View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Warwick Research Archives Portal Repository

THE UNIVERSITY OF

WARWICK

Original citation:

Zemerly, M. J., Papaefstathiou, E., Atherton, T. J., Kerbyson, D. J. and Nudd, G. R.
(1993) Smart integration : a test case study. University of Warwick. Department of
Computer Science. (Department of Computer Science Research Report). (Unpublished)
CS-RR-257

Permanent WRAP url:
http://wrap.warwick.ac.uk/60937

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:

The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

warwickpublicationswrap

————— L ——————————

highlight your research

http://wrap.warwick.ac.uk/

https://core.ac.uk/display/29189356?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60937
mailto:publications@warwick.ac.uk

Research Report 257

Smart Integration: A Test Case Study

M J Zemerly, E Papaefstathiou, T J Atherton,
D J Kerbyson, G R Nudd

RR257

This study is concerned with characterisation of a parallel algorithm, namely partial 1D FFT on a
parallel system (2 x T800). Analytical expressions for the "execution time" for a single processor
and 2 processors are discussed and used to obtain a performance measure (execution time) for the
application at hand.

Department of Computer Science

University of Warwick

Coventry CV4 7TAL December 1993
United Kingdom

Smart Integration: A Test Case Study”

M. J. Zemerly, E. Papaefstathiou, T. J. Atherton,
D. J. Kerbyson and G. R. Nudd

Department of Computer Science
University of Warwick
Coventry CV4 TAL

email: jamal@dcs.warwick.ac.uk

November 30, 1993

Abstract

This study is concerned with characterisation of a parallel algorithm.
namely partial 1D FFT on a parallel system (2 x T800). Analvtical ex-
pressions for the “execution time” for a single processor and 2 processors
are discussed and used to obtain a performance measure (execution time)
for the application at hand.

1. Introduction

The smart integration exercise is an additional task to test the PEPS ideology
on a small problem and to gain a better understanding of the interactions be-
tween the different methods involved in the project. Namely, characterisation,
modelling, simulation and possibly benchmarking. This report is concerned with
the characterisation issues and will describe in detail the different stages of the
characterisation process. Initially, descriptions of the algorithm and the platform
will be provided, followed by a description of the characterisation method.

*This work is carried out under the aegis of “Performance Evaluation of Parallel Systems
(PEPS)” ESPRIT project no. 6942.

2. Description of the Algorithm

The algorithm selected for this task is a 1D FFT. The reasons for selection of the
FFT are its wide usage, possibility of many forms of parallelism and simplicity
of implementation and analysis. The method used to calculate the FFT is hased
on that described in Rabiner and Gold [RG75] and has the following options:

e radix 2 implementation

e decimation in frequency (DIF)

e 2048 32-bit complex input samples

o fixed cocfficients (v/2/2,iv/2/2) to compute the same add-multiply in all

butterflies.

The FFT flow chart of the DIF butterfly is given in Figure 1.

) P
X(2)

X(3) ><
X4

X(5) ><
X(6)

X(7) e

N (- S

X ><
X(10)

X(11) ><
X(12)

X(13) ><
X(14)

X(15) ><

1st stage (test-case) final stages (not part of the test-case)

Figure 1. Flow chart of the FFT used (only 16 samples are shown here).

Only the first stage of the FFT is considered here; this is the only stage that
requires data communication between processors. The other stages run in parallel
without any interaction and do not present any problematic form for performance
evaluation study.

Figure 2 shows a representation of a DIF butterfiy.

A A+B

B (A-By*W

Figure 2. Butterfly for DIF FFT.

The C program listing of the partial DIF FFT used in this exercise is given
in Appendix A. Figure 3 shows the computation and dataflow between the 2
Processors.

Processor 0 Processor 1

Stepl Send N/
I
C tati
FFT Processing + omputation
Data Organisation
Step 2 Communication
I
I
Receive N/
Step 3
I
Step 4

Figure 3. Computation and data flow diagram.

Note that a sequential program is needed to check the results of the characterisa-
tion stage. The coefficients can be implemented in 2 possible ways since they are

constants. The first is to have only 2 variables with the values of the coefficients.
The second implementation is to compute the sine table (of size 3N/4) required
for the number of data samples of the same value and store them in an array
and fetch the correct coefficient every time one is needed. This is normally done
when computing an FFT. The listing of the FFT function for the second method
is given in Appendix B. The 2 implementations will be discussed here.

3. Description of the Hardware

The platform selected is a 2 (4MBytex 256MHz) T800 Parsytec machine connected
as shown in Figure 4. The data are kept in external memory and the program in
internal memory. The transputers have 4 Kbyte on-chip memory. Figure 4 shows
a schematic representation of the hardware used.

HOST T&00 T800

4 Mbyte 4 Mbyte
RAM RAM

Figure 4. Smart integration hardware.

4. Description of the Characterisation Method

The method used here to characterise the FFT algorithm is based on the method
used in Zemerly [Zem93] and Nudd et al. [NPP*93]. The "execution time” 1s
selected as a performance measure. For a program running on a single processor
the execution time is equal to:

TTCPU = (nexecution + nmemory) Xt (1)

where M ecution is the number of clock cycles needed for program execution with-
out the memory effect and npemory, the number of extra clock cycles required
for accessing the external memory and can be defined in terms of the number of
memory accesses per program, MP™8, miss penalty and miss rate:

acc ?

o
Nmemory — MPELE X Mrate X Tpenalty (2)

acc

Substituting equation (2) in equation (1) and factoring the instruction count /
gives:
: inst :
TT(TPU =1 X <Cexm:ution + -\[:3; X A‘\I-rat.e X Tpenalt)') Xt (3)

where Ceyecution 18 the cpu clock cycle per instruction excluding the memory effect.

For a program running on a multi-processor there is a penalty of communication
and synchronisation between processors. Parallel algorithms can be modelled in
two ways according to the computation-communication relationship as described
in Basu et al. [BSKP90] and Zemerly [Zem93]: overlapped and non-overlapped
models. In both models the execution of an algorithm i1s modelled as repeti-
tive steps where a step consists of a computation followed by a communication.
In the overlapped model, computation and communication can be partially or
completely overlapped. In the non-overlapped model all the processors do some
computation and then synchronise and exchange data.

