
http://wrap.warwick.ac.uk/

Original citation:
Zemerly, M. J. and Papaefstathiou, E. (1993) Characterisation survey. University of
Warwick. Department of Computer Science. (Department of Computer Science
Research Report). (Unpublished) CS-RR-255

Permanent WRAP url:
http://wrap.warwick.ac.uk/60935

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/29189354?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60935
mailto:publications@warwick.ac.uk

Characterisation Survey�M. J. Zemerly and E. PapaefstathiouDepartment of Computer ScienceUniversity of WarwickCoventry CV4 7ALemail: jamal/stathis@dcs.warwick.ac.ukApril 29, 1993AbstractThe performance of a computer system is a�ected by the characteristics of itsvarious hardware and software subsytems. Hardware and software characterisationgive the ability to change machine and programs parameters and observe theire�ects on the performance of the system without changing the existing hardwarewhich can be time consuming and cost prohibitive. This report provides a surveyof the techniques and tools used in the hardware and software characterisation ofparallel systems.1. IntroductionPerformance is one of the key factors that must be taken into account in the design,development and tuning of a computer system. The overall system performance isa�ected by the performance characteristics of the various subsystems and hardwareand software components that constitute the system [Lav83]. Hence the design of newhardware or software components has system performance implications and shouldnot be ignored. The performance of a system can be evaluated by measurements us-ing hardware and/or software monitors either in user environment or under controlledbenchmark conditions. Normally these monitors utilise some sort of hardware and/orsoftware characterisation to achieve their goal. Hardware and software characterisationgive the ability to change programs and machine parameters and observe the resultsof the modi�cations rather than changing the existing hardware which can be timeconsuming and cost prohibitive. This work complements two other ESPRIT projects:IPS1-1532 [E1588] and IPS2-IMSE-2143 [E2192]. The �rst studied a vector-orientedparallel architecture for a supercomputer and evaluated it by simulations at the hard-ware and software levels. The second is more closely related to this work and deals�This work is supported by ESPRIT project no. 6942 \Performance Evaluation of Parallel Systems(PEPS)". 1

2. CHARACTERISATION TECHNIQUES 2with improving systems engineering methods throughout the design cycle of a systemby developing a support environment for performance modelling.The following sections provide a survey of the techniques and tools used in the hardwareand software characterisation of parallel systems.2. Characterisation Techniques2.1. Hardware Characterisation SurveyHardware characterisation gives an indication of what performance to expect from aparallel system running a certain application or benchmark. Many researchers havecharacterised parallel systems on the components level (e.g. cache, CPU, etc.) with orwithout combining the e�ects of all the components [HP90]. Some researchers includedthe characterisation technique within a monitoring or modelling system (e.g. PAWS).Others dealt only with one component and these will not be surveyed in this chap-ter. Typical performance measures for parallel systems are execution time, speedup,system utilisation, throughput, MIPS, MFLOPS, etc. Execution time is inuenced bya wide variety of factors such as hardware technology, processor architecture, systemarchitecture, operating system, language, compiler and even programming style. Theexecution time can then be taken as the direct indicator of performance for parallelprograms since, unlike other measures, it combines inuences of all the system levels[HP90].Characterisation of multi-processor systems requires the characterisation of a singleprocessor as well as some other issues such as diversity of architectures, number and con-�guration of processors, tra�c per processor (inter-process communication), problemsize and type of memory (shared or distributed), synchronisation or asynchronisation,granularity, to mention but a few.Many researchers have attempted to characterise a single micro-processor since com-puter evolution but little work has emerged until the VAX RISC I architecture whichwas characterised by Emer and Clark [EC84]. Emer and Clark used a measurementmonitor to keep the count of the number of microcode cycles executed at each mi-crocode location. Live time-sharing as well as synthetic workloads were used in theexperiments. The measurement technique yielded the amount of average processingtime spent in various activities in the workload.An early comprehensive survey of the quantitative methods used in computer perfor-mance evaluation was provided by Heidelberger and Lavenberg [HL84]. They reviewedwork in three main areas: performance measurements, analytical performance mod-elling and simulation performance modelling during the period 1970-1984. Performancemeasurement is possible once the system is built, instrumented and running. Modellingis required in order to otherwise predict performance. Performance modelling is widelyused not only during design and development but also for con�guration and capacityplanning. Performance models span the range from simple analytical queuing modelsto very detailed trace driven simulation models. The importance of the performance

