THE UNIVERSITY OF

WARWICK

Original citation:

Clarke, C. T. and Nudd, G. R. (1992) A redundant arithmetic CORDIC system with a unit
scale factor. University of Warwick. Department of Computer Science. (Department of
Computer Science Research Report). (Unpublished) CS-RR-234

Permanent WRAP url:
http://wrap.warwick.ac.uk/60923

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:

The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

warwickpublicationswrap

M
highlight your res

http://wrap.warwick.ac.uk/

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60923
mailto:publications@warwick.ac.uk

Research Report 234

A Redundant Arithmetic CORDIC System
with a Unit Scale Factor

C T Clarke and G R Nudd

RR234

The CORDIC algorithm for the calculation of trigonometric functions has traditionally suffered
from two problems; speed, and the necessity to pre-scale the inputs. The speed problem is
overcome to a large extent by the introduction of redundant number systems which have been
shown by others. Here we show a new CORDIC system which has a unit scale factor that can be
ignored. The unit scale factor is achieved by rotating the vector in 3 dimensional space in a
manner which scales it’s projection onto the X-Y plane by the reciprocal of the overall scale
factor. This new technique takes the same number of cycles as the standard CORDIC algorithm,
with only marginally slower cycle times than the redundant system of Takagi [8]. The system is
shown to be entirely compatible with redundant number system implementations of the CORDIC
algorithm.

Department of Computer Science
University of Warwick

Coventry CV4 7AL December 1992
United Kingdom

A Redundant Arithmetic CORDIC System With a
Unit Scale Factor

C.T. Clarke, and G.R. Nudd

Department of Computer Science
University of Warwick
Coventry
CV47AL

December 1992

Abstract

The CORDIC algorithm for the calculation of trigonometric functions
has traditionally suffered from two problems; speed, and the necessity
to pre-scale the inputs. The speed problem is overcome to a large extent
by the introduction of redundant number systems which have been
shown by others. Here we show a new CORDIC system which has a
unit scale factor that can be ignored. The unit scale factor is achieved by
rotating the vector in 3 dimensional space in a manner which scales it’s
projection onto the X-Y plane by the reciprocal of the overall scale
factor. This new technique takes the same number of cycles as the
standard CORDIC algorithm, with only marginally slower cycle times
than the redundant system of Takagi [8]. The system is shown to be
entirely compatible with redundant number system implementations of
the CORDIC algorithm.

1. Introduction

Trigonometric functions are widely used in many diverse fields. These
functions are computationally difficult, and as a result, algorithms that use these
functions heavily such as the Fourier transform were either significantly slowed or
forced to use large look-up tables until the CORDIC algorithm was discovered. The
CORDIC algorithm described by Volder in 1959 [9] is now well known and often
used. Implementations are seen in areas such as calculators, arithmetic co-processors,
DSP chips [7,3,1,4,5], and chirp-Z transform implementations [12]. The algorithm
described by Volder can calculate the trigonometric functions, sine and cosine, and
perform vector rotations. This was extended in 1971 by Walther [10], to a unified
algorithm, that calculates many trigonometric functions, some directly, and others
indirectly. The original algorithm required n iterations for an n bit result. Each iteration
consisted of additions, shifts, and comparisons. The algorithm had a complexity of

O(nz). The algorithm was recently modified by Takagi, and others(8,6] to incorporaze

redundant arithmetic . This resulted in an algorithm of complexity O(n). However, up
until 1974 the inputs or the outputs had to be scaled to take into account a vector
extension which is a side effect of the CORDIC technique. In 1974 Despain [2]
proposed a technique for making the scale factor unity. However it caused an increase
in the number of cycles taken in the algorithm . In this paper we show that by
generalising Volder’s work to 3 dimensions we can make the 2 dimensional scale factor
equal to 1, without needing any extra cycles. The scale factor can then be ignored. The
hardware cost is not prohibitively high, and there is a speed advantage in not having to
prescale the vector input. The technique for using redundant arithmetic systems devised
by Takagi is then incorporated into the work to produce an algorithm which has a

complexity of O(n), and no pre- or post-scaling is required. The generalisation of the

CORDIC algorithm to 3 dimensions is in itself a useful result, but it suffers from
limitations in the form shown here. The limitations do not affect the 2D CORDIC with
unit scale factor. An application of the 3 dimensional CORDIC system is that of
converting to a cartesian coordinate system from a spherical one.