It 1s assumed here that all inter-process communication times can be estimated
a priori and that there are no queuing delays in the system. The data domain is
assumed partitioned into sub-domains of equal size and all the processors execute
the same program on a different data domain (SPMD).

The smart integration problem can be modelled 1 either ways but the easier
non-overlapped model was selected in the implementation. Figure 5 shows the
characterisation model selected for the smart integration exercise.

As can be seen from the smart integration model shown in figure 5 there is one
processing and 4 communication modules. 4 steps can be assumed here. only
one of them with the processing module and the others without as shown in the
figure.

Assuming a perfect load balancing, the execution time Ty for a program running
on a k processor system is given by:

Tp

Ti= 7

+T5+Tpo+zti (4)

where T, is the execution time (for the part that can be parallelised) of the
algorithm on one processor, Ty is the execution time of the serial part of the
algorithm and initialisation time, T, is the parallel overhead processing required
when parallelising an algorithm and ¢, is the communication time for "step” i.

The value of t; can be estimated from the number of bytes transferred in each
cycle using:

t; = tstart—up + tsend X B (5)

3

Processor 0 Processor 1

Step 1 Send N/2

C tatio
FFT Processing + omputation

Data Organisation

Step 2 Communication

Send N/4 Receive N/4

Receive N/4
Step 3

Receive
Done

Send Done

Step 4

[

Figure 5. Non-overlap computation-communication model for smart integration.

where tgari—up represents the message start-up overhead or latency, tenq the pure
communication time, which is inversely proportional to the link bandwidth, and
B is the number of bytes transmitted between adjacent processors.

Some of the parameters used in these equations are readily available as the clock
cycle time, number of processors and the memory miss rate which is assumed
1 since the data is kept in the external memory. Other parameters have to be
measured from the system. These parameters are the number of execution cycles
required for the FFT, the number of external memory cycles required to access
the data, time penalty for accessing the external memory, either number of in-
structions in the program and average clock cycle per instruction or number of
cycles required to execute the program, communication start-up time, commu-
nication transfer rate, initialisation/sequential time of the parallel program (this
factor is negligible in the case of smart integration) and the parallel overheads. In
the following sections methods to obtain each of these parameters are explained
and discussed.

5. Measuring Characterisation Parameters
5.1. Measuring the Program Parameters

First the number of cvcles of the fourier transform program is obtained using the
following procedure.

1. Create a software execution graph for the function in question. For example
for the ffourtr function the execution graph will look something like that:

finit (function init)
vinit (Variable init)
11 (loop 1)
12 (loop 2)
13 (loop 3)
proc (Main processing)

The purpose of this graph is to come up with an expression to calculate the total
number of cveles. For the above graph the total number of cycles is:

C = C(finit) + C(vinit) + nl x [C(11) + n2 x (C(12) + n3 x (C(13) + proc))] (6)

where: nl.n2,n3 are the number of loop execution for 11, 12 and 13 respectively.
C() is a function that returns the number of cycles per function.

Here nl1 and n2 are 1 where n3 1s 512.

2. The next step is to identify the number of cycles per each node of the graph
(the C function).

In order to do that the source code for each part is isolated. For example the
isolated source code for the loop 13 is:

for(cradix=0; cradix < nbradix; cradix ++)

’

Then the source code of the isolated part is compiled with the option -S to produce
the assembly listing. If, for example, the file that contains the isolated for loop
is called test.c the following compile command was used:

ancc.px -S -c test.c

From the assembly code in the file test.s only the part for the loop execution
is isolated excluding function initialisation, return etc. The loop assembly code
after the exclusion of irrelevant code looks like:

ldc 0
stl .til
.L15:
141 Ltil+l
1dl .til
gt
cj L2
.L14:
LL13:
1d1 .til
adc 1
stl .til
b .L15
L12:

The next step is to use the csh script inscnt.csh (see Appendix C) to count how
many times the same instruction occurs in the source code. This is done by

typing:
csh inscnt.csh

This automatically will filter all the assembly codes in the directory and output
the result to the stdout. The result for the above example is shown in Table 1.

times operation cycles total cycles

1 adc 1 1
1 cj 2 2
1 gt 2 2
1 j 3 3
1 ldc 1 1
3 1d1 2 6
2 stl 1 2
total 17

Table 1. Counting the number of cycles

Then using the Transputer data book the number of cycles for each of the com-
mand is then extracted and the total number of cycles required to execute the
node is then calculated which in this case is 17 cycles. This number includes the
the CPU cycles required to access the internal memory. The external memory
effect will be discussed later. Since the other loops have exactly the same pattern
(int loop counter, constant initialization integer comparison. integer increment)
we can conclude that the cycles for all the loops are the same :

C(l1) = C(12) = C(13) = 17
The next step is to find the number of cycles for all the primitive operations.
finit : 70 cycles and vinit : 33 cycles

The main butterfly processing loop "proc” is the most important part of process-
ing and the assembly count of operations as well as the number of cycles required

for execution are listed in Table 2.

times operation Name cveles total
T ade add constant 1 T
10 add add 1 10
10 bent byte count 241 30
4 dup duplicate top of stack 1+1 S
1 fpadd fp add single 6+1+7 14
2 fpldnladdsn fp load non local and add single 8+147 32
4 fpldnlmulsn fp load non local and mult single 134147 82
10 fpldnlsn fp load non local single 24147 100
6 fpstnlsn fp store non local single 24147 60
3 fpsub fp subtract single 6+147 42
2 fpumulby2 fp multiply by 2.0 6+1+147 30
26 1d1 load local 2 52
10 1dlp load local pointer 1 10
6 ldnl load non-local 2 12
8 stl store local 1 8
total 497

Table 2. Cycle count for the FFT routine ffourtr without sine[3N/4].

In the cycles column in Table 2 extra cycles were added as follows:

e An extra cycle was added if the operation code was more than 4 bit.

e For operands greater than 4 bit an extra cycle was added for every extra 4
bit. So in the case of a floating point operation, 7 cycles were added.

Table 2 shows that the number of cveles required to execute the node proc (one
butterfly) is 497 cvcles. 17 cycles are also required for the loop iteration.

