. (Department of Computer Science Research Report).
(Unpublished) CS-RR-262

Permanent WRAP url:
http://wrap.warwick.ac.uk/60942

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/29189361?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60942
mailto:publications@warwick.ac.uk

A Layered Approach to Parallel Software
Performance Prediction : A Case Study

E. Papaefstathiou, D.J. Kerbyson, G.R. Nudd

Department of Computer Science, University of Warwick, Coventry CV4 7AL, U.K.
Email: stathis@dcs.warwick.ac.uk

ABSTRACT

An approach to the characterisation of parallel systems using a structured layered
methodology is described here. The aim of this is to produce accurate performance
predictions which maybe used to influence the choice of machines and investigate
implementation trade-offs. The methodology described enables the separate characterisation
of both application, and parallel machine to be developed independently but integrated though
an intermediary layer encompassing mapping and parallelisation techniques. The layered
approach enables characterisations which are modular, re-usable, and can be evaluated using
analytical techniques. The approach is based upon methods introduced in Software
Performance Engineering (SPE) and structural model decomposition but due to its modular
nature, takes less time for development. A case study in image synthesis is considered in
which factors from both the application and parallel system are investigated, including the
accuracy of predictions, the parallelisation strategy, and scaling behaviour.

1. INTRODUCTION

One of the factors that has contributed to the limited acceptance of parallel systems from
the mainstream community is the lack of efficient, user-friendly, methods and tools that
enables accurate performance predictions to be made. A novel layered approach is described
in this paper that provides performance predictions of parallel software before porting it
[Nudd93, Papaefstathiou93]. This methodology is derived from the principles of structural
model decomposition [Patel92] and Software Performance Engineering (SPE) [Smith90],
which have been widely applied to sequential systems [Smith82, Weishar87], but are here
applied to parallel systems.

A conventional modelling process starts by an examination of a computer system and the
construction of a model of it. The measurement of the execution pattern, and the
characterisation of the workload are required as input parameters to this model. A progressive
refinement of this model is made by the comparison of real and predicted measurements until
accurate results are yielded. Thus, such an approach is inadequate for predicting the
performance of software which has not yet been ported since the workload cannot be
measured.

The modelling approach used within SPE enables workload parameters to be determined
without first implementing the software. SPE achieves this by complementing the
conventional computer system model with a software execution model containing the key
characteristics of the execution behaviour. The software execution model is constructed using
workload scenarios, software design, execution environment, and resource usage information.
It is evaluated by graph analysis algorithms to determine the workload parameters required
for the system model.

However, SPE has a number of disadvantages that are particularly apparent for the
performance prediction of parallel programs. These disadvantages include: a complicated and
time consuming development procedure for the system model; analytical methods usually can
not be used to evaluate the system model; the system model is software / hardware dependent
and hence not re-usable.

The novel layered approach described here overcomes these limitations by the use of
independent layers for each of the application, the parallelisation technique, and the hardware.
The layered technique originates from work in model decomposition [Jain89, Patel92] whose
main goal is to sub-divide the model into simpler models. The layered approach can be
viewed as complimentary to SPE for the case of modelling parallel systems. The
independence of the layers leads to:

• a minimisation of the time required to construct models

• wider applicability of analytical techniques for the models opposed to the models
within SPE studies

• re-usable models which allow the easy experimentation of the performance of an
application running on different hardware and using different parallelisation
techniques.

In this paper the layered approach is first described in terms of its constituent layers
namely the application layer, the sub-task layer, the parallelisation template layer and the
hardware layer. An image synthesis application is used to illustrate the layered approach as a
case study. The accuracy of the resulting characterisation is examined and it is shown how
optimum values of parallelisation parameters can be obtained when experimenting with the
resulting analytical model.

2. THE LAYERED APPROACH

The layered approach described here separates out the hardware and software systems
through the use of a parallelisation template, Figure 1. This modular approach leads to readily
re-usable models which can be interchanged in experimentation. For instance the performance
predictions across parallelisation techniques can be compared for a particular application on a
particular hardware. The layers used are listed below and are described in further detail in the
following sub-sections:

• an application layer, which models the application in terms of a sequence of sub-
tasks using a software execution graph notation (from SPE). Each node of the
graph can be a sequential processing node, a user defined parallel sub-task, or a
parallel processing generic (from a library).

• an application sub-task layer, which models the sequential part of every sub-task
within an application that can be executed in parallel. The result of the evaluation
of these models is fed to the parallel template layer.

• a parallelisation template layer, that identifies the resource contention caused by
the characteristics of the algorithms.