2. CORDIC in 3 Dimensions
A vector R in 3 dimensional space is shown in figure 1. It has cartesian
coordinates (X‘. s § ,Z,.) and spherical coordinates (R,. ,6..,9)

ZA

v >

Figure 1. A vector in 3 dimensional space.

We can rotate this vector to become which has cartesian coordinates
(X. Y....Z) and spherical coordinates (R,.,O,. +a;,9; +ﬁ,.). In this case, the

i+10 7 i+ “isl

relationship between the cartesian, and spherical coordinates of R, and S are shown in
equations 1 to 6.

X, =R, cos6; sin ¢ (1
Y, =R, sin, sin g, (2
Z;, =R, cos ¢, (3
X.,, = R, cos(6; + a;)sin(¢; + ;) (4
Y., = R, sin(; + o,)sin(¢; + ;) (3
Z,., =R cos(¢; +B;) (6

We define the following set of scalars:

U, =R, cos6, cos ¢, (7
V; =R, sin6; cos ¢, (8
W, =R, sin¢, (9
U, =R, cos(B; + a;)cos(¢; +;) (10
V... =R sin(6; +a;)cos(¢; + ;) (11

W.,, =R, sin(¢, +8;) (12

If we expand out the left hand side of equations 4 to 6, and 10 to 12, and
substitute from equations 1to 3, and 7 to 9 wherever possible, we obtain:

U.,, =U, cose, cos B, — X; cose; sinf3; —V;sine, cosB; +7, sing, sinfB; (13
V., =V, cosq, cosB, —Y, cos;sinf; +U; sing, cosB, — X, sing; sinf3; (14
W., =W, cosf; +Z sinf, (15
Y, =Y, cosa; cosP, +V, cosq; sinf; +X; sina; cos; +U; sing; sin B (16
X.,, =X, cosa; cosf, +U, cosq; sinf;, - ¥, sinc; cosf; -V, sing; sinf; 17
Z,,, =Z; cosP; =W, sinp, (18

This set of equations that splits any rotation into a set of smaller rotations in the
same way as the 2 dimensional CORDIC algorithm. This is possible since we now

have a definition of the rotated vector in terms of R, and the rotations & and 3. We can

therefore split any rotation into a set of smaller rotations. We give @;, and B; the same

magnitude, but their signs may differ. This is simply for convenience. It also means
that the accuracy of the algorithm is the same in all dimensions at a given iteration i. As

with the 2 dimensional CORDIC algorithm, we choose «; =g, .arctan2”, and
B. =b,.arctan2™, where a;, and are € {~1,1}. From this, we can derive equations 19

to 22 for the sine, and cosine of @, and f;. The a;, and b, factors disappear from the

cosine equations because cosd =cos— &, whereas they are present in the sine
equations because sin § = —sin— 4.

1

COS,B‘- = —\j1_+_7 (19
sinﬁ,. = W (20

1
cosqa; = W (21
sinq; = \/—1———‘—3——: (22

The divisor of all these equations is a constant for each iteration step. We will
call this constant k; . Substituting equations 19 to 22 into equations 13 to 18, we get:

Ui+1 = _klz—(U, - X,' b,' 2-i - Vi a; 2_i + Yi a; bi 2—2i) (23

Vin = ‘EIE(V.‘ -Y.b 27 + U.a; p X;a.b, 27%) (24

W, = i—(w,. +Z.b27) (25
Y., = Zlf(Y" +V.b 2 +X,a,27 +U;a;b,27%) (26
X = kiiz(x,. +Ub, 27" -Y,a,27 -V,a,,27%) (27
Zun =@ - W5 2) (28

The scale factor for Z,,,, and W,,, is different to that of U,,,, V,,,, X, and

i+l

Y..,. This is not a problem since the two sets of variables do not interact in any way.