For example, using equation 6 from step 2 the total number of cycles required to
exccute the subroutine "ffourtr” for 1024 complex data samples (512 butterflies)
without taking into consideration the effect of the external memory 1s:

C=T70+53+1x[17T41x (17 +512 x (17+497))} = 263325 cycles

A small problem in finit is that during function initialisation a compiler internal
function CRT stack extender is called. Since the source code for this function is
not available it was assumed that the function is a small housekeeping function
and 10 cycles would be sufficient to execute it. In this example this is not a
problem since the main loop is the dominant performance factor but in the case
of small functions it should be considered as fairly important.

Another loop is required for the second method for computing the sine array.
Since the sine source code is not available another program was written to measure
the time for the sine execution. A thousand measurements were taken and the
average time was 195 us with average difference of 0.5 s and standard deviation
of 0.25. The number od sines required for N data samples is equal to 3N/4. The
number of cycles of the subroutine with the sine array was also obtained in a
similar way to method one and is equal to 539 cycles.

For timing the events the transputer instruction ldtimer was used with high pri-
ority switched on to give an accuracy of 1 microsecond. This is done because
of reported inconsistency with the TimeNowHigh() time function provided by
Parix, the Parsytec operating system (see [Gre93]). The timing function is called
SysTimer. The same procedure has been followed to identify the cycles for the
SysTimer function. This is a very simple case since no execution graph is required
because no control statements are included in the code. The number of cycles for
SysTimer 1s 57.

5.2. Effect of the External Memory

The time penalty for the external memory for the T800 transputer is discussed
in the Transputer Databook [Inm89]. The Transputer external memory is char-
acterised by extra processor cycles per external memory cycle, e [(Inm89]. The

10

time penalty to access the external memory depends on the value of ¢ which is
typically equal to (and in this case assumed to be) 3. The external memory 1s
accessed 22 times per butterflv in the FFT as can be shown from the assembly
source code from the number of loading and storing operations of floating point
data.

5.3. Measuring the Parallel Overhead Parameters

The function memcpy used to organise the data for processor 0" and processor
71”7 was measured in a similar fashion to ffourtr and the results are given in
Table 3. Table 3 shows the number of cycles required to copy 4 Kbyte.

no. function meaning cycles total
3 ldc load coustant 1 3
1 1dl load local 2 2
2 ldlp load local pointer 1 2
1 move niove message 2w+8+1 20484-8+1
total 2064

Table 3. Timings for the memcpy function for 4 Kbyte.

5 cycles penalty for every read/write should also be added for memcpy. The total
is 12304 cycles. Other parameters such as the communication initialisation will
be discussed within the communication parameters. Some other miscellaneous
instructions such as difference of times and assigning timing variables were es-
timated at 200 cycles. SysTimer is discussed previously and it takes 57 cycles.
SysTimer was called 16 times on processor 0.

5.4. Measuring the Communication Parameters

Table 4 shows the number of cycles required to initialise the links between the
2 processors. Here The call operation has some extra cycles for the function
ConnectLink it calls. A program was written to measure the time it takes to
connect 2 processors (See Appendix E). This program makes a 100 links and then
takes the average of these and that value will be used instead of t(ConnectLink).
The program was tested with MakeLink and GetLink as well as ConnectLink and

11

no. function meaning cycles total
1 call function call 7 7

1 q conditional jump 2 2

1 dup duplicate top of the stack 141 2

1 eqc equals constant 2 2
4 lde load constant 1 4
2 1dl load local 2 4

2 1dlp load local pointer 1 2

4 stl store local 1 4

1 stnl store non-local 2 2
total 29

Table 4. Timings for initialisation of links between processors.

and both gave almost the same results (see Table 5).

MakeLink Proc 0 Time 1112.92 us Proc 0 terminates
GetLink Proc 1 Time 1110.01 gs Proc 1 terminates
ConnectLink Proc 0 Time 1132.00 s Proc 0 terminates
ConnectLink Proc 1 Time 1129.15 us Proc 1 terminates

Table 5. Timings for MakeLink, GetLink and ConnectLink functions

Since it is ConnectLink which is used in the program the value of 1132 s will be
used.

Also another program was written to measure the communication bandwidth
between two processors and the communication start-up time. The program
listing is given in Appendix D. In this program, the two processors are first
initialised to make a link between themselves. Then a block of data is sent from
the first processor to the second and sent back and the time is recorded for send
and receive the block on both processors. The bandwidth is calculated using
Bandwidth = BlockSize/(1024 x 1024 x 0.5 x time). BlockSize was increased in
powers of 2 from 4 to 262144 byte and a bandwidth value was obtained for every
block size. A plot of the bandwidth vs block size is shown in Figure 6.

Note that the bandwidth is variable because it includes the start-up time and
transfer time. The communication start-up time was obtained by fitting a straight

12

06 ¢

0.4

0.2 F

0.025 0.5 0.075 0.1 0425 0.15

Figure 6. Relationship between block size and bandwidth.

line to half the time vs block size data and finding the time at block size of 0.
Figure 7 shows the relationship between block size and time.

The plot only shows up to block size 32 byte to show the start-up tiume at zero
block size clearly. The equation obtained from the fit was (units in seconds and

Mbyte):
Communication time = start-up time + transfer time
= 0.0000507866 + 0.973054 blocksize

Note that transfer time is equal to the block size divided by the transfer rate
(B/R). The transfer rate is then equal to (1/0.973054 = 1.03 Mbyte/s) The
startup time is rounded-off to 51 ps.

6. Program Time Measurement

The program time measurement were taken between different stages of the pro-
gram and the times recorded for these stages are given on the standard output
and saved in a file. These times measured in ys are shown in Table 6.

As can be seen from Table 6 the butterfly processing took about 13251 us on
processor 0 and 13296 on processor 1. The total execution times were 31269 and

13

0.00008

0.000075

0.00007

0.000065

0.00006

0.000055

-6 0.00001 0.000015 0.00002 0.000025 0.00003
5. 10

Figurc 7. Relationship between block size and time.

32573 pus for processors 0 and 1 respectively. The program was also run on one
processor and the time recorded for executing the program was 26515 ps. Note
that the time taken for the butterfly processing on one processor (26515 ps) is
less than the time taken on 2 processors. That is because the communication

overhead exceeded the processing time.