• a hardware layer, which is responsible for characterising the communication,
synchronisation, and contention of resources.

2.1. The Application Layer
The purpose of the application layer is to characterise the application in terms of a

sequence of sub-tasks using a software execution graph. The graph notation includes control
statements, hierarchical components, state identification nodes (lock-free, send-receive), and
split nodes (concurrent processes), Figure 2. This provides a characterisation of the workload
without the need of implementation and measurement. However, the accuracy of the resulting

Application Layer

Sub-Task Layer

Parallelisation Templates

Hardware Layer

Application Domain

Figure 1 - The Layered Approach

Elementary
Processing

Nodes

Loop

Case

Control

Flow

Lock-Free

Fork-JoinState

Identification Send-Receive

Acquire-Release

Expanded

Figure 2 - Software Execution Graph Notation

predictions are dependent upon the techniques used to describe the software within the
elements of the software execution graph.

The nodes of the software execution graph in the application layer consist of a number of
elementary processing types, that are classified in the following categories:

•ּSequential Processing Nodes: Tasks that can be performed sequentially.

•ּUser Defined Parallel Sub-Tasks: These are defined in the lower sub-task application
layer using the same graph execution notation.

•ּParallel Processing Generics: These are frequently used pre-defined parallel sub-tasks
which exist within a library. The formation of such a library is currently under
investigation [Peps93].

2.2 Sub-Task Layer
In the sub-task layer application specific models are defined for each sub-task. The result

of the evaluation of these models is the input to the parallel template layer. The sequential
parts of the parallel template must be modelled and their response time determined.

Initially for each sub-task a software execution graph is constructed. The user must then
identify the resource usage of each elementary node as defined in SPE. There are a number of
ways in which each node of the software execution graph can be characterised, this is
commonly referred to as a resource usage description. These range from a high level
description considering sequential timing information or parametric characterisation
[Hockney93], an intermediate level considering abstract machine descriptions [Saavedra89],
down to a low level instruction frequency analysis [Zemerly93a]. The level at which the
hardware is characterised is also dependent upon the choice of the resource usage description.
In the case study below we consider a high level timing description, but work is currently in
progress to analyse these different levels of resource usage.

2.3. Parallelisation Template Layer
The purpose of the parallelisation template layer is to identify the resource contention

caused by the characteristics of the algorithm. It has been noted that a large number of
computations fall into a surprisingly small number of prototypical structures [Gehringer88].

In many areas it is possible to identify a small set of algorithm structures that can be modelled
using traditional modelling techniques [Allen86]. Many parallelisation techniques have been
analysed in detail [Greenberg91, Rolia92].

In order to identify the most commonly used parallelisation techniques a classification
scheme is required. The aim of such a classification is to determine different classes, on the
basis of similarities, amongst different parallel algorithms. The classification enables the
extraction of the most frequently used constructs and also the definition of application
independent parameters. Proposed classification schemes include: the Cm* project
[Gehringer88], the Basel Algorithm Classification Scheme (BACS) [Burkhart93], and the
scheme proposed by Jamieson [Jamieson87]. By considering the most representative
parallelisation templates it is possible to cover the majority of applications.

A parallelisation template also includes the mapping of the algorithm onto network
topologies. The purpose of determining the algorithm mapping is to identify the
communication and synchronisation patterns that are inputs to the hardware layer. For
example, different mappings of the master-slave paradigm on a mesh topology result in
different communication radius influencing communication contention.

2.4. The Hardware Layer
The hardware layer is responsible for the characterisation of communication,

synchronisation, and contention. The information required for this layer can be organised into
a hierarchical structure similar to the one used in the architecture characterisation tool in the
PAWS project [Pease91]. The requirements of the hardware model are less complex than the
system model in SPE, making the development and evaluation procedure easier.

The hardware model consists of static and dynamic performance parameters. Static
parameters (e.g. number of processors) represent hardware factors that are not influenced by
the run-time environment and can be determined either by benchmarking or configuration
information. Dynamic parameters are influenced by the run-time environment and can be
determined by analytical models or hardware characterisation, e.g. [Zemerly93b].

3. Case study: An Image Synthesis Application

The case study considered here is the computational core of an image synthesis
application, based on ray tracing techniques, and has also been developed into a benchmark
[Biersack93]. The target machine in this case study is a Parsytec SuperCluster containing 128
T800 transputers.

