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1. Introduction

In the world of denotational semantics there are two principle approaches to defining fixed point

semantics. Firstly there is the more usual Tarski School tTa55l which uses a least fixed

point theorem over domains constnrcted as complete partial orders. Lcss well known but still
significant is the Banach School [dB&282] which uses the Banach contraction mapping

theorem over domains constructed as complete metric qpaces. As any Scou topology [St74 for

a partial order has to be non Hausdorff and as every metric space has to be Hausdorff it is
understandable that these nvo schools have had little in common to talk abouL In particular the

Banach school can be accused of denying the importance of a paftial order solely on the grounds

that there was no obvious way of defining one in a complete metric space.

Bridges can however be built between the Tarski and Banach schools. The Lawson

[La87] approach is to construct a refined metric topology for each given Scott partial order

topology. Being Hausdorff lawson topologies are too fine for computational purposcs, and so

this approach side steps the important question of whether or not there are suitable distance

funcions to describe Scott topologies. Smyth [Sm87] has promoted the use of non Hausdorff

generalised metric spaces which include many Scott topologies. Smyth uses the quasi metric

which is a non symmetric distance function having a natural definition of partial order. Although

quasi metric topologies offer considerable promise as a means of unifying ideas from both the

Tarski and Banach schools it is unlikely that the quasi metric itself is the most appropriate

generalised metric for describing such topologies.

The Cycle Contraction Mapping Theorem is an extension of Banch's contraction

mapping theorem for complete metric spaces to a class of quasi metric spaces. This theorem is

formulated in terms of the author's Partlal Metic [Ma92] , a symmetric generalised metric with

a quasi metric topology. Used for program correctness proofs such as absence of deadlock in
Kahn Networks [Ka74] the cycle contraction mapping theorem cannot be formulated in terms of a
quasi metric. Such proofs are novel in that they contain no reference to either partial objects or
operational semantics.



2. Background Definitions and Results

Definition 2.1

A Metic tSu75l isafunction d:U2 ) fr suchthat,

(Ml) Vx,YeU x=J € d(x,Y)=0
(M2) V x,y eU d(x,Y) = d(Y'x)
(M3) Vx,y,zeU d(x,z)

Delinition 2.2

Foreachmetric d:U2 + fr and XeuU, X is Cauchy if,

V €>0 Skea Vn,m>k d(Xn,X^)<€

Definition 2.3

A metric is Complete if every Cauchy sequence converges.

The Banach Contraction Mapping Theorem

Foreachcompletemetric d: U2 + fr andfunction f : U + U, .f hasaunique

fi.xed point if ,

3 03c<I Vx,yeU d(f(x),f(Y))

Definition 2.4

A Quasi Metric isafunction q : U2 + fr suchthat,

(Ql) Vx,yeU x=! € q(x,Y)=q(Y,x)=0
(Q2) Vx,y,zeU q(x,z)

3. Partial Metrics

Definition 3.1

A Partial Metic tMa92l isafunction p : U2 ) fr suchthat,

(P1 ) Vx,yeU x=! e P(x,x)=p(x,y)=p(y,y)
(P2) Vx,yeU P(x,x) S P(x,Y)
(P3) Vx,yeU P(x,Y) = P(Y,x)
(P4) Vx,y,zeU P(x,z)

Asametricispreciselyapartialmetric p suchthat V x eU P(x,x)=0 theaxioms

Pl - P4 specify a class of generalised metrics. Pl - P4 are intended to be the finest possible
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generalisation of the metric axioms Ml - M3 such that the distance of a point from itsclf is not

necessarily zero. In Ma92l it is shown that for each panial nrcric p the collection ,

t { yeU I p(x,y)< € } | xeU A €>0 }

of Open Balls is a base for a T 0 pa.rtial order quasi metric topology Tt p I of upward

closures where the partial ordering << g U2 is defined by ,

Vx,yeU x<<y € p(x,x)-p(x,y)

Example 3.1

The function pmax : fr2 + fr retuming the maximum of trpo non negative real numbers

is a partial metric such that ,

V x,y e fr x

i-lpmaxl hastheopenballbase { tO,e) le >0 }.

Example 3.2

Thefunction int; { [a,b] | aSb 12 + fr overtheclosedintervalsonthe
real line where ,

V aSb , cSd int(f,a,bl ,Ic,dl).'.'= max{b,dl -min(a,cl

is a partial metric such that ,

Ia,bl < Ic,dl <+ fc,dl g [a,b]

Example 3.3

For each non empry set S with a special object l- * S the function ,

pt: (Su{l-})2 110,1} where,

V x,!e SU{l-} pt(x,y) = 0 c+ 1=y€S

defines a FIat Domain where.