2. CHARACTERISATION TECHNIQUES 3modelling is that it gives quantitative predictions and an insight into the structureand behaviour of a system. This is particularly valuable during the system design todiscover any design aws. They have classi�ed performance measurement into 3 mainareas: instrumentation, workload characterisation and statistical methods. Descrip-tion of these and work achieved in the period above are given. Analytical performancemodels which mainly concentrated around queuing theory models are also describedand reviewed so as the simulation performance models which mainly constitute of tracedriven and stochastic discrete event simulation models.Hockney [Hoc88] developed a model for SIMD and MIMDmachines based on propertiesof a user program. Hockney characterised vector (SIMD) machines by the performanceof their vector pipelines. The average processing rate was chosen as his performancemetric. He derived an equation for the performance based on the average time forprocessing an element, startup time and the number of elements. He then derivedthe performance for a vector pipeline machines from the average processing time. ForMIMD machine an equation for the performance (average processing rate) was derivedin a similar way but here he introduced factors for synchronisation and communicationtimes. These models were tested on a number of problems (benchmarks) and resultswere presented. From measurements he found that the startup time and synchronisa-tion time vary approximately linearly with the number of processors.Saavedra-Barrera et al. [SBSM89] described a way to predict performance by com-bining benchmarking and hardware characterisation. The idea is to create and use amachine characteriser which measures the performance of a given system in terms of aFortran abstract machine. This analysis yields a set of parameters which characterisesthe system and spotlights its strong and weak points. Each parameter provides the ex-ecution time for some primitive operation in Fortran. Measurements for a large numberof machine ranging from small workstations to supercomputers were presented. Theydistinguished, however, between system characterisation and performance evaluation.The system characterisation is de�ned as an n-value vector where each component rep-resents the performance of a particular operation. The performance evaluation of asystem is de�ned as the measurement of some number of properties or performancemeasures (e.g. execution time) during the execution of a workload.Hennessy and Patterson [HP90] provided a comprehensive characterisation of onemicro-processor through characterising its components. Namely, the CPU, the memoryhierarchy and the I/O. Hennessy and Patterson though stopped short of providing ananalytical expression for a processor as a whole. They argued that the execution timeis the most meaningful performance measure for computer systems and they centredtheir processor characterisation on this measure. For each component they tried todevise a performance equation based on the characteristic of that component. For theCPU for example they measured the execution time as the product of the instructioncount in a program, the average clock cycle per instruction, and the clock cycle time.Similar expression for the memory and I/O were also given. The memory hierarchy(cache and main memory) was characterised by the average access time as a functionof the cache hit ratio and time to access the cache and the main memory. The I/Owas characterised by the data throughput (i.e. number of bytes per second that can be

2. CHARACTERISATION TECHNIQUES 4transferred between the CPU and the main memory and disks during large transfers).Murray [Mur90] and Wilkinson [Wil91] have also characterised a single processor in asimilar fashion to Hennessy and Patterson with some modi�cations to the performanceequations of the processor components especially in the memory hierarchy equations.Wilkinson introduced a measure termed space-time product which is the product ofthe memory used by a program and the amount of time that is used. This measureshould normally be minimised to reduce cost. Wilkinson also derived some performancemeasure equations for models of parallel computation on multi-processor systems wherehe introduced some load imbalance and communication overheads. Speedup, e�ciency,and processing (execution) time are used as performance metrics. He also derivedequations for the bandwidth shared memory inter-connection networks. Murray alsoderived an analytical model for performance of vector pipeline systems.Basu et al. [BSKP90] derived simple analytical models for evaluating performanceof parallel message passing systems. In this system the execution of an algorithm ismodelled as a repetitive cycles where a cycle consists of computation and communi-cation. Both overlapped and non-overlapped computation-communication executionmodels are discussed. In the overlapped model, computation and communication canbe partially or completely overlapped. In the non-overlapped model all the processorsdo some computation and then synchronise and exchange data. Basu et al. assumedthat all inter-process communication times can be estimated a priori and that thereare no queuing delays in the system. The data domain is assumed partitioned into sub-domains of equal sizes and all the processors execute the same program on a di�erentdata domain (SPMD). In these models the analytical expressions (for execution time,speedup and e�ciency) account for the communication overheads and the number ofthe processors. Utilization of the processors can also be modelled. In an overlapped cy-cle computation and communication the fraction of overlap between the computationand communication is taken into account as well as the processor context switching(computation to communication and vice versa) overheads. All the parameters can bederived relatively easily by either direct measurements or by experiments.2.2. Software Characterisation SurveyDuring the development of hardware and system software a great number of decisionsmust be made that will inuence considerably the performance and the features ofthe system. In order to predict performance a system designer uses modelling. Themodelling process includes the development of an abstract system that is used forthe analytical or simulation prediction of the performance of the real system. Beforethe system design process however the engineer must have a feeling about basic de-sign decisions and keep this insight during the design and development procedure. Amethod used to achieve this goal is software characterisation. With this method basiccharacteristics of software running on existing machines are extracted and studied inorder to understand the impact of fundamental hardware and system software that areindependent from the underlying architecture.