This application requires a scenery file as input, renders the image, and finally outputs the
generated image. The synthesis problem scales in three dimensions: the complexity of the

scene, the resolution of the image, and its quality. The scene contains 4n triangles, the image

resolution is 2mx2m and k ray-path samples per pixel (an image quality factor). The metric of
the benchmark is the number of samples calculated during a fixed time period of 1000
seconds.

The purpose of the application layer in the case study is to combine the three phases of the
application, input, rendering, and output. These phases can be parallelised with different
strategies and are combined into a software execution graph. By evaluating this graph the
total execution time of the application can be predicted:

ttotal = tinput + trender + toutput (1)

In the sub-task layer the time required for the sequential part of each phase is evaluated.
For the following analysis the rendering phase is examined in detailed. The parallelisation
strategies used here belong to the class of image-space subdivision algorithms [Green91]. The
sequential time in these algorithms is the ray tracing of a pixel. Figure 3 shows a high level

Create Ray

Database
Search

Shade

Add Color

Intersect?

N
pixel

tcr

t db

t ac

tshade

p
i

Figure 3 - Software Execution Graph
for the Rendering Phase

execution graph for the calculation of one
sample. From the evaluation of this graph the
time required for one sample is:

tsample = Npixel ⋅ tcr + tdb + pi ⋅ tshade + tac() (2)

where Npixel is the number of pixels in the
image region that a processor renders, tcr the
time required to create a new ray, tdb the time
required for a database search to identify if the
ray intersects an object, pi the probability of the
ray intersecting an object, tshade the time
required to shade the pixel with diffuse and
specular reflections, and tac the time required to
add colour to the pixel.

Two techniques have been considered for the
parallelisation of this case study, namely the
master-slave and the multiphase paradigms.
Both of these methods have been applied in
image synthesis applications [Holliman89,
Coldsmith87]. In the master-slave paradigm, the
master processor distributes work packets of
rendering requests to slave processors. In the
multiphase paradigm, each processor is assigned

to a part of the image. When the rendering for one sample is completed, the master processor
determines if there is sufficient time available to process further samples. Two parallelisation
templates have been developed for these two cases.

The use of time as a resource usage descriptor simplifies the hardware layer but is
complimented with a model for communication within the parallel system. This is based on a
linear regression communication model [Bomans89] and has been extended for packet
switching routing [Tron93]. More specifically:

tcom(l,d) =
α + d ⋅ β + τ ⋅ l + h()() l ≤ p

α + d ⋅ β + τ ⋅ p() + l

p
−1







⋅ α 2 + β + τ ⋅ p() l > p






(3)

where l is the message size, d distance between source and destination node, h is the size of

the packet header, p the size of the packet, α is the time to prepare the message, β is the start

up time, τ is the inverse of bandwidth, and α2 is the time to prepare a packet.

4. RESULTS

A layered model has been developed for the above case study using Mathematica. This
model is used to provide performance predictions whilst varying a number of application,
hardware, and parallelisation parameters. Firstly the accuracy of the layered approach is
examined. Two parallelisation templates are then considered and predictions calculated. The
application parameters of problem size (e.g. number of image pixels, number of triangles) are
also examined. Finally the scaling behaviour of the application is also investigated.

The first set of results aims to verify the accuracy of the model using the layered approach
with real measurements produced from an implementation of the code using a Parsytec
SuperCluster machine as a basis. The measured and predicted time per sample taken to
generate an image (of size 4096 pixels with 256 triangles) is shown in Figure 4, and the %

difference between the two methods is shown in Figure 5. It can be seen that the predictions
lie within an error bound of 25% of the true measurements, with the average error being
nearer to 15%.

Performance predictions were obtained from the layered model using different
parallelisation templates, namely those of a master-slave and multiphase paradigms. This was
achieved by just interchanging the parallel template layer with the appropriate parallelisation
technique without effecting other parts of the model. The predications obtained using both of
these parallelisation techniques is shown in Figure 6. Here the relative performance is
calculated as in Equation 4. It can be seen that the master-slave parallelisation technique
outperforms the multiphase technique except in the case of a very small processor grid. This
is as expected due to the dynamic load balancing effect of the master-slave technique.

Prelative = 1−
tmaster_slave

tmultiphase





 ×100 (4)

The effect of the application parameter of the number of triangles is examined in Figure 7.
This shows the average predicted time spent to deal with one triangle across a range in the
required number of triangles. The predicted time per triangle here is taken as the total time
taken (e.g. Figure 4) divided by the number of triangles. It can be seen that as the number of
triangles increases, the effective time per triangle decreases but levels out. For small numbers
of triangles the effect of communication overhead is large with respect to the processing time,
whereas for a large number of triangles this overhead is not significant.