V x,! e Su{l-} x Kt y € r=I v x=!

Example 3.4

ForeachnonemptySetsthecompletepartialorder(S*,(<*>
sequences over S under the initial segment ordering can be defined by the Baire Partial Metric,
P* : (Sx)2 + X where,
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V x,y c.t'| p*(x,y) .'.'= 2-^ wherc n e u U{@l isthelengttr

of the longest common initial segment

between x & y

Example 3.5

Foreach n2I thehnite n-product ofapartialmetric p: U2 ) fr isthepartial

metric p": (U")2 ) fr where,

V x,y e(Jo pn(x,y) tt=
icn

ffid, Vx,ye{Jo xKny € Vien x;Kli

Example 3.6

Foreachboundedpanialmetric p : U2 ) fr the u-product of p isthepanialnretric

p('):(Ut't1Z ) X wherc,

V x,! e (J@ p@(x,y) ::= Z p(xi,li) x 2-i
iec.r

and, Vx,ye(Ju x<<s)y € Viec'.t x; (li

The partial metric is the finest generalisation of a metric which allows the distance of an object from

itself to be not necessarily zero. The reason for this is based upon the following philosophical

understanding of domain theory. Classic incompleteness results force us to add undccidable

objects such as 1 to the semantic domain for any non trivial programming language. In

particular it is not possible to decide if l- is equal to itself. For example , for any monotonic

equality function of the foml ,

eq : { tnrc ,false , Llz -+ { mrc ,false, Ll

overaflatdomainwecannothave eq(L,L) = true. Theconclusiondrawnbytheauthor

from this is that the metric dccidabiliry axiam,

(Ml ) Vx,ye(J x=! a d(x,y)=0

is far too strong to be tenable for a theory of domains as within a metic framework we have to be

able to decide that l- = l- using d( I ,I ) = 0 .

The philosphy behind the panial metric is that the structure of a Scott style domain can be

defined using a distance function which measures the extent to which any two objects can be

decidedtobeequal. Foreachpartialmetric p:U2 + X and x,!e(J, p(x,y)
is a numerical measure of the extent to which x & y can be decided equal. The panial metric

is a generalisation of the notion of a metric which allows the distance p( x , x ) of an object r

A-T



from itself to be something other than zero, thus allowing us to attach a notion of sdr to each

object. This distance is a measure of the degree of completeness of r , and sr; p( x , x )

is to be thought of as the size of r and is denoted by lx I . The following propeties which

characterise the notion of size can be deduced from the axioms Pl - P4.

V x,y e U x<<y + lxl

V x,y e U x<<y A x*y 1 lxl

Vx,yeU x<<y A lxl =Q + x=!

An object x is said to be Complete if I xl = 0 and is said to be Partial if lr | > 0.
The subspace of complete objects of a partial metric space is a metric space. The distinction

between complete and partial objects is not possible using quasi metrics, and as the cycle

contraction mapping theorem below shows, it gives us a powerful tool for reasoning about

program correctness. The last of the above properties says that complete objects are always

maximal, however, theconverseisnotalwaystrueasthetrivialexample p: {alz ) {Il
in which the maximal object a must have size .l shows.

Definition 3.2

Foreachpaftialmetric p : U2 + X, X e uU is Cauchy if ,

V €>0 Skeot V n,m>k p(Xn,X^) < €

Definition 3.3

Apartialmetric p: U2 -t fr is Complete ifforeach X c uU thereexists a c U
such that,

3 lim p( Xo , a )
n)@

that is , if every Cauchy sequence converges to a complete objecr

Note that Definitions 3.2 & 3.3 are consistent with the analogous Definitions 2.2 & 2.3 for

metrics.

The Partial Metric Contraction Mapping Theorem

Foreachcompletepartialmetric p:U2 + fr andfunction f :U -, U suchthat,

3 0Sc<I

/ has a unique frxed point,

V x,y e (l

and this point is complete.
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This result reduces to Banach's contraction mapping theorem for complete nretric spaces [Su75l

when p is a metric. For a proof of this result see [Ma92] .

