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Abstract.

   Hidden Markov Model theory is an extension of the Markov Model process. It has
found uses in such areas as speech recognition, target tracking and word recognition.
One area which has received little in the way of research interest, is the use of Hidden
Markov Models in character recognition. In this paper the application of Hidden Mark-
ov Model theory to dynamic character recognition is investigated. The basic Hidden
Markov Model theory is reviewed, and so are the algorithms associated with it.  A quick
overview of the dynamic character recognition process is considered. Then three types
of describing characters are considered, position, inclination angle of small vectors and
stroke directional encoding using a Freeman code. A system using each of these de-
scriptions, using Hidden Markov Models in the comparison stage, is described. It is rec-
ognised that experiments using the different encoding systems have to be carried out to
check the validity of this chosen method.

1. Introduction.

   It is the purpose of this paper to investigate a form of pattern recognition known as
character recognition, more specifically that of dynamic character recognition using
Hidden Markov Models (HMMs) during the comparison stage of recognition. Dynamic
character recognition uses information about the characters written by a person to iden-
tify which characters have been written. The information generated by the handwriting
process is captured by the computer at real-time, via the use of a digitising tablet, and
is usually presented to the recognition system in the form of a time ordered sequence of
x and y co-ordinates. This method of character recognition is also referred to as on-line
character recognition, and has the advantage over static character recognition of not
only containing static information such as position, but also dynamic information such
as the order in which the character was written and dynamic features such as velocity
and time taken to write the character.
   HMMs can be viewed of being made up of two statistical processes, one which is not
seen i.e. the underlying process, which can only be seen through another statistical pro-
cess that produces the signals seen emitted by the underlying model. The HMM theory
can be used in estimation problems like target tracking, or recognition problems such
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as character recognition, which is the subject of this paper. Unlike the area of speech
recognition, where HMMs have found extensive uses [1,2], there has been little work
carried out on the use of HMMs in character recognition. Some work has been carried
out in the area of static character recognition such as that carried out by Jenget al [3],
Tanakaet al  [4], and Vlontzos and Kung [5], with very good results e.g. 91.5% to 97%
recognition accuracy for multi-font Chinese characters in the case of Jenget al, and
97% to 99% accuracy for the recognition of multi-font English characters in the case of
Vlontzos and Kung for their two level character recognition system.

The area of dynamic character recognition using HMMs does not seem to have been
considered in the literature. Naget al [6] have carried out work in the area of dynamic
cursive word recognition, using quantised inclination angles of small vectors to de-
scribe the script making up the word. Cameillerappet al [7] work concerns the recog-
nition of on-line cursive handwriting using fully connected models of a full word, and
stroke directions as features. The reason for choosing to model a word instead of indi-
vidual characters is so that segmentation does not have to be carried out on the word,
which is particularly difficult when the characters run into each other. But this leaves
the problem of needing a separate model for each word to be recognised.
   The motivation behind the use of HMMs in character recognition is the great variation
of handwriting between different writers, and even in the same writer over a long time.
Other reasons for the choosing of HMMs in the recognition of dynamic characters is
that only the number of states, and the constraints to be imposed on the model have to
be decided upon. Any rules about the nature of the characters can be established by ex-
ample during the training phase of each HMM. HMMs also remove the need of explicit
time alignment associated with the use of other techniques such as dynamic program-
ming, or even Markov Models such as those used by Farag to model hand-written cur-
sive words, [8].
   In this paper, the concept of HMMs and various algorithms and implementation issues
surrounding HMMs is examined in Section 2. Then a short description of the various
processes involved in dynamic character recognition is considered in Section 3. In Sec-
tion 4 the application of HMM theory to dynamic character recognition is considered,
using three different types of character description.

2. Hidden Markov Models.

   A HMM can be represented by a Finite State Machine, which in turn can be repre-
sented by either a connected graph or a special form of connected graph called a trellis.
Each node in this graph represents a state, where the signal being modelled has a dis-
tinct set of properties, and each edge a possible transition between two states at consec-
utive discrete time intervals. An example of a trellis and graph of a 4 state fully
connected HMM is shown in Figure 1.
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Figure 1. Showinga) Trellis Diagram andb) corresponding graph of 4 state HMM.

   The actual structure of the Finite State Machine to be modelled by the HMM is hidden
from view, therefore the structure of the HMM is usually a general one to take into ac-
count all the possible occurrences of the states, with the HMM's states and transitions
being estimates of the true underlying Finite State Machine. Associated with each tran-
sition and observation symbol for a particular HMM are a set of metrics, which are used
to obtain a measure of likelihood that the observations seen were produced by the mod-
el represented by the HMM. Another type of Finite State Machine that is similar in na-
ture to a HMM is a Markov Model. Markov Models have found extensive use in
communications, [9], where the underlying process is known, i.e. all the possible states
and transitions are known for the signal to be modelled. Only the observation process
is statistical in nature, due to the noise introduced into the observation, though what ob-
servation is produced by which state is also known. In this case only the Viterbi Algo-
rithm, see section 2.2, is needed to decode the output.
   Before looking at the various aspects of HMMs and the algorithms associated with
them some notation associated with HMMs has to be defined as follows :-

t - The discrete time index.

N - Total number of states in the FSM.

            M - Total number of possible observation symbols.

 - The ith state of the FSM.

 - The observation sequence generated by the process to be

                                       modelled. Each  is a symbol from the discrete set V of

                                       possible observation symbols.

time
t=1 t=2 t=3 t=T

state

1

2

3

4

a) b)

1 2

4 3

xi

O = Ο1,Ο2 ,K ,OT

Ot
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 - The set of the M different possible observation symbols,

                                          usually an optimal set, where each symbol is discrete in
                                          nature. A single member of this set is represented by the
                                          symbol .

 - The state sequence for the corresponding observation sequence.

 - The survivor path which terminates at time t, in the ith state of the FSM.

It consists of an ordered list of 's visited by this path from time t = 1 to

                     time t.

T -  overall length of the observation sequence.

 - Initial state metric for the ith state at t = 0. Defined as the probability that

       the ith state is the most likely starting start, i.e. .

 - The transition metric for the transition from state  at time t - 1 to the

     state  at time t. Defined as the probability that given that state  occurs at

                 time t - 1, the state  will occur at time t, i.e. ,

                 known as the Markovian property. These metrics can also change with time.