2. CHARACTERISATION TECHNIQUES 5An example of the importance of software characterisation is the work of Hennessy andPatterson [HP90]. They presented measurements of a set of programs (gcc, Spice, TeX)running on a VAX computer. The measurements included frequency of instructions, useof addressing modes, size of operands etc. Based on these observations they came to theconclusion that the simple instructions are used with higher frequency than complexinstructions. This conclusion was the basis for the development of RISC processors.2.2.1. Benchmark CharacterisationThis work addresses the prediction of the benchmark performance on a system thatis under development [CH91]. The traditional approach is to simulate machine per-formance before the system is built and use the results to improve the design. Theapproach followed in this project is the de�nition of an abstract system that is generalenough to include many system designs as special cases and then measure benchmarkperformance in terms of this abstract system. The method is based on high-qualityarchitecture-independent compilers that use a portable intermediate language. Fromthe benchmark characterisation procedure conclusion can be drawn about the systemcomponents of the system (processor, memory, operating system). Although the aimof the project was to expand the methodology for parallel systems no further resultshave been presented after the January of 1991.2.2.2. Data Dependency Analysis For Parallel Software CharacterisationData dependency analysis has been used to determine the order of program statementexecution and to identify operations that may be executed in parallel. An approachto data dependency analysis is the use of intermediate form languages to represent theprogram. The study of the intermediate form represent the program's dependencies andparallelism and provides insight into the program's structure and organization. Theintermediate form can be viewed as the characterisation of the parallel software becauseit can be mapped onto any parallel machine. This approach has many advantagessuch as that it provides a common target for any high level language, it allows asingle application to be analysed on each machine that the intermediate form languagesupports and it allows users to perform a machine independent application language.This characterisation method has been introduced in PAWS [PGA+91] applicationcharacterisation tool. The intermediate form representation language that has beenused in PAWS is an acyclic graphical language. PAWS translates programs written inADA to IF1 [Law85] and then it uses the hardware characterisation tool to estimatethe behaviour of the application running onto a speci�c parallel computer2.2.3. Parallel Algorithmic CharacterisationAnother approach of parallel software characterisation is the classi�cation of parallelalgorithms. This is a higher level technique that organises the most common paral-