Definition 3.4

A partial meffic p : IJ 2 + fr is Continuous rf

1)

2) For each chain X e

and the meet of each countable set exists

@(J ll-l x | = lim
n+e

3) Vxeu(J ll-l {x,, lneu) }l= sup{lxnl

Notethatforeachcontinuouspartialmenic, V x,y e (I I x l-l y I

In [Ma92] it is shown that for each continuous partial metric over a set U
functions in U + U are precisely the chain continuous functions.

lx,l I

I ncul

= p(x,y).
the continuous

4. Complete and Partial Objects

In the early days of programming language theory total correctness was defined as partial

correctness plus termination [Ho69] , an idea now rendered largely obsolete by the need for ever

more non terminating software which is intended to be totally correcl Ttre concept of termination

does not generalise to such infinite behaviours because termination is by definition something

which can occur only after a finite number of steps. One way around this problem is o formulate

total correctness for both finite and infinite behaviours as the limit of an infinite sequenc€ 6 finite
correctness properties. Fsl sxampl€ , if P ut : u + Boolean is a total correctness

propertyforadomainofbehaviours U, andifforeach n 20, P^: U ) Boolean isa

finite correctness property then the following prmf rule can be used to handle infinite behaviqrn.

Vxe(l ( V n>0 P"(x) ) + P.(x)

The concept of size in a partial metric space gives us a means of expressing finite properties such

flS'

V xe(J V n20 P"(x) l-r l

where finiteness is formulated as to within a certain size. ln constructing a framework for

reasoning about the total correcmess of programs we aim to choose a partial metric for behavioun

in which the totally correct ones are precisley the complete objects. In the case of functional

programming languages where a behaviour is formulated as an evaluation of a data object the

description of completeness given by Wadge [Wa81] is the most appropriate.
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" A complete obiect ( in a donnin of damobiecs ) is , roughty speaking ,

one which has rw lnles or gaps in it , onc which cannotbefwtlur completed. "

Using Kahn's model of Data Flow computation [Ka74] as an example Wadge presented a

convincing argument for completeness, only hinting at how it might be possible to generalise this

work to other models such as that used by the hcid [W&A85] Iazy data flow programming

language. The partial metric succeeds in making the big break for completeness from the

restrictive world of Kahn data flow to other models of computation based upon Scott style

topologies.

Kahn's data flow model of computation is a finite asynchronous message passing network

of sequential deterrninistic processes cornmunicating via unidirectional Unix style pipes. The

denotational semantics of a net'wok of n processes over a message set S is the least fixed point

y(F) ofachaincontinuousfunction F : (S*)" + (S*)". Wadgedemonstratedthat

ifthereexistsafunction M : n2 + { ...,-1,0,1,..., @f suchthat,

Vx e(s*1n Vien length F(x)i 2 ( lengthxi + Mij )

and satisfying the Cycle Sum Test in which all cycle sums of the form .

Mou + Mt" + Mca + + Yii + Mjo

must be strictly positive then the network will not deadlock, that is,

Vien lengthY(F)i =

Neither the statement nor the proof of the cycle sum test can generalise o other domains such as in

Example 3.6 where there is no concept of length. However, if the notion of length is

generalised to be the distance of an object from itself in the context of a generalised metric then

considerable progress can be made.

5. The Cycle Contraction Mapping Theorem

In Ma85l the suggestion made by Wadge [Wa81] ,

"lt is not possible as far as we know to formulate the cycle sun

theorem purely in teftns of functions on an abstract tnetric space."

was refuted using a formulation of the theorem in terms of a generalised metric d : U2 ) fr
satisfying the axioms,

mln
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Vx,YGU d(x,Y) = 0 + x=!
V x,yeU d(x,Y) = d(Y,x)
V x,Y,z e (I d(x,z)

Although suitable for fomrulating a version of the cycle sum test ftr all complete metric spaces this

generalised meric does not in general have an open ball topology, and so cannot be used to

extend the theorem to a class of Scott style topologies such as those definable by partial metrics.

In particular the cycle sum test for Kahn data flow cannot be applied to Lucid programs using this

approach. The Cycle Contraction Mapping Theorem is both the generalisation of the cycle

sum test from the Kahn domain to all complete partial metric spaces and the generalisation of

Banach's contraction mapping theorem o all complete partial rnetric spaces, and is formulated as a

result to prove unique fixed points for functions of the form F : U n ) U n. The first step

is to generalise the notion of Banach's contraction constant 0 S c < I to an array of

constants.

Definition 5.1

A Semi Cycle Contraction Constant isafunctionof thefomr c : n2 + fr

Definition 5.2

A Semi Cycle Contraction isafunction F : (J^ + Un forwhichthereexistsasemicycle

contractionconstant c : n2 + fi suchthat,

Vx,ye(Jn Vien P( F(x);,F(Y)i )

Lemma 5.1

Foreachsemicyclecontraction F : (Jn + Un withsemicyclecontractionconstant c,

V m>I V x,! e (Jn V isen
p( (F^(x))( jo) , (F^(v))(io) )

< max{ c( jo, jr)xc( jt, jz)*
x c( j^_1 , j^ ) , p( x(j^) , y(j^ ) )

I it , ... , i^ e n )

Proof:

Suppose F : (J n + (Jn is a semi cycle contraction with semi cycle contraction

constant c , andthat m 2 1.