For the sine computing method the sequential time was 335592 s and the time
measurements on 2x T800 are given in Table 7.

It is also worth noting that in both cases the total times were fluctuating in the
order of + 30 s but this was ignored and only one reading was selected.

7. Predicted Times Without Computing Sine[3N/4]
7.1. Predicted Sequential Time

The predicted time for the FFT running on one processor is given by:

T = (nexecution + nmemory) Xt

Iimemory — [Th + Mratio X Tpenaly] x MEoo#

acc

where T}, is the average hit time (in this case 1), Mratio 18 the internal RAM miss
ratio (assumed 1), Tpenaly i the time penalty to access the external memory and
MP™¢ is the number of external memory accesses per program.

acc

14

Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor

O O, O O+ O Fr OO+ O O O~ O

received DONE signal (1) from slave

DONE=1 time_start=1882037 time_end=1914610
DONE=1 time_start=4963750 time_end=4995019
finished its task in 31269 us

finished its task in 32573 us

finished
finished
finished
finished
finished
finished
finished
finished
finished
finished
finished
finished
finished

initialisation of links in 1124 us

initialisation of links in 2144 us
sending half of the data in 7536 us

arranging
receiving
butterfly
butterfly
sending a
receiving
arranging
receiving
receiving

its data in 759 us
half of the data in
processing in 13251

8618 us
us

processing in 13296 us
in 3779 us

a quarter of the back in 3936 us

quarter of the data

data for transfer in 382 us
FINISHED signal in 67 us
a quarter of the data in 4114 us

sending FINISHED signal in 53 us
times for arranging data for other processor (760)
and itself (759)

Table 6. Timings for the FFT program (without computing the sine) on 2 T800s.

Dexecution = A + butterfly cycles x Butterflies

where Butterflies is the number of the butterflies and A is the extra cycles used

for timing the events, routine initialisation and variable intialisation and in this

case is equal to 57 + 70 + 53 4+ 17 4+ 17 = 214 cycles.

This gives:

Dmemory = (1 + 5) x 16 x Butterflies

T = (214 + 514 x 1024 + 6 x 22 x 1024) x 40 x 1077 = 26468us

Compared to the measured time for butterfly processing, 26468 us, the predicted
time, 26635 ps, is 167 us (-0.63%) slower.

15

Processor 1 DONE=1 time_start=878436 time_end=1060071
Processor 0 DONE=1 time_start=5299160 time_end=5479490
Processor 0 finished its task in 180330 us
Processor 1 finished its task in 181635 us
Processor O finished initialisation of links in 1125 us
Processor 1 finished initialisation of links in 2146 us
Processor 0 finished sending half of the data in 7819 us
Processor 1 finished receiving half of the data in 8902 us
Processor 0 finished arranging its data in 759 us
Processor O finished butterfly and sine processing in 161929 us
Processor 1 finished butterfly and sine processing in 161925 us
Processor 0 finished sending a quarter of the data in 3930 us
Processor O finished receiving a quarter of the data in 3883 us
Processor 1 finished arranging data for transfer in 383 us
Processor 0 finished receiving FINISHED signal in 67 us
Processor 0 times for arranging data for other processor (761)
and itself (759)
Processor 1 finished receiving a quarter of the data in 4314 us

Processor 1 finished sending a quarter of the data in 3870 us
Processor 1 finished sending FINISHED signal in 52 us

Table

-1

Timings for the FFT (with sine[3N/4]) program on 2 T800s.

7.2. Predicted Parallel Time

Recalling equation 4, the predicted time for the FFT running on two processors
(values are taken for processor 0) is given by:

T 4
Tk:_f'+Ts+Tpo+§ ti
i=1

For simplicity and because it is too small compared to the total time, the effect
of T, is neglected here and it is assumed that T} is equal to T (the sequential
time on one processor).

Tpo = C(SysTimer) x Timings + C(misc) + C(InitLink) + 4 x C(memcpy(4KDb)

Tpo = 57 x 15+ 200 + (29 + C(ConnectLink)) + 4 x 12304 cycles

16

50300
=2 5 + t(ConnectLink) = 2012 + 1132 = 3144ps

4
Z t; = t(8Kbyte) + t(4Kbyte) + t(4Kbyte) + t(4byte) + 4 X toat—up

=1

i:t— I S L 4
~ "7 1024 x R 1024 x R~ 1024 x R~ 1024 x 1024 x R

=1

+4 x5l

= 7585 4+ 3793 + 3793 +4 + 4 x 51 = 13379

Substituting in equation 4 gives:

26468

Ty = + 3144 + 15379 = 31757 s

Fd

The time for processor 0 to finish is 31757 us. A difference of only 488 ps (1.56%)
from the measured time of 31269 .

8. Predicted Times with Computing Sine[3N /4]

8.1. Predicted sequential Time

Nexecution = A + butterfly cycles x Butterflies + C(sine)

butterfly _cycles=539+417=556 cycles
finit="70 cycles and vinit=153 cycles.
A = 574+70+1534+17+174+29 = 343 cycles

t(sine) = (3 x DataSamples/4) x (SineTime + LoopTime)
— (3 x 2048/4) x (195 + 17/25) = 300564ps

C(Butterflies) = 1024 x (556 + 6 x 22) = 704512cycles

T = (343 4 704512) x 40 x 1077 + 300564 = 28194 + 300564 = 328758ys

17

8.2. Predicted Parallel Time

C(Butterflies) = 512 x (556 + 6 x 22) = 512 x 688 = 352256cycles

C(sine) = (3 x DataSamples/4) x (SineTime + LoopTime)

— (3 x 1024/4) x (195 + 17/25) = 1502825

328758
T, = 9“) 43144 4 15379 = 18200215

<

9. Conclusion

The predicted times obtained from the characterisation model used gave similar
answers to the measured times. The differences for the sequential and parallel
1D FFT programs (with and without computing the sine array) between the
predicted and the measured time were less than 4%. Table 9. summarises the
results obtained.