2. CHARACTERISATION TECHNIQUES 6lelisation techniques independently from the algorithm implementation on a speci�cparallel computer.A �rst discussion about parallel algorithm classi�cation took place in the 1st Workshopon the Taxonomy of Parallel Algorithms held in Santa Fe in 1987 [JGD87]. In thisworkshop many issues of the classi�cation were addressed, the most important of whichwere:1. The attributes of algorithms that are the most important in dictating the struc-ture of a parallel algorithm and how they can be characterised and formalised.2. The salient characteristics of parallel algorithms in various application domainssuch as speech recognition, image processing, matrix operations etc.3. The communality in algorithm structure of the algorithms across the problemdomains.Another attempt has been made by the scientists of the Informatics Laboratory inUniversity of Basel. The result of this e�ort is the Basel Algorithm Classi�cationScheme (BACS) that is presented in [BKG+93]. Based on this classi�cation everyparallel algorithm can be described in terms of:1. Process Properties� Structure: Static or dynamic structure depending on whether or not thealgorithmic topology changes.� Topology: mesh, ring, hypercube etc.� Execution Structure: A description of the processing-communication- syn-chronisation structure.2. Interaction� Interaction of processes: broadcast, barrier, semaphores etc.3. Data Attributes� Placement: List of all the atomic elements that are distributed� Distribution: Global, static, dynamic.2.2.4. Other ProjectsSoftware characterisation has been used often in software engineering [Yam90]. Softwareperformance engineering uses software characterisation for software modelling studiesas part of the workload and resource identi�cation and quanti�cation [Smi90]. It isincluded in the instrumentation and monitoring stage of the software modelling.Other projects related to software characterisation can be grouped into two categories:

3. TOOLS FOR PERFORMANCE EVALUATION 71. characterisation methodology ([Ros86, Sme86])2. characterisation studies for speci�c areas of software behaviour ([MWB91, BS85,MB88]).An example for the second category is a study for the memory referencing of executingprograms independent of the environment in which they might run presented in [MB88].The program behaviour is presented as phases and transitions. Various parameters ofa selected set of UNIX programs (grep, ls, more, pwd, who) are quanti�ed, including :1. the distribution of holding size of each page set,2. the process by which the program chooses new locality set at transitions,3. the process by which the program generates references from within locality setetc.3. Tools for Performance EvaluationSome tools which have been developed to measure the performance of parallel com-puter system have used hardware and software characterisation techniques. A briefdescription of characterisation tools is given below.3.1. Hardware Characterisation ToolsA number of tools for hardware characterisation of parallel systems have emerged.SIMPLE (Source related and Integrated Multiprocessor and computer Performanceevaluation modeLing and visualisation Environment) [Moh91] is a modular performanceand visualisation tool environment for parallel and distributed systems based on moni-toring of concurrent inter-dependent activities. SIMPLE is independent of the monitordevice used and the system monitored. This is achieved by using a data access inter-face which measures data of arbitrary structure, format and representation. SIMPLEcan support eight categories of activities which contribute to the performance evalu-ation. These are preparing the measurement, supporting the measurement, accessingtraces, generating and integrated view, validating traces, evaluating traces, visualisingtraces, and modelling the performance. graph models or petri-nets models can be usedto describe the functional behaviour of a program on a chosen level of abstraction.Adding timing, frequency and probability values to the functional model leads to aperformance model which can study the performance behaviour of other con�gurationsof the program.ELAN (E�ciency Loss ANalysis) [Mos90] is an experimental environment that o�ersprogram development, con�guration and debugging and measurement tool for programobservation as well as performance evaluation and loss analysis in a shared-memorymulti-processor system. ELAN uses the speedup and e�ciency as the performance

3. TOOLS FOR PERFORMANCE EVALUATION 8metrics. The e�ciency of the system is derived from the losses in e�ciency caused by 7types of losses. These are: idle processor loss, shared memory access loss, conict loss,garbage computation loss, braking loss (caused by inter-process communication mecha-nism), organisational application overhead and �nally organisational system overhead.Tools to measure these losses are discussed.3.2. Software Characterisation ToolsThe characterisation of software procedure is a relative static procedure. The softwareunder investigation is only characterised once. Due to the non repetitive procedure andthe unique characteristics of each study there is a limited number of tools that can beused for characterisation studies.Usually programs supplied from the operating system might be used as tools to carryout studies. After the completion of the study a statistical package or a spreadsheetcan be used to query, present, and statistically formulate the acquired data. Two toolsthat can be used for software characterisation are: GNU C compiler and PAWS. SincePAWS consist of a hardware and software characterisation tools it will be discussed inseparate section.The GNU C compiler is a public domain compiler that includes an abstract machineintermediate language named Register-Transfer Language. This intermediate languagecan map to a wide variety of computers like Digital VAX, MIPS R2000, Motorola 68000,and Sparc [Sta89]. Consequently, observations made using the Register-Transfer Lan-guage is applied to all the target architectures. GNU C compiler is not a characterisa-tion tool but can be used in combination with other tools to conduct characterisationstudies. The disadvantage of GNU C is that it is a compiler for serial computers andconsequently only sequential programs can be characterised.Product: GNU C CompilerAvailability: Public domain softwareContact: The compiler can be downloaded from 'prep.ai.mit.edu' anonymous ftp. In-formation about the compiler can be found in the internet gnu.gcc news groups.3.3. Hardware and Software Characterisation ToolsPAWS (Parallel Assessment Window System) [PGA+91] is an experimental systemdeveloped in Syracuse University for performing machine evaluation and comparison.PAWS is the best attempt made to characterise hardware and software of parallelsystems. PAWS consists of four tools: the hardware characterisation tool, the applica-tion (in high level languages, Ada at the moment) characterisation tool, performanceassessment tool and interactive graphical display tool.The hardware characterisation tool can model di�erent architectural con�guration ofparallel machines based on the number and exibility of di�erent functional units, the