 - The observation metric at time t, for state . Defined as the probability

V = ϖ1,ϖ2 ,K ,vM{ }

vk

I = ι1,ι2 ,K ,iT

spt i( )

xi

π ι

Prob xi at t = 0( )

aij

xi

xj

xi

xj

Prob xj at t xi at t -1( )

bj k( )
xj
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       that the observation symbol  would occur at  time t, given that we are in

       the state  at time t, i.e. . This metric is fixed for the

                   state regardless of where the state was entered.

- The survivor path metric of . This is defined as the Product of the

         metrics (,  and ) for each transition in the ith survivor path,

                     from time t = 0 to time t.

 - compact notation used to represent the model itself, where A is

                                 the 2 dimensional matrix of the 's, B is the 2 dimensional

                                 matrix of the 's, andΠ is the 1 dimensional matrix of the

                                 for the given model.

   Before looking at the problems and algorithms associated with HMMs, it should be
pointed out that the observation symbols considered throughout this paper are discrete.
Though HMMs can be adapted to handle continuous symbols for the observations quite
easily, by handling the  probability densities as continuous. This adaptation is beyond

the scope of this paper, and has been investigated by other authors such as Rabiner in
[1].
   To allow a HMM to be used in real world applications, 3 problems have to be solved
associated with the model process. These are :-

1. How to compute the likelihood of the observation sequence ,

                 given the model and observation sequence.
2. How to find the optimal underlying state sequence given the observations i.e.

                 finding the structure of the model.

vk

xj

Prob vk at t xj at t( )

Γτ ι( )
spt i( )

π ι

aij

bj k( )

λ = Α,Β, Π( )

aij

bj k( )
π ι

bj k( )

Prob Oλ( )
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3. How to train the model i.e. estimate A, B,Π to maximise .

   Having established these as the problems that have to be dealt with in some manner,
which look at some solutions to these three problems.

2.1 The Forward-Backward Procedure.

   The solution to problem 1 above is based upon the forward-backward procedure. With
the forward procedure the forward probabilities for the model are calculated. This prob-
ability can be defined as the joint probability that the partial observation sequence  and

a state at t of  occurs given the modelλ, i.e. . This can be computed recursively by the

following algorithm :-

Initialisation :-
(1a)

Recursion :-

(1b)

Termination :-

      (1c)

   This can be used to score the model, but is also used during the re-estimation stage to
obtain partial observation probabilities for states at each time interval.
   There is also a need to define a backward procedure to calculate the backward prob-
abilities for the model, but these are only used during the re-estimation stage, and is not

Prob Oλ( )

O1,K ,Ot( )

xi

ατ ι( ) = Προβ Ο1L Ot ,it = ξι λ( )

α1 ι( ) = π ιβι Ο1( ) ∀ι ωηερε 1≤ ι ≤ Ν.

For t =1,2,K ,T -1 and∀ϕ ωηερε1 ≤ ϕ≤ Ν.

ατ+1 ϕ( ) = ατ ι( )αιϕ
ι=1

Ν

∑




βϕ Οτ+1( )

Prob Oλ( ) = αΤ ι( )
ι=1

Ν

∑
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part of the solution to problem 1. A backward probability can be defined as, which is

the probability of the partial observation sequence from time t+1 to T, given the present
state is  at t, and given the model,λ. This can be calculated recursively by the following

algorithm :-

Initialisation :-
(2a)

Recursion :-
  (2b)

   So it can be seen that both the forward and backward probabilities are defined for all
t, from 1 to T. The 's and 's produced by the above algorithms rapidly approach zero

numerically and this can cause arithmetic under flow, so a re-scaling technique is re-
quired. A re-scaling technique is derived for 's in [1], and a similar re-scaling algorithm

can be defined for the 's. This technique requires all 's  at a particular t to be re-scaled

if one of the 's falls below a minimum threshold, so that under flow is prevented. The

re-scaling algorithm for the 's at a particular t is given by equation 3 :-

(3)

   This re-scaling algorithm can be used at each iteration of the Backward procedure or
only when one of the 's at a particular time is in danger of causing arithmetic under flow,

βτ ι( ) = Προβ Οτ+1,Οτ+2 ,K ,OT it = ξι, λ( )

xi

βΤ ι( ) = 1 ∀ι ωηερε1 ≤ ι ≤ Ν.

βτ ι( ) = αιϕβϕ Οτ+1( )
ϕ=1

Ν

∑ βτ+1 ϕ( ) ∀ι ωηερε1 ≤ ι ≤ Ν.

ατ ι( )
βτ ι( )

ατ ι( )

βτ ι( )
ατ ι( )

ατ ι( )

βτ ι( )

β̂τ ι( ) =
βτ ι( )

βτ ι( )
ι=1

Ν

∑

βτ ι( )
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a minimum threshold measure is used to judge when this is going to occur.

2.2 The Viterbi Algorithm.

   The solution to problem 2 is based on the Viterbi Algorithm [10,11]. The Viterbi Al-
gorithm finds the joint probability of the observation sequence and the specific state se-
quence, I, occurring given the model,λ. most likely state sequence for the observation
sequence given, , i.e. it finds the most likely state sequence. It is also usual to take the

natural logarithms of the A, B, andΠ parameters, so that arithmetic under flow is pre-
vented in the Viterbi Algorithm during calculations. It should be noted that the Viterbi
Algorithm is similar to the Forward Procedure in implementation, though the Forward
Procedure sums over t and the Viterbi Algorithm uses a maximisation, and it also pro-
vides the most likely state sequence. The algorithm can be calculated as follows :-

Initialisation :-

(4a)

   (4b)

Recursion :-

 (4c)

  (4d)

   where Append in equation (4c), takes the state  and adds it to the head of the list of

the survivor path , whose transition had the maximum metric at t for the transition to

Prob O, I λ( )

∀ι ωηερε1 ≤ ι ≤ Ν.

Γ1 ι( ) = λνπι + λνβϕ Ο1( )

sp1 i( ) = ξι[ ]

∀τ ωηερε2 ≤ τ ≤ Τ, ∀ϕ ωηερε1 ≤ ϕ≤ Ν.

Γτ ϕ( ) = µαξ
1≤ ι≤ Ν

Γτ−1 ι( ) + λναιϕ[ ] + λνβϕ Οτ( )

spt j( ) = Αππενδ ξϕ,σπτ−1 ι( )[ ]

             συχη τηατΓ τ−1 ι( ) + λναιϕ + λνβϕ Οτ( ) = Γ τ ϕ( )

xj

spt i( )
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state .

