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Multiresolution Fourier Transform
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A multiresolution approach to the analysis of structural texture is presented. The multiresolution
Fourier transform (MFT) is utilized as a framework to derive a robust algorithm which estimates
textural features over a range of spatial scales based on local frequency domain properties. A pair
of centroids of local spectra are extracted to represent the dominant frequencies of underlying
spatial regions which are equivariant to rotation and scaling. Based on these centroids, the
relationship between two different local spectra is characterized by an affine transformation.
Assessment of the estimated affine transform is made by normalized correlation, which also
provides local phase shift information. Analysis and synthesis of both artificial and natural
images demonstrate the capability of the algorithm.
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1 Introduction

Texture is one of the important characteristics which exists in natural image. There
are several different definitions of texture. Hawkins gave a definition of texture as
follows [9]:

"the notation of tezture appears to be depended upon three ingredients: a. some
local ”order” is repeated over a region which is large in comparison to the order’s
size b. the order consists non-random arrangement of elementary parts c.the parts
are roughly uniform entities having approzimately the same dimensions everywhere
within the textured region”.

A large class of textures could be covered by such a definition, for example, a
brick wall or a wall paper pattern as shown in figure 1.

In image texture analysis, the objective is to discover the useful features that de-
scribe the coarseness, directionality and regularity of image texture. There are two
main approaches to texture image analysis. The statistical approach [8] attempts a
global characterization of texture. Statistical properties of the image gray level are
measured as texture descriptors. This approach deals with properties of individual
image pixels instead of subregions. The structural approach [8] views textures as an
arrangement of a set of textural elements according to certain placement rules. Their
major purpose is to give a compact structural description of texture by a minimum
number of parameters. Statistical models may be successfully used in discriminating
sets of textures. However, since texture is often piecewise uniform with respect to
some structural properties, the structural approach is equally powerful in modeling
texture in many cases. In structural textures, the basic elements themselves, in gen-
eral, may also be made up of a set of texture elements, ie., they may be microtextured.

Figure 1: Texture images: brick wall and wall paper pattern



This leads us to model texture hierarchically in a way which requires no a prior:
knowledge of the scale of texture elements. Haralick [8] used the co-occurrence matrix
to measure the features of texture elements based on the length of similar pixel grey
level values within a given neighbourhood. His method is limited to describing the
texture element’s local variation in orientation and requires the size of neighbourhood.
Bajcsy [3] used statistical measurement derived from the Fourier power spectrum
of the image to detect the global periodicity by identifying high-energy, narrowed
peaks in the spectrum, although the approach is not invariant to changes in either
orientation or scale.

This report is motivated by the need for a texture representation which is hi-
erarchical and invariant to elementary geomatric transformation, such as rotation,
scaling and translation, with the capability of capturing both local and global tex-
ture information simultaneously. Towards this end, a new model for texture feature
representation based on the multiresolution Fourier transform (MFT) [5] is described.
The MFT is a linear transform providing local frequency estimation over multiple spa-
tial resolutions and is thus ideally suited to the analysis of local frequency properties
of textural elements at different scales. Local spectra within the MFT corresponding
to image regions at different scales are represented by a pair of centroid vectors which
are estimated using a minimum variance criterion and are equivariant to rotation
and scaling. Using these vectors, the affine transform between two different regions
is then obtained and an assessment of the transform selection is done using normal-
ized correlation. From the correlation, the phase information about the position shift
between two local spectra is also obtained.

A literature review is presented at section 1. Existing structural texture feature
representation schemes are reviewed and a comparison is made between the existing
models in terms of various textural measures such as locality, rotation, scale and ori-
entation in the texture features. The new approach to texture feature representation
is described in section 3, and its implementation using the MFT is described in section
4. The MFT’s capability and elementary properties are discussed. In section 5, the
effectiveness of the approach is demonstrated by the analysis and synthesis of natural
and synthetic images. The report concludes with a discussion of future investigations
into the properties of the algorithm.

2 Survey of structural texture analysis schemes

The schemes reviewed in this section are divided into two broad categories: spatial-
domain methods and frequency-domain methods. Processing techniques in the first
category are based on direct manipulation of the pixels in an image. A typical example
is the co-occurrence matrix method [8]. The frequency domain, on the other hand,
refers to the transformed field of an image, and approaches in this category are based



on the processing of the frequency energy in the spectrum of image. An example of
this approach is the power spectrum method [3].