The scaling behaviour of the application is examined in Figures 8 and 9. By examining the
predicted speedup for between 20 and 200 processors it can be seen that a maximum speedup
may be obtained on approximately 140 processors (with a speedup of 80). Above this size the
speedup decreases due to excessive contention between the master and slaves. The effect of
increased master-slave queuing time, and also communication time, can be seen in Figure 9.

SUMMARY

In this paper we have described an approach for the characterisation of applications on
parallel machines for performance prediction without the need of implementation. The
approach is structured into four layers, two dealing with the application, one encompassing
parallelisation techniques, and the last to characterise the hardware. These layers are
independent and re-usable such that different machine characterisations or parallelisation
techniques may be interchanged.

A case study of image synthesis is used to illustrate this approach and a model has been
developed using Mathematica. Predictions have been obtained for varying a number of
application dependent parameters (e.g. problem size) and hardware parameters (e.g. number
of processors). These predictions have been compared with actual measurements and show an
average accuracy to within 15%. In addition, the effect of using different parallelisation
strategies, and the scaling behaviour of the application has also been examined.

A number of refinements to the layered approach are in progress. These include an
investigation into: the effects of different levels of resource usage (e.g. low-level instruction
based, high-level abstract machine models) and their resulting accuracy; the integration of
conventional modelling techniques (e.g. queuing networks) within the layered framework
where applicable. The development of a characterisation tool is also under way, that will
enable the characterisation of the application, the parallelisation templates, and the hardware
to be undertaken within a homogeneous language.

Processor Grid

T
im

e/
S

am
p
le

 (
se

c)

0

10

20

30

40

50

60

70

2x2 3x3 4x4 5x5 6x6 7x7

Measured

Predicted

Figure 4 - Measured vs Predicted Time,
Master-Slave (256 triangles, 4096 pixels)

Processor Grid

R
el

at
iv

e
P

er
fo

rm
an

ce

-5

0

5

10

15

20

25

30

3x3

4x4 6x6
7x7

2x2

5x5

Figure 6 - Master-Slave vs Multiphase,
Predicted (256 triangles, 4096 pixels)

Number of Processors

S
p
ee

d
u
p

0

10

20

30

40

50

60

70

80

20 60 100 140 180

Figure 8 - Speedup of the Master-Slave,
Predicted (256 triangles, 4096 pixels)

Processor Grid

E
rr

o
r

(%
)

-15

-10

-5

0

5

10

15

20

25
2x2

4x4

6x6 7x75x5

3x3

Figure 5 - Accuracy of the Layered Approach,
Master-Slave (256 triangles, 4096 pixels)

Number of Triangles

T
im

e
p
er

 t
ri

an
g
le

 (
m

s)

0

100

200

300

400

500

600

700

4 16 64 256 1K 4K 16K

Figure 7 - Effects of Scene Complexity,
Predicted (36 Processors, 4096 pixels)

Number of Processors

T
im

e
D

is
tr

ib
u
ti

o
n

0%

20%

40%

60%

80%

100%

20 60 100 140 180

Proc. Com. Queue

Figure 9 - Time per Function, Master-Slave,
Predicted (256 triangles, 4096 pixels)

ACKNOWLEDGEMENTS

This work is funded in part by ESPRIT contracts 6942 - Performance Evaluation of Parallel
Systems (PEPS) and 6173 - Design by Simulation and Rendering on Parallel Architectures
(DESIRE).

REFERENCES

[Allen86] Allen, J., “Plenary Address,” in IEEE Workshop on VLSI Signal Processing, 1986.

[Biersack93] Biersack, A and Hodicke, R., "The MEASURE Image Synthesis Benchmark," in Proc.
Performance Evaluation of Parallel Systems (PEPS'93), Coventry, U.K., pp. 150-157, 1993.

[Bomans89] Bomans, I. and Roose, D., "Benchmarking the iPSC/2 HyperCube Multiprocessor,"
Concurrency: Practice and Experience, 1989.

[Burkhart93] Burkhart, H., Korn, C.F., Gutzwiller, S., Ohnacker, P., and Wasel, S., “BACS: Basel
Algorithm Classification Scheme,” Tech. Rep. 93-3, University of Basel, Switzeland, 1993.

[Gehringer88] Gehringer, E.F., Siewiorek, D.P., and Segall, Z., Parallel Processing: The Cm* Experience.
Digital Press, 1988.