4. CONCLUSION 9number of processors, memory bandwidths and memory hierarchy and the type ofinter-process communication mechanism. The characterisation method partitions thearchitecture into computation, data movement and communication, I/O and control.Each of these partitions has a timing module which contribute to the overall timingstructure.The application characterisation tool translates application written in high-level sourcelanguage into a single dependency graph. This allows users to view their applicationattributes. The application characterisation tool provides the facility to evaluate thelevel and degree of an application's parallelism. Application characterisation consistsof a data dependency analysis to determine the order of program execution. It alsoidenti�es operations that may be executed in parallel. This approach has many advan-tages such as that it provides a common target for any high level language, it allowsa single application to be analysed on di�erent hardware supported by PAWS. It alsoallows users to perform a machine independent application analysis.The performance assessment tool generates pro�le plots through the interactive displaytool. These two tools allows users to evaluate the performance of any application (usingthe application characterisation tool) by generating a set of performance metrics whichinclude speedup curve, parallelism pro�le curve, and execution pro�les. These aregenerated for both the ideal case (i.e. theoretical upper bound performance) and forthe application after it has been mapped onto a machine. A comparison of the twoperformance metrics shows the e�ects of mapping the application onto the machine.PAWS is the best known characterisation tool. An ADA front end has been developedand C++ and FORTRAN front ends have been scheduled. Currently PAWS is fundedby Rome Labs, a research branch of the US Air Force. A version of the tool hasbeen distributed among the parallel user group of Rome Labs but the product is notcommercially available.Product: PAWSAvailability: Restricted to parallel user group of Rome Labs.Contact: Dan Pease (peased@npac.syr.edu), Syracuse University.4. ConclusionCharacterisation models and tools are needed to study the e�ects of various parame-ters on the performance of mapping applications (or benchmarks) onto multi-processorsystems. This is an important design feature that allows modi�cations to existing hard-ware parameters to study the performance without physically changing the hardwarewhich can be time consuming and cost prohibitive. Due to the non repetitive proce-dure and the unique characteristics of each study there is a limited number of developedmodels or tools that can be used to study the characterisation of parallel systems.