These equations can be used to rotate a 3 dimensional vector. The equations 23 to 28
are iterated ignoring the k; . We can prescale the inputs, or post scale the outputs by the

overall scale factor K, for Z and W, and K* for U, V, X, and Y, where:

K= ﬁ’xh +27% (29
i=l

When we start, at i =1, we need not only the cartesian coordinates X,, Y,,

and Z , butalso U,, V,, and W, . These would need to be calculated, and hence any
advantage would be lost. The only situation that it would be of use, is when the vector

initially lay on one axis, as this would cause U,, V|, and W, to be trivial.

4. Application of 3D CORDIC to scaling

It can be seen from the above discussion, that this 3D CORDIC algorithm
suffers from a problem at the first iteration. However, when we use this system as a
unit scale factor 2D CORDIC, the effect disappears. We use the X-Y plane for our 2
dimensional rotation, and rotate the vector out of the plane to reduce it's projected
length on the plane. The rotation out of the plane is chosen to have the opposite effect
to that of the vector extension, and hence they cancel each other out, giving a unit scale
factor. This is shown in figure 2. Assume a start vector A, this rotates in the 2D case
to B which is extended. Instead, the vector is rotated to C. This vector is also extended,
but the projection on the X-Y plane (D) is of the same length as A, and rotated by the
correct angle in the X-Y plane.

Y

Figure 2. Rotating in 3D to remove the 2D scale factor.
If we start with Z, =0, then U,, and V, will also be O since ¢, must be 12‘-

Also, to calculate X, , and Y, , we do not need to calculate W, or Z,, and hence we do
notneed W, or Z,.All we need do is set X,,and ¥, tothe inidal vector and, U, and
V, to 0. To perform a rotation with no scale factor we then rotate 6 by the required

. 1
vector rotation, and rotate ¢ by the angle arccos-;(—;. The overall effect of the two

rotations is a single unscaled rotation.

5. Combination of Scaleless CORDIC, and Redundant Number Systems
We can incorporate redundant number arithmetic into this algorithm without

difficulty. The rotation of ¢ is known at the design stage, and so we do not need to use
the double rotation method suggested by Takagi [8] for this rotation. If we use the
double rotation method for the rotation of 8, then we get equations 30 to 35, where ¢;,
and e, are € {1,~1}, each denoting the sign of a half rotation in the X-Y plane. These

two half rotations combine to form a positive, a negative, or no rotation. When there is
no rotation there is still an extension of the vector.

Ui =U.S, =X, 55,27 =V, 8,27 +Y,5,6,27" (30
Via =ViS, =Y, 55,27 +U;5,27 - Y, 5,5, 27 31
Yin=Y.5 +Vi§b 27+ X, 522_i + U, S,b, 27 (32
Xin =X S +U 5 b, 27 -Y,5,27 -V.S5,b, 27 (33
where:
Sl =1- Ci e 2—2i—2 (34
and:
c, +e
2T (35

The scale factor still needs to be calculated, to find the correcting rotation of the
vector off the X-Y plane. The new scaling factor L in this case is:

L= (1+2‘2"2).:</1+2"2‘ (36

i=1

The rotation of ¢ will be arccos-i—. Note that this scale factor is different to that

in the previous section.
So far we have not addressed the issue of making the decision of whether to
rotate in a positive or negative direction at any particular stage. The case of rotations of

@, is simple because we know the angle through which we are going to rotate B. Hence
we can pre-calculate the set of b; so that :

B= b, arctan2™ (37
i=1

Once calculated, b, can be stored in a very small ROM (n bits). The calculation
of the rotations in the X-Y plane is done as Takagi suggested. We refer to the angle

through which we rotate the vector as T, . The calculation of c;, and e; is made by

taking the most significant three digits of T, at stage i, and c;, and e; are defined as
follows:

-1 1 if[e,er] <0
ce, =41 -1 if[tqe] =0 (38
11 iffege,er] >0

Note that ¢; indicates the direction of rotation, and e; represents whether the
second rotation is in the same direction as the first (+1), or not (-1). We can find the

new value T,,, from equation 39.
T, =T, —c (e +1)arctan2™ (39

6. Impact of the new algorithm

6 inputs
TIL T
3 inputs
N~ /ﬁ
N e
| I
1 output 1 output
a b

Figure 3. Example bit slice of redundant adder layouts for a) A unit scale factor system
b) Takagi’s suggestion.