[| Without sine[3N/4] | With sine[3N /4]]
| | Sequential l Parallel ” Sk] Sequential I Parallel I Sk J
Measured 26635 31269 0.85 | 335592 180330 | 1.86
Predicted 26468 31757 0.83 | 328758 182902 | 1.80
Difference -167 488 0.02 | -6834 2572 -0.06
% Difference | -0.67 1.56 2.35 | -2.04 1.43 3.23

18

A Listing of the DIF FFT C program

/*

Project : PEPS

Task : Smart Integration

Program : fft.c

Purpose : FFT of 2048 complex points (radix 2) on 2 T800s
Authors : Jamal Zemerly and Efstathios Papaefstathiou
Date : 1/9/93

Description

The method used to compute the fft is the bit-reversed on the
outputs (DIF, Rabiner and Gold, 1975, page 574, Fig 10.1).

2 T800s are used in the computation. First the data is
distributed between the processors (each get N/2 points)
followed by FFT computation and Exchange of data between the
processors (each send N/4 points). The process stops when the
data is received and written in the memory of each processor.

*/

#include<stdio.h>
#tinclude<math.h>
#include<errno.h>

#include<sys/root.h>
#include<sys/sys_rpc.h>

/* Library references */
extern char *optarg;
extern double atof();
extern int atoi();
extern int getopt();
extern char* memcpy();

#ifndef FALSE
#define FALSE O

19

#tdefine TRUE 1
#tendif

#define MASTER 0
#define FINISHED 1

#define GETID() (GET_ROOT()->ProcRoot->MyProcID)
#define GETNP() (GET_ROOT()->ProcRoot->nProcs)
#tdefine DNODE 4096

#tdefine NODE 2048

#tdefine HNODE 1024

t#tdefine QNODE 512

#tdefine LNODE 8192

#tdefine LHNODE 4096

/* Local function prototypes */

void Mainmaster(int,int,FILEx*);
void Mainslave(int);

void ffourtr(float*,int);

void usage(char*);

unsigned int SysTimer(void);
int ChangePriority(int);

main(int argc, char**x argv)

{

int nn=NODE;/* number of input data points*/
int p=2; /*number of processors*/

char c;
FILE *fd; /*file descriptor*/
/*
* read_args - Read arguments
*/

while ((c = getopt(argc,argv,"Uk:n:f:")) != -1)
switch (c¢) {
case 'k’ : p = atoi(optarg);
break;
case ’n’ : nn = atoi(optarg);
break;
case ’f’ : if ((fd = fopen(optarg, "r"))==0)
printe('bad filename or argument");

20

break;
case ’U’ : usage(" ");
break;

if (p>2){
printe("number of processors must be 1 or 2");
AbortServer(1i);

if (p==2){
if (GETID() == MASTER)
Mainmaster(nn,p,fd);
else
Mainslave(nn) ;
/* AbortServer(0) ;*/
}
i£(p==1){
if (GETID() == MASTER){
Mainmaster(nn,p,fd);
}
AbortServer(0);

/* Master transputer operation*/

void Mainmaster(int nn, int p, FILE *fd)

{

int i,j;

int hn=nn/2;

int gqn=nn/4;

int dn=2*nn;

int ln=nnx*4;

int lhn=hn*4;

int lgqn=qn*4;

int ldn=dn*4;

float buf[NODE], data[DNODE];

static LinkCB_t* ComLink; /% Client virtual link descriptorx/
int err, pr;

unsigned int timel, time2, time3, time4, time5, ctimeextral[5];

21

unsigned int time6, time7, time8, time9, timel0, timell;
unsigned int timeall, ctimel, ctime2, ctime3, ctime4d;
unsigned int ctimeb5, ctime6, comptime;

char *DONE;

3=0;

/*change priority of the algorithm to high*/
pr=ChangePriority (HIGH_PRIORITY);

/*copy the opened file into datax/

memcpy (&data, fd, sizeof(float)*DNODE);
time1=SysTimer();

/* Initialise the links between the 2 processors*/
if (p==2){
if ((ComLink=ConnectLink(1,1000,&err))== NULL){
printe("Connect link error %d Proc %d \n", err, GETID());
AbortServer(0);
t
time2=SysTimer() ;
ctimel=time2-timel;

/*
* Organise half the data for the other processor
* This could be avoided with sending twice quarter of the data
*/
memcpy (&buf [0], &data[HNODE], sizeof (float)*HNGODE);
memcpy (&buf [HNODE], &data[HNODE+NODE], sizeof (float)*HNODE) ;

/*send half the data to the other processor*/
time3=SysTimer() ;
ctimeextral[j++] = (time3-time2);
time3=SysTimer() ;
if (SendLink(ComLink, buf, LNODE) != LNODE){

printe("Send failed %d Proc %d \n", errno, GETID());
AbortServer(0);

22

time4=SysTimer();
ctime2=time4-time3;
time4=SysTimer();

/*organise the data for the master in bufx*/

/%

/*

memcpy (&buf[0], &datal0], sizeof(float)*HNODE);
memcpy (&buf [HNODE] , &data[NODE], sizeof(float)*HNODE);

timeb=SysTimer();
ctime3= timeb5 - time4;
ctimeextral[j++] = ctime3;
time5=SysTimer();

do the butterfly processing*/
ffourtr(buf, HNODE);

time6=SysTimer();
comptime=time6-timeb;
time7=SysTimer();

send a quarter of the data back to other processor*/

if (SendLink(ComLink, &buf [HNODE], LHNODE) !'= LHNODE){
printe("Send failed %d Proc %d \n'", errno, GETID());
AbortServer(0);

}

time8=SysTimer();
ctime4=time8-time7;
time8=SysTimer();

receive a quarter of the data from the other processor*/
if (RecvLink(ComLink, &buf[HNODE], LHNODE) != LHNODE){

printe("Receive failed %d Proc %d \n", errno, GETID());
AbortServer(0);

23

time9=SysTimer();
ctimeb5=time9-time8;
time9=SysTimer();