2.1 Spatial domain approaches
Co-occurrence matrix

The spatial gray level dependence method is based on the estimation of the second-
order joint conditional probability density function, f(z, j|d,8). Each f(z,j|d, 8) is the
probability of going from gray level ¢ to gray level j, given the intersample spacing
distance d, and the direction is given by the angle 8. The estimated values, z4(z, j|d),
can be written in matrix form, the so-called co-occurrence matrix.

From a co-occurrence matrix a number of texture features can be defined, such as

1. Energy:
E(zo(d)) = 3_ > _[ze(i, 51d))” (1)

2. Entropy:

H(zo(d)) = Z Z[xo(m |d)}logzs(i, j|d) (2)

3. Correlation: 7 : il
R(zo(d)) _ 24 Zj(z - l“i)(] - /"J')‘T'G(lvjl ) (3)

0i0;

4. Local Homogeneity:
L(zo(d)) ZZ I ( xa(z,JId) (4)

5. Inertia: :
I(zo(d)) = 323 (i — 3)*zs(i, j|d) (5)

Various versions of co-occurrence matrixes have been developed and its capability
has been demonstrated [6]. As we can see from the above textural features descrip-
tion, the intersample spacing distance d plays a dominant role in determining the
processing power of co-occurrence methods. The textural structures which can be
described within a neighborhood are naturally limited to those which are observable
within the size of the neighborhood. Thus a feature, based on measurements within
a neighborhood, fixed in size, has a poor discrimination power when applied to a
texture not observable within the neighborhood because of the wrong scale. But in

apner;\] the size information is not availahle. There are other nrohlems assaciated
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1. A co-occurrence matrix must be computed for each value of # and d. This
requires a fair amount of computation.

2. Co-occurrence matrices are inappropriate to describe oriented texture. This is
because the co-occurrence matrix is defined only for globally discrete value of
6, and is hence incapable of estimation local variations in orientation.

3. In order to reduce the dimensionality of the feature vector, detailed first stage
classification experiments are needed to determine the best reduced sets of fea-
tures to use for successful classification.

4. The feature representation is not rotation invariant (except to multiples of 45°)
or scale change in the texture.

5. The classifier lacks any claim to optimality.

2.2 Frequency domain approach
Power spectrum method

Compared with spatial domain approaches, the frequency domain approach is prefer-
able, for two reasons. First, an effective textural feature descriptor should be able to
describe the spatial arrangement of the texture element as well as to express the size
and shape of the texture elements simultaneously. From the elementary properties of
Fourier transform, for any real periodic function its Fourier spectrum is symmetrical
with respect to origin, and the Fourier spectrum is translation invariant. Therefore,
the periodical or partially periodical function could be represented more concisely in
terms of the Fourier spectrum of an image. Secondly, if there is noise within the tex-
tural image, the noise process will alter image representation dramatically in spatial
domain, but uniformly in frequency domain. Hence, the frequency measure should be
less sensitive to the noise than that in the spatial domain. Bajcsy [3] used statistical
measures derived from the Fourier power spectrum of the image. One of the most
significant pieces of information about an image revealed by means of Fourier power
spectrum methods is periodicity.

Rosenfeld, et.al., [10] used ring-shaped and wedge-shaped samples of the discrete
Fourier power spectrum to obtain the information of the size texture element and
orientation of the texture image. Let p(-,-) be the power spectrum obtained from a
local region of an image.

1. Periodicity: this feature is related to energy in major peak.

p(upeak, Upeak) (6)

periodicity = T oy 2160
u,v£0 ]



2.

3.

Size of texture element: this features is based on ring-shaped samples which are
of the form

@, = E p(u,v) (M)

rf <u?+4ov2 Srg

Orientation: this feature is based on wedge-shaped samples which are of the
form

Do, 6, = > p(u,v) (8)

There are few difficulties associated with these statistical measures:

1.

2.

2.3

They are not invariant to change of texture element in either orientation or
scale.

The ring and wedge shaped functions used to compute the texture feature were
based on a windowed Fourier transform. Spatial locality is introduced by win-
dowing the data prior to the integration of the energy of the transformed win-
dowed data. However, this involves a loss in spatial frequency resolution as the
spectrum of the image is now convolved with that of the spatial window.

Summary

The requirements of a suitable textural image descriptor can be summarized as fol-
lowing. '

1.

Coarseness in textural features is always scale dependent. This scale charac-
teristic should be resolved in the feature descriptor to allow the image to be
analysised at different scales.