The equations for the ‘scale factor’less redundant arithmetic CORDIC system
are more complex than the equations suggested by Takagi [8]. The number of terms is
doubled. This would, however only lead to a 50% longer delay in the adder stage due
to the increased number of inputs from 3 to 6, as shown in figure 3.

As well as the increased need for addition, there would need to be two more
registers for U and V, and multiple shifters. The addition of more shifters and registers
should not greatly affect the clock period of a hardware implementation of the new
algorithm because the operations would be performed in parallel. We could use the
redundant method suggested by Duprat [6], and this would result in an adder delay
equal to that of the constant scale factor technique given by Takagi. It would also be
possible to incorporate this new system into the unified algorithm of J. S. Walther
[10]. It should be noted however, that when using the unified algorithm, the scale
factor is greater than 1 in the circular rotation case, equal to 1 in the linear case, and less
than 1 in the hyperbolic case. This means that we need a different correction for each
type of rotation. The obvious solution is to arrange for the two rotations to be of the
same type. The sets of additions and subtractions necessary to compensate for the scale
factor will be different in each case, and trivial for the linear case.

7. Conclusions

We have presented an extension to the CORDIC algorithm [9] which allows us
to remove the need for scaling. The extension also has use in the conversion of
spherical polar coordinates into cartesian coordinates. The removal of the need for
scaling significantly improves the CORDIC algorithm and increases its potential
throughput. This algorithm is entirely compatible with Walther’s unified algorithm
[10], and the various redundant arithmetic schemes [8,6] for the CORDIC algorithm.

References

1. Considine, V., CORDIC Trigonometric Function Generator For DSP, In Proc
ICASSP89, IEEE, 1989, pp. 2381-2384.

2. Despain, A.M., Fourier Transform Computers Using CORDIC Iterations,
IEEE transactions on computers, October 1974; ¢-23 (10) : pp. 993-1001.

3. Dixon, G., An Array Processor Implementation of The CORDIC Algorithm,
IEE colloquium on VLSI signal processing architectures, May 1990 : pp. 5/1-
5/8.

4. H. M. Ahmed, and Fu, K.H., A VLSI Array CORDIC Architecture, In Proc.
ICASSP89, IEEE, 1989, pp. 2385-2388.

5. J.R. Cavallaro, and Luk, F.T., CORDIC arithmetic for an SVD processor, In
Proc. 8th Symposium on Computer Arithmetic, [IEEE Computer Society Press.
1987, pp. 113-119.

6. J. Duprat, and Muller, J.M., Fast VLSI Implementation of CORDIC Using
Redundancy, In Algorithms and Parallel Architectures, 1991.

7. Timmermann D., Hahn H., Hostika B.J., and Schmidt G., A Programmable
CORDIC Chip for Digital Signal Processing Applications, IEEE journal of
solid-state circuits, September 1991; 26 (9) : pp. 1317-1321.

8. Takagi, N., Redundant CORDIC methods with a constant scale factor for sine
and cosine computation, IEEE transactions on computers, September 1991; 40
) : pp. 989-995.

9. Volder, J.E. The CORDIC Trigonometric Computation Technique. In
Computer Arithmetic. IEEE Computer Society Press, Swartzlander, E.E., pp.
226-230, 1990.

10. Walther, J.S., A unified algorithm for elementary functions, IEEE Computer
Society Press, Vol. 11990, pp. 272-278.

11.

12.

X. Hy, R. G. Harber, and Bass, S.C., Expanding the Range of Convergence

of the CORDIC Algorithm, IEEE transactions on computers, January 1991; 40
(1) : pp. 13-21.

Y. H. Hu, and Naganathan, S., A Novel Implementation of a Chirp Z-
Transform Using a CORDIC processor, IEEE transactions on acoustics,
speech, and signal processing, February 1990; 38 (2) : pp. 352-354.