Decision :-

    (4e)

  (4f)

   In English the Viterbi Algorithm looks at each state at time t, and for all the transitions
that lead into that state, it decides which of them was the most likely to occur, i.e. the
transition with the greatest metric. If two or more transitions are found to be maximum,
i.e. their metrics are the same, then one of the transitions is chosen randomly as the most
likely transition. This greatest metric is then assigned to the state's survivor path metric,
. The Viterbi Algorithm then discards the other transitions into that state, and appends

this state to the survivor path of the state at t - 1, from where the transition originated.
This then becomes the survivor path of the state being examined at time t. The same
operation is carried out on all the states at time t, at which point the Viterbi Algorithm
moves onto the states at t + 1 and carries out the same operations on the states there.
When we reach time t = T (the truncation length), the Viterbi Algorithm determines the
survivor paths as before and it also has to make a decision on which of these survivor
paths is the most likely one. This is carried out by determining the survivor with the
greatest metric, again if more than one survivor is the greatest, then the most likely path
followed is chosen randomly. The Viterbi Algorithm then outputs this survivor path, ,

along with it's survivor metric, .

2.3 The Baum-Welch Re-estimation Algorithms.

   The solution to problem 3 is based on a training method known as the Baum-Welch
Re-estimation Algorithms, [12]. This algorithm finds a local optimal probability for ,

in this case a maximum. The re-estimation algorithms for the 3 model parameters,Π,
A and B can be defined in English as follows, [1] :-

(5a)

xj

ΓΤ = µαξ
1≤ι≤ Ν

ΓΤ ι( )[ ]

spT = σπΤ (ι) συχη τηατΓΤ ι( ) = ΓΤ

Γτ ι( )

spT

ΓΤ

Prob Oλ( )

π ι = εξπεχτεδ νυµβερ οφ τιµεσ ινξι αττ= 1
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    (5b)

         (5c)

   where , and  are the re-estimated parameters of the previous model parameters , and .

From the above definitions the following equations can be derived (see Appendix for
the derivation of equations (6a), (6b) and (6c)) :-

(6a)

          (6b)

aij =
εξπεχτεδ νυµβερ οφ τρανσιτιονσ φροµξι τοξϕ

εξπεχτεδ νυµβερ οφ τρανσιτιονσ φροµξι

bj k( ) =
εξπεχτεδ νυµβερ οφ τιµεσ ινξϕ ανδ οβσερϖινγϖκ

εξπεχτεδ νυµβερ οφ τιµεσ ινξϕ

π ι

aij

bj k( )
π ι

aij

bj k( )

π ι =
α1 ι( )αιϕβϕ Ο2( )β2 ϕ( )

α1 ν( )ανµ βµ Ο2( )β2 µ( )
µ =1

Ν

∑
ν =1

Ν

∑













ϕ=1

Ν

∑

aij =
ατ ι( )αιϕβϕ Οτ+1( )βτ+1 ϕ( )

ατ ι( )αιϕβϕ Οτ+1( )βτ+1 ϕ( )
ϕ=1

Ν

∑













τ=1

Τ −1

∑
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   (6c)

   The notation  represents the re-estimated model. The training of the model is carried

out using a training set, consisting of observation sequences appropriate for that model.
The training sequence can be summarised by the following diagram, Figure 2.

Figure 2. Showing training procedure for a HMM.

   The scoring of the model depends on whether the Viterbi Algorithm or the Forward

bj k( ) =

α τ ϕ( )βτ ϕ( )

ατ ι( )βτ ι( )
ι=1

Ν

∑













τ=1

σ.τ. οτ =ϖκ

Τ−1

∑

ατ ϕ( )βτ ϕ( )

ατ ι( )βτ ι( )
ι=1

Ν

∑













τ=1

Τ

∑

λ = Α,Β, Π( )

Observation sequence

Score
Original
model

Model Parameters training data

Score
New

Model

TerminateConverged?

No

Yes

Reestimation

O

O

O
λ

λ

λ
_

Π/λ

λ
_

Π/λ
_ _
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Procedure is to be used during recognition. If the Viterbi Algorithm is used then ,

whereas if the Forward procedure is used then .  has the same meaning as P but de-

scribes the probability for the re-estimated model, . For each observation sequence in

the training set, the likelihood of the present modelλ, has to be compared with the new
re-estimated model . If  then the present modelλ is replaced by , meaning the new mod-

el is more likely to have produced the observation sequence than the previous model.
The training procedure is then repeated on the same observation sequence, with , to see

if an even better model can be found. Convergence is reached when , or after a set num-

ber of re-estimation steps. Once convergence has been achieved for the present obser-
vation sequence, then the new model is trained on the next observation sequence in the
training set, until there are no more observation sequences left in the training set. This
training method is carried out on all the HMMs required for a system, using their own
specific training data.
   During each re-estimation stage, the Baum-Welch algorithms keep the statistical con-
sistency needed when dealing with probability distributions i.e.

(7a)

(7b)

   (7c)

   The initial estimates of the probability densities for the model have to be established
in some manner. According to Rabiner, [1], this can be achieved in a number of ways.
   A finite training set has to be used to train HMMs, usually due to the infinite variations
that are encountered for a particular models. This means that special consideration has
to be given to transitions or observation symbols that do not occur in the training set for

P = Προβ Ο,Ι λ( )

P = Προβ Ο λ( )
P

λ = Α,Β, Π( )

λ
P > Π

λ

λ = λ

P = Π

πι = 1
ι=1

Ν

∑

aij =1,    φορ εαχηι ωηερε1 ≤ ι ≤ Ν.
ϕ=1

Ν

∑

bj k( )
κ=1

Μ

∑ = 1,    φορ εαχηϕ ωηερε1≤ ϕ≤ Ν.
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a particular model. This affects the 's and 's parameters, but the affect on the 's occurs

anyway due to the fact that only one  will occur for each of the observation sequences

considered in the training set. If for example a particular observation does not occur in
the training set then the  value for that particular observation occurring will be set to

zero. It may be that this particular observation will never occur for that particular mod-
el, but due to the finite nature of the training set there can be no assurance that it will
not occur in the recognition stage. There are a few ways to deal with this problem ac-
cording to Rabiner [1]. One is increasing the size of the training set, increasing the
chance that all possible transitions and observation symbol occurrences associated with
the model are covered. However this methods usually impractical both computationally
and in obtaining the observation sequences for the training set. The model itself can be
changed by reducing the number of states or number of observation symbols used, but
the main disadvantage with this approach is that the model used has been chosen due
to practical reasons.
   Another method, and possibly the most appealing, is to add thresholds to the transition
and observation metrics, so that an individual value cannot fall below a minimum value.
This method is defined by Levinsonet al in [13] for the 's, but it is redefined here for

clarity for the 's. If, for example, we set up a threshold for the 's as

(8)