The information of feature should be retained in both the spatial domain and
frequency domain to achieve optimality.

The translation and orientation of the texture elements should be represented
in the descriptor with properties of translation and orientation invariance.

. The descriptor should be able to describe the global and local information corre-

sponding to the spatial distribution and size of the texture element respectively.

. The computational requirements should not be excessive so as inhibit imple-

mentation of the descriptor.
The model should be capable of dealing with noise.

The most important desired property relating to the descriptor is that the de-
scriptor should be a signal based model without a priori knowledge of the input.

5



3 Affine transformation estimation

The new approach to the analysis of texture elements is presented in this sectlon
The scheme is based on the following assumptions:

1. The underlying texture element can be characterized in the frequency domain
by local concentrations of energy about one or two frequencies.

2. Elements of the same texture are related via an affine transformation, ie. they
are rotated, scaled and translated version of each other.

The aim of the analysis is first to derive a representation of such elements and sub-
sequently to estimate the associated affine relationship amongst the elements. There
are two-phases in this analysis: phase 1 is to generate a pair of centroid vectors
which are equivariant to rotation and scaling, while phase 2 is to estimate the affine
transformation based on the estimated centroid vectors. Figure 2 illustrates the main
components of the algorithm and these are described in detail below. The notation
used in this section is as follows: consider a 2-D discrete image :z:(ﬁk) which is tes-
sellated into a number of small lattice squares and let m({,,w,, o) be a local discrete
Fourier spectral estimate for a region centered at spatial position f. and at scale o,
where £; = (éi1,&i2) 1s the coordinate in 2-D space.

3.1 Affine transform

A linear transformation followed by a translation is an affine transformation T', ie.
TE= A+ 9)

where A is a matrix, and 7 is translation term. Thus, the affine transform is actually
a combination of scaling, rotation and translation. Based on the affine transform, the
spatial distribution of texture elements could be characterized. In order to estimate
the affine transformation between two different regions, R¢rom and R, the two pairs
of vectors which could represent Rf,om and Ry, correspondingly ought to be located
first.

3.2 Estimation of centroid vectors
3.2.1 Centroid vectors calculation

In the frequency domain, there exists the symmetrical property. Hence the compu-
tation size requirement to estimate the centroid vectors in frequency domain is only
half dimension of :?:(5,631-,0). Moreover, the centroid vectors should be located far
enough apart to carry out the affine transformation effectively. This introduces a
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Figure 3: Dividing window and Minimum o7, splits local spectrum evenly

dividing window ’_L’ to divide a‘;({-:, &;,0) into three subregions, two quarters and one
half. Let Z;x(6) and o2 () be the centroid and variance of quarter k, k = 1,2, at each
angle 6 of the dividing window 'L’ for spatial position &;.
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P‘k( ) E,'k(o) BjGAVA{(a) JI (f ] U)I
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0‘-2 ) = @; - W;|z ,',_",0‘ 10
0 = B g G (10

where

Eik(a) = Z I‘%(éa‘;jaa)l )

@;€AL(6)

and Ag(0) is the set of coefficients in quater k and ’-’ is inner product. Rotating the
dividing window ’L’ from 0° to 180° and selecting the best angle avoids the local
concentrating energy lying along the dividing window ’_L’.

3.2.2 Minimum variance criterion

The sum of the variance of the two quarter regions, with respect to the estimated
centroids is used as a criterion selection. This is defined as equation (11). By deter-
mining the angle at which this variance is minimum, the dividing window ’L’ then
evenly splits the local spectra into two separate regions, see figure 3.

oi12(6) = 051(0) + 055(6) (11)

The centroids of the corresponding quarters then defines the required equivariant
vectors.



3.3 Estimation of affine matrix

The algorithm proceeds with obtaining the transform matrix to estimate the affine
transformation between two regions, R; and R,. Based on the estimated centroid pair
(fi, fiz) and (f,, f%,), a linear transformation matrix, A, can be found by calculating
the linear equation (12).