/* receive finished signal from the other processor*/

if (RecvLink(ComLink, DONE, 1) !'= 1){
printe("Receive finished failed %d Proc %d \n", \
errno, GETID());
AbortServer(0);

time10=SysTimer();
ctimeb=timel0-time9;

if (*DONE==FINISHED){
time11=SysTimer();
printf ("Processor %d received DONE signal (%d) \
from slave \n'", GETID(), *DONE);

timeall=timeli-timel;
/*print timing results*/

printf ("Processor %d DONE=%d time_start=Y%d time_end=%d \n", \
GETID(), *DONE, timel, timell);
printf("Processor %d finished its task in %d us \n", \
GETID(), timeall);
printf("Processor %d finished initialisation of links in \
%d us \n", GETID(), ctimel);
printf ("Processor %d finished sending half of the data in \
%d us \n", GETID(), ctime2);
printf("Processor %d finished arranging its data in \
%d us \n", GETID(), ctime3);
printf ("Processor %d finished butterfly processing in \
%d us \n'", GETID(), comptime);
printf("Processor %d finished sending a quarter of the data in \
Yd us \n", GETID(), ctimed);
printf("Processor %d finished receiving quarter of the data in \

24

%d us \n", GETID(), ctimeb);

printf (""Processor %d finished receiving FINISHED signal in \
%d us \n", GETID(), ctime6);

printf("Processor %d arranged data for processor 1 (%d) and for \
itself (%d) \n'", GETID(), ctimeextral[0], ctimeextral[i]);

if(p==1){ /*if only one processor is requested*/
timel=SysTimer() ;
ffourtr(data,nn);
time2=SysTimer() ;
timeall=time2-timeil;
printf ("Processor %d finished its task in %d us \
\n", GETID(), timeall);

/*change priority to lowx/

pr=ChangePriority(LOW_PRIORITY) ;

+

/* Slave transputer operation*/

void Mainslave(int nn)

{

int 1i;

int hn=nn/2;

int qn=nn/4;

int dn=2%nn;

int ln=nn%*4;

int lhn=hnx4;

int lqn=qn#*4;

int ldn=dnx*4;

float buf [NODE], bufil[HNODE];

static LinkCB_t* ComLink; /* Client virtual link descriptorx*/
int err, pr; /*error and priority change variables*/
unsigned int timel, time2, time3, time4, time5;
unsigned int time6, time7, time8, time9, timell, timell;
unsigned int timeall, ctimel, ctime2, ctime3, ctime4;
unsigned int ctime5, ctime6, comptime;

char *DONE;

25

/*change priority to high*/

pr=ChangePriority(HIGH_PRIORITY);

/*start timing from herex/

time1=SysTimer() ;

/* Initialise the links between the 2 processors*/
if ((ComLink=ConnectLink(0,1000,&err))== NULL){

printe("Comm. init. error %d Proc %d \n'", err, GETID());
AbortServer(0);

time2=SysTimer() ;
ctimel=time2-timel;
time2=SysTimer() ;

/* receive half the data from the Master*/

if (RecvLink(ComLink, buf, LNODE) != LNODE){
printe("Receive failed %d Proc %d \n'", errno, GETID());
AbortServer(0);

time3=SysTimer() ;

ctime2=time3-time2;

time3=SysTimer() ;

/* do the butterfly operations on the data*/
ffourtr(buf, HNODE);

time4=SysTimer();

comptime = time4-time3;

time4=SysTimer();

/* prepare the data for transfer*/

memcpy (&buf1[0], &buf[0], sizeof (float)*HNODE);

26

time5=SysTimer();
ctime3= timeb-time4d;
timeb5=SysTimer();

/* receive a quarter of the data from the Master*/
if(RecvLink(ComLink, &buf[0], LHNODE) !'= LHNODE){
printe("Receive failed %d Proc %d \n", errno, GETID());
AbortServer(0);

time6=SysTimer();
ctimed4 = timeb-timeb;
time6=SysTimer() ;

/* send a quarter of the data back to the Master*/

if (SendLink(ComLink, bufi, LHNODE) != LHNODE){
printe("Send failed %d Proc %d \n", errno, GETID());
AbortServer(0);
by

time7=SysTimer();
ctimeb= time7-time6;
/* send DONE signal back to the Master*/
*DONE=FINISHED;
time7=SysTimer() ;
if(SendLink(ComLink, DONE, 1) !'= 1){

printe("Send DONE failed %d Proc %d \n", errno, GETID());
AbortServer(0);

time8=SysTimer() ;
ctimeb=time8-time7;

timeall=time8-timel;

rintf ("Processor %d DONE=Y%d time_start=/d time_end=%d \n", \
P

27

GETID(), *DONE, timel, time9);

printf("Processor %d finished its task in \
%d us \n", GETID(), timeall);

printf("Processor)d finished initialisation of links in \
%d us \n", GETID(), ctimel);

printf ("Processor %d finished receiving half of the data in \
%d us \n", GETID(), ctime2);

printf("Processor %d finished butterfly processing in \
%d us \n", GETID(), comptime);

printf (""Processor %d finished arranging data for transfer in \
%d us \n", GETID(), ctime3);

printf ("Processor %d finished receiving quarter of the data in \
%d us \n", GETID(), ctimed);

printf ("Processor %d finished sending a quarter of the data in \
%d us \n", GETID(), ctime5);

printf ("Processor %d finished sending FINISHED signal in \
%d us \n", GETID(), ctime6);

/*change priority back to low*/
pr=ChangePriority(LOW_PRIDRITY);
¥

/*Butterfly processing routine*/

void ffourtr(data,nn)

float data[NODE]; /*data string#*/

int nn; /* number of data items*/

{

int radix=2;

int i, m, n, cstage, cblock, cradix, nbstage, nbblock;
int nbradix, mblock;

float tr, ti; /*real and imaginary parts of T*/
float wr=0.707;

float wi=0.707;

unsigned int timel, time2;

nbblock=1; /* start with 1 and increase by "2 for each block*/
nbradix=nn/2; /* reduce by factor of 2 for each stage*/

nbstage=1; /* log2(nn)-1 but for smart integration it is 1%/

m=0;