then any  for a particular i falls below this threshold then it is reset to the value . this is

done for all  for a particular i. But, there is a need to re-scale the other 's which have not

fallen below  so that the statistical consistency laid down by the condition given in

equation (7b), can be kept. To do this re-scaling the following equation has to be used :-

aij

bj k( )
π ι

π ι

bj k( )

bj k( )

aij

aij

aij ≥ ε

aij

ε

aij

aij

ε
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 (9)

where  is the minimum threshold set,  is the re-scaled , l is the number of 's in the set ,

which in turn is the set of all the 's which fell below  for a particular i. This process is

continued until all the 's for a particular i met the constraint. The re-scaling algorithm

for the 's is similar. This algorithm can be used after each step of the re-estimation pro-

cess, or after the whole re-estimation process for a particular observation sequence is
completed.
   It can now be seen that in most cases all three algorithms, i.e. the Forward-Backward
Procedure, the Viterbi Algorithm and the Baum-Welch re-estimation Algorithms, are
used during the training stage. Once training is complete, then the models can be used
to recognise the objects that it represents. During recognition, the Viterbi Algorithm or
the Forward Procedure are used to score the unknown observation sequence against the
model/s to be considered. The forward Procedure can be dropped in favour of the Vit-
erbi Algorithm, since in a majority of applications either the most likely state sequence
has to be known, such as in target tracking [14] or word recognition [15], or the maxi-
mum of  is also the most significant term in , [16].

2.4 Types of HMM.

   An important aspect of implementing HMM theory in real world applications, along
with such matters as the number of states to use and the observation symbols to use, is
the type of HMM to use. The two most commonly used types of HMMs, are the

ãij = 1 − λε( )
αιϕ

αιϕ,∀ϕ∉ ∀ϕαιϕ < ε{ }∑
, ∀ϕ∉ ∀ϕαιϕ < ε{ }

ε
ãij

aij

aij

∀ϕαιϕ < ε{ }

aij

ε

aij

bj k( )

Prob O, I λ( )

Prob Oλ( )
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Figure 3. Showing 3 state fully connected HMM as
a) a fully connected graph,b) a fully connected trellis,

 andc) a left-to-right model for a 2-transition 4 state model
andd) it's corresponding trellis diagram.

ergodic type models and the left-to-right models. The ergodic models are the type of
model already considered in this paper, which are fully connected models, i.e. each
state can be accessed at the next time interval from every other state in the model. An
example of a 3 state ergodic model is shown in Figure 3.a in the form of a connected
graph, and with the corresponding trellis diagram in Figure 3.b. The most important
thing to note about the ergodic models are that the's are all positive.

   The other main type of HMM, the left-to-right model is used to model signals that
change properties over time, e.g. speech. This type of HMM has the unique property
that a transition can only occur to a state with the same or higher state index i, as time
increases, i.e. the state sequence proceeds from left to right. This means that the's have

a)

t=1 t=2 t=3 t=T
1

2

3

b)

1 2

3

c)

1             2             3             4

t=1 t=2 t=3
1

2

3

4

d) t=Tt=4 t=5

aij

aij
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the following property :-

   (10)

and that the initial state is only entered if it begins in state 1, i.e.:-

    (11)

it also means that the last state N has the following property

    (12)

since the state sequence cannot go back along the model. An example of a 2 transition,
4 state left-to-right model is shown in Figure 3.c.
   Even with these constraints placed on this type of model, the same algorithms are used
without any modifications. So if a state becomes zero ant time during the training then
it stays at zero from then on. The above two types of HMMs are the two most used
HMMs, there are many variations on the theme, and the decision to use which model
should be based on the application and the signals to be modelled.
   For a more detailed analysis of the issues connected with HMMs discussed in this sec-
tion and other issues, the reader is pointed to the work of Rabiner, [16] and [1].

3. Dynamic Character Recognition.

   Before describing the system using HMMs in the next section, a brief look at the var-
ious stages associated with dynamic character recognition is taken. Since character rec-
ognition is a form of pattern recognition, it shares many of the same processes as other
forms of recognition within this broad base of problems. These are show in Figure 4
below.

aij = 0,    ιφϕ< ι.

π ι =
0,   ιφι ≠ 1.
1,     ιφι =1.





aNN =1,
αΝι = 0,   ιφι ≠ Ν.
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Figure 4. Showing processing stages of Character Recognition.

 Acquisition in dynamic character recognition is usually carried out by a digitising tab-
let. This supplies raw digital data in the form of  and  co-ordinate data of the pen posi-

tion on the paper. This usually comes with pen-down/pen-up information, a single bit,
to indicate whether the pen is in contact with the paper or not. Some special pens have
been developed to extract specific dynamic features such as force, [17], but have found
better use in such areas as signature verification [18].
   Pre-processing is the process where raw data is taken and various processing steps are
carried out to make data acceptable to use in the extraction stage. This stage reduces the
amount of information needed, removes some of the noisy data, and normalises it to
certain criteria. Segmentation of the characters is the first process carried out, so that
characters are presented to the comparison stage isolated from each other. The individ-
ual character is then smoothed and filtered to remove noise from such sources as the
digitiser, and human induced noise such as pauses during the writing process. It also
removes redundant and useless information such as isolated points, which could cause
misclassification. The final stage of pre-processing to be carried out on the character is
that of normalisation. The character is normalised according to size, rotation and loca-
tion depending upon the description of characters that is used for comparison. Some or
all of these stages are carried out depending upon features used in the comparison stage.
   Once pre-processing has been carried out on the data, the next stage carried out on the
data is a extraction stage. In this stage a meaningful description of the character to be
recognised has to be extracted from the data provided by the pre-processing stage. It
should be said that this part of the character recognition process is the most important,
though what makes a good description of a character is not really known. Some typical
descriptions are based on static features such as the presence of a dot, or how many
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semi-circles are contained within the character, e.t.c. Others include transform co-effi-
cients such as those generated by Fourier transforming characters. other descriptions
can be based on dynamic characteristic such as positional order, direction of the writing
to the horizontal or force exerted by the writer on the paper.
   The last two stages are the comparison and decision stages, where the description of
the unknown character is compared to models of the different known characters. The
comparison stage can sometimes be split into two stages. The first stage, if implement-
ed, reduces the number of possible character models that the unknown character has to
be compared against. This is achieved by using such methods as dynamic programming
or using such criteria as the presence of a dot or no dot. The next stage is the comparison
of the unknown character description against some or all the models of known charac-
ters. This stage can produce a confidence measure, based on a minimal, statistical or
Euclidean distance measure, of how close the fit is between the unknown character and
each of the character models in the systems. The decision stage then decides which
model more closely resembles the unknown character and outputs the character with
the best measure as the final decision. Decision trees can also be used during the com-
parison-decision stage, particularly if shapes make up the description of the unknown
character.
   A more detailed analysis of the different stages and techniques used in dynamic char-
acter recognition can be found in [19] and [20].