[IE&}=A[I§'1]=[GH am]l/:l:ﬂ-] (12)
Fiz iz az1 422 a2

There are eight different possible matrixes, A; ¢ = 1, ...,8 see figure (4). A; is formed
by calculating from centroid pair ({1, fi2) to (@, i), as equation (12). A, is ob-
tained from A; by swapping centroid pair from (i}, ii};) to (&y, #%)- As is formed
by means of replaceing ji}, by —fi,. A4 is to swap centroid pair from that of A3
same way as A; swapped from A;. Aj, 3 =5, ...,8 are obtained from A;, 1 =1,...,4
respectively by negating (i, i%,)-

3.4 Region transformation and correlation

Eight transformed regions, the new-regions, are created by using the eight transform
matrixes obtained from section 3.3, A; z = 1,...,8, to perform coordinate transform
and bi-linear interpolate pixel value from the the region where the from-region is
transformed to, the to-region. The relationship among from-region to-region and new-
region is shown in figure 5. The maximum correlation coefficient between the from-
region and 8 new-regions decides the best affine transform matrix and provides the
phase shift information. The decision is made according to the normalized correlation
between the new-region and the region where the new-region is transformed from, the
from-region. If the transform matrix is the correct selection, the new-region will be
similar to the from-region.

The normalized correlation [7] is performed directly in frequency domain by ap-
plying the energy theorem [11]

F"l[-'f;(é;:, (3_1'7 0)53‘(5:‘313 0')]

= afE - aAfR -
i |2(€k, @5, 0) |*|£:(&, D5, 0) |2

p;(k,l)

(13)

where F~1 denotes the 2-D inverse Fourier transform, :5,({-; ,@j,0) is the local spectra
of new —region, 1 = 1,...,8 and ’¥’ is complex conjugate. The transformation matrix
is selected corresponding to maximum p;(k, ).



,».._<_~,

VIXLYD)
V2X2.Y2)
x
Y Y
VI I, Y1) VI'XI1,YD)
V2 (X2.Y2)
X X
V2'(X2'.Y2)
Y Y
V2'(X2,Y2) V2X2.Y2)
VI'XI',Y1")
X x
VI'XI'Y1)
Y Y
V2'(X2'.Y2)
X X
V2'(X2.Y2) \
VI'XILYT) VI'XILYTY)
Y Y
VI'XI'Y1)
e i .
VI'XI"Y1) \
V2(X2'.Y2) V2 (X2',Y2')

centroid pair to form transform matrix

from-region

to-region 1 to-region 3

to-region 2 to-region 4

to-region 5 to-region 7

to-region 6 to-region 8

Figure 4: Eight possible transform matrices

10



wmnnoads [800] Jo 20uaIa)yip aseyd J0J Spuejs SQO[q UTYIIM SPOW-[[1J JUSIBLII(]
(s uo18a1-0], woyy pajejodiaur st anfea [ax1d)

uordar-maN

\

Y

A

f'n

region, to-region and new-region

D

uoidar-o], uo1dar-wor]

V XLOew WONBULIOJSULT) QUYJY

Figure 5: Relationship between from-

11



ra—cne

i == >ESZF25S
Level 0: DFT of image el < ;._;_-_"’:'-'-‘5-’5_ it

Level 1 //____.. .’..'_'-..-

Level 2 /ﬁ_ :::“:;':.‘: =
"""7‘“"“" T

Level 3: Original Image_ o _-.—:E:f--_:-_.,._-v:z—

.r'-:"—,. Tty

Spatial Domain Frequency Domain

Figure 6: MFT 2-D structure

4 Implementation

4.1 Multiresolution Fourier Transform

Central to the above analysis is the availability of local frequency estimates over
multiple scales. These can be obtained from the MFT of the texture image. The
MFT is a generalized form of wavelet transform [1] and [2]. The MFT is to have
scale o as part of a signal representation in phase-space (¢,w) so that MFT is able to
perform local Fourier analysis at various scales. The general structure of the MFT is
shown in figure 6. This section briefly introduces the properties of MFT.

4.1.1 Continuous case
In 1 — D continuous case, for a given signal Z(¢), the definition of MFT is

2(¢w,0) = 0" [ dxa(xw(o(x - €)) expl-gox] (14)
where ¢ is the spatial co-ordinate, w is frequency co-ordinate and w(¢) is an appro-
priate windowing function. Thus Z(¢,w, o) is a windowed Fourier spectrum of a local
region in the signal domain centered at spatial position £ at scale ¢ with window-

ing function w({) see figure 7. The extension to m-D continuous MFT is straight
forward. Let £ = (€1, ey €m)T, then

#(€3,0) =™ [ da(Rw(o(X — &) expl- - 7 (15)

where @ is the Fourier co-ordinate.