28

n=m+nn;
for (cstage=0; cstage<nbstage; cstage++){

for (cblock=0; cblock<nbblock; cblock++){

for (cradix=0; cradix<mbradix; cradix++){
datalm] = datalm] + dataln];

tr = datal[m] - 2*dataln];

datal[m+1] = data[m+1] + datal[n+1];

ti = datal[m+1] - 2*dataln+1];

dataln] = tr*wr + ti*wi;

dataln+1] = tr*wi - ti*wr;

m += 2;
n += 2;
+
+

+

b

/*

* usage - Print usage message

*/
void usage(char* mess)
{

printe("Usage : %s\n'",mess);
printe("\t-k number of processors\n");
printe("\t-n number of points\n");
AbortServer(0);

29

B Listing of the FFT routine with the Sine Computation

/*partial fft subroutine on 2 processors*/

void ffourtr(data,nn)
float data[NODE]; /*data string*/
int nn; /* number of data items*/

{

int radix=2;

int i, m, n, cstage, cblock, cradix, nbstage, nbblock;
int nbradix, mblock;

float tr, ti; /*real and imaginary parts of T*/

int ksin, kcos;

int offset=nn/4; /* offset between sin and cos*/

int sinelength = 3+HNODE/4;

float SIN[3*HNODE/4];

nbblock=1; /% start with 1 and increase by "2 for each blockx*/
nbradix=nn/2; /* reduce by power of 2 for each radix*/
nbstage=1; /* (log(2) nn)-1 but here it 1is 1%/

for (i=0; i<sinelength; i++)
SIN[i]=sin(3*PI/4);

m=0;

n=m+nn;

mblock=m;

ksin=0;
kcos=ksintoffset;

for (cstage=0; cstage<nbstage; cstage++){
for (cblock=0; cblock<nbblock; cblock++){
for (cradix=0; cradix<mnbradix; cradix++){
datal[m] += dataln];

tr = datalm] - 2*dataln];
data[m+1] += datal[n+1];

30

ti = data[m+1] - 2*datal[n+1];
dataln] = tr*SIN[ksin] + ti*SIN[kcos];
datal[n+1] = tr*SIN{kcos] - ti*SIN[ksinl];
m+= 2;
n += 2;
ksin += nbblock;
kcos += nbblock;
+
mblock=n;
m=mblock;
n=mblock +nbradix*2;
ksin=0;
kcos=ksin+toffset;

31

C Listing of the Shellscript ”inscnt.csh”

/*

Project : PEPS

Task : Smart Integration

Program : inscnt.csh

Purpose : Count the number of instructions of assembly files
Date : 1/9/93

Authors : Efstathios Papaefstathiou

Description

#

inscnt.csh

Count the number of transputer instructions of one or more
assembly files (.s) produced by the parix compilers

#

foreach £ (*\.s)
echo $f
awk *$1 '~ /~IN._1/ && $1 '~ /°0 \t1*$/ { print "\t" $1 }’ $£I\

sort|uniq -c
end

32

D Listing of the Communication Rate Program

/*

Project : PEPS

Task : Smart Integration

Program : comms.c

Purpose’ : measure the transfer rate between 2 processors
Date 1 1/9/93

Authors : Jamal Zemerly and Efstathios Papaefstathiou
Description

In this program, the two processors are first initialised to
make a link between themselves. Then a block of data is sent
from the first processor to the second and sent back and the
time is recorded for sending and receiving the block on both
processors. The bandwidth is calculated using:

Block-size
Bandwidth= -------—7--=--------
(1024%1024)*0.5*time

Block size is being increased from 4 to 262144 bytes and a
bandwidth value was obtained for all block sizes.

*/

#include<stdio.h>
#include<math.h>
#include<errno.h>

#include<sys/root.h>
#include<sys/sys_rpc.h>
#include<sys/select.h>

/* Library references */
extern char *optarg;
extern double atof();
extern int atoi();
extern int getopt();

33

#ifndef FALSE
#define FALSE O
#define TRUE 1
#endif

#define MASTER O
#tdefine FINISHED 1

#define GETID() (GET_ROOT()->ProcRoot->MyProcID)
#define GETNP() (GET_ROQOT()->ProcRoot->nProcs)
ttdefine DNODE 4096

#define NODE 2048

ttdefine HNODE 1024

#define QNODE 512

#tdefine LNODE 8192

#tdefine LHNODE 4096

/* Local function prototypes */

void Mainmaster(int,int);
void Mainslave(int);
void usage (charx) ;

unsigned int SysTimer(void);
int ChangePriority(int);
void TimeWaitHigh(unsigned int);

main(int argc, char** argv)

{

int nn=1;/* number of input data points*/
int p=2; /*number of processors*/

char c;
/*
* read_args - Read arguments
*/
while ((c = getopt(argc,argv,"U:n:")) != -1)
switch (¢) {
case ’n’ : nn = atoi(optarg);
break;
case ’U’ : usage(" ");
break;

34

if (GETID() == MASTER)
Mainmaster(nn,p);

else

Mainslave(nn) ;

/* AbortServer(0);*/
}

/* Master transputer operation*/

void Mainmaster(int nn, int p)

{

int i;

float *data;

unsigned int *time, *ctime, *timest, *ctimest;
/*communications variables/structures*/

static LinkCB_t* ComLink; /* Client virtual link descriptor*/
int err, pr; /*error and priority change valuex/
unsigned int timel, time2, time3, timed, ctimel, ctime2;
int dn, 1ldn;

float rate;

pr=ChangePriority (HIGH_PRIORITY) ;

/*calloc for time and time differencex/

if ((time=(unsigned int *) calloc(40,4))==0)
printe ("cannot allocate space for time");

if ((ctime=(unsigned int *) calloc(20,4))==0)
printe ("cannot allocate space for ctime");

timest=time;
ctimest=ctime;

*time++ = SysTimer();

35

/* Initialise the links between the 2 processors*/

if ((ComLink=ConnectLink(1,1000,&err))== NULL){
printe("Connect link error %d Proc %d \n", err, GETID());
AbortServer(0);

}

*time++ = SysTimer();

xctime++ = *(time-1) - *(time-2);
while(nn<=65536){

dn=nn;

ldn=dnx*4;

if((data=malloc(ldn))==0)
printe ("cannot allocate space for data');

*time++=SysTimer () ;
if(SendLink(ComLink, data, 1ldn) '= 1ldn){
printe(''Send failed %d Proc %d \n", errno, GETID());
AbortServer(0);
b

if(RecvLink(ComLink, data, 1dn) != ldn){
printe("Receive failed %d Proc %d \n'", errno, GETID());
AbortServer(0);
*time++ = SysTimer();

xctime++ = *(time-1) - *(time-2);