REFERENCES 10References[BKG+93] H. Burkhart, F. C. Korn, S. Gutzwiller, P. Ohnacker, and S. Waser. BACS:Basel Algorithm Classi�cation Scheme. Technical Report 93-3 Version 1.1,Universit tsrechenzentrum und Institut f r Informatik, Mittlere Strasse 142,4056 Basel, March 1993.[BS85] V. Bassili and R. Selby. Calculation and Use of An Environment Charac-teristics Software Metric Set. In 8th International Conference on SoftwareEngineering, pages 386{391, 1985.[BSKP90] A. Basu, S. Srinivas, K. G. Kumar, and A. Paulraj. A Model for Per-formance Prediction of Message Passing Multiprocessors Achieving Con-currency by Domain Decomposition. In H. Burkhart, editor, Proc. of theJoint Int. Conf. on Vector and Parallel Processing, pages 75{85, Zurich,Switzerland, 10-13 September 1990. Springer-Verlag, Berlin. Lecture Notesin Computer Science, 457.[CH91] M. T. Conte and W. W. Hwu. Benchmark Characterization. IEEE Com-puter, pages 48{56, January 1991.[E1588] A Peliminary Study of a Vector Processing-Oriented Parallel Architecture.Esprit project number: 1532, 1987-1988.[E2192] An Integrated Modelling Support Environment (IMSE). Esprit projectnumber: 2143, 1989-1992.[EC84] J. S. Emer and D. W. Clark. A Characterisation of Processor Performancein the VAX-11/780. In Proc. 11th Int. Symp. on Computer Architecture,pages 301{310, Ann Arbor, Michigan, 5-7 June 1984.[HL84] P. Heidelberger and S. S. Lavenberg. Computer Performance EvaluationMethodology. IEEE Trans. on Computers, c-33(12):1195{1220, 1984.[Hoc88] R. W. Hockney. Problem Related Performance Parameters for Supercom-puters. In J. L. Martin, editor, Performance Evaluation of Supercomputers,pages 215{235. Elsevier Science Publishers (North-Holland), 1988.[HP90] J. L. Hennessy and D. A. Patterson. Computer Architecture: A QuantitativeApproach. Morgan Kaufmann Publishers, 1990.[JGD87] L. Jamieson, H., D. Gannon, and R. Douglas, J., editors. The Characteris-tics of Parallel Algorithms. MIT Press, 1987.[Lav83] S. S. Lavenberg, editor. Computer Performance Modelling Handbook. Aca-demic Press, New York, 1983.[Law85] Lawrence Livermore National Laboratory. An Intermediate Form LanguageIF1, 1985.

REFERENCES 11[MB88] M. J. Murphy and B. R. Bunt. Characterising Program Behaviour WithPhases and Transitions. In Proc. of the 1988 ACM SigMetrics Conferenceon Measurement and Modeling of Computer Systems, volume 16, pages 226{233. ACM Press, May 1988.[Moh91] B. Mohr. SIMPLE: A Performance Evaluation Tool Environment for Paral-lel and Distrubuted Systems. In A. Bode, editor, Proc. of the 2nd EuropeanConf. on Distributed Memory Computing (EDMCC2), pages 80{89, Munich,1991. Springer-Verlag. Lecture Notes in Computer Science, 487.[Mos90] M. Moser. The ELAN Performance Analysis Environment. In H. Burkhart,editor, Proc. of the Joint Int. Conf. on Vector and Parallel Processing(CONPAR), pages 189{199, Zurich, Switzerland, 10-13 September 1990.Springer-Verlag. Lecture Notes in Computer Science, 457.[Mur90] W. D. Murray. Computer and Digital Systems Architecture. Prentice Hall,USA, 1990.[MWB91] S. Majumdar, C. Woodside, and D. Bailey. Characterisation and Mea-surement of Parallelism in Communication Protocol Software. In Proc. ofInternational Conference on Parallel Processing, volume 2, pages 270{271,1991.[PGA+91] D. Pease, A. Ghafoor, I. Ahmad, D. Andrews, K. Foudil-Bey, T. Karpinski,M. Mikki, and M. Zerrouki. PAWS: A Performance Evaluation Tool forParallel Computing Systems. Computer, pages 18{29, January 1991.[Ros86] L. L. Rose. Software Characterisation Indepent of Hardware. In 1986 Win-ter Simulation Conference Proc., pages 727{731, 1986.[SBSM89] R. H. Saavedra-Barrera, A. J. Smith, and E. Miya. Machine Characteriza-tion Based on an Abstract High-Level Language Machine. IEEE Trans. onComputers, c-38(12):1659{1679, 1989.[Sme86] R. Smelyanski. A Mathematical Model for Computing Dynamic ProgramCharacteristics. Programming and Computer Software, 12(1):44{50, 1986.[Smi90] C. Smith, U. Performance Engineering of Software Systems. The SEI Seriesin Software Engineering. Addison-Wesley Publishing Co., Inc., 1990.[Sta89] R. Stallman, M. Using and Porting Gnu CC. Free Software Foundation,1989.[Wil91] B. Wilkinson. Computer Architecture: Design and Performance. PrenticeHall, UK, 1991.