4. Use of HMMs in Character Recognition.

   In this section a dynamic character recognition system using HMMs in the compari-
son stage is investigated. For purposes of this first paper only the areas of extraction,
comparison and decision will be considered initially, it will be assumed that a character
has been acquired and pre-processed to the requirements of the system, though some
normalisation and quantisation techniques are presented which are specific to a partic-
ular descriptive method.
   In this system, the character just written by a person is represented by a sequence of
co-ordinates in the x and y directions, an example of a character 'i' that has been cap-
tured dynamic by using a digitising tablet is shown in Figure 5.

a)

(x,y,penup)t = (2.0,3.0,0)0,
                         (2.0,2.0,0)1,
                         (2.0,1.0,0)2,
                         (2.0,0.0,0)3,
                         (3.0,2.0,1)4,
                         (2.0,4.0,0)5.

0     1     2     3     4
0

1

2

3

4

b)
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Figure 5. Showinga) data sequence obtained from digitiser for character 'i',
b) x-y plot of character 'i' for pendown positions only,

c) x-t plot,d) y-t plot ande) penup-t plot for the data sequence of the 'i'.

   As can be seen in Figure 5, the character 'i' can be represented by four distinct vari-
ables, notably the x, y, penup and the time interval data. The majority of English char-
acters are written with one continuous stroke, as opposed to the two that are usually
associated with characters such as 'i' and 'x'. It is initially proposed to look at the recog-
nition of the 26 lower case letters of the English alphabet, but the system should be eas-
ily adapted so that capital letters and digits can be recognised as well.
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4.1  And  Position Description Method.

   In this method the co-ordinates obtained from the digitiser are used as a description
of each character. For each character to be used either in training or recognition, two
observation sequences are generated for the HMM comparison stage. These two obser-
vation sequences are  which represents the normalised x co-ordinates observed up to

time , and  which represents the corresponding normalised y co-ordinates for the same

time interval as that for , i.e. T in both observation sequences is the same. Each obser-

vation sequence contains points representing the position of the pen at that time, and
also contains the character p to represent the penup code if the character contains more
than one stroke, as in the case of a 't' or 'x'. Let the points that occur between penups be
referred to as a segment. Note that the penup symbol will appear at the same time inter-
val in both observation sequences. An example of the coding of the letter 'i' as shown
in Figure 5 above, using this method is:-

Figure 6. Showing the stages in the positional data method.

   Figure 6 shows the various stages involved in constructing the observation sequences
for the comparison stage, for this method. The pre-processing stage for this method
consists of three stages, the first being to find penups in the digitiser data, the second
being the normalisation of the character's location, and the last stage is normalising the
character for size. The first stage of encoding penups extracts the penup data at each
point in the sequence obtained from the digitiser, and sets the  and  to the symbol 'p' at

a particular time interval, if the penup bit is set to 1, i.e. a penup has occurred at this
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time interval, equation 13 where  is the length in time of the digitiser data sequences

and .

       (13)

   This stage produces the  and  sequences to be used in the normalisation stage. The

character 'i' that has been considered as an example would have the following sequenc-
es as output of the encode penups stage :-

   The first stage of the normalisation process, normalising for location, finds the mini-
mum  and  values over whole of the encoded penup sequences,  and , this includes extra

segments for that character, e.g. a character x is made up of two segments and some
penup values. It should be noted that penup values are ignored when finding the mini-
mum value in either direction. To find the minimum point in the x direction the follow-
ing algorithm can be used, equation (14a).

Td

x t( )

y t( )

∀τ ωηερε1 ≤ τ ≤ Τδ ,
ιφ( πενυπτ ≠ 0) τηεν

ξπ τ( ) = π

ψπ τ( ) = π

ενδιφ

xp t( )

yp t( )

xp t( ) = (2.0,2.0,2.0,2.0, π,2.0).

ψπ τ( ) = (3.0,2.0,1.0,0.0, π, 4.0).

x t( )
y t( )
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    (14a)

    (14b)

   Once the minimum point has been found then the minimum value in the x direction,
, is subtracted from all the  values in the observation sequence, except for penup points,

using equation (14b). This process is also carried out on the  values using  found by us-

ing equation (14a) replacing x by y, and then carrying out the subtraction stage using
equation (14b) as for the x values previous. This process produces two sequences of
data  and  which are now passed onto the next normalisation stage. An example of the

encoded sequence produced by the normalise location process for the character 'i' in
Figure 5 is :-

min_x = ∞;

∀τ ωηερε1 ≤ τ ≤ Τδ ,
Ιφξπ τ( ) ≠ π τηεν

Ιφξπ τ( ) < µιν _ ξ τηεν

µιν _ ξ = ξπ τ( )

∀τωηερε1 ≤ τ ≤ Τδ ,

Ιφξπ τ( ) ≠ π τηεν

ξλ τ( ) = ξπ τ( ) − µιν _ ξ
ελσε

ξλ τ( ) = ξπ τ( )

min_x

xp t( )

yp t( )
min_y

xl t( )
yl t( )

xl t( ) = (0.0,0.0,0.0,0.0, π,0.0).
ψλ τ( ) = (3.0,2.0,1.0, 0.0, π, 4.0).
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   After normalising for location, each character is normalised for size by normalising
each point in both location normalised sequences,  and , to a value between 0 and 1.

This is done by finding the maximum value in each of the input sequences and then di-
viding each point in  by , and the same for the  sequence. This size normalisation pro-

cess can be carried out for the  data sequence by using the following equations, equation

(15a) to find  and equation (15b) to calculate the normalised component .

(15a)

            (15b)

   This final stage of pre-processing produces two normalised data sequences,  and , and
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xn t( )

max_x = 0;

∀τ ωηερε1 ≤ τ ≤ Τδ
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Ιφξλ τ( ) > µαξ_ ξ τηεν
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an example of these sequences for the character 'i' shown in Figure 5 is:-

   After this stage a quantisation stage is carried out which quantises the normalised po-
sition data,  and , to a set of discrete evenly spaced points. This process also determines

the number of observation symbols to be considered by the HMM for each letter. To
carry out the quantisation process on the data from the normalisation process, a gate
size has to be determined for both the x and y data sequences. This value can be the
same or different for both gate sizes, depending upon how many observation symbols
the HMMs for the x and y data sequences of a character have.
   Let the gate sizes of the x and y data sequence quantisers be  and  respectively. It will

be initially assumed that , and so the gate size for both the x and y data sequences can

be represented by . Only this gate size , or  and , has to be specified for the quantiser,

all other factors associated with the quantiser can be calculated as follows from this gate
size. From , the number of different possible quantisation levels, R, can be calculated

using equation (16).