/*print timing results*/

free(data);
nn= nn*2;
}

36

nn=1;

time=timest;

ctime=ctimest;

i=1;

printf("Processor %d initialised the links in %d us \n", \
GETID(), *(ctime++));

while(nn<=65536){

ldn=nnx4;
rate=((float)1dn*1000000.0)*2/((float)*(ctime++)*1024.0%1024.0);
printf ("%d- Processor %d finished sending %d bytes of data in \
%d us (rate=%f Mbytes/s)\n", i, GETID(), ldn, *(ctime-1), rate);
nn=nnx?2;

1++;
}

TimeWaitHigh(10000000);
/*change priority to low*/

pr=ChangePriority(LOW_PRIORITY);

/* Slave transputer operationk/

void Mainslave(int nn)

{

int 1,j;

int dn, ldn;

float *data;

/*communications variables/structures*/

static LinkCB_t* ComLink; /* Client virtual link descriptorx/
Option_t optl; /*option of start receivex/

int err;

int pr; /*priority change value*/

unsigned int *time, *ctime, *timest, *ctimest;
unsigned int timel, time2, time3, time4;
unsigned int ctimel, ctime2;

float rate;

37

/*change priority to high*/
pr=ChangePriority(HIGH_PRIORITY) ;

/*calloc for time and time differencex/

if ((time=(unsigned int *) calloc(40,4))==0)
printe (“"cannot allocate space for time");

if ((ctime=(unsigned int *) calloc(20,4))==0)
printe ("cannot allocate space for ctime');

timest=time;
ctimest=ctime;
*time++ = SysTimer();
/* Initialise the links between the 2 processors*/
if ((ComLink=ConnectLink(0,1000,&err))== NULL){
printe("Comm. initialisation error %d Proc %d \n", \

err, GETID());
AbortServer(0);

*time++ = SysTimer();
*ctime++ = *(time-1) - *(time-2);
while(nn<=65536){
dn=nn;
ldn=dnx*4;
if ((data=malloc(1ldn))==0)
printe ("cannot allocate space for data");
/*start timing from here*/

*time++ = SysTimer();

/* receive the data from the Masterx/

33

if (RecvLink(ComLink, data, 1ldn) !'= 1dn){
printe("Receive failed %d Proc %d \n", errno, GETID());
AbortServer(0);

/*Then send it back -ping-pong */

if (SendLink(ComLink, data, 1dn) '= 1dn){
printe("Receive failed %d Proc %d \n", errno, GETID());
AbortServer(0);

*time++ = SysTimer();
xctime++ = *(time-1) - *(time-2);

free(data);

nn = nn*2;

¥

nn=1;

time=timest;

ctime=ctimest;

i=1;

printf("Processor %d initialised the links in %d us \n", \
GETID(), *(ctime++));

while(nn<=65536)1

ldn=nnx*4;
rate=((float)1dn*1000000.0)*2/((float)*(ctime++)*1024.0%1024.0);
printf ("%d- Processor %d finished receiving %d bytes of data in \
%d us (rate=%f Mbytes/s)\n", i, GETID(), ldn, *(ctime-1), rate);
nn=nnx*?2;

i++;

X
pr=ChangePriority(LOW_PRIORITY);
b

/*

* usage - Print usage message
*/

void usage(char* mess)

39

printe("Usage : %s\n",mess);
printe("\t-n number of points\n");
AbortServer(0);

40

E Listing of the Communication Initialisation Program

/*

Project : PEPS

Task : Smart Integration

Program : bcon.c

Purpose : Check connection time using Makelink and Getlink.
This version works only with adjacent transputers.
ConnectlLink behaves exactly the same.

Author : Efstathios Papaefstathiou

Date : 4/10/93

Description

This program measures the time taken to connect 2 processors.
It makes a 100 links and then takes the average of these
and that value will be used in the characterisation.

The program was tested with MakeLink and GetLink as well as
ConnectLink and both gave almost exactly the same results.

It is ConnectLink which is used in the FFT program.

*/
#tinclude <stdio.h>

#include <sys/root.h>
#include <sys/sys_rpc.h>

#define MAX_LOOP (100)

extern unsigned SysTimer(void);
void Main0O(void) ,Maini(void);

main{)

{

if(GET_ROOT()->ProcRoot->MyProcID == 0)
Main0 () ;

else

Main1();

41

printf ("Proc %d terminates\n",
GET_ROOT() ->ProcRoot->MyProcID);
}

void Main0(void)

{

unsigned int tcnt,i,];
int err;
LinkCB_t *1link;

/* Check if the grid is 1x2 */

if (GET_ROOT()->ProcRoot->DimX != 1 [}
GET_ROOT()->ProcRoot->DimY != 2) {

printe("Usage: Grid must be 1x2\n");

AbortServer(1);

+

/* Change priority to high */
ChangePriority(HIGH_PRIORITY);

/* Initially connect O with 1 */
tcnt = 0;

for(i = 1; i <= MAX_LOOP ; i++) {
j = SysTimer();

link = MakeLink(1,i,&err);

tcnt += SysTimer()-j;

if(link == NULL) {
printf ("MakeLink error(%d) from O\n",err);
AbortServer(1);

}

BreakLink(1link) ;

¥

printf ("MakeLink Proc 0 Time %10.2f\n",
(float)tcnt/ (float)MAX_LOOP);
}

42

void Maini(void)

{

unsigned int tcnt,i,j;
int err;

LinkCB_t *1ink;

/* Change priority to high */
ChangePriority(HIGH_PRIORITY);

/* Initially connect O with 1 */
tcnt = 0O;

for(i = 1; i <= MAX_LOOP ; i++) {
j = SysTimer();

link = GetLink(0,i,&err);

tcnt += SysTimer()-j;

if(link == NULL) {
printf("GetLink error(d) from i\n",err);
AbortServer(1);

hs
BreakLink(link);

by

printf ("GetLink Proc 1 Time %10.2f\n",
(float)tcnt/ (float)MAX_LOOP);

43