12
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4.1.2 Discrete case

The 1-D MFT coefficient at scale o(n), position §(r) and frequency w;(n) can be
written as

2(&i(n),wj(n),0(n)) = ; wn(€k — &i(n))z (k) exp [—s€kw;(n)] (16)

where w,(£x) is the scale n window sequence, ¢ is the kth sample point for the origi-
nal sequence and the sample points at scale n are {x(n) and w;(n) for the original and
Fourier co-ordinates respectively. The window function w(¢) in MFT is a bandlim-
ited Finite Prolate Spheroidal Sequence (FPSS). The FPSS is used as a windowing
function with maximal energy concentration in both spatial and frequency domain.
The bandlimited form FPSS u is defined as solution of eigenvalue problem generated
in accordance with satisfactories of window unambiguity constraint in both spatial
and frequency domain. The eigenvalue equation for the FPSS is

B(Q)I(ZE)B(Q)u = \u (17)
where I(Z) is the index-limiting operator,

13



and B(Q) is the bandlimiting operator,
B(Q) = F* I(Q)F (19)

In order to achieve the better localization in spatial domain and reduce the ambiguity,
a relaxed version of MFT is used. This is accomplished by oversampling in the spatial
domain by factor of 2, leading to increased bandwidth in frequency domain by factor
of 2F. -

w, = B(2*Q(n))I(Zo(n))u, (20)

Extension of the 1-D case in (16) to the 2-D case can be achieved using a cartesian
separable implementation. Let N = 2M| then Z(n) = 2"¥!~M and Q(n) = gM—B-n
There are M x M blocks each is size of Ng(n) X Nq(n) = 2" x 2" As illustration, for
example, for a 128 x 128 = 27 x 27 image, M = 7, the MFT of this image at level
n = 5 is composed of 27/25~1 x 27/25! blocks with each block of size 2"=° x 2"=5,
the sampling interval in both domain are

S(n) = 2MH-M = 95H1-T 5 (21)
Qn) = M+ =2""2=1 (22)

5 Experiments

5.1 Centroid Estimation

To test the algorithm, experiments are performed on the FM pattern in figure 8. This
FM pattern is generated from both radial function and angular function. It consists
the characteristics of scaling, rotation and translation encounted in general image
analysis. Figure 9 is a 128 x 128 image taken out from the original 512 x 512 FM
pattern and its associated MFT coefficients are shown as figure 10. Figure 11 shows
from-block, to-block and eight possible new-block where pixel value interpolated from
to-block. In the from-block and to-block, the dividing window ’_L’ is overlaid. From the
overlaid pattern, the minimun variance criterion does make the dividing window ’L’
split the local spectrum evenly. The from-block and to-block are two blocks arbitrary
chosen from figure 10. In this case, the block 3 is the most similar to from-block and it
is the rotated version of the to-block. The normalized correlation coefficient is 0.9556.

There is an important issue regarding to the number of significant features con-
tained in single MFT block. If there is only one blob, this could be detected by
examing the ratio of the variance. Let o?, be the sum of variance of two quarters
in division window ’L’ with respect to the estimated centroid pair within these two

14



quarters respectively and o}, stands for the variance with respect to the centroid
within the half block. Then the ratio

012
~ 1. 23
P (23)

provided that there is only one significant feature in the block. If there are two
features in one block, then the ratio

012

<1 (24)
Ohalf

In the case of only one feature present, the curve of the o? is shown in figure 12.
While in the case of two features, the curve has two extremes, see figure 13. If there
are more than two features existing in one block, the algorithm will not be as reliable
as the case of less and equal to two features. Further investigation is needed to study
this.

In the case of small spatial blocks then it turns out the algorithm will select the
wrong transform matrix due to low correlation. Figure 14 shows this situation for
MFT level 6 where transformed block 6 is chosen with correlation only 0.194. But this
difficulty can be solved by applying different level of MFT to increase the resolution
in frequency domain. Figure 15 shows the effectiveness of MFT. In this case we used
the MFT level 5 and chosed the same portion of the MFT coeflicient field as in figure
14. The block 1 is selected as best affine transform matrix and correlation result is
0.703127. Also note that, the size of the transformed local spectrum in block 1 is
scaled down from to-block by affine transform.

5.2 Texture synthesis
5.2.1 Procedure analysis

In this section, we outline the procedure of synthesizing (or reconstructing) all other
blocks from the from-block to give a new synthesized image. After performing nor-
malized correlation in the multiresolution affine transform, the image synthesis is
accomplished by following stages.