(16)

where the addition of the 1 is needed to allow the inclusion of the 0.0 quantisation level.
The set  can be defined as the set of possible quantisation level values  where  is a spe-

cific quantisation level value and can be calculated by the following equation, equation
(17).

xn t( ) = (0.0, 0.0,0.0,0.0, π,0.0).
ψν τ( ) = (0.75,0.5,0.25,0.0, π,1.0).
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   (17)

   The  and  observation sequences can be constructed from the corresponding  and  data

sequences by the following quantisation equation, equation (18).

 (18)

where  and  can be substituted with their y counterparts to obtain the quantisation equa-

tion for the y data sequence. These quantised values of the pendown  and  values, along

with the penup points make up the observation sequences,  and , which will be used by

the HMMs in the comparison and decision stage to determine which character was writ-
ten, see section 4.4.  The number of observation symbols, M, generated by this method
can be calculated from the following equation, equation (19), where the extra symbol p
is generated by the encode penup stage.

(19)

   If  is considered for the gate size of the quantiser for the example character 'i', 6 quan-

tisation  levels are obtained for both the x and y quantisers. The resulting observation
sequences obtained from this quantising stage will be :-

qr = γ × ρ−1( )
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This will also mean that there are 7 observation symbols for each model to be consid-
ered in the comparison stage, i.e. the 6 quantisation levels of 0.0, 0.2, 0.4, 0.6, 0.8, and
1.0, and the symbol p for penup.

4.2 Inclination Angle of Vectors Description Method.

   This form of describing the character read in from the digitiser, is based on the ideas
suggested by Nag et al, [6]. They describe a system for cursive word recognition, i.e.
each HMM represents the whole word but each word is described as a sequence of
quantised inclination angles, with special codes to represent sharp turning points. In our
system using this descriptive method, the quantised inclination angles will make up the
majority of the observation sequence for the comparison stage, but special codes for
penups and single dots will also make up some of the set of possible observations. The
special code used by Nag in his work, i.e. the sharp turning point code, will be imple-
mented in our system later to see if better recognition results are obtained.

Figure 7. Showing the stages in the inclination angle method.

   Figure 7 above, shows the various stages involved in constructing the observation se-
quence for this method. It will become obvious to the reader that there are no normali-
sation stages required in this method since the inclination angle of a small vector, that
is used as the main observation feature, is size and location independent for any hand-
written character.
   The first stage of encoding the digitiser data for a character involves encoding penups
into the  and  data sequences, as was done for the positional method, see section 4.2.

The other special code introduced at this encode special codes stage, is that for a dot,
as is found in the characters 'i' and 'j'. This is needed particularly in the case of a char-
acter i to distinguish it from an l. A dot can be defined as a point where a penup occurs
at the previous and the next time interval in the digitiser data sequence. If the present
point is the last in the digitiser data sequence and the previous one was a penup, then
the present point can be classified as a dot. This will be the most commonly written
form of a dot since in the majority of cases the dot in a character i or j is written last. To

Ox = (0.0,0.0,0.0,0.0, π,0.0).

Οψ = (0.8,0.6,0.2,0.0, π,1.0).

Quantiser
Oθ Το

χοµπαρισον
σταγε

ενχοδε
ανγλεσ

θ(τ)ενχοδε
σπεχιαλ
χοδεσ

ξπ(τ)

ψπ(τ)

διγιτισερ

δατα

x t( )
y t( )



Dynamic Character Recognition Using Hidden Markov Models.

27

represent this special case a d is inserted at the point in the  and  data where the dot oc-

curred, by using the following algorithm, equation (20).

     (20)

   For the example character 'i' considered in the last section, the output from this encode
special characters stage would be :-

   The resulting sequences,  and , are then feed into the next stage which encodes the

inclination angles.

Figure 8. Showing Inclination angle for a sequence of small vectors of a letter c.
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   In the next stage, encode angles, the  and  data sequences are encoded into one data

sequence  - the sequence of inclination angles of consecutive points within each seg-

ment that makes up the character. Let  represent an inclination angle  of the vector be-

tween the points at t and at t+1, Figure 8. The inclination angle for each set of
consecutive points can be found by the following equation.

(21)

where  and  are the changes in the x and y directions between consecutive points respec-

tively. So the output of this stage for the example character 'i' will be :-

where the angles are measured in degrees.
   Once the angles have been worked out then they are passed onto the quantiser, as the
 data sequence. The quantiser stage quantises the angles in this data sequence to a set

number, , of possible angles. As for the quantiser in the previous method, section 4.1,

only the gate size of the quantiser in degrees has to be specified. only one quantiser is
needed in this method and it's gate size can be represented by . The number of possible

angles, , can be calculated by adapting equation (16) as in equation (22).

(22)

   Note that no additional 1 has to be added to equation (22) as in equation (16), this is
because  for this purpose, therefore no additional quantisation level has to be included
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for . As for the quantiser in section 4.1, the set  represents the set of possible quantisa-

tion level values and  can be calculated as in equation (17) in section 4.1. The  observa-

tion sequence which is passed onto the comparison stage can be constructed from the
corresponding  data sequences by using the same quantisation equation, equation (21),

as was used for the position method by substituting the values defined here into the
equation. The number of observation symbols, M, generated by this encoding method
can be found using equation (23).

(23)

Where the additional 2 symbols generated are the special codes for dots and penups. An
example of the final observation sequence generated by this method for the example
character 'i', where , thus giving the number of different possible observation symbols

of 74, is:-

4.3 Directional Encoding Method.

   This method is based upon the work by Farag on cursive word recognition, [8]. Farag
did not use HMM but Markov Models to represent each word that had to be recognised
by the system, using time dependent transition matrices. This caused problems when
there was not one-to-one correspondence between the word to be recognised and the
model of the word, which would need to be solved by the use of dynamic programming
to allow non-linear time warping of each word to fit it to the same time length as the
model. In Farag's method each word was described by a direction code of each vector
connecting consecutive points that make up a word. The directional encoding scheme
only allowed 8 possible directions each vector could have, as is shown in Figure 9.
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Figure 9. Showing directional coding scheme.