The proof is by induction on m .

True for m = I by Definition 5.2.
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By induction suppose true for some m 2 I , then ,

V x,! € (Jn V ioen

p( (F^+t(x))(io) , (F^*t(Y)Xio) )

1 it e n )

x p( x(i^*t) , l(i^t) )

I jz, ... , jm+I c n )

I ir e n )
( by the induction hypothesis )

= max{ c( jo,jt) x c( jr,jz) x x c( j^,j^rt)
x P( x(j^t),!(j^*t) )

I jt , im+t e n l
tr

Definition 5.3

Foreachsemicyclecontractionconstant c:n2 I fr and m21 apath p of

length#p>/ isafunction p:(0,...,#pl )n pisacycle if P0=P#p,
and piscycle-free if v0si*is#p pi*Pj.T\eproductof P is,

p* .'.'= x{ c(Pi,Pit) | ie#P }

Thesubpaths ( pi,..., Pj) and ( Pi,,...,Pf ) of p arc disioint if i Si'
or j' -< i.

Lemma 5.2

Every cycle-free path for a semi cycle contraction constant c : n2 + n has length less than

n.

Proof:

Suppose p is a cycle-free path for a semi cycle contraction constant c : n2 1 X
Then, V i+j€(0,...,#pl pi*pj
Thusthecardinalityof { p0,..., P*pl is #p + I
But, {p0,...,P*pl c n

Thus, #P+1 S n

Thus, #P < n

tr
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Lemma 5.3

Eachpath p forasemicyclecontractionconstant c : n2 ) fr hasatleast Ltp /n)
disjoint cycles.

Proof :

Suppose p is a path for a semi cycle contraction constant c .' n2 + fr
The p has the disjoint sub paths ,

where k ....= L*p/nJ x n

Then by Lemma 2 each of these disjoint sub paths has at least one cycle ,

and so p has at least L*p / n J disjoint cycles.

tr

Definition 5.4

A Cycle Contractton Constanr is a semi cycle contraction constant pasing the Cycle Product

Test ,

Vp po=p*p I p*<I

which says that the product of every cycle must be less than I . To see that the cycle sum test

is an instance of the cycle product test suppose that c is such that we can find a unique function

M : n2 I {...,-1,0,1,...,@J suchthat,

V i,i e n c(i,i) = 2-M(i'i)

Then the cycle product test is equivalent to the cycle sum test,

V p po = P*p + 
,?uo 

M( Pi,Pi+r ) > o

Lemma 5.4

For each cycle contraction constant ,

sup{ p* | po = ptp } . I

- 10-



Proof :

Suppose c : n2 + fr isacyclecontractionconstant

Suppose P is a cYcle .

Then by pmma 5.2 wecan keep removing sub cycles of p to find a sub cycle

p' of p such that #P' < n.

Also p* S p'* as c passes the cycle product test.

Thus, sup{ p* | Po = P*p }

as ( p I po = p*p A#P<n )isRnite
tr

Lemma 5.5

For each cycle contraction constant c : n2 + fr ,

3 m>1 V P #P=m + P* s I/(2xn1

Proof :

Suppose c.'{ 1,...,n12 + fi isacyclecontractionconstant

Thus by Lemmas 5.2 & 5.3 '
Vp 3 k

where, d .'.'= supl p'* | V0siitjs#p' P'i*P'j }

b .'.'= sup { p' I p'o = p'#p, }

But by Lrmma 5.4 b < I , thus for large enough #p the result follows.

tr

Lemma 5.6

Foreachfunction F : Un + (Jn and m 21, if Fm hasauniquefixedpointthen

this point is also the unique fixed point of F .

Proof :

Suppose F:Un -r(Jn hastheuniquefixedpoint a eUn, and m2I

Then, a = F^(a)
F(a) = F( Fn(a) )

F(a) = F^( F(a) )

a = F(a)as a isunique
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And so F is shown to have a as a fixed point; now we show it o be uniquc

Suppose b e Un issuchthat

b = F(b)
F(b) = F2(b)

F2(b) =F3(b)

Fn-I(b) = F^(b)
Thus, b = F^(b)
Thus, a=b as a isunique.

u

Definition 5.5

A Cycle Contraction is a semi rycle contraction having a cycle contraction constanl Clearly a

Banach contraction mapping is preciselyy a cycle conmffion mapping where p is a meric and

n= I .