1. Phase shift correction: the phase shift information between the from-block and
the best new-block is provided by the correlation calculation. To correct the
position of the new-block,

:i:'zewblock (E:a (".3.1'7 J) = Zrnewblock (é:a ‘;5]'1 O')C:Ep[—jz’lr((b'j . J)/N] (25)

where d is the position of correlation peak and N is block size.

15



2. Energy normalization: energy normalization is used to keep the energy of the
synthesized block being the same as that of original block, the to-block where
the synthesized block is transformed to.

3. Cosine windowing: the output of the inverse Fourier transform is twice the size
of the original image’s due to the MFT oversampling. Therefore, we could either
take the middle part of the block or perform the cosine windowing function
over the inverse Fourier transform output followed by adding them up to give
a synthesized image without blocking artefacts.

i@ = S ncuttoas(Ecos?(2néN). (2)
newblock
where . .
Tnewblock (6) = F~ [inewblodc (ét ’ (:3.1', 0)] (27)

5.2.2 Synthesis of FM pattern

This synthesized FM patterns are shown at figures 16, 17 and 18. Figures 16,17 and
18 are results of the algorithm performed over FM pattern size of 128 x 128 with
MFT block size of 64 x 64, 32 x 32 and 16 x 16 respectively. The blured portion of
these images is caused by the cosine smoothing function over each IFFT of the MFT
block. The entire FM pattern synthesized at MFT level 4 and 5 are shown at figures
20 and 19.

5.2.3 Synthesis of natural image

The reptile pattern, figure 21, from the Brodatz’s well known album [4] has also been
reconstructed at different MFT levels. Figure 22 shows the synthesized reptile image
entirely at MFT level 5. In order to compare the effect of differen MFT level, the
synthesized reptile images from level 3, 4, 5, and 6 are grouped together, see figure
23 where a. is level 3, b. is level 4, c. is level 5 and d. is level 6. The significance
of the energy normalization, coordinate transform and phase position shift are shown
at figure 24. This figure shows different stages of the image synthesized procedure
at MFT level 3. Each of them affects the synthesized result. In figure 24, a. is
synthesized reptile image with energy normalization, affine transform and phase shift
correction, b. is the synthesized reptile image produced same procedure as in a. except
without enegy normalization, c. is generated without both energy normalization and
coordinate transform. The synthesized image still has structure of reptile skin but is
more randomized due to lack of the suitable affine transformation. Figure 24 d. is
generated from portion of an image without phase shift, coordinate transform and
energy normalization. Therefore, the synthesized result is just a repeated copy of the
same local portion of the image.
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6 Conclusions and Further work

This work has reviewed the literatures on texture analysis. The limitations in scaling,
rotation and translation of these methods have been discussed. A new algorithm has
been derived to overcome these limitations. This algorithm makes use of the Multires-
olution Fourier Transform, or MFT, as a tool to estimate the affine transformation
among the MFT coefficient field. The algorithm has successfully characterized the
texture element and their spatial distribution simultaneously directly in the frequency
domain. The analysis and synthesis of both artificial and natural texture images have
shown the potential of the new algorithm.

Incorporation of detection on more than two features presenting in a MFT block
into this new algorithm will need to be studied more. A further stage of development
would be to combine information from various level and neighbouring blocks. The
inclusion of the information in spatial domain is another research direction.
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Figure 8: Original 512 x 512 FM pattern
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Figure 11: From-block, to-block and eight transformed blocks

iv



variance

240

220

200

180

160

140

120
0

One feature present

T T T L T T T

1 1 ol 1 1 L 1

2 10 15 20 25 30 35

rotation degree (1:5)

Figure 12: Plot of variance vs. rotation degree (one feature case)
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Figure 14: Algorithm failed when the MFT block of size 64 x 64
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Figure 15: Smaller MFT block size (32 x 32) solves the mistaken selection
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Figure 16: FM pattern synthesis at MFT level 6



FM pattern synthesis at MFT level 5



Figure 18: FM pattern synthesis at MFT level 4
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Figure 19: Entire FM pattern synthesis at MFT level 5
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Figure 21: Original reptile pattern
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Figure 22: Reptile pattern synthesis at MFT level 5



a.Reptile synthesized at MFT level 3.

b.Reptile synthesized at MFT level 4.

c.Reptile synthesized at MFT level 5. d.Reptile synthesized at MFT level 6.

Figure 23: Reptile pattern synthesis at MFT level 3,4,5 and 6
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c.No energy normalization and transform. d.No energy normalization, transform and shift.

Figure 24: The significance of different functions
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