   The directional encoding scheme is sometimes referred to as a Freeman chain code in
the literature, and it can be argued that this method is the same as Nag's inclination an-
gle method. Figure 10 shows the various stages involved in constructing the observa-
tion sequence, , for this method when adapted to dynamic character recognition.

Figure 10. Showing the stages in the directional encoding method.

   The first stage of encoding the digitiser data is the same as the previous method, i.e.
encoding the special codes for penups and dots, and the data sequences  and  will be the

same for both methods. The encode direction stage encodes the direction of writing for
consecutive points at t and t+1 to one of eight possible directions. This can be done by
using the equation given in [8], as reproduced here, equation (24).

(24)

where  and  are defined as for the previous method in section 4.2, and  is the set of pos-

sible directions, in this case . Note that instead of the separate stages of calculating the

inclination angle and then quantising these angles, in this method these are carried out
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in the same process. This process is carried out on all the pairs of consecutive points
within a segment, for all segments in the  and  data sequences which are separated by

penups and do not include dots. The output of this process is the observation sequence
 which like the previous methods is passed onto the comparison stage. Using the char-

acter 'i' as the example, the observation sequence obtained by this coding method will
be :-

   This method generates 10 possible observation symbols, the 8 direction codes, and
the penup and dot special codes. The major difference between this encoding method
and the inclination angle encoding method presented in the previous section, is that the
observation sequences passed onto the next stage in the inclination angle are in terms
of degrees, whereas in the method considered in this section the output consists mainly
of integers.

4.4 Comparison and Decision Processes.

   Now that the encoding scheme to be investigated in our research, have been described
in some detail, our attention is turned to the comparison and decision stages. Before de-
scribing the actual comparison and decision processes, the HMMs to be used within the
comparison stage have to be considered. For whatever encoding scheme used to con-
struct the observation sequence/s the same general model can be used. The left-to-right
HMM described in section 2.4 will be used to model each character to be recognised by
the system. The first type of left-to-right model to be considered will be a 3 state model
with skip states, Figure 11. This type of model will allow variations not just in the ob-
servation data in a specific state, but it will variations in writing speed to occur, with
the self-looping back into the same state taking into account slower than normal writ-
ing, and the skip state from state 1 to state 3 taking into account faster than normal writ-
ing.

Figure 11. Showing a 3 state left-to-right HMM with skip states.
   It should be noted that only one left-to-right model is required to represent each dif-
ferent character in the inclination angle and directional encoding schemes, i.e. only 26
models are required to represent the 26 letters of the alphabet. In the poisitonal encod-
ing method two left-to-right models are required for each character to be modelled in
the system, one for the x and one for the y directions, thus 52 model are required.
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Though this number can be halved if the  and  are combined into one observation se-

quence as was done by Jenget al [3].
   Of course this type of model already constraints the  and A matrices, which will ini-

tially be set as follows for all models in whatever description method used :-

where  and A can be partially derived from the conditions laid down for left-to-right

models in section 2.4. What about the B matrix for each character? This will be differ-
ent for each method, since the symbols are dependent on the way the observation se-
quence is constructed. According to Rabiner, [1], only the B estimates have to be good
estimates, but how are these estimates obtained. Rabiner suggest as number of methods
including manual segmentation of observation sequences into states and then averaging
observations within states, or maximum likelihood segmentation of observation se-
quences with averaging within states or by the use of segmental k-means segmentation
with clustering as considered by Rabiner in [1] and [21]. It is proposed for our system
to use manual segmentation of a small number of observation sequences for each char-
acter to be recognised, in the training set and using averaging within each state of the
observations. For example, if the character i considered throughout this section as an
example is used to build the observations, then using the observation sequence  for the

example i as training data for segmenting and establishing the initial B matrix, the B
matrix for the x HMM will be :-

where the rows represent the present state j, and the columns represent the possible ob-
servation symbols, the 6 quantisation levels 0.0 to 1.0, and the last column represents
the symbol p for penup. Note that the penup that occurs in the character i allows for easy
segmentation of the observations between the states in the model.
   Once the initial estimates for the B matrix for a particular character model have been
established, then the training procedure begins. In this training period a number of ob-
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servation sequences of the character the model is being trained to represent are used.
The training procedure using the Baum-Welch re-estimation algorithms will be used to
train each model, see section 2.3, but only the re-estimation algorithms for the  and

have to be used, equations (6b) and (6c), since the constraint that the left-to-right model
always starts in state 1 has already been set. The forward procedure described in section
2.1, will be used to score the models during training and recognition. The use of the Vit-
erbi Algorithm, described in section 2.2, in scoring the models will also be investigated.
   For this system the character description just supplied to the comparison stage is com-
pared to all the models formed during the training stage. The forward procedure is then
used to compare the observation received from the extraction stage, to determine how
likely the character read in matches each model in the system. This will produce a con-
fidence measure for each model for that particular observation sequence, , where  is the

cth character model. The more closely the observation sequence matches a particular
model, the higher the confidence measure and the more likely that the character the
model represents the unknown character just written. Once a confidence measure has
been obtained for each model a decision can be made on which character model best
represents the unknown character just written. The simplest criteria to use for this de-
cision is to say that the character model which has produced the best confidence mea-
sure is the unknown character. This decision stage can be represented by equation (25).

(25)

where  is the total number of separate characters that are modelled in the system, in our

system  and  is the probability measure obtained by the forward procedure, for the ob-

aij

bj k( )

Prob Oλ χ( )
λ χ

max _ prob= −∞
βεστ_ µοδ ελ= 1

∀χ ωηερε1 ≤ χ≤ Χ,

ιφ Προβ Ολ χ( ) > µαξ_ προβ( ) τηεν

µαξ _ προβ= Προβ Ο λχ( )
βεστ_ µοδ ελ = χ

ενδιφ

C

C = 26
Prob Oλ χ( )
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servation sequence given the model, , for the cth character. The output of this stage is

the reference number for the best fitting model, c, and it's confidence measure, . In the

case of the position encoding method  is given by combining the confidence measure

for the x and y HMMs, as is shown in equation (26).

(26)

Both equations (25) and (26) can be easily adapted if the Viterbi Algorithm is used to
score the models instead of the forward procedure.
   This would be the simplest form of character recognition, but no method of character
recognition is perfect, so this is where higher level models can be used to correct wrong-
ly recognised characters. Here we can see the inherent advantage of using HMMs in
character recognition, since a confidence measure is produced for each character mod-
el, not only can the most likely character be passed to higher level models, but the next
n most likely characters along with their confidence measures can be passed, thus sup-
plying higher level models with more information about the characters it has recogn-
ised. This will be of more use when two character models have similar confidence
measures. Such higher level models take into account the whole word, and then the sen-
tence that each word is contained in. Such a system has already been developed for stat-
ic character recognition by Vlontzos and Kung, [5], using Hidden Markov Models at
the character and word levels. All that would have to be done to their system is substi-
tute the static character system with one of the systems described in this section.