The Cycle Contraction Mapping Theorem

A cycle contraction over a complete partial nretric qpace has a unique fixed point, and this point is

complete.

Proof :

Suppose F : Un + Un is acyclecontraction with cycle contraction

constant c .

By trmma 5.6 and the ParM Metric Contraction Mapping Theoran it is

sufficient to show that there exists m 2 I such that F m is a contraction

Bv lrmma 5.5 we can choose m 2 I such that ,

V P #P=m I P*

Thus using Lemma 5.1 for all x ,! € U n ,

p'( F^(x) , F^(y) )

=

I jt,.!., j^en )lien )

= I { max{p(xi,t1)l j e n}l i e nl / (2xn)

12-



tr

t/2 x rnax( p(xi,ti) | i . n I

1/2 x p"(x,y)

6. The Complete Cycte Contraction Mapping Theorem

Proof theory for programs , such as in safety critical systems , often requires a correctness proof

for a program which is intuitively obviously correct. [n our case this means proving properties

over partial metric spaces of recursively defined functions which have unique & complete fixed

points. Thus if no partial objects are involved in such definitions it should not be necessary to

have to use partial objects in a correctness proof. A simple example from Lucid is the definition,

x = Jby( one , phts( x , onc ) )

where,

Vieu)

V x,y

. Otl€ i

Vie(a

.'.'= I

. phts(x,!)i

. fW( x ,! ) i

::= Xi + li

Xg

x i-I
V t,y V i e u) if i=0

if i>0

It is no secret that the function A x . fby ( otc, phls( x, one ) ) has the unique &

completefixedpoint l i e u i+1, butisthereanywayofprovingsuch obvious

results without reference to either panial objecs or approximations ? This was a question posed

in tWa8l] for which we can use the cycle contraction mapping theorem to glve a positive answer.

Definition 6.1

For each partial metric p : U2 + fi , afunction f : U

v + f(x)

U is Optimal it ,

fly ) and,V x,y e U x

Vx,!€U3x',!'€U
x((x' A y <<Y' A lr'l =lY'l=0

p( f(x),f(v)) = p(f(x'),f(v'))

-t3



Lemma 6.1

Foreachpanialmetric P:U2 -> fr,

V x << x', ! (( Y' e (Jn Pn( x,l) = Pn(x',Y')
e V i e n p( xi,li ) = p( x';,!'i)

The Optimal Cycle Contraction Mapping Theorem

Iftherestriction F ltr eIJn J lxt=0 )tothecompleteobjectsofanoptimalfunction

F : (Jn -, (Jn overacompletepartialmetric p : U2 -t fr isacyclecontractionthen F

has a unique fi.xed point and this point is complete.

Proof:
Suppose p : U2 + X isacompletepanialmetric

Suppose F : IJ n ) (J n is an optimal function such that

F | { r e IJn I lxl = 0 } isacyclecontraction

with rycle contraction constant c .

Suppose x,! e Un

Then as F is optimal we can choose x' , !' e U n such that'

x<<x' A Y<<Y' A lr'l =lY'l=0 A

p"( F(x) , F(y) ) = p"( F(x') , F(y') )

Thus, V i e n p( F(x)i,F(Y)i )

= p( F(x')i, F(y')i ) (byLrmma6.landas F ismonotonic)

Smax{ c(i,j)rp(x'j,!'i) | ien }

Smaxl c(i,j)xp(xj,tj) | ien )

(as V j e n . p( x'j,!'i ) < p( xi,li ) )

Thus the theorem follows by the cycle contraction mapping theorem

7. Conclusions and Further Work

The principle conclusion from the work in this report is that a theory of complete & panial objecs

as envisaged by Wadge is possible by using partial metrics to generalise the structure of a complete

metric space to include partial objects. The cycle contraction mapping theorem supports this

conclusion as it generalises both the cycle sum test and Banach's theorem. This work is still a

long way from the desired goal of finding suitable partial metrics for function spaces, and from

- 14-
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there to a reflexive theory of domains. If possible we would effectively have Scott's pioneering

ideas on denotational semantics [St77] combined with a notion of completeness. This work is a

convincing argument that a generalised metric approach to denotational sernantics is plausible, an

argument which does not fall foul of the traditional prejudice held against quasi metrics that they

are not symmetric. After all, according to legend, it was Scon himself who said that domains

should be metrizable.

The next task is to demonstrate that obviously totally corect programs can be reasoned about

without reference to partial objects and approximation. The challenge is to design a programming

language of optimal functions to which the optimal cycle contraction mapping theorem can be

applied. This is now being attempted by constnrcting algebrras of optimal functions for landin's
sugared I - calculus ISWIM UA&l notation.
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