[Goldsmith85] Goldsmith, J. and Salmon, J., A Ray Tracing System for the Hypercube, Caltech Concurrent
Computing Project Memorandum HM154, California Institute of Technology, 1985.

[Green91] Green, S., Parallel Processing for Computer Graphics, Pitman London, 1991.

[Greenberg91] Greenberg, G.A. and Wright, E.P., “Design and Analysis of Master/Slave Multiprocessors,”
IEEE Transactions on Computers, vol. 40, no. 8, pp. 963-976, August 1991.

[Hockney93] Hockney, R.W., "Performance Parameters and Benchmarking of Supercomputers," in
Computer Benchmarks, Dongarra, J.J., and Gentzsch, W., Eds., Elsevier Science Publishers
B.V., pp. 41-64, 1993.

[Holliman89] Holliman, N.S., Morris, D.T., Dew, P.M., and Pennington A., "An Evaluation of the
Processor Farm Model for Visualising Constructive Solid Geometry," in Parallel
Processing for Computer Vision and Display, Dew, P.M., Heywood, T.R., and Earnshaw,
R.A., Eds., Addison Westley, pp. 443-451, 1989.

[Jain89] Jain, P. P. and Newton, P., “Putting Structure into Modeling,” in Proc. of the 1989 Summer
Computer Simulation Conference, Austin, Texas, USA, pp. 49-54, 1989.

[Jamieson87] Jamieson, L.H., “Characterizing Parallel Algorithms,” in The Characteristics of Parallel
Algorithms, Jamieson, L.H., Gannon, D., and Douglass, R.J., Eds., MIT Press, pp. 65-100,
1987.

[Nudd93] Nudd, G.R., Papaefstathiou, E., Papay, Y., et.al., "A Layered Approach to the
Characterisation of Parallel Systems for Performance Prediction," in Proc. Performance
Evaluation of Parallel Systems (PEPS'93), Coventry, U.K., pp.26-34, 1993.

[Papaefstathiou93] Papaefstathiou, E. and Kerbyson, D.J., "Characterising Parallel Systems Focusing on Re-
Usability," PEPS Bulletin, pp. 5-6, November 1993.

[Patel92] Patel, M. N., “Structuring Analytical Performance Models Using Mathematica,” in Proc. of
the 6th International Conference on Modelling Techniques and Tools for Computer
Performance Evaluation, Pooley, R. and Hillston, J., Eds., Ediburgh, U.K., pp. 273-286,
1992.

[Pease91] Pease, D., Ghafoor, A., Ahmad, I., Andrews, L., D., Foudil-Bey, K., and Karpinski, E. T.,
“PAWS: A Performance Evaluation Tool for Parallel Computing Systems,” IEEE
Computer, pp. 18-29, January 1991.

[Peps93] PEPS, Characterising Processing Needs, Tech. Rep. D5.1, ESPRIT Project 6942,
University of Warwick, U.K., July 1993.

[Rolia92] Rolia, J.A., “Predicting the Performance of Software Systems,” Ph.D. thesis, University of
Toronto, 1992.

[Saavedra89] Saavedra-Barrera, R.H., Smith, A.J., and Miya, E., "Machine Characterization Based on an
Abstract High-Level Language Machine," IEEE Transactions on Computers, vol. 38, no.
12, pp. 1659-1679, December 1989.

[Smith82] Smith, C.U. and Browne, J.C., “Performance Engineering of Software Systems: A Case
Study,” in Proc. National Computer Conference, vol. 15, pp. 217-224, 1982.

[Smith90] Smith, C.U., Performance Engineering of Software Systems, The SEI Series in Software
Engineering. Addison-Wesley Publishing Co., Inc., 1990.

[Tron93] Tron, C. and Plateau B., "Modelling Communication in Parallel Machines within the
ALPES Project," in Proc. Performance Evaluation of Parallel Systems (PEPS'93),
Coventry, U.K., pp. 110-117, 1993.

[Weishar87] Weishar, D.J., “Incorporating Expert Systems Technology into Software Performance
Engineering,” in Proc. Computer Measurement Group, pp. 720-722, 1987

[Zemerly93a] Zemerly, M.J., Papaefstathiou E., Atherton, T.J., Kerbyson, D.J., and Nudd, G.R.,
"Characterising Computational Kernels: A Case Study," in Proc. Performance Evaluation
of Parallel Systems (PEPS'93), Coventry, U.K., pp. 231-237, 1993.

[Zemerly93b] Zemerly, M.J., “Characterisation of Multi-Processor Systems,” Research Report 256,
University of Warwick, U.K., 1993.