5. Summary and Conclusions.

   The application of Hidden Markov Models to dynamic character recognition has been
considered. A review of the theory and some of the implementation issues has been pre-
sented. It should be noted that experiments need to be conducted to see how well the
various methods suggested in this report are in reality. It should be obvious to the reader
the advantage of the inclination angle and directional encoding schemes in that they re-
quire no normalisation of the incoming data to derive a description.
   An investigation into what type of model, left-to-right, ergodic or a mixture, best rep-
resents the underlying Markov process in dynamic character recognition has to be car-
ried, similar to the one suggested by Naget al [6] for dynamic cursive word recognition.
Also an investigation into what other types of descriptions can be used and how well
they perform against the other method already described in this paper, especially what
combinations of descriptions work best and which descriptions have little or no relevant
information to the character.
   Two obvious applications where the work presented in this paper can be used, are dy-
namic signature verification and single writer adaptation. The dynamic signature veri-
fication work would require adaptation of the methods presented in this paper,
including the need of only on HMM to represent the signature, and the finding of more
writer dependent features. The application of HMMs to dynamic signature verification

λ χ

Prob Oλ χ( )

Prob Oλ χ( )

Prob Oλ χ( ) = Προβ Ο ξ λ χ
ξ( ) + Προβ Οψ λχ

ψ( )
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has been considered by Hananet al in [22], representing the  and  position sequences

as a set of up and down slopes and the time interval for each of these slopes.
     Another problem that is not considered in the literature is that of punctuation recog-
nition, i.e. recognising such characters as ?, or ", though the recognition of mathemati-
cal equations and line drawings have been considered, [23,24]. Whether it is static or
dynamic recognition, this problem has to be considered just as important as the charac-
ter recognition problem, and should really be considered as part of the same process.
The reasoning behind this is that the English language is not just made up of letters
which make up words, but digits and punctuation which give the language extra mean-
ing, and allow us the distinguish between the end of one sentence and the beginning of
another for example. If character recognition systems, both static and dynamic, are to
become viable and accepted commercially for use in large scale document reading, then
the ability to recognise punctuation has to be included.
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Appendix.  Derivation of Re-estimation Formulas for Model      Param-
eters.

   In this appendix the re-estimation formulas for ,  and  are derived using the formulas

given in [1]. Before the derivation of the re-estimation formulas can be carried out, two
more variables have to be introduced. The first is the state probability, , which can be

defined as the probability of being in state  at time t, given the observation sequence

and the model, equation (A1).

(A1)

Equation (A1) can be expressed in terms of the forward-backward variables as in equa-
tion (A2).

x t( )
y t( )

π ι

aij

bj k( )

γ τ ι( )

xi

γ τ ι( ) = Προβ ιτ = ξι Ο, λ( )
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     (A2)

   To be able to derive the equations for  and  the probability of a particular transition

occurring has to defined. The branch probability, , can be defined

according to [1] as the joint probability that given the observation sequence and the
model, that at time t the model is in state  and at time t+1 the model is in state , equation

(A3). This can be expressed in terms of the model parameters, and the forward-back-
ward variables as in equation (A4).

        (A3)

(A4)

   So the state probability , can be expressed in terms of the branch probability ,  as

shown in equation (A5).

     (A5)

  The derivation of the re-estimation formula for  can now be looked at. From section

2.3, it can be seen that the definition of the re-estimation formula, equation (5a), for a

γ τ ι( ) =
ατ ι( )βτ ι( )
Προβ Ο λ( )

=
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particular initial state  is the expected number of times in that state at . This can be ex-

pressed in terms of the state probability  as in equation (A6).

(A6)

Looking at the right hand side of equation (A6) it can be seen that  can be expressed in

terms of  as in equation (A7).  on the right hand side of this equation can be substituted

by the right hand side of equation (A4), as in equation (A8).

     (A7)

         (A8)

   Substituting equation (A8) into (A6) and we obtain the following equation in terms
of the model parameters and the forward-backward variables, equation (A9), for the re-
estimation formula for .

 (A9)
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   Now that the re-estimation formula for  has been derived, it is time to look at the der-

ivation of the  re-estimation formula. From section 2.3, equation (5b) it can be seen that

the definition of the transition re-estimation formula, can be expressed in terms of  and

 as in equation (A10).

(A10)

The numerator of equation (A10) can be simply expressed in terms of the forward-
backward variables and the model parameters as shown in equation (A11), by substi-
tuting equation (A4) in place of .

   (A11)

The denominator of equation (A10) can be expressed in terms of  as in equation (A12),

according to equation (A5) above. The right hand side of equation (A12) can then be
expressed in terms of the forward-backward variables and the model parameters, by
substituting the definition for  into this equation to give equation (A13).

      (A12)
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    (A13)

   The expressions for the denominator and numerator can now be substituted back into
equation (A10), to obtain the expression in equation (A14) below. It can be seen that
the bottom expression of the denominator and the numerator are the same, i.e. . It can

also be seen that the bottom of the denominator can be factored out as in equation
(A15), since the sum to j does not affect this part of the denominator in any way. An-
other reason for this factoring out is that the denominator is a sum of ratios, and returns
the same value as the sum of the top of the expression being calculated first followed
by a division by , as shown in equation (A15). This also means that  is a common term

in both the denominator and numerator, and can therefore be cancelled out of the equa-
tion, leaving the expression for the  re-estimation formula as given in equation (A16)

below.

      (A15)
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    (A16)

   The last formula to derive is the re-estimation formula for the  model parameters. The

definition for this formula, given in section 2.3, equation (5c), can be expressed solely
in terms of  as in equation (A17).

  (A17)

   Since the  re-estimation formula is a sum to T in comparison to the sum to T-1 of  re-

estimation formula, equation (A4) for  cannot be used since no observation exists for

T+1. So the original expression for  in terms of the forward-backward variables, equa-

tion (A2), has to be substituted into both expressions for the denominator and numera-
tor of equation (A17), since both  and  are defined for all T. So this leaves the following

expression, equation (A18), for the numerator of equation (A17).
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(A18)

   The expression for the denominator of equation (A17) is similar to equation (A18)
except for the condition that . Substituting these expressions back into equation (A17)

leaves the following expression for the re-estimated  formula, equation (A19).

(A19)
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